
STATISTICAL LTAG PARSING

Libin Shen

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2006

Aravind K. Joshi
Supervisor of Dissertation

Rajeev Alur
Graduate Group Chairperson

Acknowledgments

First and foremost, I would like to thank my advisor Aravind Joshi for his continuous

support and guidance in both academic and daily life ever since my first day at Penn.

Many thanks to my dissertation committee members, Mark Johnson, Mitch Marcus,

Martha Palmer and Fernando Pereira. Their valuable advice and suggestions help me to

sharpen the focus of this research.

I am grateful to Anoop Sarkar and Fei Xia. During my first two years at Penn, I learned

a lot of NLP from them. I appreciate enlightening discussions with NLP people at Penn.

They are Dan Bikel, John Blitzer, Jinying Chen, David Chiang, Susan Converse, Nikhil

Dinesh, Yuan Ding, Julia Hockenmaier, Liang Huang, Alexandra Kinyon, Seth Kulick,

Edward Loper, Ryan McDonald, Rashmi Prasad, Fei Sha, Nianwen Xue and Szu-ting Yi.

Thanks to Srinivas Bangalore, Michael Collins, Dan Gildea, Giorgio Satta, Franz Och

and other members of the SMT team at JHU Summer Workshop 2003, who helped my

research work in various ways. Thanks also to my past and current office-mates, Eva

Banik, Alan Lee and Carlos Prolo.

Last but not the lease, I am indebted to my family; to my parents for their understand-

ing and endless patience, to my wife Ye for her unconditional support and encouragement,

and to my daughter Sophie for sharing our pleasure just at the right moment.

ii

ABSTRACT

STATISTICAL LTAG PARSING

Libin Shen

Aravind K. Joshi

In this work, we apply statistical learning algorithms to Lexicalized Tree Adjoining

Grammar (LTAG) parsing, as an effort toward statistical analysis over deep structures.

LTAG parsing is a well known hard problem. Statistical methods successfully applied to

LTAG parsing could also be used in many other structure prediction problems in NLP.

For the purpose of achieving accurate and efficient LTAG parsing, we will investigate

two aspects of the problem, the data structure and the algorithm.

1. We introduce LTAG-spinal, a variant of LTAG with very desirable linguistic, compu-

tational and statistical properties. It can be shown that LTAG-spinal with adjunction

constraints is weakly equivalent to the traditional LTAG. For the purpose of statis-

tical processing, we extract an LTAG-spinal treebank from the Penn Treebank with

Propbank annotation.

2. We not only explore various parsing strategies, but also investigate the reranking

approach.

• We first propose a left-to-right incremental parser for LTAG-spinal, as an at-

tempt to dynamically incorporate supertagging and dependency analysis. A

perceptron like discriminative learning algorithm is used for training.

We further investigate a bidirectional dependency parser for LTAG-spinal, in

order to overcome the limitation of left-to-right processing. We propose a

novel algorithm for graph-based incremental construction, and apply this al-

gorithm to LTAG style dependency parsing.

• We also explore learning algorithms for parse reranking, as well as other NLP

problems, e.g. Machine Translation. We propose a novel reranking strategy,

iii

Ordinal Regression with Uneven Margins (ORUM), which achieves state-of-

the-art performance on parse reranking for CFG parsing and MT reranking.

To sum up, we have accomplished the following achievements.

• A new formalism, LTAG-spinal, which is weakly equivalent to LTAG.

• An LTAG-spinal Treebank extracted from the PTB with the Propbank annotation.

• A left-to-right incremental parser for LTAG-spinal.

• A bidirectional LTAG-spinal dependency parser.

• A novel graph-based incremental construction algorithm, which could be applied to

many structure prediction problem in NLP, e.g. semantic role labeling.

• A novel discriminative reranking algorithm, ORUM, which has been successfully

applied to parse reranking as well as other tasks, e.g. MT reranking.

iv

Contents

Acknowledgments ii

1 Introduction 1

1.1 Overview . 1

1.2 Lexicalized Tree Adjoining Grammar 3

1.2.1 Formalism . 3

1.2.2 An Example . 4

1.2.3 Properties of LTAG . 6

1.3 Discriminative Learning with Perceptron 7

1.3.1 Discriminative Learning in NLP 7

1.3.2 Perceptron Algorithms . 9

2 LTAG-spinal 13

2.1 Motivation . 13

2.1.1 Linguistics . 13

2.1.2 Generative Capability . 14

2.1.3 Statistical Processing . 15

2.2 Formalism . 15

2.3 Examples . 17

3 Incremental LTAG-spinal Parsing 19

3.1 Previous Works . 20

v

3.2 Incremental LTAG-spinal Parsing Algorithm 21

3.3 An Example . 22

3.4 Formalism for Incremental Parsing . 24

3.5 Training . 28

3.5.1 Training Algorithm . 28

3.5.2 Features . 28

3.6 Experiments and Analysis . 30

3.6.1 Eager vs. Flex . 30

3.6.2 K-Best Parsing . 31

3.6.3 Speed of Parsing . 33

3.7 Summary . 34

4 Bidirectional LTAG-spinal Dependency Parsing 35

4.1 Idea . 36

4.1.1 Traditional Parsing Strategies 36

4.1.2 Parsing as Search . 37

4.1.3 Our approach . 38

4.2 An Example . 39

4.3 Data Structures and Algorithms . 45

4.3.1 Data Structures . 45

4.3.2 Search Algorithm . 49

4.3.3 Training Algorithm . 51

4.4 LTAG-spinal Dependency Parsing . 52

4.4.1 Incremental Construction . 52

4.4.2 Features . 56

4.5 Discussion . 59

4.5.1 On Weight Update . 59

4.5.2 On Path Selection . 59

4.5.3 Related Works . 60

vi

4.6 Experiments and Analysis . 61

4.7 Summary . 63

5 Resource Construction 64

5.1 Previous Works . 64

5.2 Our Approach . 65

5.3 Extracting an LTAG-spinal Treebank . 65

5.3.1 Pseudo Annotations for be . 66

5.3.2 PTB and Propbank Integration 66

5.3.3 Full Adjunction . 68

5.3.4 Coordination . 69

5.3.5 Elementary Tree Extraction . 70

5.3.6 Normalization . 70

5.4 The LTAG-spinal Treebank . 71

5.4.1 Format . 71

5.4.2 Case Studies . 74

5.5 Properties of the LTAG-spinal Treebank 78

5.5.1 Statistics . 78

5.5.2 Compatibility with Propbank . 78

5.5.3 Unlabeled Argument Identification 82

6 Reranking Approach 84

6.1 Previous Works . 85

6.1.1 Reranking in NLP . 85

6.1.2 Ranking and Ordinal Regression 87

6.2 Ranks and Margins . 89

6.2.1 Locality of Ranks . 89

6.2.2 Density of Ranks . 90

6.2.3 Full Pairwise for Reranking . 91

vii

6.2.4 Uneven Margins . 92

6.3 Models for Ranking and Reranking . 94

6.3.1 Problem Definition . 94

6.3.2 Splitting . 94

6.3.3 Ordinal Regression on Groups 95

6.3.4 Pairwise Classification . 96

6.3.5 Pairwise Classification with Uneven Margins 97

6.3.6 Single Group . 97

6.4 Training Algorithms . 98

6.4.1 Perceptron over Full Pairwise Samples 98

6.4.2 Fast Perceptron Training . 99

6.5 Theoretical Justification . 100

6.5.1 Justification for Algorithm 1 . 100

6.5.2 Justification for Algorithm 2 . 101

6.5.3 Inseparable Data . 102

6.6 Experiments and Analysis . 103

6.6.1 Parse Reranking . 103

6.6.2 Discriminative Reranking for Machine Translation 105

6.7 Summary . 107

7 Conclusions and Future Work 109

7.1 Conclusions . 109

7.2 Future Work . 110

A LTAG-spinal 112

B Ordinal Regression with Uneven Margins 116

viii

List of Tables

3.1 F-score of the oracle parse in the 10-best parses on the development data

with the Eager Model . 32

3.2 Speed of parsing on the test data set. 33

4.1 Features defined on the context of operation 58

4.2 Results of bidirectional dependency parsing on Section 23 of the LTAG

Treebank . 62

5.1 Distribution of pred-arg pairs with respect to the distance between the

predicate and the argument. 79

5.2 Distribution of pred-arg pairs with respect to the path from the predicate

to the argument. 80

5.3 Unlabeled non-trace argument identification. 82

6.1 Experimental Results . 104

ix

List of Figures

1.1 Derived tree (parse tree) . 4

1.2 Elementary trees. 5

1.3 Derivation tree: shows how the elementary trees shown in Fig. 1.2 can be

combined to provide an analysis for the sentence. 5

1.4 Example of how each node in an elementary tree has a unique node ad-

dress using the Gorn notation. 0 is the root with daughters 00, 01, and so

on recursively, e.g. first daughter 01 is 010. 6

2.1 Spinal elementary trees . 15

2.2 An example in LTAG-spinal. 17

2.3 An example of predicate coordination. 17

3.1 Incremental parsing with the Eager Model. 24

3.2 Partial derivation tree for the example of visibility 24

3.3 f-score of syntactic dependency on the development data with the Eager

Model . 31

3.4 f-score of syntactic dependency on the development data with the Flex

Model . 31

3.5 f-score of the K-Best oracle on the test data 32

4.1 initialization . 39

4.2 attach JJ(graduate) to NNS(students) 40

4.3 step 1 : to combine graduate and students 42

x

4.4 step 2 : to combine ten and courses . 43

4.5 step 3 : to combine to and take . 43

4.6 step 4 : to combine expected and to take 44

4.7 step 5 : to combine expected to take and ten courses 45

4.8 step 6 : to combine expected to take ten courses and previously 46

4.9 final output . 46

4.10 Wrapping adjunction with raising verbs 53

4.11 Case 1: no adjunction from left . 54

4.12 Case 2: both NL and NR is visible . 55

4.13 Case 3: NR is visible . 55

4.14 Case 4: NL is visible . 56

4.15 Partial dependency tree for the example of conjunction 56

4.16 Representation of nodes . 57

5.1 Continuous flat segments. 67

5.2 Continuous uneven segments. 68

5.3 Extraposition. 68

5.4 Full auxiliary. 69

5.5 Predicate Coordination. 69

5.6 Types of normalized spinal elementary trees. 70

5.7 An Example in the treebank . 73

5.8 Raising Verb . 75

5.9 Relative Clauses . 75

5.10 Predicative Trees . 75

5.11 Parentheticals . 77

5.12 Extrapositions . 77

5.13 Pattern: P← Px→ A . 81

5.14 Pattern: P← Ax← Py→ A . 81

5.15 Pattern: P← Px← Py→ A . 81

xi

6.1 Comparison of score metrics . 92

6.2 Learning curves of Algorithm 1 and Algorithm 2 on PTB Section 23 . . . 105

6.3 Splitting with uneven margins . 106

6.4 Ordinal regression with uneven margins 107

A.1 Replacing elementary trees in G with slim trees 113

A.2 Spinalization for initial trees . 114

A.3 Spinalization for auxiliary trees . 114

xii

Chapter 1

Introduction

1.1 Overview

Lexicalized Tree Adjoining Grammar (LTAG) (Joshi and Schabes, 1997) is a grammar

which has attractive properties from the point of view of Natural Language Processing

(NLP). LTAG has appropriate generative capacity and a strong linguistic foundation. Pro-

cessing over deep structures in the LTAG representation leads to better understanding of

natural language. Analysis with a well studied grammar like LTAG provides an integrated

method of natural language processing.

Statistical methods, especially discriminative learning algorithms, have been success-

fully used in NLP. However, most of the current research on statistical NLP is focused

on shallow syntactic analysis, due to the difficulty of modeling deep analysis with basic

statistical learning algorithms.

In this work, we apply statistical learning algorithms to LTAG-based analysis as an ef-

fort toward statistical analysis over deep structures. We are especially interested in LTAG

parsing, which is a well known hard problem due to its computational complexity. Statis-

tical methods successfully applied to LTAG parsing can be applied to many other structure

prediction problems in NLP.

For the purpose of achieving accurate and efficient statistical LTAG parsing, we will

1

investigate two aspects of the problem, the structure and the algorithm.

Structure

TAG parsing is a well known difficult problem. The time complexity of TAG parsing

is O(n6), where n is the length of the sentence. Variants of TAG have been proposed

to reduce the complexity. For example, Schabes and Waters (1995) introduced the Tree

Insertion Grammar (TIG) which is O(n3) parsable. However, TIG is weakly equivalent to

Context-Free Grammar since it does not allow wrapping adjunction.

In Chapter 2, we will propose LTAG-spinal, a variant of LTAG with very desirable

linguistic, computational and statistical properties. It can be shown that LTAG-spinal with

adjunction constraints is weakly equivalent to LTAG. We extract an LTAG-spinal treebank

from the Penn Treebank (Marcus et al., 1994) with Propbank annotation (Palmer et al.,

2005), as described in Chapter 5.

Algorithm

We apply discriminative learning to LTAG based analysis in two ways, with parsing and

with reranking.

In Chapter 3, we will propose a left-to-right incremental parser for LTAG-spinal. In

this approach, we solve supertagging and dependency analysis problems in parallel. A

perceptron like learning algorithm (Collins and Roark, 2004) is employed in training.

In Chapter 4, we will propose a bidirectional incremental parser to obtain LTAG-spinal

dependency. We model the bidirectional parsing as a search problem, in which hypotheses

of outside partial parses are utilized as features to compute the score of a partial parse. In-

stead of giving an algorithm specially designed for parsing, we propose a novel perceptron

like learning algorithm generalized for graphs.

We also explore the discriminative reranking approach which could be used to improve

the performance of parsing and other NLP problems, e.g. machine translation. In Chapter

6, we will propose a novel reranking algorithm based on ordinal regression with uneven

2

margins.

In the rest of this chapter, we will first provide a short introduction to the LTAG

formalism in Section 1.2. We will introduce the LTAG terminologies to be used later

in this dissertation. More details of LTAG are available in a relatively recent paper by

Joshi and Schabes (1997).

In Section 1.3, we will briefly describe the learning methods used in NLP learning

tasks, labeling and structure prediction, which could be applied to LTAG based analysis.

We will provide a short introduction to the Perceptron algorithm. Most of the learning

methods proposed in dissertation are based on the Perceptron algorithm.

1.2 Lexicalized Tree Adjoining Grammar

Tree Adjoining Grammar (TAG) was first introduced in (Joshi et al., 1975). A recent

review of TAG is given in (Joshi and Schabes, 1997), which provides a detailed description

of TAG with respect to linguistic, formal, and computational properties. In this section,

we will briefly describe the TAG formalism and the relation to linguistics for the sake of

completeness.

1.2.1 Formalism

In LTAG, each word is associated with a set of elementary trees. Each elementary tree

represents a possible tree structure for the word 1.

There are two kinds of elementary trees, initial trees and auxiliary trees. Elementary

trees can be combined through two operations, substitution and adjunction.

Substitution is used to attach an initial tree, and adjunction is used to attach an auxiliary

tree. In addition to standard adjunction, we also use sister adjunction as defined in the

statistical LTAG parser described in (Chiang, 2000) 2.

1An elementary tree may have more than one lexical items.
2Adjunction is used in the case where both the root node and the foot node appear in the Treebank tree.

Sister adjunction is used in generating modifier sub-trees as sisters to the head, e.g in base NPs.

3

S

NP

NNP

Pierre

NNP

Vinken

VP

MD

will

VP

VP

VB

join

NP

DT

the

NN

board

PP

IN

as

NP

DT

a

JJ

non-executive

NN

director

Figure 1.1: Derived tree (parse tree)

The tree resulting from the combination of elementary trees is is called a derived tree.

The tree that records the history of how a derived tree is built from the elementary trees is

called a derivation tree 3.

1.2.2 An Example

We illustrate the LTAG formalism with an example.

• Pierre Vinken will join the board as a non-executive director.

The derived tree for the example is shown in Fig. 1.1. Fig. 1.2 shows the elementary

trees for each word in the sentence. Fig. 1.3 is the derivation tree. α stands for an initial

trees, and β stands for an auxiliary tree.

One of the properties of LTAG is that it factors recursion in clause structure from

the statement of linguistic constraints, thus making these constraints strictly local. For

example, in the derivation tree, α1(join) and α2(Vinken) are directly connected no matter

if there is an auxiliary tree β2(will) or not.

3Each node η〈n〉 in the derivation tree is an elementary tree name η along with the location n in the
parent elementary tree where η is inserted. The location n is the Gorn tree address (see Fig. 1.4).

4

NP

NNP

Pierre

NP

NNP

Vinken

VP

MD

will

VP∗

S

NP↓ VP

VB

join

NP↓

NP

DT

the

NP

NN

board

VP

VP∗ PP

IN

as

NP↓

NP

DT

a

NP

JJ

non-executive

NP

NN

director

β1: α2: β2: α1:

β3: α3: β4: β6: β5: α4:

Figure 1.2: Elementary trees.

α1(join)〈〉

α2(Vinken)〈00〉

β1(Pierre)〈0〉

β2(will)〈01〉 α3(board)〈011〉

β3(the)〈0〉

β4(as)〈01〉

α4(director)〈011〉

β5(non-executive)〈0〉

β6(a)〈0〉

Figure 1.3: Derivation tree: shows how the elementary trees shown in Fig. 1.2 can be
combined to provide an analysis for the sentence.

5

S0

NP00

↓ VP01

join010 NP011

↓

Figure 1.4: Example of how each node in an elementary tree has a unique node address
using the Gorn notation. 0 is the root with daughters 00, 01, and so on recursively, e.g.
first daughter 01 is 010.

1.2.3 Properties of LTAG

Compared with Context Free Grammar (CFG), TAG is mildly context-sensitive (Joshi,

1985), which means

• TAG can be parsed in polynomial time (O(n6)).

• TAG has linear growth property.

• TAG captures nested dependencies and limited kinds of crossing dependencies.

There exist non-context-free languages that can be generated by a TAG. For example,

it can be shown that L4 = {anbncndn} can be generated by a TAG, but it is not a context-

free language. On the other hand, it can be shown that L5 = {anbncndnen} is not a tree

adjoining language (Vijay-Shanker, 1987), but it is a context-sensitive language. It follows

that L(CFG)⊂ L(TAG)⊂ L(CSG).

Because TAG has a stronger generative capacity than CFG, we can use TAG to repre-

sent many structures that cannot be represented with CFG, mainly due to the adjunction

operation. There follow the two key properties of LTAG:

• Extended Domain of Locality (EDL), which allows

• Factoring Recursion from the domain of Dependencies (FRD), thus making all de-

pendencies local (Joshi and Schabes, 1997).

6

It is claimed in (Frank, 2002) that these two properties reflect the fundamental TAG

hypothesis: Every syntactic dependency is expressed locally within a single elementary

tree.

It is shown in (Kroch and Joshi, 1985) and (Frank, 2002) that a variety of constraints

on transformational derivations can be nicely represented with TAG derivation without

any stipulation on the TAG operations. This property is related to the fact that TAGs are

not as strong as context sensitive grammars, which allow too much flexibility for natural

language description.

1.3 Discriminative Learning with Perceptron

1.3.1 Discriminative Learning in NLP

Learning tasks in NLP are more complicated than the basic machine learning problems

like classification and regression. In NLP research, we are usually required to solve a set

of basic problems together, and the results of the individual problems are related to other

problems with respect to some underlying structure. This is usually called structured

learning.

Two classes of structured learning problems are well studied in NLP literature. One

is the labeling problem, such as POS tagging. The other is structure prediction, such as

various parsing problems.

In recent years, discriminative learning algorithms have been successfully applied to

these two classes of problems. Collins (2004) provided a detailed tutorial on using dis-

criminative learning in NLP, especially in the parsing problems.

Three different types of strategies have been employed in structured learning4.

4This view of classification was pointed out to me by Prof. Fernando Pereira.

7

• Type 1: Parameters are learned in the gold-standard context only. Algorithms in-

cluded in this class include Maximum Entropy Markov Model (MEMM) and Pro-

jection based Markov Model (PMM) (Punyakanok and Roth, 2001). For example, in

the Ratnaparkhi’s MEMM parser, the history-related features are always extracted

from the gold standard parse. A potential problem with this approach is the so called

label bias problem (Bottou, 1991; Lafferty et al., 2001).

Punyakanok et al. (2005) showed that an extra step of inference over the output of

those locally trained classifiers could greatly improve the overall performance in

some applications.

• Type 2: Parameters are learned in all possible contexts. Algorithms included in this

class are Conditional Random Fields (CRF) (Lafferty et al., 2001), Max-Margin

Markov Models (MMMN) (Taskar et al., 2003), as well as Collins’ Perceptron

learning algorithm (2002) and its variant on parsing (McDonald et al., 2005). For

example, in CRF, we compute all the possible pairs of labels for nearby nodes.

In this way, inference is incorporated in the training. So it is a more direct model

compared to Type 1. However, context in Type 2 is limited to a rather simple form

due to the constraint of complexity.

• Type 3: Parameters are learned in partial contexts. This type can be viewed as

a balance between the previous two types. Algorithms included in this class are

the Perceptron like learning algorithms proposed in (Collins and Roark, 2004) and

(Daumé III and Marcu, 2005). In these algorithms, beam search is employed to

maintain a set of possible context settings, while inference is still incorporated in

training.

In this way, we can use rich structures as context. However, we can no longer run a

precise inference over rich structures, but the hope is that the partial context used in

training is closely related to the competing incorrect hypotheses that we will face in

test.

8

Considering the rich structure that we have to use with the LTAG formalism, we will

take the third approach in our research.

1.3.2 Perceptron Algorithms

Our learning algorithms to be proposed in this dissertation are mainly based on the pre-

vious research on Perceptron learning, as reported in (Collins, 2002; Collins and Roark,

2004; Daumé III and Marcu, 2005). Therefore, we will provide a short introduction to the

Perceptron algorithm. The reader may refer to a machine learning textbook, e.g. (Bishop,

1996), for more details of perceptron learning. Here, we will only cover the content that

will be used later in this dissertation.

Rosenblatt’s Perceptron

Perceptron is a kind of binary classifier proposed by Rosenblatt (1958). It first maps a real

valued vector input x to a real number via linear function

f (x) = w ·x+b,

where w is the weight vector, and b is the bias. The sign of f (x) stands for a positive or a

negative sample.

Given a set of independently and identically distributed (iid) training samples {xi,yi},
yi ∈ {+1,−1}, according to a given distribution D , the perceptron algorithm learns the

weight vector and the bias with Algorithm 1.

Suppose xi =< x1,x2, ...,xk > is a k-dimension vector. Let ui =< x1,x2, ...,xk,1 >,

v =< w1,w2, ...,wk,b >. Then we have

w ·xi +b = v ·ui

By redefining samples in this way, we can incorporate the bias into the weight vector,

which means we can always assume the bias as zero by using the augmented vector as

samples.

9

Algorithm 1 Perceptron learning algorithm

Require: {(xi,yi), i = 1..n}
1: w0← 0;b0← 0; t← 0
2: repeat
3: for (i = 1, ...,n) do
4: if (sign(wt ·xi +bt) 6= yi) then
5: wt+1← wt + yixi

6: bt+1← bt + yi

7: t← t +1
8: end if
9: end for

10: until no updates made in the for loop
11: return < wt ,bt >

Novikoff’s Bound for Separable Data

Novikoff (1962) shows that the Perceptron learning stops in finite steps if the training data

is separable.

Theorem 1.1 Suppose we have the training data S = {(xi,yi), i=1, ,n}. Let R = maxi ||xi||.
If there exists a weight vector w∗, ||w∗|| = 1, such that ∀i,λi = yi(w∗ · xi) ≥ λ∗, Then the

Perceptron learning algorithm makes at most (R
λ∗)

2 updates.

Perceptron with Margin

There are variants of the Perceptron learning algorithm which could output a weight vector

that separates the training data with a large margin proportional to the optimal margin.

Krauth and Mezard (1987) proposed a large margin Perceptron that updates the weight

vector if the current weight vector cannot separate the samples in the training set by a

margin c. Let λ∗ be the optimal margin. It can be shown that the output weight vector

separates the samples in training set with a margin λc, such that

λc ≥
1

2+ 1
c

λ∗ (1.1)

Therefore, if c is large enough, the output margin could be close to half of the optimal

margin.

10

Crammer and Singer (2003) proposed a variant of Perceptron called the Margin In-

fused Relaxed Algorithm (MIRA), in which a margin related hinge loss is used in the

condition check of weight update, in line 4 of Algorithm 1. A hinge loss with margin

parameter λ is defined as

Lλ(w;(x,y)) = max{0,λ− y(w ·x)} (1.2)

The wight vector is updated if Lλ(w;(x,y)) > 0. The update rule is as follows.

wt+1 = argmin
w

1
2
||w−wt||2 (1.3)

s.t. Lλ(w;(x,y)) = 0

In this way, we separate the current sample with a large margin. This updating strategy is

call aggressive, because the updated weight vector can always assign the correct label to

the current sample.

Inseparable Data

Theorem 1.1 only provides an upper bound of updates if the training data is separable. The

following theorem in (Freund and Schapire, 1999) provides an upper bound even when the

training data is inseparable.

Theorem 1.2 Suppose we have the training data S = {(xi,yi), i=1, ,n}. Let R = maxi ||xi||.
Let w be any vector with ||w|| = 1 and let λ > 0. Define D = (∑n

1 Lλ(w;(xi,yi)))
1
2 . Then

the Perceptron learning algorithm makes at most (R+D
λ)2 updates in one iteration over the

training data.

A variant of the Perceptron learning algorithm proposed in (Freund and Schapire,

1999) under this framework is called voted Perceptron. The difference with the origi-

nal Perceptron algorithm is that, for prediction, we use the averaged weight vector instead

of the final result.

Another method to handle inseparable data is to make the samples artificially sepa-

rable. This method is called λ-trick in (Herbrich, 2002). For each sample, we insert a

11

Algorithm 2 Collins’ Perceptron learning algorithm

Require: {(xi,yi), i = 1..n}
1: w0← 0; t← 0
2: for (r = 1, ..,T ; i = 1, ..,n) do
3: Calculate zi = argmaxz∈GEN(xi) wt ·Φ(xi,z)
4: if (zi 6= yi) then
5: wt+1← wt +Φ(xi,yi)−Φ(xi,zi)
6: t← t +1
7: end if
8: end for
9: return wt

unique dimension for this sample, and assign a small number
√

λ to this dimension. If λ

is large enough, the augmented samples are always separable.

Collins’ Perceptron

Collins (2002) proposed a perceptron like learning algorithm combined with Viterbi de-

coding. This algorithm and its variants have been widely used in labeling and structure

prediction in NLP. Many of our contributions in this dissertation are based of this work.

For the sake of completeness, we list the pseudo code of Collins’ Perceptron learning in

Algorithm 2.

In this algorithm, function GEN enumerates a set of candidates GEN(x) for an input

x by Viterbi decoding. This algorithm was justified in a way similar to Theorem 1.2 in

(Collins, 2002). (Collins and Roark, 2004) and (Daumé III and Marcu, 2005) extended

this algorithm by employing non-exhaustive search strategy, as described in Section 1.3.1,

which can be useful in rich-context applications.

12

Chapter 2

LTAG-spinal

In this chapter, we introduce LTAG-spinal, a variant of LTAG with very desirable lin-

guistic, computational and statistical properties. It can be shown that LTAG-spinal with

adjunction constraints is weakly equivalent to the traditional LTAG. In Chapter 5, we will

present an LTAG-spinal treebank, and this treebank will be used to train and evaluate two

LTAG-spinal style parsers in Chapters 3 and 4.

In Section 2.1, we will describe the motivation for the LTAG-spinal formalism. We

will provide the definition in Section 2.2, and illustrate it with an example in Section 2.3.

2.1 Motivation

2.1.1 Linguistics

Argument-adjunct ambiguity is both a theoretical as well as a computational problem. In

the XTAG English grammar (XTAG-Group, 2001), arguments are treated as substitution

while adjuncts are handled as adjunction. Substitution is obligatory, while adjunction is

optional.

However, in building an LTAG treebank automatically extracted from other resources

like the Penn Treebank and Propbank, it becomes a big problem to distinguish arguments

13

from adjuncts. In LTAG, arguments refer to obligatory constituents only, but there is no

way to obtain this information directly for other resources In previous works, heuristic

rules were used to distinguish arguments from adjuncts. However, it turns out to be a

non-trivial task to map those automatically generated template to the XTAG elementary

trees.

Therefore, we are searching for a framework, under which the representations for ar-

guments and adjuncts are similar. In this way, we can encode the ambiguity with a single

structure, and leave the disambiguation for post-processing.

Our solution is the sister adjunction like operation, which was previously proposed

to represent adjuncts in (Chiang, 2000) for Tree Insertion Grammar (Schabes and Wa-

ters, 1995). We propose to use sister adjunction for both arguments and non-predicate

adjuncts1, as a method of encoding argument-adjunct ambiguity. The domain of locality

of LTAG is still maintained in a way that syntactically dependent arguments are directly

attached to the predicate.

As a result, elementary trees are in the so-called spinal form since arguments do not

appear in the elementary tree of the predicate. This turns out to be a great advantage in

handling coordination. In the traditional LTAG, one needs to transform the templates of

predicate conjuncts in order to represent the shared arguments. However, representation

of predicate coordination is rather easy with the spinal form.

2.1.2 Generative Capability

When Tree Adjoining(Adjunct) Grammar was first introduced in (Joshi et al., 1975), the

only composition operation was adjunction, and there was no substitution. The fact that

the addition of substitution does not change the generative capability leads us to combining

substitution and non-wrapping adjunction.

1By non-predicate adjuncts, we mean the auxiliary trees whose anchor is not a predicate, i.e., whose
foot node does not subcategorize for the anchor. In the XTAG English Grammar, non-predicate adjuncts are
always non-wrapping.

14

An

B1A1

Bn

initial: auxiliary:

B1*

Bi

Figure 2.1: Spinal elementary trees

2.1.3 Statistical Processing

As we have noted, it is difficult to obtain the corresponding XTAG template form an

automatically extracted template. On the other hand, the complexity of using those auto-

matically extracted templates in parsing is greatly increased. According to the coarse to

fine spirit, it is attractive to use some structure to encode these templates, so as to decrease

of the degree of perplexity at each step of parsing. We have proposed LTAG-spinal for this

purpose also.

2.2 Formalism

In LTAG-spinal, we have two kinds of elementary trees, initial trees and auxiliary trees, as

shown in Figure 2.1. What makes LTAG-spinal different is that elementary trees are in the

spinal form. A spinal initial tree is composed of a lexical spine from the root to the anchor,

and nothing else. A spinal auxiliary tree is composed of a lexical spine and a recursive

spine from the root to the foot node. The common part of a lexical spine and a recursive

spine is called the shared spine of an auxiliary tree. For example, in Figure 2.1, the lexical

spine for the auxiliary tree is B1, ..,Bi, ..,Bn, the recursive spine is B1, ..,Bi, ..,B∗1, and the

shared spine is B1, ..,Bi.

15

There are two operations in LTAG-spinal, which are adjunction and attachment. Ad-

junction in LTAG-spinal is the same as adjunction in the traditional LTAG. Attachment

stems from sister adjunction in Tree Insertion Grammar. By attachment, we take the root

of an initial tree as a child of a node of another spinal elementary tree.

Attachment can be viewed as a special adjunction. We can add artificial root and

foot nodes to an initial tree to build an auxiliary tree, and simulate the attachment of an

initial tree by a non-wrapping adjunction of the artificial auxiliary tree as in TIG. On the

other hand, attachment is close to substitution since it will not generate a non-projective

dependency. Further, attachment does not require the node for substitution on the parent

tree. However, the flexibility of attachment can be restrained by attachment constraints

which is similar to adjunction constraints in the traditional LTAG (Joshi and Schabes,

1997).

Since attachment can be viewed as a special adjunction, we still call these constraints

as adjunction constraints. There could be three types of constraints, which are null

adjunction (NA), obligatory adjunction(OA) and selective adjunction(SA). It can be shown

that LTAG-spinal with adjunction constraints is weakly equivalent to LTAG, which means

that they generate the same set of string languages.

Theorem 2.1 LTAG-spinal and LTAG are weakly equivalent.

The proof of Theorem 2.1 is given in the Appendix A.

It should be noted that, in practice, the foot node is usually the only node which is not

on the lexical spine of an auxiliary tree. In the LTAG-spinal treebank described in Chapter

5, the foot node of an auxiliary tree is always a child of the lowest node in the shared spine.

In this case, an auxiliary tree can only adjoin onto the lexical spine of another elementary

tree. We call this the spinal adjunction property, and we will employ this attribute in the

parsers proposed in the next two chapters.

16

JJ

VP

S

VP *VBZNNDT

XP

WDT TO

XP

PRP

newseemswhich

T

T

A

T

VPXP XP

T

a parser meto

T

XP

Figure 2.2: An example in LTAG-spinal.

JJ

VP

S

JJ

VP

S

TO

CC

VP *VBZNNDT

XP

XP

WDT PRP

new andseemswhich meto

T

T

T

T
A

T

VP XPXP XPXP

T

a parser interesting

Figure 2.3: An example of predicate coordination.

2.3 Examples

An example of the LTAG-spinal derivation tree is shown in Figure 2.2.

Two types of operations are used to connect the elementary trees into a derivation tree,

which are attachment and adjunction. In Figure 2.2, each arc is associated with a label

which represents the type of operation. We use T for aTtach and A for Adjoin.

The adjunction operation can effectively do wrapping, which distinguishes it from

sister adjunction. In Fig. 2.2, seems adjoins to new as a wrapping adjunction, which

means that the leaf nodes of the adjunct subtree appear on both sides of the anchor of the

main elementary tree in the resulting derived tree. Here, seems is to the left of new and to

me is to the right of new.

In addition, it is also a spinal adjunction, because seems adjoins onto the VP node,

which in on the lexical spine of the spinal elementary tree for new.

17

In the extracted LTAG-spinal treebank reported in Chapter 5, we will represent predi-

cation coordination explicitly, as shown in Figure 2.3. This representation is similar to the

conjoin operation proposed in (Sarkar and Joshi, 1996). However, here predicate coordi-

nation applies to spinal elementary trees, so we do not need to specify shared argument as

in (Sarkar and Joshi, 1996).

Predicate coordination over spinal template provides a concise way to encode the am-

biguity of shared arguments. For example, in Fig. 2.3, a parser, which and seems are

shared by both predicates, although which and seems attach to the left conjunct only. The

explicit representation of predicate coordination indicates possible sharing on the deep

level.

18

Chapter 3

Incremental LTAG-spinal Parsing

The idea of incremental parsing with LTAG is closely related to the work on Supertagging

(Joshi and Srinivas, 1994). A supertagger first assigns the correct LTAG elementary tree

to each word. Then a Lightweight Dependency Analyzer (LDA) (Srinivas, 1997) builds

the whole derivation tree with these elementary trees.

Here, we will explore left-to-right incremental parsing, as a method of incorporating

the supertagger and the LDA dynamically.

There is a strong connection between incremental parsing and psycholinguistics, and

this connection is observed with respect to the LTAG formalism, as shown in (Sturt and

Lombardo, 2005).

In Section 3.1, we will describe the previous works on incremental parsing. In Section

3.2, we will propose an incremental parser for LTAG-spinal. We will illustrate the parsing

algorithm with an example in Section 3.3. We will formalize LTAG-spinal parsing in

Section 3.4. In Section 3.5, we will describe the learning algorithm and the features used

in this parser. We will describe the experiments on the LTAG-spinal treebank in Section

3.6.

19

3.1 Previous Works

In recent years, there have been many interesting works on incremental parsing or semi-

incremental parsing. By semi-incremental we mean the parsers that allow several rounds

of left to right scans instead of one.

In Ratnaparkhi’s MEMM parser (1997), three rounds of scans were used, one each

for POS tagging, NP chunking and shift-reduce parsing respectively. Roark (2001) in-

troduced a probabilistic top-down parsing model which maintained a partial parse tree

as the left context. Prolo (2003) proposed a shift-reduce parser for LTAG. Recently,

Henderson (2003) and Collins and Roark (2004) compared generative versus discrimina-

tive approaches for statistical left-corner parsing. All these incremental parsers described

above employed the left-corner strategy.

Some other incremental parsers are more like head-corner parsers such as those pro-

posed in (Henderson, 2000) and (Yamada and Matsumoto, 2003). The SSN parser pre-

sented in (Henderson, 2000) is closely related to Dependency Grammar; Each constituent

is associated with a head word, and the tree structure is rather flat. In particular, it does

not distinguish between an S node and its child VP node, the two constituents having

been collapsed. The parser proposed in (Yamada and Matsumoto, 2003) used a multi-scan

bottom-up strategy to build a dependency tree. In each left to right scan, some of the

treelets were combined. The iteration stopped when there was only one tree.

The head-corner approach is more natural to the LTAG formalism. We use a stack of

derivation treelets to represent the partial parsing results. Furthermore, the LTAG formal-

ism allow us to handle non-projective dependencies, which cannot be generated by a CFG

or a CFG-based dependency parser.

The model of incremental LTAG parsing is similar to Structured Language Modeling

(SLM) in (Chelba and Jelinek, 2000; Xu et al., 2002). In SLM, the left context of the his-

tory is represented with a stack of binary trees. At each step, one computes the conditional

probability of the current word, its tag and potential operations over the new context trees.

As far as LTAG parsing is concerned, the difficulty is that we need to handle the adjoin

20

operation which gives rise to non-projective structures. Furthermore, the training criteria

are different, since we are interested in the quality of the top candidate parse instead of

perplexity.

3.2 Incremental LTAG-spinal Parsing Algorithm

There are four different types of operations in our parser. Two of them, attachment and

adjunction, are described in the previous section. The third operation is conjunction,

which is a special adjunction operation designed to implement incremental construction

of predicate coordination. The last one is prediction, which is used to predict a possible

spine for a given word according to the context and lexicon.

Our left to right parsing algorithm is a variant of the shift-reduce algorithm with beam-

search. We use a stack of disconnected derivation treelets to represent the left context.

When the parser reads a word, it first predicts a possible spinal elementary trees for this

word, For each elementary tree, we first push it on the stack. Then we recursively pop the

top two treelets from the stack and push the combined tree into the stack until we choose

not to combine the top two treelets with one of the three combination operations (we can

also choose not to pop anything at the beginning). Then we shift to the next word. We call

this model the Flex Model.

A potential problem with the Flex Model is that a single LTAG derivation tree can

be generated by several shift-reduce derivation steps, which only differ in the order of

operations. For example, let A, B and C be three trees. In an LTAG derivation, A adjoins

to B, and B adjoins to C. Then we have two different shift-reduce derivations, which are

(A→ (B→C)) and ((A→B)→C). This is similar to spurious ambiguity in CCG parsing.

Now we introduce the Eager Model, an eager evaluation strategy; For any two ele-

mentary trees which are directly connected in the LTAG derivation tree, they are combined

immediately when they can be combined in the first context under which they can be com-

bined. Furthermore, they cannot be combined afterward, if they miss the first chance.

21

This can be implemented by memorizing all the spine pairs that have been checked. In the

previous example, the parser will generate ((A→ B)→C), while (A→ (B→C)) is ruled

out. Then for each LTAG derivation tree, there exists a unique left-to-right derivation.

The Eager Model is motived by the treatment of coordination in (Sturt and Lombardo,

2005). For example, we have the following two sentences.

1. He knows Ben likes philly steak.

2. He knows Ben likes philly steak and Jane likes pizza.

Suppose we are parsing these two sentences, and for each case the current word is

likes. Now we have just the same local contexts for both cases. According to the Eager

Model, the parser takes the same action according to the context, which is to combine the

knows tree and the likes tree. For sentence 2, the second likes tree will be conjoined with

the first likes tree later.

In Algorithm 3, we present the left-to-right parsing algorithm.

In the following section, we will explain the parsing mechanism for the Eager Model

with an example. The Flex Model is similar except that the order of operations is flexible

to some extent.

3.3 An Example

Figure 3.1 shows the left to right parsing of the phrase a parser which seems new and

interesting to me with the Eager Model.

In Figure 3.1, each arc is associated with a number and a label. The number represents

the order of operation, and the label stands for the type of operation as in Figure 2.3.

Furthermore we use P to represent predict, and C for conjoin.

In steps 1 and 2, two disconnected spines are predicted for a and parser. The spine for

a is attached to the spine for parser on the XP node in step 3. Here we use XP instead of

NP to handle the noise in PTB. This applies to all the second level projections except V P.

22

Algorithm 3 Left-to-right Parsing

1: context set C←{ε};
2: new context set C′← φ;
3: for (word w← w1, ...,wn) do
4: for (context c ∈C and candidate spine s for w) do
5: new context c′← shift(c, s);
6: C′←C′∪{c′};
7: end for
8: C←C′;
9: C′← φ;

10: repeat
11: remove context c from C;
12: C′←C′∪{c};
13: for (candidate operation p) do
14: new context c′← reduce(c, p);
15: C←C∪{c′};
16: end for
17: until (C = φ)
18: C← topk(C′,k);
19: C′← φ;
20: end for

In step 6, the spine for new, the first conjunct of the predicate coordination, is pre-

dicted. Then the auxiliary tree for seems adjoins to the spine for new on node VP. the

latter is further combined with which, and is attached to the tree for parser.

In step 13, the conjoin operation is used to combine the treelet anchored on new and

the treelet anchored on interesting. Alignments between the two spines are built, through

which argument sharing is implemented in an implicit and underspecified way.

In step 15, for the spine for to, the visible nodes of the conjoined treelet include nodes

on some auxiliary trees adjoined on the left of the spines, like the root VP node for seems.

In this way, wrapping adjunction is implemented. Obviously, it results in a non-projective

dependency.

23

JJ

VP

S

JJ

VP

S

TO PRP

CC

VP *VBZNN WDTDT

XP

XP

new and meto

1 2 4 5 6 11 16

17

PP P P P 14 P P

T

T

T

T

9

8

7

P 10 P

12 T

3

A

15 T

13 C

VP XPXP XP XP

P: predict T: attach A: adjoin C: conjoin

whichparsera seems interesting

Figure 3.1: Incremental parsing with the Eager Model.

takeexpected

VP*

S

VP

VBD

saidpreviously

RB

XP

VB IN

XP

on

T

T

VBN

VP

S

VPA T

Figure 3.2: Partial derivation tree for the example of visibility

3.4 Formalism for Incremental Parsing

As shown in the example in the previous section, the left-to-right parsing is similar to

the traditional shift-reduce parsing, while the definition of visible nodes is crucial to the

left-to-right mechanism.

Before giving the formal definition of visibility, we illustrate the idea with a simple

example. Suppose the input sentence is as follows.

• Graduate students were not expected to take ten courses previously, said the profes-

sor on the group meeting.

Figure 3.2 shows part of the derivation tree for the example. Here, expected adjoins

24

to take. Suppose the top two trees in the stack anchor on take and previously respectively.

In this case, we need to make expected visible to previously, due to the nature of the

adjoin operation. In the corresponding derived tree, the root and foot nodes of the tree for

expected insert into the spine for take, so they become visible to previously.

Then previously attaches to expected, and said attaches to take. Suppose the top two

trees in the stack anchor on take and on respectively. In this case, expected becomes

invisible to on, because said attaches to take, and it blocks expected from the right side.

Now, we present the formal definition of visible nodes.

Definition A spinal elementary tree e is a tuple < nd, t p, lv,dr, lx, ps >.

• nd is the vector of nodes on the spine, enumerated from the anchor to the root,

nd(1), ...,nd(nd.length), where nd.length is the height of e. We use root to repre-

sent nd(nd.length) for simplicity.

• t p is type of e, which can be α or β.

• lv and dr are only meaningful for the β tree. lv represents the index of the parent of

the foot node in nd. dr = le f t or right, which indicate whether the foot node is on

the left or the right of the spine.

• lx is the lexical item of e.

• ps is the position of the lexical item in the flat sentence.

For example, in Figure 3.1, the elementary tree for new is represented as

<< JJ,XP,VP,S >,α,−,−,new,5 >,

and the elementary tree for seems is represented as

<< V BZ,VP >,β,2,right,seems,4 > .

An LTAG-spinal derivation can be represented as a tree. However, it is more than a

tree, since we need to also represent the type of operation that connects two elementary

25

trees, e.g. attach, adjoin or conjoin, as well as the landing site on the main tree. So we use

a labeled tree to represent a derivation tree.

Definition An LTAG-spinal derivation tree T is a tuple < E,L,D,re >.

• E is a set of elementary trees.

• L is a tuple < op,st > which represents the type of the operation and the landing

site.

• D is relation defined on E×L×E which meets the following condition. Let DU be

the projection of D on E×E, then we have |D|= |DU | and DU is a tree relation.

• re is the root elementary tree in DU .

Now we define some functions to be used in the definition of visible nodes.

Definition Let e be a subtree, we use LF(e) to represent the position of the leftmost

descendant of e. Formally, LF can be defined as follows

LF(e) = min(e.ps, min
(e,ex)∈DU

LF(ex))

Similarly, the position of the right most descendant, RT , is

RT (e) = max(e.ps, max
(e,ex)∈DU

RT (ex))

Now we are only one step away from defining visible nodes. Suppose we have two

derivation treelets TL and TR on the top of the stack, TL on the left and TR on the right. We

are searching for the nodes on TL that are visible to TR, which should be on the right side

of TL. On the other hand the nodes on TR that are visible to TL are on the left side of TR.

So we need to distinguish these two cases, although they are similar to each other.

We use V L, a binary feature, to represent whether a node on the right tree is visible to

the left tree. and we use VR to represent whether a node on the left tree is visible to the

right tree. The formal definition of these two are very similar. So here we only give the

definition of VR. V L can defined easily according to V R.

26

Definition Let TL and TR be the top two partial derivation trees. For each node n in TL,

V R(n) = true means n is visible to the right tree TR. Now we give the rules to recursively

search for all the nodes whose V R values are true. For all the rest nodes, their V R values

are all f alse.

• Initial Rule

VR(TL.re.root) = true, which means the root node of the root elementary tree is

visible from the right side.

• Recursive Rule

if node e.nd(i) is visible from right, VR(e.nd(i)) = true, we define eL, the leftmost

adjoined tree, and eR the right most sub tree as follows

eL = argmin(e,<ad join,i>,ex)∈R and ex.ps<e.psex.ps

eR = argmax(e,<−,i>,ex)∈R and ex.ps>e.psex.ps

Let BL = RT (eL), the position of the right most descendant of eL, if eL exists, other-

wise BL = 0. Similarly, BR = RT (eR), the position of the right most descendant of

eR, if eR exists, otherwise BR = 0.

– if BL = BR = 0 and i > 2

∗ if e.t p = α, then V R(e.nd(i−1)) = true.

∗ if e.t p = β and (e.dr = le f t or e.lv < i) then VR(e.nd(i−1)) = true.

– if BL < BR, then VR(eR) = true.

– if BL > BR or 0 < BL < e.ps, then VR(eL) = true.

The definition given above does not only define which nodes are visible nodes, but also

provides an algorithm to find all the visible nodes in a partial tree.

The idea behind the recursive rule is that we recursively look for the next right-visible

nodes in a top-down style. If there is no adjunction from the left side, where BL = 0, then

27

it is easy to handle. Otherwise, we need to decide whether this adjunct is still visible or

not. For example, if there is a right attachment to this left conjunct and there is another

attachment to the main tree, which is the right most, then any node on this left conjunct

becomes invisible from the right side. Conditions like this are handled by BL and BR as

described above.

3.5 Training

3.5.1 Training Algorithm

Many machine learning algorithms have been successfully applied to parsing, incremental

parsing, or shallow parsing, which can be applied to our incremental parsing algorithm.

Ratnaparkhi (1997) used log-linear models in his incremental parser trained on PTB.

Punyakanok and Roth (2001) proposed several models of using classifiers in sequential

inference. Yamada and Matsumoto (2003) employed chained SVMs in their dependency

parser. Lafferty et al. (2001) proposed the Conditional Random Fields that does not suffer

from the label bias problem. The Max-Margin Markov Networks proposed in (Taskar

et al., 2003) attacked the same problem with the max margin approach, and this method

had been adapted to parsing successfully (Taskar et al., 2004). But due to limitation of

computing resources, this method cannot be used to train on the whole PTB.

We use the perceptron-like algorithm proposed in (Collins and Roark, 2004). We also

employ the voted perceptron algorithm (Freund and Schapire, 1999) and the early update

technique as in (Collins and Roark, 2004).

3.5.2 Features

Features are defined in the format of (operation, main spine, sub spine, spine node, con-

text), where spine node is the node on the main spine onto which the sub spine is attached

or adjoined. For predict, sub spine and spine node are undefined, and for conjoin spine

28

node is undefined. context is the field to describe the constituent label or lexical item of

a certain node in the context. The context of an operation includes the top two treelets

involved in the operation as well as the two closest words on both sides of the current

word.

• Context for predict :

- The (-2, 2) window in the flat sentence.

- The visible 1 spines on the topmost treelet.

• Context for attach and adjoin :

- The (0, 2) window in the flat sentence.

- The most recent spine previously attached or adjoined to the same location on the

main spine.

- The leftmost child spine attached to the sub spines.

- The spines that are visible before the operation and become invisible after the

operation.

• Context for conjoin :

- The (0, 2) window in the flat sentence.

- The leftmost child spine attached to the main spine, which is the first adjunct.

- The two leftmost children spines attached to the sub spine, which is the current

adjunct.

We have about 1.4M features extracted from the gold-standard parses, and about 600K

features dynamically extracted from the generated parses in 10 rounds of training with the

Eager Model.

1By visible spines we mean the spines onto which the current spine can be attached or adjoined.

29

3.6 Experiments and Analysis

We use an LTAG-spinal treebank for experiments. The details of the treebank will be

described in Section 5. The LTAG-spinal parses for the 39434 sentences extracted from

WSJ section 2-21 are used as the training data. Section 24 is used as the development

data. The 2401 sentences in section 23 are used for test 2.

We use syntactic dependency for evaluation. It is worth mentioning that, for predicate

coordination, dependency is defined on the parent of the coordination structure and each

of the conjunct predicate. For example, in Figure 2.3, we have dependency relation on

(parser, new) and (parser, interesting). Compared to other dependency parsers on PTB,

the dependency defined on LTAG-spinal reveals deeper relations because of the treatment

of traditional adjoining and predicate coordination described above.

In the community of parsing, labeled recall and labeled precision on phrase struc-

tures are often used for evaluation. However, in our experiments we cannot evaluate our

parser with respect to the phrase structures in PTB. As shown in Chapter 5, various tree

irrecoverable transformations were used to extract the LTAG-spinal treebank according

the Propbank annotation on PTB. Therefore, we use syntactic dependency for evaluation.

3.6.1 Eager vs. Flex

We first train our incremental parser with Eager Model and Flex Model respectively. In

the training, beam width is set to 10. Lexical features are limited to words appearing for

at least 5 times in the training data. Figure 3.3 and Figure 3.4 show the learning curve on

the training and the development data. The X axis represents the number of iterations over

the training data, and the Y axis represents the f-score of dependency with respected to

the LTAG derivation tree.

In both cases, the voted weights provide an f-score which is more than 3% higher. The

voted results converge faster and are more stable. The result with Flex Model is 0.6%

2The complete section 23 has 2416 sentences.

30

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10

f-
sc

or
e

iteration

dev-voted
dev

Figure 3.3: f-score of syntactic dependency on the development data with the Eager Model

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10

f-
sc

or
e

iteration

dev-voted
dev

Figure 3.4: f-score of syntactic dependency on the development data with the Flex Model

higher than the one with Eager Model, but the parsing time is much longer with Flex

Model as we will show later.

We use the voted weights obtained after 10 rounds of iteration for the evaluation on

the test data. We achieve an f-score of 88.7% on dependency with the Eager Model, and

89.3% with the Flex Model.

3.6.2 K-Best Parsing

The next experiment is on K-best parsing. As a first attempt, we just use the same algo-

rithm as in the previous section, except that we study the oracle parse, or the best parse,

among the top 10 parses. The f-score on the oracle in top 10 in the development data is

31

Table 3.1: F-score of the oracle parse in the 10-best parses on the development data with
the Eager Model

algorithm f-score%
top (eager) 87.3

oracle (eager) 88.5
top (eager+combined parses) 87.4

oracle (eager+combined parses) 91.0

0.9
0.905

0.91
0.915

0.92
0.925

0.93
0.935

0.94
0.945

0.95

0 20 40 60 80 100

f-
sc

or
e

k-best

eager + combined
flex + combined

Figure 3.5: f-score of the K-Best oracle on the test data

88.5%, compared with 87.3% of top candidate, as shown in Table 3.1. However, we are

not satisfied with the number on oracle, which is not good enough for post-processing, i.e.

parse reranking.

We notice that from a single partial derivation we can generate a large set of different

partial derivations, just by combining the elementary tree of the next word. It is easy to

see that these similar derivations may use up the search beam quickly, which is not good

for parse search. Many of the new derivations share the same dependency structure. So

we revised our learning procedure by combining derivations with the same dependency

structure before each shift operation. We repeated the K-best parsing experiments by

using Combined Parses as described above on both the Eager and the Flex Models, and

achieve significant improvement on the oracle, as shown in Table 3.1 and Figure 3.5.

Figure 3.5 shows the f-score of the oracle on K-best parsing using combined parses

on the test data. For each K-best oracle test, we set the beam width to K in parsing. The

f-score of oracle in 100-best parsing is 94.2% with the Eager Model + Combined Parses.

32

Table 3.2: Speed of parsing on the test data set.
model cp? beam sen/sec f-score%

single best top
flex no 10 0.37 89.3

eager no 10 0.79 88.7
K-best oracle

eager yes 10 0.62 92.2
eager yes 20 0.31 92.9
eager yes 30 0.22 93.2
eager yes 50 0.13 93.7
eager yes 100 0.07 94.2

3.6.3 Speed of Parsing

Efficiency is important to the application of incremental parsing. This set of experiments

is related to the speed of our parser on single best and K-best parsing with both the Eager

Model and the Flex Model. All the experiments are performed on a Linux node with two

1.13GHz PIII CPUs and 2GB RAM. The parser is coded in Java.

Table 3.2 shows that the Eager Model is more than two times faster than the Flex

Model, as we expected. The time spent on K-best parsing is proportional to the beam

width. In the table, cp? = whether the method of Combined Parses is used; sen/sec =

sentence per second; top = top candidate given by the parser; oracle = oracle of the K-best

parses where K equals the width of the beam.

In these experiments, we evaluated the parsing results with the LTAG treebank instead

of the phrase structures in PTB, due to the fact that some transformations used to extract

the LTAG treebank from PTB is non-reversible. Therefore, it is unfeasible for us to restore

the original phrase structure as in PTB.

33

3.7 Summary

In this chapter, we have presented an efficient incremental parser for LTAG-spinal. As far

as we know, it is the first comprehensive attempt of efficient statistical parsing with a for-

mal grammar with provably stronger generative power than CFG, supporting the adjoining

operation, dynamic predicate coordination, as well as non-projective dependencies.

The parser is trained with a perceptron like learning algorithm proposed in (Collins

and Roark, 2004). We have evaluated our parser on the LTAG-spinal treebank, extracted

from the Penn Treebank with Propbank annotation. Using gold standard POS tags as

part of the input, the parser achieves an f-score of 89.3% for syntactic dependency on

section 23 of PTB. Because of the treatment of adjunction and predicate coordination in

the LTAG-spinal treebank, as shown in Chapter 5, these dependencies, which are defined

on LTAG-spinal derivation trees, are deeper than the dependencies extracted from PTB

alone with head rules.

34

Chapter 4

Bidirectional LTAG-spinal Dependency

Parsing

In this chapter, we will propose a parser which searches for the LTAG-spinal dependency

tree in both directions. By LTAG-spinal dependency, we mean the dependency relation

of the words encoded in an LTAG-spinal derivation tree. It should be noted that LTAG-

spinal dependency is non-projective, because we can represent wrapping adjunction with

LTAG-spinal. Furthermore, due to the introduction of predicate coordination as shown in

Fig. 2.3, it results in more ambiguity in recognition.

We will first describe the idea of our approach in Section 4.1. In Section 4.2, we

will use a detailed example to illustrate our algorithm. The formal definition of the al-

gorithms are described in Section 4.3. In Section 4.4, we will illustrate the details of the

bidirectional LTAG-spinal dependency parsing. In Section 4.5, we will compare the novel

algorithm to other related works, and in Section 4.6, we will report the experiments with

dependency parsing on the LTAG-spinal treebank.

35

4.1 Idea

4.1.1 Traditional Parsing Strategies

In the incremental parsing algorithm described in the previous chapter, we build partial

structures in a left-to-right scan. During this procedure, we can only use context informa-

tion on the left side. In addition, it is hard to employ shared structure in this framework.

Suppose we have two parses which only differ at the very beginning. The incremental

parser has to duplicate the construction for the remainder of the parses.

Chart parsing (Kay, 1980) is a well-known strategy designed to employ shared struc-

ture. However, TAG chart parsing has a time complexity of O(n6), where n is the length

of an input sentence. This computational problem also applies to LTAG-spinal, since

wrapping adjunction is allowed with LTAG-spinal. Hence, for the purpose of building an

efficient parser, we cannot directly use the chart parsing strategy.

Island parsing (Woods, 1976) was proposed for speech recognition with Augmented

Transition Network (ATN) grammars. With island parsing, we can start from any positions

of the input which we are the most confident of, and expand the partial analyses along the

transition network in both directions.

Satta and Stock (1994) described a bidirectional chart parser, in which we can start

from any position of an input sentence and expand partial analyses in both directions.

The subsumption block technique was used to avoid artificial redundancy in bidirectional

analysis. This bidirectional parsing strategy stems from the so called island driven parsing.

A similar search strategy is employed in the chunking-attachment framework of pars-

ing. A chunker first recognizes chunks in an input sentence, and an attacher builds an

parse tree with chunks. In this way, chunks can be viewed as the segments that we are

the most confident of in an input sentence. Chunks serve as the shared structure in this

two-step parser.

Here, we are going to extend the idea of island parsing to LTAG-spinal.

36

4.1.2 Parsing as Search

Parsing can be modeled as a search problem. Klein and Manning (2003) proposed an A*

search algorithm for PCFG parsing. The score of a partial parse is the sum of two part,

a and b, where a is the estimated score for the outside parse and b is the actual score for

the inside parse. The outside estimate is required to be admissible for A* search, which

means it should be higher than the actual score. Two methods were proposed to estimate

the outside score, One is based on the input information in a local context, e.g. POS tags

of nearby words. The other is to utilize the score (log-likelihood) given by a simplified

grammar.

In fact, incremental parsing can also be viewed as search problem, in which path se-

lection is to some extent fixed. The Perceptron like algorithm proposed in (Collins and

Roark, 2004) is a learning algorithm specially designed for the problems of this class.

They also improved this learning algorithm by introducing early update, which makes the

search in training stop when the gold standard parse is not in the beam. This algorithm

has been successfully applied to incremental parsing for CFG.

Daumé III and Marcu (2005) generalized this Perceptron like learning algorithm to

general search problems. In their framework, the score of a path is also composed of

two parts, g and h. Here g is the score of the path component, computed as a linear func-

tion of features as in Perceptron learning, and h is the estimate of the heuristic component,

which is similar to A* search 1. What makes it different from Perceptron with early update

is that a set of gold-standard compatible paths are introduced into the queue of candidate

paths when there is no gold-standard compatible path in the queue, instead of making the

search stop. This algorithm has been successfully employed in applications like chunking

and POS tagging, but it has not been used in parsing yet.

Here, we are going to explore the greedy search mechanism and the Perceptron learn-

ing algorithm for the island parsing strategy.

1h is not required to be admissible here.

37

4.1.3 Our approach

In the search algorithms described above, the estimation of the outside score is limited

to the information given in the input string, for example, like POS tags of nearby words.

Each single path (hypothesis) is unaware of all other outside paths (hypotheses).

Intuitively, if we can take advantage of nearby hypotheses for the estimation of the

outside score, the overall score for each hypothesis will be more accurate. In this way, we

can find the global hypothesis more efficiently. This method will be especially useful for

greedy search. However, this approach results in the difficulty of maintaining a hypothesis

with its context hypotheses, for which we will provide a solution later in this chapter.

This approach can be viewed as a statistical extension of the chunking-attachment

framework. By chunking, we employ the heuristic rule that, for example, noun phrases

should be recognized first, and they will be used as context information for further pro-

cessing. Now, our approach is equivalent to saying that the chunks to be processed first

are determined statistically by features.

This mechanism is consistent with island parsing; one can start from any positions in

a given sentence and search in both directions. We do not specify seeds or boundaries

beforehand. All the words compete for the positions of seeds. In general, all the candidate

operations compete for the next operation.

As far as LTAG-spinal dependency parsing is concerned, we need to design some data

structures to represent the partial result of an LTAG-spinal dependency tree, so that we can

build partial dependency trees step by step. As we have noted, LTAG-spinal dependency is

a non-projective relation. So we will use the mechanism of visibility as in our incremental

parser described in Chapter 3.

It should be noted that the parser to be proposed in the chapter is only a dependency

parser, which does not generate spinal templates as in the incremental parser. Therefore,

we do not have the spine prediction operation any more. POS tags are used as the initial

hypotheses. We still maintain distinction among attachment, adjunction, and predicate

coordination. However, the operations are now with respect to the dependencies only.

38

expected

VBD

VBN

to

IN

take

VB

NN

ten

CD

courses

VBZ

NNS

previously

fragmentshypotheses

not

RBRBNNS

VB

NN

JJ VBD

werestudentsgraduate

Figure 4.1: initialization

We will illustrate the LTAG-spinal dependency parsing mechanism with an example

in the next section.

4.2 An Example

In this section, we show the data structures and the bidirectional dependency parsing al-

gorithm with an example, and leave the formalization to the next section.

Initialization

Suppose the input sentence is as follows.

• graduate students were not expected to take ten courses previously

Each word is associated a set of hypothesis POS tags in the input, as shown in Figure

4.1. For initialization, each word comprises a fragment. A POS tag with the lexical

item is called a node in dependency parsing. For initialization, each node comprises a

fragment hypothesis. Due to the limitation of space, we ignore the lexical item in a node

in Figure 4.1.

39

graduate

JJ f(R)

attach

students

NNS

Figure 4.2: attach JJ(graduate) to NNS(students)

Step 1

We can combine the hypotheses for two nearby fragments with various operations like

attachment and adjunction. For example, we can attach JJ(graduate) to NNS(students),

which is compatible with the gold standard, or adjoin VB(take) to CD(ten), which is in-

compatible with the gold standard. We can represent an operation with a 6-tuple

R = (type,main, fl, fr,nl,nr), (4.1)

where type is the type of the operation, and main = left or right, representing whether

the left or the right tree is the main tree. fl and fr stand for the left and right fragment

hypotheses involved in the operation. nl and nr stand for the left and right nodes involved

in the operation.

If we apply R to fragment hypotheses R. fl and R. fr, we generate a new hypotheses

f (R) for the new fragment which contains the fragments of both R. fl and R. fr. For ex-

ample, Figure 4.2 shows the result of attaching JJ(graduate) to NNS(students). The new

fragment hypothesis f (R) is for the new fragment graduate students.

We use a queue Q to store all the candidate operations that could be applied to the

current partial results. Operations in Q are ordered with the score of an operation. We

have

s(R) = w ·Φ(R) (4.2)

score(f (R)) = s(R)+ score(R. fl)+ score(R. fr), (4.3)

40

where s(R) is the score of the operation R, which is calculated as the dot product of a

weight vector w and Φ(R), the feature vector of R. s(R) is used to order the operations in

Q. score(f) is initialized to 0, if f contains only one node.

The feature vector Φ(R) is defined on R. fl and R. fr, as well as the context. If Φ(R)

only contains information in R. fl and R. fr, we call this level-0 feature dependency 2.

However, we may want to use the information in nearby fragment hypotheses in some

cases. For example, for the operation of attaching JJ(graduate) to NN(student), we can

check whether the root node of the hypothesis for the fragment containing were is a verb.

We can define a feature for this, and this feature will be a strong indicator of the attach-

ment operation. If features contain information of nearby fragment hypotheses, we call

this level-1 feature dependency. By introducing level-1 feature dependencies, we actu-

ally calculate the score of a hypothesis by exploiting the information of outside hypothe-

ses, as we have proposed earlier. Throughout this example, we will use level-1 feature

dependency.

Suppose the operation of attaching JJ(graduate) to NNS(students) has the highest

score, which is conditioned on the context that the POS tag for were is VBD. were is

a nearby fragment. Therefore we need a data structure to maintain this relation. As shown

in Figure 4.3, we introduce a chain which consists of two fragments, graduate students

and were. There exist feature dependency relations between the hypotheses for different

fragments in the same chain. Furthermore, each stand-alone fragment also comprises as a

chain, as shown in Figure 4.3.

Suppose we use beam search and set beam width to two for each chain, which means

that we keep the top two chain hypotheses for each chain. Figure 4.3 shows two chain

hypotheses for the chain of graduate students - were. For the chain graduate student -

were, each chain hypothesis consists of two fragment hypotheses respectively.

The score of a chain hypothesis is the sum of the scores of the fragment hypotheses in

2The dependency in feature dependency is different from the dependency in dependency parsing.

41

expected

VBD

to

IN

take

NN

ten

CD

courses

NNS

previously

RB

VBN VB VBZ

level−1 feature dependency

not

RB

graduate were

VBD

JJ

VB VBDattach

attach

1

2

students

NNS

NNS

chains

Figure 4.3: step 1 : to combine graduate and students

this chain hypothesis. For chain hypothesis c, we have

score(c) = ∑
fragment hypothesis f of c

score(f) (4.4)

It is easy to see that

• hypotheses for the same chain are mutually exclusive, and

• hypotheses for different chains are compatible with each other

By saying two partial hypotheses compatible, we mean that there exists a global hypothesis

which contains these two hypotheses.

For ease of the description later in this section, we assign unique IDs, 1© and 2©, to the

two fragment hypotheses for graduate students, as shown in Figure 4.3.

After building the new chain and its hypotheses, we update the queue of candidate

operations Q.

Step 2

Suppose the next operation with the highest score is to attach CD(ten) to NNS(courses)

under the context of VB(take) and RB(previously), generating hypothesis 3©, as shown in

42

expected

VBD

to

IN

take ten courses previously

RB

VBN NN RB

VB

CD

CD

NNS

VBZ

attach

attach

4

3

graduate

VBD

JJ

VB VBDattach

attach

1

2

werestudents not

RB

NNS

NNS

Figure 4.4: step 2 : to combine ten and courses

expected

VBN

to take ten courses previously

VBD RB

CD

NNS
attach

3

RB

CD

NNS
attach

3

VB

IN

IN

attach

VB
attach

5

6

graduate were

VBD

JJ

VB VBDattach

attach

1

2

students

NNS

NNS
RB

not

Figure 4.5: step 3 : to combine to and take

Figure 4.4. So we generate a new fragment, ten courses, and build a new chain containing

take - ten courses - previously. Now, both NP chunks have been recognized.

Step 3

Suppose the next operation with the highest score is to attach to to take under the context

of VBN(expected) and hypothesis 3©, generating hypothesis 5©, as shown in Figure 4.5.

The chain take - ten courses - previously grows leftwards. We still keep top two chain

hypotheses. The second best operation on the two fragments is to attach to to take under

the context of VBD(expected) and hypothesis 3©, generating hypothesis 6©.

43

expected to take ten courses previously

RB

CD

NNS
attach

3IN

VB
attach

8

graduate were

VB VBDattach

2

students

NNS

RB

not

VBN attach

RB

CD

NNS
attach

3

VB

IN

attach

VBN

adjoin

7

VBD

JJ

attach

1

NNS
RB

Figure 4.6: step 4 : to combine expected and to take

Step 4

Suppose the next operation is to adjoin VBN(expected) to VB(take) in hypothesis 5©, gen-

erating hypothesis 7©, as shown in Figure 4.6.

Step 5

Suppose the next operation with the highest score is to attach NNS(courses) in hypothesis

3© to VB(take) in hypothesis 7©, generating hypothesis 9©, as shown in Figure 4.7.

Step 6

Suppose the next operation with the highest score is to attach hypothesis previously(RB) to

VBN(expected) in hypothesis 9©, generating hypothesis 11©. Here, the node VBN(expected)

is visible to ADV(previously).

We use a visibility check similar to what was previous used in the incremental parser.

We will describe visibility in detail in Section 4.4.1, in which the spinal adjunction prop-

erty of the LTAG-spinal treebank will be utilized.

It should be noted that, this operation results in a non-projective relation, because take

is between expected and previously.

44

expected to take ten courses previously

RB

CD

NNS
attach

IN

VB
attach

graduate were

VB VBDattach

2

students

NNS

RB

not

VBN attach

RB

CD

NNS
attach

VB

IN

attach

VBN

adjoin
VBD

JJ

attach

1

NNS
RB

attach

attach

9

10

Figure 4.7: step 5 : to combine expected to take and ten courses

Final Output

We repeat combining hypotheses until there is only one fragment which ranges over the

whole input sentence. Then we output the parse with the highest score, as shown in Figure

4.9.

4.3 Data Structures and Algorithms

Now we define the algorithm formally. Instead of giving an algorithm specially designed

for parsing, we generalize the problem for graphs. A sentence can be viewed as a linear

graph. We define the data structures in Section 4.3.1. In Sections 4.3.2 and 4.3.3, we

present perceptron like search and training algorithms respectively.

4.3.1 Data Structures

We are given a connected graph G(V,E) whose hidden structure is U , where vertices

V = {vi}, edges E ⊆ V ×V is a symmetric relation, and U = {uk} is composed of a

set of elements that vary with applications. As far as dependency parsing is concerned,

45

RBVBD

JJ

attach

1

NNS
RB

CD

NNS
attach

VB

IN

attach

VBN

adjoin

attach

11

attach

RBVB VBDattach

2 NNS

RB

CD

NNS
attach

VB

IN

attach

VBN

adjoin

attach

12

expected to take ten courses previouslygraduate werestudents not

attach

Figure 4.8: step 6 : to combine expected to take ten courses and previously

RB

JJ

attach NNS

CD

NNS
attach

VB

IN

attach

VBN

adjoin

attach

attach

expected to take ten courses previouslygraduate werestudents not

RBVBD

attach
attach

attach

Figure 4.9: final output

the input graph is simply a linear graph, where E(vi−1,vi). As to the hidden structure,

uk = (vsk ,vek ,bk), where vertex vek depends on vertex vsk with label bk.

A graph-based incremental construction algorithm looks for the hidden structure with

greedy search in a bottom-up style.

Let xi and x j be two sets of connected vertexes in V , where xi ∩ x j = φ and they are

directly connected via an edge in E. Let yxi be a hypothesized hidden structure of xi, and

yx j a hypothesized hidden structure of x j.

Suppose we choose to combine yxi and yx j with an operation R to build a hypothesized

46

hidden structure for xk = xi∪ x j. We say the process of construction is incremental if the

output of the operation, yxk = R(xi,x j,yxi,yx j) ⊇ yxi∪ yx j for all the possible xi,x j,yxi,yx j

and operation R. As far as dependency parsing is concerned, incrementality means that

we cannot remove any links coming from the substructures.

Once yxk is built, we can no longer use yxi or yx j as a building block in the framework

of greedy search. It is easy to see that left to right incremental construction is a special

case of our approach. So the question is how to decide the order of construction as well

as the type of operation R. For example, in the very first step of dependency parsing, we

need to decide which two words are to be combined as well as the dependency label to be

used.

This problem is solved statistically, based on the features defined on the substructures

involved in the operation and their context. Given the weights of these features, we will

show in the next section how these weights guide us to build a set of hypothesized hidden

structures with beam search. In Section 4.3.3, we will present a perceptron like algorithm

to obtain the weights.

Now we formally define the data structure to be used in our algorithms. Most of them

were previously introduced in an informal way.

A fragment is a connected sub-graph of G(V,E). Each fragment x is associated with a

set of hypothesized hidden structures, or fragment hypotheses for short: Y x = {yx
1, ...,y

x
k}.

Each yx is a possible fragment hypothesis of x.

It is easy to see that an operation to combine two fragments may depend on the frag-

ment hypotheses in the context, i.e. hypotheses for fragments directly connected to one of

the operands. So we introduce the dependency relation over fragments 3. Suppose there

is a dependency relation D⊆ F×F , where F ⊆ 2V is the set of all fragments in graph G.

D(xi,x j) means that any operation on a fragment hypothesis of xi depends on the features

in the fragment hypothesis of x j, and vice versa.

We are especially interested in the following two dependency relations.

3Dependency relation over fragments is different from the dependency in dependency parsing

47

• level-0 dependency: D0(xi,x j) ⇐⇒ i = j.

• level-1 dependency: D1(xi,x j) ⇐⇒ xi and x j are directly connected in G.

So, in the incremental construction, we need to introduce a data structure to maintain

the hypotheses with dependency relations among them.

A set of fragments, c = {x1,x2, ...,xn}, is called a chain of fragments depending on x,

or chain for x for short, for a given dependency relation D, if

• x ∈ c.

• xi∩ x j = φ,∀i, j.

• For any xi, there exists xi,0, ...,xi,m, such that xi,0 = x,xi,m = xi and D(xi, j,xi, j−1).

It is easy to show that, for any xi ∈ c, c is a also a well defined chain for xi.

For a given chain c = {x1,x2, ...,xn}, we use hc = {yx1, ...,yxn} to represent a set of

fragment hypotheses for the fragments in c, where yxi is a fragment hypothesis for xi in c.

hc is called a chain hypothesis for chain c. We use Hc = {hc
1, ...,h

c
m} to represent a set of

chain hypotheses for chain c.

Now we can divide a given graph G(V,E) with chains. A cut T of a given G, T =

{c1,c2, ...,cm}, is a set of chains satisfy

• exclusiveness: ∪ci∩∪c j = φ,∀i, j, and

• completeness: ∪(∪T) = V .

Furthermore, we use HT = {Hc|c ∈ T} to represent of sets of chain hypotheses for all

the chains in cut T . During the greedy search, we always maintain one cut over the whole

graph.

As noted in the previous section, the idea behind the chain structure is that

• hypotheses for the same chain are mutually exclusive, and

• hypotheses for different chains are compatible with each other

48

In this way, we can generate hypotheses for different chains in parallel from different

starting points in a graph. Two chains merge when certain operation happens, which

depends on both of the two chains.

4.3.2 Search Algorithm

Algorithm 4 describes the procedure of building hypotheses incrementally on a given

graph G(V,E). Parameter k is used to set the beam width of search. Weight vector w

is used to compute score of an operation.

We first initiate the cut T by treating each vertex in V as a fragment and a chain. Then

we set the initial hypotheses for each vertex/fragment/chain. For example, in dependency

parsing, the initial value is a set of possible POS tags for each single word. Then we use a

queue Q to collect all the possible operations over the initial cut T and hypotheses HT .

Whenever Q is not empty, we search for the chain hypothesis with highest score on

operation according to a given weight vector w. Suppose we find a new (fragment, hypoth-

esis) pair (x,y) which is generated by the operation with the highest score. We first update

the cut and the hypotheses according to (x,y). Let cx be the chain for x. We remove from

the cut T all the chains that overlap with cx, and add cx to T . Furthermore, we remove

the chain hypotheses for those removed chains, and add the top k chain hypotheses for cx

to HT . Then, we update the candidate queue Q by removing operations depending on the

chain hypotheses that has been removed from HT , and adding new operations depending

on the chain hypotheses of cx.

Now we explain the functions in Algorithm 4 one by one.

• initCut(V) initiates a cut T with vertexes V by setting T = {ci}, where ci = {xi},
and xi = {vi} for each vi ∈ V . This means that we take each vertex as a fragment,

and each fragment constitutes a chain.

• initHypo(T) initiates hypothesis HT with the cut T described above. Here we set

the initial fragment hypotheses, Y xi = {yxi
1 , ...,yxi

k }, where xi = {vi} contains only

49

Algorithm 4 Incremental Construction

Require: graph G(V,E);
Require: beam width k;
Require: weight vector w;

1: cut T ← initCut(V);
2: hypotheses HT ← initHypo(T);
3: candidate queue Q← initQueue(HT);
4: repeat
5: (x′,y′)← argmax(x,y)∈Q score(y);
6: T ← updCut(T,x′,y′);
7: HT ← updHypo(HT ,x′,y′,k);
8: Q← updQueue(Q,x′,y′,HT);
9: until (Q = φ)

one vertex.

• initQueue(HT) initiates the queue of candidate operations over the current cut T

and HT . Supposed there exist vi and v j which are directly connected in G. Let

C = {cxi,cx j}∪N(D,xi)∪N(D,x j),

where N(D,xi) = {cx|D(xi,x),cx ∈ T} is the set of chains one of whose fragments

depends on xi.

We apply all possible operations to all compatible fragment hypotheses of xi and x j

with respect to all possible chain hypotheses combinations for C, and put them in Q.

Suppose we generate (xp,yxp) with some operation, where xp is equivalent to xi∪x j

and cxp = ∪C.

All the candidate operations are organized with respect to the chain each operation

generates. For each chain c, we maintain the top k candidates according to the score

of the chain hypotheses. Scores of operations, fragments and chains are calculated

with formula (4.2), (4.3) and (4.4) respectively.

• updCut(T,x,y) is used to update cut T with respect to the candidate operation that

generates yx = R(xi,x j,yxi,yx j). Let C = {cxi,cx j}∪N(D,xi)∪N(D,x j) as described

above. We remove all the chains in C from T , and add ∪C to T .

50

Algorithm 5 Training Algorithm

1: w← 0;
2: for (round r = 0; r < R; r++) do
3: load graph Gr(V,E), hidden structure Hr;
4: initiate T,HT and Q;
5: repeat
6: (x′,y′)← argmax(x,y)∈Q score(y);
7: if (y′ is compatible with Hr) then
8: update T,HT and Q with (x′,y′);
9: else

10: ỹ← schPosi(Q,x′);
11: promote(w, ỹ);
12: demote(w,y′);
13: update Q with w;
14: end if
15: until (Q = φ)
16: end for

• updHypo(HT ,x,y,k) is used to update hypothesis HT . We remove from HT all the

chain hypotheses whose corresponding chain has been removed from T in function

updCut(T,x,y). Furthermore, we add the top k chain hypotheses for chain ∪C to

HT .

• updQueue(Q,x,y,HT) is designed to complete two tasks. First it removes from Q

all the chain hypotheses which depend on one of the chains in C. Then it adds new

candidate chain hypotheses depending on chain hypotheses of ∪C in a way similar

to the initQueue(HT) function. In Q, candidate chain hypotheses are organized with

respect to the chains. For each chain c, we maintain the top k candidates according

to the score of the chain hypotheses.

4.3.3 Training Algorithm

In the previous section, we described a search algorithm for graph-based incremental con-

struction for a given weight vector w. In Algorithm 5, we present a perceptron like algo-

rithm to obtain the weight vector from the training data.

51

For each given training sample (Gr,Hr), where Hr is the gold standard hidden structure

of graph Gr, we first initiate cut T , hypotheses HT and candidate queue Q by calling

initCut, initHypo and initQueue as in Algorithm 4.

Then we use the gold standard Hr to guide the search. We select candidate (x′,y′)

which has the highest operation score in Q. If y′ is compatible with Hr, we update T , HT

and Q by calling updCut, updHypo and updQueue as in Algorithm 4. If y′ is incompatible

with Hr, we treat y′ as a negative sample, and look for a positive sample ỹ in Q with

schPosi(Q,x′).

If there exists a hypothesis ỹx′ for fragment x′ which is compatible with Hr, then

schPosi returns ỹx′ . Otherwise schPosi returns the candidate hypothesis which is com-

patible with Hr and has the highest score of operation in Q.

Then we update the weight vector w with ỹ and y′. At the end, we update the candidate

Q by using the new weights w to compute the score of operation.

We can use various methods to improve the performance of the Perceptron algorithm.

In our implementation, we use Perceptron with margin in the training (Krauth and Mezard,

1987). The margins are proportional to the loss of the hypotheses. Furthermore, we use

voted Perceptron (Freund and Schapire, 1999).

4.4 LTAG-spinal Dependency Parsing

In this section, we will illustrate the details for the LTAG-spinal dependency parser which

is not covered in the example in Section 4.2. In Section 4.4.1, we will describe how the

hidden structure U in the algorithms is implemented for LTAG-spinal dependency parsing.

In Section 4.4.2, we will illustrate the features used in our parser.

4.4.1 Incremental Construction

With the incremental construction algorithm described in the previous sections, we build

the LTAG-spinal dependency tree incrementally. A hypothesis of a fragment is represented

52

continuedstock

pounded

amid

attach
adjoin

attach

Figure 4.10: Wrapping adjunction with raising verbs

with a sub dependency tree. When the fragment hypotheses of two nearby fragments

combine, the two sub dependency trees are combined into one.

Adjunction

It seems trivial to combine two partial dependency (derivation) trees with attachment. We

can simply attach the root of tree A to some node on tree B which is visible to tree A.

However, if adjunction is involved, the operation becomes a little bit complicated. An

adjoined subtree may be visible from the other side of the dependency (derivation) tree.

This is usually called wrapping adjunction.

Wrapping adjunction may occur with passive ECM verbs as shown in Figure 4.9, or

raising verbs as in the following example, shown in Figure 4.10.

• The stock of UAL Corp. continued to be pounded amid signs that British Airways ...

Here continued adjoins onto pounded, and amid attaches to continued from the other side

of the dependency (derivation) tree (pounded is between continued and amid).

In order to implement wrapping adjunction, we employ a similar definition of visibility

as in the left to right parser described in Chapter 3. Now, visibility is defined on the nodes

of a dependency (derivation) tree, but not the nodes of a derived tree as in the left to right

parser. So the situation is simplified in this case. Instead of giving the formal definition,

here we use plain description and figures to define visibility.

We still define visibility with respect to the direction. Without losing generality, we

only illustrate visibility from right here.

53

N T

N R
....

attach

Figure 4.11: Case 1: no adjunction from left

We define visibility recursively, starting from the root of a partial dependency tree.

The root node is always visible. Suppose a node in a partial dependency tree is visible

from right, or visible for short here. We search for the child nodes which are visible also.

Let the parent node be NT .

• If there is no adjunction from the left side, then the rightmost child, NR, is visible,

as in Figure 4.11.

• Otherwise, let NL adjoin to NT from the left side 4. Let NLX be the rightmost de-

scendant in the sub tree rooted on NL, and let NRX be the rightmost descendant in

the sub tree rooted on NR.

– If NT is to the right of NLX , then both NL and NR are visible, as in Figure 4.12.

– If NLX is to the right of NT and NRX is to the right of NLX , then NR is visible,

as in Figure 4.13.

– If NLX is to the right of NRX , then NL is visible, as in Figure 4.14.

In this way, we obtain all the visible nodes recursively, and all the rest are invisible

from right. If there are multiple adjunction from the left side, we need to compare among

those adjoined nodes in a similar way, although this rarely happens in the real data.

4For the sake of ease in description, we assume there is only one adjunction from the left side. However,
the reader can easily extend this to the case of multiple adjunctions.

54

N L

N LX

N T

N R
....

adjoin

N RX

Figure 4.12: Case 2: both NL and NR is visible

N L

N LX

N T

N R
....

adjoin

N RX

Figure 4.13: Case 3: NR is visible

Predicate Coordination

As we have noted in Chapter 2, predicate coordination is represented explicitly in the

LTAG-spinal Treebank. In order to build predicate coordination incrementally, we need to

decompose coordination into a set of conjoin operations. Suppose a coordinated structure

attaches to the parent node on the left side. We build this structure incrementally by

attaching the first conjunct to the parent and conjoining other conjuncts to first one. In this

way, we do not need to force the coordination to be built before the attachment. Either

operation could be executed first.

Figure 4.15 shows the incremental construction of predicate coordination of the fol-

lowing sentence.

55

N L

N LX

N T

N R
....

adjoin

N RX

Figure 4.14: Case 4: NL is visible

resist

rearing salutingI couldn’t

attach conjoinattach attach

and

attach

Figure 4.15: Partial dependency tree for the example of conjunction

• I couldn’t resist rearing up on my soggy loafers and saluting.

4.4.2 Features

In this section, we will describe the features used in LTAG dependency parsing. As to

feature definition, an operation is represented by a 4-tuple

• op = (type,dir, posle f t, posright),

where type ∈ {attach,ad join,con join} and dir is used to represent the direction of the

operation. posle f t and posright are the POS tags of the two operands.

Features are defined on POS tags and lexical items of the nodes. In order to represent

the features, we use m for the main-node of the operation, s for the sub-node, mr for the

56

?

$�
?

�
��+

��	

@@R

.................................�

Q
QQs

@@R @@R
m1.1

m1.1.1

s1 s2

m1

m1.2

m

mr

m2 s

attach

Figure 4.16: Representation of nodes

parent of the main-node, m1..mi for the children of m, and s1..s j for the children of s.

The index always starts from the side where the operation takes place. We use the Gorn

address to represent the nodes in the subtrees rooted on m and s.

Furthermore, we use lk and rk to represent the nodes in the left and right context of the

flat sentence. We use hl and hr to represent the head of the outside hypothesis trees on the

left and right context respectively.

Let x be a node. We use x.p to represent the POS tag of node x, and x.w to represent

the lexical item of node x.

Table 4.1 show the features used in LTAG dependency parsing. There are seven classes

of features. The first three classes of features are those defined on only one operand, on

both operands, and on the siblings respectively. If the gold standard POS tags are used

as input, we define features on the POS tags in the context. If level-1 dependency is

used, we define features on the root node of the hypothesis partial dependency trees in the

neighborhood.

Half check features and full check features in Table 4.1 are designed for grammatical

checks. For example, in Figure 4.16, node s attaches onto node m. Then nothing can attach

onto s from the left side. The children of the left side of s are fixed, so we use the half check

features to check the completeness of the children of the left half for s. Furthermore, we

notice that all the left-edge descendants of s and the right-edge descendants of m become

57

Table 4.1: Features defined on the context of operation
category description templates
one operand Features defined on only one

operand. For each template t p,
[type,dir, t p] is used as a feature.

(m.p), (m.w), (m.p,m.w), (s.p),
(s.w), (s.p,s.w)

two operands Features defined on both operands.
For each template t p, [op, t p] is
used as a feature. In addition, [op]
is also used as a feature.

(m.w), (c.w), (m.w,c.w)

siblings Features defined on the children
of the main nodes. For each
template t p, [op, t p], [op,m.w, t p],
[op,mr.p, t p] and [op,mr.p,m.w, t p]
are used as features.

(m1.p), (m1.p,m2.p), ..,
(m1.p,m2.p, ..,mi.p)

POS context In the case that gold standard POS
tags are used as input, features are
defined on the POS tags of the con-
text. For each template t p, [op, t p]
is used as a feature.

(l2.p), (l1.p), (r1.p), (r2.p),
(l2.p, l1.p), (l1.p,r1.p), (r1.p,r2.p)

tree context In the case that level-1 dependency
is employed, features are defined on
the trees in the context. For each
template t p, [op, t p] is used as a fea-
ture.

(hl .p), (hr.p)

half check Suppose s1, ...,sk are all the children
of s which are between s and m in
the flat sentence. For each template
t p, [t p] is used as a feature.

(s.p,s1.p,s2.p, ..,sk.p),
(m.p,s.p,s1.p,s2.p, ..,sk.p)
and (s.w,s.p,s1.p,s2.p, ..,sk .p),
(s.w,m.p,s.p,s1.p,s2.p, ..,sk.p) if
s.w is a verb

full check Let x1, x2, .., xk be the children of
x, and xr the parent of x. For any
x = m1.1...1 or s1.1...1, template t p,
[t p(x)] is used as a feature.

(x.p,x1.p,x2.p, ..,xk.p),
(xr.p,x.p,x1.p,x2.p, ..,xk .p)
and (x.w,x.p,x1 .p,x2.p, ..,xk .p),
(x.w,xr.p,x.p,x1.p,x2.p, ..,xk .p) if
x.w is a verb

58

unavailable for any further operation. So their children are fixed after this operation. All

these nodes are in the form of m1.1...1 or s1.1...1. We use full check features to check the

children from both sides for these nodes.

4.5 Discussion

4.5.1 On Weight Update

Let us first have a close look at the function schPosi.

1. This function first tries to find a local correction to the wrong operation.

2. If it fails, which means that, in the gold standard, there is no direct operation over the

two fragments involved, the function returns a correct operation which the current

weight vector is the most confident of.

This learning strategy is designed to modify the current weight vector, or path prefer-

ence, as little as possible, so that the context information learned previously will still be

useful.

In case 1, only the weights of the features directly related to the mistake are updated,

and unrelated features are kept unchanged.

In case 2, the feature vector of the operation with a higher score is closer to the direc-

tion of the weight vector. Therefore, to use the one with highest score helps to keep the

weight vector in the previous direction.

4.5.2 On Path Selection

After the weight vector is updated, we re-compute the score of the candidate operations.

The new operation with the highest score could still be over the same two fragments as

the last round. However, it could be over other fragments as well. Intuitively, in this

case, it means that the operation over the previous fragments is hard to decide with the

59

current context, and we’d better work on other fragments first. This strategy is designed

to learning a desirable order of operations.

Actually, the training algorithm makes the score of all operations comparable, since

they always compete head to head in the queue of candidates. In this way, we can use the

score to select the path.

4.5.3 Related Works

Yamada and Matsumoto (2003) has proposed a deterministic dependency parser which

builds the parse tree incrementally via rounds of left-to-right scans. As each step, they

check whether an attachment should be built or not. Each local decision is determined by

a local classifier. This framework allows certain level bidirectional mechanism.

Compared to their work, our parser has real bidirectional capability. At each step,

we always compare all the possible operations. In addition, in our model, inference is

incorporated in the training, as described in Section 1.3.

In the search algorithms proposed in (Klein and Manning, 2003; Daumé III and Marcu,

2005), heuristics is used for the outside score. In our algorithm, outside hypotheses are

used to compute the score. In this way, a greedy search algorithm can take advantage of

more information.

Similar to (Collins and Roark, 2004) and (Daumé III and Marcu, 2005), our training

algorithm learns the inference in a subset of all possible contexts. However, our algorithm

is more aggressive. In (Collins and Roark, 2004), a search stops if there is no hypothesis

compatible with the gold standard in the queue of candidates. In (Daumé III and Marcu,

2005), the search is resumed after some gold-standard compatible hypotheses are inserted

into a queue for future expansion, and the weights are updated correspondingly. However,

there is no guarantee that the updated weights assign a higher score to those inserted gold-

standard compatible hypotheses.

In our algorithm, the gold-standard compatible hypotheses are used for weight update

60

only. As a result, after each sentence is processed, the weight vector can usually success-

fully predict the gold standard parse. As far as this aspect is concerned, our algorithm is

similar to the MIRA algorithm in (Crammer and Singer, 2003).

In MIRA, one always knows the correct hypothesis. However, in our case, we do not

know the correct order of operations. So we have to use our form of weight update to

implement aggressive learning.

In general, the learning model described in Algorithm 5 is more difficult than super-

vised learning, because we do not know the correct order of operations. On the other hand,

our algorithm is not as difficult as reinforcement learning, due to the fact that we can check

the compatibility with the gold-standard for each candidate hypothesis.

4.6 Experiments and Analysis

We use the same data set as in Chapter 3. We train our LTAG dependency parser on section

2-21 of the LTAG Treebank. Section 22 is used as the development set for feature hunting.

Section 23 is used for test.

Table 4.2 shows the comparison of different models. Beam size is set to five in our ex-

periments. With level-0 dependency, our system achieves an f-score of 90.3% at the speed

of 4.25 sentences a second on a Xeon 3G Hz processor with JDK 1.5. With level-1 depen-

dency, the parser achieves 90.5% at 3.59 sentences a second. Level-1 dependency does not

provide much improvement due to the fact that level-0 features provide most of the useful

information for this specific application. But this is not always true in other applications,

e.g. POS tagging, in which level-1 features provide much more useful information.

If we decrease the beam width to one for both training and test, which means that we

use this model for deterministic parsing, the level-1 system achieves an f-score of 90.0%,

only 0.5 points lower than our best result.

It is interesting to compare our system with other dependency parsers. The f-score on

61

Table 4.2: Results of bidirectional dependency parsing on Section 23 of the LTAG Tree-
bank

model f-score%

left-to-right, flex 89.3

level-0 dependency 90.3
level-1 dependency 90.5

LTAG dependency is comparable to the numbers of the previous best systems on depen-

dency extracted from PTB with Magerman’s rules, for example, 90.3% in (Yamada and

Matsumoto, 2003) and 90.9% in (McDonald et al., 2005). However, their experiments are

on the PTB, which is different from ours. To learn the LTAG dependency is more difficult

for the following reasons.

Theoretically, the LTAG dependencies reveal deeper relations. Adjunction can lead

to non-projective dependencies, and the dependencies defined on predicate adjunction are

linguistically more motivated, as shown in the example in Figure 4.10. The explicit repre-

sentation of predicate coordination also provides deeper relations. For example, in Figure

4.15, the LTAG dependency contains resist → rearing and resist → saluting, while the

Magerman’s dependency only contains resist → rearing. The explicit representation of

predicate coordination helps to solve for the dependencies for shared arguments.

This claim is also verified by our experiments in Section 5.5.2. We will show that one

can recognize unlabeled Propbank arguments from the LTAG Treebank at the f-score of

91.3% with simple rules, while one of the state-of-the-art systems (Pradhan et al., 2004)

working on the same task directly on Penn Treebank can only achieve an f-score of 90.4%.

So the LTAG dependencies reveal deeper relations, and is more difficult to learn at the

syntax level. Our graph-based incremental construction clearly shows very desirable per-

formance.

62

4.7 Summary

In this chapter, we first introduced bidirectional incremental parsing, a new architecture of

parsing for LTAG. We have proposed a novel algorithm for graph-based incremental con-

struction, and applied this algorithm to LTAG-spinal dependency parsing, revealing deep

relations, which are unavailable in other approaches and difficult to learn. We have eval-

uated the parser on the LTAG-spinal Treebank. Experimental results show a significant

improvement over the incremental parser described in Chapter 3. Graph-based incremen-

tal construction could be applied to other structure prediction problems in NLP.

63

Chapter 5

Resource Construction

In Chapters 3 and 4, we have proposed two parsers based on the LTAG-spinal formalism.

In this chapter, we will present the treebank used to train and evaluate these two parsers.

We will briefly describe previous works on LTAG treebank extraction in Section 5.1.

We will present our approach in Section 5.2, and illustrate the procedure of treebank in-

duction in Section 5.3. In Section 5.4, we will describe the format of the treebank, as well

as the representations for some interesting linguistic structures. In Section 5.5, we will

present the statistics for the extracted LTAG-spinal treebank and evaluation of its compat-

ibility with the Propbank.

5.1 Previous Works

For the purpose of statistical processing, many attempts have been made for automatic

construction of LTAG treebanks. Joshi and Srinivas (1994) presented a supertag corpus

extracted from the Penn Treebank with heuristic rules. However, due to the limit of su-

pertag extraction algorithm, the extracted supertags of the words in a sentence cannot

always be successfully put together. Xia (2001) and Chen (2001) described deterministic

systems that extract LTAG-style grammars from PTB. In their systems, a head table in

Magerman’s style (1995) and the PTB functional tags were used to resolve ambiguities in

64

extraction. Chiang (2000) reported a similar method of extracting an LTAG treebank from

PTB, and used it in a statistical parser for Tree Insertion Grammar.

5.2 Our Approach

We will extract an LTAG-spinal treebank from the Penn Treebank with Propbank annota-

tion. The following two properties make our treebank different from the previous works.

• Incorporating Propbank

Propbank provides annotation of predicate-argument structures and semantic roles

on the Penn Treebank, which is unavailable to the previous LTAG treebank extrac-

tion systems. There is an obvious connection between Propbank argument sets and

elementary trees in LTAG. Therefore, one of the purposes of our work is to in-

corporate Propbank annotation into the extracted LTAG treebank. In this way, the

extracted elementary trees for each lexical anchor (predicate) will become seman-

tically meaningful. On the other hand, Propbank provides more information that

helps us to successfully extract various structures of interest. For example, Prop-

bank annotation on discontinuous arguments helps us to recognize auxiliary trees in

LTAG.

• Treatment for Predicate Operation

In the previous LTAG treebank extraction work, the second conjunct is always rep-

resented as a partial template. In our work, we use a special operation to represent

predicate coordination explicitly. We use this method to encode shared arguments.

5.3 Extracting an LTAG-spinal Treebank

In this section, we describe the algorithm that we have used to extract the LTAG-spinal

treebank from PTB with Propbank annotation. We use a rule-based method for treebank

extraction. We take a PTB tree as an LTAG derived tree.

65

Since the latest release of Propbank does not provide annotation for the verb “be”,

we first automatically generate the annotation for “be”. Then we incorporate PTB and

Propbank by tree transformations based on Propbank annotation. LTAG predicate coordi-

nation and full adjunction are recognized by Propbank annotation. Then we extract LTAG

elementary trees from the transformed PTB subtrees recursively, according to Propbank

annotation and a head table. At the end, we map all the elementary trees into a small set

of normalized elementary trees.

The extraction algorithm is implemented in several rounds of tree traversal. Each

round is implemented with a recursive function over trees. Therefore, whenever possible,

we always try to divide different operations into different rounds so as to simplify the

implementation.

Now we will explain these steps one by one.

5.3.1 Pseudo Annotations for be

We generate annotations for “be” by using PRD and SBJ labels in PTB. We first look

for VP nodes that directly dominate a “be” node and a node with a PRD label. Then we

look for the lowest node with a SBJ label that c-commands the VP node. According to

Propbank style, the “be” node is labeled as the relation, and the SBJ node is labeled as

ARG0 and the node with PRD tag is labeled as ARG1.

This module will be skipped if the next version of the Propbank provides the accurate

annotation of the verb “be”.

5.3.2 PTB and Propbank Integration

An argument or modifier in Propbank may correspond to several nodes in the PTB parse

tree. This is mainly due to the syntax-semantic discrepancy, e.g. extrapositions (Xia and

Bleam, 2000). Some of these are due to the different analyses or different granularities of

analyses of PTB and Propbank. Some are just typos or mistakes.

66

SBAR

that ...limited kinds

NP(arg0.1) PP(arg0.2)

NP

SBAR

that ...

NP

limited kinds

NP PP

NP(arg0)

of banking

of banking

Figure 5.1: Continuous flat segments.

As for as LTAG is concerned, an argument corresponds to one subtree in the extracted

treebank, so we use tree transformations to combine several nodes of PTB into one con-

stituent according to the Propbank annotation for some of these cases, since Propbank is

a second round annotation over PTB.

An argument in Propbank may correspond to continuous constituents or discontinu-

ous constituents in PTB. We first describe the tree transformations applied to continuous

constituents. There are two types of transformations, depending on the location of the

constituent segments.

• Continuous Flat Segments. All the segments are directly dominated by the same

node. We move all the constituents that are not part of the argument upwards by one

level as shown in Figure 5.1.

• Continuous Uneven Segments. The segments are on different levels of the parse

tree. We move all the constituents that are not part of the argument upwards by

several levels as shown in Figure 5.2. However, the result tree is not totally correct.

(IN of) and (NP workers) should form a PP node first, which then modifies (NP a

group). But we do not have enough context information the obtain this structure

automatically.

67

NP(arg1.1)

NP

NP(arg1)

NP

PP

a group

IN(arg1.2) NP
of

NP(arg1.3) RRC

workers exposed ...

RRC

NP IN NP
of

a group workers

exposed ...

Figure 5.2: Continuous uneven segments.

SBAR(arg1.2)
distribute

V NP(arg1.1)

machetes

VP

PP

at this time

,
,

which can be used ...

Figure 5.3: Extraposition.

5.3.3 Full Adjunction

As we have mentioned before there are arguments which are composed of discontinuous

constituents. One class of these discontinuous constituents is extraposition, which can

only be represented by multi-component LTAG trees (Joshi et al., 2002) in the LTAG

formalism, as in Figure 5.3. Currently, we leave them as they are.

There is a class of discontinuous segments which appear frequently in Propbank that

can be exactly represented with full auxiliary trees under LTAG. For example, raising

verbs and passive ECM verbs are associated with traditional auxiliary trees. Furthermore,

we notice that in many cases the word “say” can only be represented with full auxiliary

trees, as shown in Figure 5.4.

We cut the PRN rooted sub-tree from the S node, and an extra root S and an extra foot

node are added to this tree as shown in Figure 5.4.

68

Nevertheless may blip ...yields

, said Brenda ...,

ADVP VPNP

S(arg1)

S

ADVP(arg1.1) NP(arg1.2) VP(arg1.3)

Nevertheless may blip ...yields

PRN

, said Brenda ...,

PRN S*

S adjoin

Figure 5.4: Full auxiliary.

VP

VB

S

VP

VB

S

MD
can

CC
and

NP
vary go

PP

after ...maturities

conjoin

NP

managers

Figure 5.5: Predicate Coordination.

5.3.4 Coordination

Propbank annotation is used to determine the head of “S” type nodes and “VP” nodes. The

head information is further used to detect predicate coordination. Predicate coordination

structures are transformed into subtrees connected with the conjoin operation, as shown in

Figure 5.5.

69

VP

VBX

VP

VBX
aux_4

VP* VP*
aux_3

VP

S

aux_2
VBX S*

XP

init_2

init_6
VBX

init_3
X

VP

XP

S

X
init_1

VP

VBX
init_5

VP

S

init_4
VBX S*

VP

S

aux_1
VBX

X

Figure 5.6: Types of normalized spinal elementary trees.

5.3.5 Elementary Tree Extraction

After coordination and adjunction recognition, the original tree is cut into treelets. Then

we recursively extract LTAG elementary trees from the treelets, which is similar to the

work reported in Xia’s (2001) and Chen’s (2001) papers. What is special here is the

following: in order to generate elementary trees in the LTAG-spinal format, we need to

move some arguments upwards to make them as direct children of a node on spine.

5.3.6 Normalization

Finally, we normalize the elementary trees by mapping them to a fixed set of elementary

trees, which are shown in Figure 5.6. In order to decrease redundancy, a sister auxiliary

tree is mapped to an initial tree by removing the root node. Therefore, we have only 6

different kinds of initial trees (3 for verbs and 3 for non-verbs) and 4 different kinds of

full auxiliary trees. In Figure 5.6, VBX represents a verbal POS tag, and X represents a

non-verbal POS tag.

70

5.4 The LTAG-spinal Treebank

5.4.1 Format

We describe the format of the LTAG-spinal Treebank with an example sentence shown in

Figure 5.7.

Each sentence in the LTAG Treebank begins with a line of index information. For

example, “2 31 7” means that this sentence is the 7th sentence in file 31 of WSJ section 2

in the PTB . The second line shows the root of the sentence. In this example, the root is the

20th elementary tree, or e-tree for short, which is a structure for predicate coordination

which we will explain later. Then follows the information for each e-tree in the derivation

tree in the order of the position in the flat sentence.

The information of an e-tree is composed of three parts. The first part is the ID of

the e-tree as well as the lexical information if there exists. The second part is the spinal

template for this e-tree. The third part is optional. It consists of the information of the

child e-trees.

Now we first describe the format of spinal templates, then explain the information for

the children. A spinal template is represented with a string which starts with a, b, or c,

which mean initial tree, auxiliary tree, and predicate coordination respectively. The rest

of the substring represents the spine in the List format as in the PTB. For example, (S (

VP VBˆ S*)) is used to represent a template rooted on S, where S dominates VP, and VP

dominates the anchor VB and the foot S. Here ˆ represents anchor, and * represents foot.

Each child is represented with a line which starts with ad j, att, and crd. ad j means

adjunction. att means attachment, and it also means connective in coordination as shown

in #20 of Figure 5.7. crd means predicate conjunct. Then follows the ID of the child

e-trees.

The rest of the line is the landing information, which is composed of three parts. The

first part is the node where the child attaches or adjoins. It is represented with Gorn

address. For example, in e-tree #3 of the sentence, e-tree #6 attaches to the VP node,

71

whose address is 0.0 in the spine. The second part is the ID of the slot, which represents

the position relative to the children of the landing node in the spine. For example, in e-tree

#3, the VP node has two slots. Slot 0 represents the left side of the V node and slot 1

represents the right side of the V node. The IDs of the slots are ordered from left to right.

Since e-tree #6 attaches onto the VP node from right, the slot number is 1. The third part

represents the order of child e-trees in the same slot. For e-tree #3, both #0 and #2 e-trees

attach onto VP in the same slot, and #0 is to the left of #2 e-tree. So the order number is 0

for #0, and 1 for #2, which is also ordered from left to right.

As to the example in Figure 5.7, the root e-tree is a structure of coordination between

fail and remained. But and sectors attach to the S node of fail from left, and attract attaches

to the VP node of fail from right. sluggish and making attach to the VP node of remained

from right. Furthermore, the e-tree for appear adjoins to the VP node of the e-tree for

mixed.

72

2 31 7
root 20
#0 but
spine: a_CCˆ
#1 other
spine: a_JJˆ
#2 sectors
spine: a_(XP NNSˆ)
att #1, on 0, slot 0, order 0
#3 failed
spine: a_(S (VP VBDˆ))
att #0, on 0, slot 0, order 0
att #2, on 0, slot 0, order 1
att #6, on 0.0, slot 1, order 0
#4 *-1
spine: a_(XP NONEˆ)
#5 to
spine: a_TOˆ
#6 attract
spine: a_(S (VP VBˆ))
att #4, on 0, slot 0, order 0
att #5, on 0.0, slot 0, order 0
att #8, on 0.0, slot 1, order 0
#7 investor
spine: a_NNˆ
#8 interest
spine: a_(XP NNˆ)
att #7, on 0, slot 0, order 0
#9 and
spine: a_CCˆ
#10 remained
spine: a_(S (VP VBDˆ))
att #11, on 0.0, slot 1, order 0

att #12, on 0.0, slot 1, order 1
att #14, on 0.0, slot 1, order 2
att #19, on 0, slot 1, order 0
#11 sluggish
spine: a_(XP JJˆ)
#12 ,
spine: a_,ˆ
#13 *-1
spine: a_(XP NONEˆ)
#14 making
spine: a_(S (VP VBGˆ))
att #13, on 0, slot 0, order 0
att #16, on 0.0, slot 1, order 0
att #18, on 0.0, slot 1, order 1
#15 overall
spine: a_JJˆ
#16 trading
spine: a_(XP NNˆ)
att #15, on 0, slot 0, order 0
#17 appear
spine: b_(VP VBˆ VP*)
#18 mixed
spine: a_(S (VP (XP JJˆ)))
adj #17, on 0.0, slot 0, order 0
#19 .
spine: a_.ˆ
&20
spine: c_(S S S)
crd #3, on 0.0
att #9, on 0, slot 1, order 0
crd #10, on 0.1

Figure 5.7: An Example in the treebank

73

5.4.2 Case Studies

Raising Verbs and Passive ECM Verbs

In the LTAG Treebank, raising verbs and passive ECM verbs are associated with an aux-

iliary tree. For example, in Figure 5.8, the e-tree for continue adjoins onto the S node of

the e-tree for soften. Furthermore, in attaches to soften. Since, soften is between continue

and in in the flat sentence, this leads to a case of non-projective dependency.

Predicate Coordination

Predicate coordination is represented with a special structure in the LTAG Treebank. E-

tree #20 in Figure 5.7 shows an example of coordination, in which conjuncts are explicitly

annotated. In this approach, we encode the ambiguity of argument sharing. In this exam-

ple, sectors attaches to failed, the first conjunct. But it is also the subject of maintained,

the second conjunct. The explicit representation of coordination used in the Treebank

makes it easier to solve the ambiguity of shared arguments.

Relative Clauses

In the LTAG Treebank, a relative clause is represented by attaching the predicate of the

clause to the head of the phrase that it modifies. For example, in Figure 5.9, the predicate

of the relative clause is shown. which attaches onto shown, and shown attaches onto

earnings.

74

#19 the
spine: a_DTˆ
#20 market
spine: a_(XP NNˆ)
att #19, on 0, slot 0, order 0
#21 could
spine: a_MDˆ
#22 continue
spine: b_(S (VP VBˆ S*))
att #21, on 0.0, slot 0, order 0
att #26, on 0.0, slot 2, order 0
#23 *-1
spine: a_(XP NONEˆ)
#24 to
spine: a_TOˆ
#25 soften
spine: a_(S (VP VBˆ))
att #18, on 0, slot 0, order 0
att #20, on 0, slot 0, order 1
adj #22, on 0, slot 0, order 2
att #23, on 0, slot 0, order 3
att #24, on 0.0, slot 0, order 0
#26 in
spine: a_(XP INˆ)
att #28, on 0, slot 1, order 0
#27 the
spine: a_DTˆ
#28 months
spine: a_(XP NNSˆ)
att #27, on 0, slot 0, order 0
att #29, on 0, slot 1, order 0
#29 ahead
spine: a_RBˆ

Figure 5.8: Raising Verb

#4 earnings
spine: a_(XP NNSˆ)
att #3, on 0, slot 0, order 0
att #10, on 0, slot 1, order 0
#5 ,
spine: a_,ˆ
#6 which
spine: a_(XP WDTˆ)
#7 *t*-48
spine: a_(XP NONEˆ)
#8 were
spine: a_VBDˆ
#9 mistakenly
spine: a_(XP RBˆ)
#10 shown
spine: a_(S (VP VBNˆ))
att #5, on 0, slot 0, order 0
att #6, on 0, slot 0, order 1
att #7, on 0, slot 0, order 2
att #8, on 0.0, slot 0, order 0
att #9, on 0.0, slot 0, order 1
att #11, on 0.0, slot 1, order 0

Figure 5.9: Relative Clauses

#0 Ms.
spine: a_NNPˆ
#1 Waleson
spine: a_(XP NNPˆ)
att #0, on 0, slot 0, order 0
#2 is
spine: a_(S (VP VBZˆ))
att #1, on 0, slot 0, order 0
att #5, on 0.0, slot 1, order 0
att #11, on 0, slot 1, order 0
#3 a
spine: a_DTˆ
#4 free-lance
spine: a_JJˆ
#5 writer
spine: a_(XP NNˆ)
att #3, on 0, slot 0, order 0
att #4, on 0, slot 0, order 1
att #6, on 0, slot 1, order 0

Figure 5.10: Predicative Trees

75

Predicative Trees

In the current version of the LTAG Treebank, most of the predicate nominals and adjectives

are not annotated as the head predicate. Instead, the copula is treated as the head of the

sentence. For example, in Figure 5.10, writer attaches to is. We are aware that, in the

XTAG English grammar, predicate nominals and adjectives are regarded as the head.

The treatment here is due to the difficulty in finding the head of a noun phrase. In

the PTB, NP representation is rather flat, so that it is non-trivial to recognize coordina-

tion under the NP level automatically. For example, NP(those workers and managers)

and NP(the US sales and marketing arm) are both represented as flat NP. Furthermore,

appositives and NP lists are represented in the same way. The problem of recognizing NP

coordination and coordination within an NP results in the difficulty of choosing the head

of NPs. Therefore, in this version of the LTAG Treebank, copulas are annotated as the

predicate.

Parentheticals

Many parentheticals with predicate structures in the PTB are analyzed as adjunction in the

LTAG Treebank, especially for the use of say. In Figure 5.11, testified, the head of the

parenthetical, adjoins to began from left.

Extrapositions

Extraposition is a class of dependencies that cannot be represented with traditional LTAG.

It is also a problem for the LTAG-spinal formalism. In Figure 5.12, more than three times

the expected number modifies 28. However, in the LTAG Treebank, numbers, the head of

the NP, attaches to the predicate died instead.

76

#0 Eventually
spine: a_(XP RBˆ)
#1 ,
spine: a_,ˆ
#2 Mr.
spine: a_NNPˆ
#3 Green
spine: a_(XP NNPˆ)
att #2, on 0, slot 0, order 0
#4 testified
spine: b_(S (VP VBDˆ S*))
att #1, on 0, slot 0, order 0
att #3, on 0, slot 0, order 1
att #7, on 0.0, slot 1, order 0
#5 0
spine: a_NONEˆ
#6 *t*-1
spine: a_(S (VP (XP NONEˆ)))
att #5, on 0.0.0, slot 0, order 0
#7 ,
spine: a_,ˆ
#8 he
spine: a_(XP PRPˆ)
#9 began
spine: a_(S (VP VBDˆ))
att #0, on 0, slot 0, order 0
adj #4, on 0, slot 0, order 1
att #6, on 0, slot 0, order 2
att #8, on 0, slot 0, order 3
att #11, on 0.0, slot 1, order 0
att #25, on 0, slot 1, order 0

Figure 5.11: Parentheticals

#11 28
spine: a_(XP CDˆ)
att #12, on 0, slot 1, order 0
#12 *ich*-1
spine: a_(XP NONEˆ)
#13 have
spine: a_VBPˆ
#14 died
spine: a_(S (VP VBNˆ))
att #0, on 0, slot 0, order 0
att #10, on 0, slot 0, order 1
att #11, on 0, slot 0, order 2
att #13, on 0.0, slot 0, order 0
att #15, on 0.0, slot 1, order 0
att #22, on 0.0, slot 1, order 1
att #23, on 0, slot 1, order 0
#15 --
spine: a_:ˆ
#16 more
spine: a_JJˆ
#17 than
spine: a_INˆ
#18 three
spine: a_(XP CDˆ)
att #16, on 0, slot 0, order 0
att #17, on 0, slot 0, order 1
att #19, on 0, slot 1, order 0
#19 times
spine: a_NNSˆ
#20 the
spine: a_DTˆ
#21 expected
spine: a_VBNˆ
#22 number
spine: a_(XP NNˆ)
att #18, on 0, slot 0, order 0
att #20, on 0, slot 0, order 1
att #21, on 0, slot 0, order 2

Figure 5.12: Extrapositions

77

5.5 Properties of the LTAG-spinal Treebank

We ran the extraction algorithm on 49,208 sentences in PTB. However, 454 sentences, or

less than 1% of the total, are skipped. 314 of these 454 sentences have gapping structures.

Since PTB does not annotate the trace of deleted predicates, additional manual annotation

is required to handle these sentences. For the rest of the 146 sentences, abnormal structures

are generated due to tagging errors.

5.5.1 Statistics

In the grammar extracted from the remaining 48,754 sentences in PTB, there are 1,224

different types of spinal elementary trees, and 507 of them appear only once in the LTAG

treebank. However, there are 135 different normalized spinal elementary trees, and only

7 of them appear only once in the treebank. There are 1,159,198 tokens in the treebank.

2,365 of them are associated with full auxiliary trees, Roughly full adjunction appears in

2,365/48,754 = 5% of the stentences. Predicate coordination appears 8,467 times, which

roughly accounts for 17% of the sentences.

5.5.2 Compatibility with Propbank

Since we have used Propbank in LTAG extraction, we are interested in the compatibility

between this treebank and the Propbank annotation.

Propbank arguments are represented in phrases, while an LTAG derivation tree is sim-

ilar to a dependency tree. So the first question is how to represent Propbank arguments

with LTAG derivation trees.

We say that an argument is well-formed in the LTAG-spinal treebank if it can be

generated by a subtree some of whose direct children trees may be cut away. For example,

and the stocks is generated by a sub-derivation tree anchored on stocks, while and, and the

sister adjoin to the tree for stocks. Then we say that the argument the stocks is well-formed

because we can get it by cutting the and tree, a direct child of the stocks tree.

78

Table 5.1: Distribution of pred-arg pairs with respect to the distance between the predicate
and the argument.

Distance Number Percent
0 261554 88.4
1 12287 4.2
2 10789 3.6
≥3 3426 1.2

ill-formed 1661 0.6
complex arg 6135 2.1

total 295852 100.0

As shown in Table 5.1, we have 295,852 pairs 1 of predicate-argument structures. Only

1661 arguments, 0.6% of all of the arguments, are not well-formed. Most of these cases

are extraposition structures.

Now the question is whether it is easy to recover the scope of the argument from the

derivation tree for the rest of the 294,191 arguments. By using less than 10 simple rules,

for example, removing the subtrees for the punctuation marks at the beginning and at the

end, we can easily recover 288,056, or 97.4% of all the arguments. For the remaining

6,135 arguments, more contextual information is required to recover the argument phrase.

For example, we have a phrase NP PP SBAR, where both PP and SBAR adjoin to the NP as

modifiers. Here NP, instead of NP PP, is an argument of the main verb of SBAR. In order

to handle cases like these, some learning methods should be used. However, we have a

baseline of 97.4% for this task, which is obtained by just ignoring these difficult cases.

The next question is how to find the subtree of an argument if we are given a predicate.

The LTAG formalism has the desirable locality of the predicate-argument structures. We

evaluate the LTAG-spinal treebank by studying the pattern of the path from the predicate

to the argument for all the well-formed arguments. Table 5.1 shows the distribution of

the distances between the predicate and the argument in the derivation trees. In the table,

Number = number of pairs in the LTAG-spinal treebank; Percent = Number / 295,852 *

100. Distance = 0 means the predicate and the argument are directly connected.

1Particles are represented as arguments for the sake of convenience.

79

Table 5.2: Distribution of pred-arg pairs with respect to the path from the predicate to the
argument.

Path Pattern Number Percent
1 P→ A 243796 82.4
2 P← A 14658 5.0
3 P← Px→ A 10990 3.7
4 P← Coord→ Px→ A 5613 1.9
5 V← A 3100 1.0
6 P← Ax← Py→ A 3028 1.0
7 P← Coord← Px→ A 839 0.3
8 P← Px← Py→ A 704 0.2

other patterns 5328 1.8
ill-formed 1661 0.6

complex arg 6135 2.1
total 295852 100.0

The following is a list of the most frequent patterns of the path from the predicate to the

argument. P represents a predicate, A represents an argument, V represents a modifying

verb, and Coord represents predicate coordination. Arrows point to the child from the

parent. The number of the arrows minus 1 is the distance between the predicate and

argument.

We also use Ax, Px and Py to represent other arguments or predicates appeared in the

sentence.

1. P→ A

ex: (What)arg1 (will)argM happen (to dividend growth)arg2 ?

2. P← A (relative clause, predicate adjunction)

ex: (the amendment)arg0 which passed today

ex: (the price)arg1.1 appears (to go up)arg1.2

3. P← Px→ A (subject and object controls, Figure 5.13)

ex: (It)arg0 plans to seek approval.

4. P← Coord→ Px→ A (shared arguments)

80

It seek

plans

Figure 5.13: Pattern: P← Px→ A

Mike letter

has

send

Figure 5.14: Pattern: P← Ax← Py→ A

ex: (Chrysotile fibers)arg1 are curly and are more easily rejected by the body.

5. V← A

ex: the Dutch publishing (group)arg0

6. P← Ax← Py→ A (Figure 5.14)

ex: (Mike)arg0 has a letter to send.

7. P← Coord← Px→ A (control+coordination)

ex: (It)arg0 expects to obtain regulatory approval and complete the transaction.

8. P← Px← Py→ A (chained controls, Figure 5.15)

ex: (Officials)arg0 began visiting about 26,000 cigarette stalls to remove illegal

posters.

Officials visiting

begin

remove

Figure 5.15: Pattern: P← Px← Py→ A

These 8 patterns account for 95.5% of the total 295,852 pred-arg pairs in the treebank.

Table 5.2 shows the frequency of these patterns.

81

Model Section Rec Prc F
rules on LTAG all 91.0 92.3 91.6
rules on LTAG 23 90.8 91.7 91.3

SVMs on PTB 23 89.8 90.9 90.4

Table 5.3: Unlabeled non-trace argument identification.

5.5.3 Unlabeled Argument Identification

For the purpose of showing the compatibility of the LTAG-spinal treebank with the Prop-

bank, here we present a preliminary experiment on unlabeled argument identification,

which is used to generate all the argument candidates for an argument classification sys-

tem.

Therefore we have implemented a very simple system for unlabeled argument identi-

fication. For each verbal predicate, we first collect all the sub-derivation trees in the local

context based on path patterns 1, 2 and 5 in the previous section. If there is no argument

candidate at the subject position, we look for the subject by collecting sub-derivation trees

according to patterns 3 and 4. Then we transform these sub-derivation trees into phrases

with a few simple rules as we have described in the previous section. We achieved an

f-score = 91.3% for unlabeled non-trace argument identification on section 23 of this tree-

bank 2.

To illustrate how good this result is, we compare it with the state-of-the-art system

reported in (Pradhan et al., 2004), as shown in Table 5.3. In the table, Rec = Recall%, Prc

= Precision%, F = f-score%.

In that paper, multi-class SVMs were used for argument identification and classifica-

tion with rich features. The system using the baseline features for argument identification

is the closest to our algorithm. The baseline feature set includes predicate lemma, gold

standard pred-arg path in PTB, phrase label, position, voice, argument head word, and

local phrase structure. Our rule-based algorithm only employs pred-arg path in the LTAG

2Section 23 of the LTAG-spinal treebank contains 2401 out of the 2416 sentences in PTB section 23.

82

derivation tree and POS tags.

83

Chapter 6

Reranking Approach

In recent years, reranking has been successfully applied to some NLP problems, especially

to the problem of parse reranking (Collins, 2000). The reranking methods can also be

applied to LTAG based analysis.

In (Shen et al., 2003), we proposed a system which extracted LTAG derivation trees

from the N-best CFG parses generated by a state-of-the-art statistical CFG parser. We

employed rich features as well as tree kernels to rerank the extracted LTAG derivation

trees. In this way, we obtained an LTAG derivation tree based on a CFG parser.

The reranking method could also be used to rerank the N-best LTAG derivation trees

generated by the parsers described in the previous two chapters. Therefore, it is interesting

to us to design a better reranker.

However, in this chapter, we will report the experiments on two other reranking tasks

instead, which are more useful to evaluate a reranker. One of these two tasks is CFG parse

reranking. Many reranking methods have been used on this task, which makes it easy to

compare the new reranking algorithm with previous works. The other task is Machine

Translation reranking, which is more challenging than parse reranking.

In this chapter, we will introduce variants of the perceptron algorithm for the reranking

task. In Section 6.1, we summarize the previous works on reranking in NLP research and

ranking in Machine Learning. Then we investigate these works in the context of ranks and

84

margins in Section 6.2, and propose general models for ranking and reranking in Section

6.3. In Section 6.4 we propose two new perceptron like algorithms in the new framework.

We will justify these two algorithms in Section 6.5. The new algorithms are applied to

parse reranking and machine translation reranking in Section 6.6.

6.1 Previous Works

6.1.1 Reranking in NLP

Global features are useful in many NLP systems. However, the introduction of global

features results in difficulties in dynamic programming of the generative models. In recent

years, the so-called reranking techniques (Collins, 2000) have been successfully used in

many applications, which were previously modeled as generative models. The basic idea

of reranking is as follows. A baseline generative model generates N-best candidates, and

then these candidates are reranked by using a rich set of local and global features. Usually,

only the top candidate of the reranked results is used, so reranking is also called selection

or voting in some cases.

Now we present a brief survey of the previous works on reranking.

Ratnaparkhi (1997) noticed that by ranking the 20-best parsing results generated by

his maximal entropy parser, the F-measure could be improved to 93% from 87%, if the

oracle parse could be successfully detected.

Collins (2000) first used machine learning algorithms in parse reranking. Two ap-

proaches were proposed in that paper; one used Boost Loss and the other used Log-

Likelihood Loss. The approach of Boost Loss achieved better results. The Boost Loss

model is as follows. Let xi, j be the feature vector of the jth parse of the ith sentence. Let

x̃i be the feature vector of best parse for the ith sentence 1. Let Fw be a score function

Fw(xi, j)≡ w ·xi, j,

1By best we mean the parse that is the closest to the gold standard.

85

where w is a weight vector. The margin Mw,i, j on example xi, j is defined as

Mw,i, j ≡ Fw(x̃i)−Fw(xi, j)

Finally the Boost Loss function is defined as

BoostLoss(w)≡∑
i

∑
j

e−(Fw(x̃i)−Fw(xi, j)) = ∑
i

∑
j

e−Mw,i, j

The Boosting algorithm was used to search the weight vector w to minimize the Boost

Loss.

We may rewrite the definition of the margin Mw,i, j by using pairwise samples as fol-

lows.

si, j ≡ x̃i−xi, j

then

Mw,i, j = Fw(x̃i)−Fw(xi, j) = Fw(x̃i−xi, j) = Fw(si, j)

So the Boost Loss approach in (Collins, 2000) is equivalent to maximizing the margin

distribution (Schapire et al., 1997) between 0 and Fw(si, j), where si, j are pairwise samples

as we have described above.

In (Collins and Duffy, 2002), a perceptron like reranking algorithm was applied to

parse reranking. Similar to (Collins, 2000), pairwise samples were used as training sam-

ples, although implicitly. The perceptron updating step was defined as

wt+1 = wt + x̃i−xi, j,

where wt was the weight vector at the tth updating. This is equivalent to using pairwise

sample si, j which we have defined above.

wt+1 = wt + si, j

In (Shen and Joshi, 2003), we applied Support Vector Machines to parse reranking. In

that paper, pairwise samples were used explicitly through the Preference kernel. u+
i, j and

u−i, j, defined below, were used as positive samples and negative samples respectively.

u+
i, j ≡ (x̃i,xi, j), u−i, j ≡ (xi, j, x̃i)

86

SVMs were used to maximize the margin between positive samples and negative samples,

which in turn was proportional to the margin between the best parse of each sentence and

the rest of the N-best parses.

In summary, in the works on reranking, the margin is defined as the distance between

the best candidate and the rest. The reranking problem is reduced to a classification prob-

lem by using pairwise samples implicitly or explicitly.

6.1.2 Ranking and Ordinal Regression

Ranking is an important learning task in the field of machine learning, and it looks similar

to the reranking tasks in NLP. It is interesting to us whether the methods previously used

in ranking could be applied to reranking.

Obviously, ranking is a problem that lies between classification and regression. In

some previous works, ranking was reduced to a classification problem by using pairwise

items as training samples (Herbrich et al., 2000), by item we mean a candidate in the N-

best list. This will increase the data complexity from O(n) to O(n2) in the case of full

set of pairs, where n is the size of the candidate list. To avoid this, a subset of the pairs

are utilized. However, this results in the loss of some information in the training data

for reranking. In some other approaches (Crammer and Singer, 2001b), extra biases are

introduced to avoid using pairwise items as samples; each bias represents the boundary of

two neighboring ranks on the score metric. But the use of extra biases prevents it from

being used in reranking tasks, as we will explain later.

Crammer and Singer (2001b) proposed the PRank algorithm, a perceptron based rank-

ing algorithm. In their framework each instance is associated with a rank, which is an in-

teger from 1 to k. The goal of their ranking algorithm is to predict the correct rank of each

instance. The PRank algorithm is a variant of the perceptron algorithm. The difference is

that the PRank algorithm maintains a set of biases which are used as boundaries between

two neighboring ranks.

PRank works very well for the ranking problems in which each sample is associated

87

with a rank. However, due to the introduction of a set of biases, they are constrained from

their use in other ranking-like problems. For example, the PRank algorithm cannot be

trained on the data associated with a partial order instead of order on ranks. Furthermore,

as we will show later, the PRank algorithm cannot handle the reranking problems.

Herbrich et al. (2000) proposed a margin based approach for ranking, or ordinal re-

gression as they called it in their paper. In their framework, each training sample is as-

sociated with a rank which is an integer. The target function is required to maximize the

margins between the samples of neighboring ranks. The Support Vector Machines (Vap-

nik, 1998) (SVMs) were used to compute the linear function maximizing the margins. In

contrast to PRank, rank boundaries were not used explicitly in the training. Their approach

is implemented by using pairwise samples for training. For example, we have the feature

vectors for two samples, u and v, where the sample of u ranks i and the sample of v ranks

i + 1, then u− v is used as a positive sample and v− u is used a negative sample. The

Preference kernel was used to incorporate kernels defined on the space of single items. In

SVMlight , a well known SVM package, the ranking module is implemented in this way

(Joachims, 2002).

The underlying assumption of ordinal regression is that samples between consecutive

ranks are separable. This may become a problem in the case that ranks are unreliable

because ranking is too fine. This is just what happens in machine translation reranking.

On the other hand, if ranking is rather sparse, the size of generated training samples will

be very large. Suppose there are n samples evenly distributed on k ranks. The total number

of pairwise samples in (Herbrich et al., 2000) is roughly n2/k.

To sum up, in the previous works on ranking or ordinal regression, the margin is de-

fined as the distance between two consecutive ranks. Two approaches have been used.

One is to extend the perceptron algorithm by using multiple biases to represent the bound-

aries between every two consecutive ranks. The other approach is to reduce the ranking

problem to a classification problem by using pairwise samples.

88

6.2 Ranks and Margins

Our initial goal is to adapt ranking algorithms to reranking. However, we note that there

are a few fundamental differences between ranking and reranking, which make it hard to

use ranking directly for reranking. On the other hand, both ranking and reranking employ

pairwise samples to transform the original problem into a classification problem. We will

examine these issues in the this section.

6.2.1 Locality of Ranks

First, in the previous works on ranking, ranks are defined on the whole training and test

data. Thus we can define boundaries between consecutive ranks on the whole data. In

the reranking problem, ranks are defined over a group of the samples in the data set. For

example, in the parse reranking problem, the rank of a parse is only the rank among all the

parses for the same sentence. The training data include 36,000 sentence, with an average

of over 27 parses per sentence (Collins, 2000).

As a result, we cannot use the PRank algorithm in the reranking task, since there are

no global ranks or boundaries for all the samples. If we introduce auxiliary variables for

the boundaries for each group, the number of the parameters will be as large as the number

of samples. Obviously this is not a good idea. However, the approach of using pairwise

samples still works. By pairing up two samples, we actually compute the relative distance

between these two samples with respect to the scoring metric. In the training phase, we

are only interested in whether the relative distance is positive or negative, and we do not

need to compare it with any specific numbers.

To sum up, the locality of ranks in the reranking problem leads us to the approach of

using pairwise samples.

89

6.2.2 Density of Ranks

In the previous works on ranking, the number of samples is much larger than the number

of ranks. For example, the Information Retrieval (IR) data used in (Herbrich et al., 2000)

has only 3 ranks (“document is relevant”, “document is partially relevant”, and “irrelevant

document”), the synthetic data sets used in (Herbrich et al., 2000; Crammer and Singer,

2001b) have 5 ranks, and the EachMovie dataset used in (Crammer and Singer, 2001b;

Harrington, 2003) has 6 ranks. In these applications, difference between samples of dif-

ferent ranks is significant, so it is natural to define margin as distance between consecutive

ranks.

However, this approach is problematic if ranks become denser and the samples of con-

secutive ranks become linearly inseparable. For example, in the IR data used in (Herbrich

et al., 2000), we are not only interested in whether a document is relevant or not, but also

the extent to which the document is relevant. In this case, pairwise samples defined only

on the consecutive ranks are not enough for training, since ranks within a small range is

unstable; it is hard to say if a document ranked i is more relevant than a document ranked

i+1.

However, ranks in a large range is reliable; a document ranked 5 is more relevant than

a document ranked 15. So we may want to use more pairwise samples. For example, we

may use (doc5, doc15) as a positive sample, and use (doc15, doc5) as a negative sample.

The extreme case is pairing up all the samples. This will increase the size of sample space

by N times, where N is size of a group. To sum up, in the case of dense ranks, the full

pairwise samples or a subset of the full pairwise samples are required for training.

Obviously, the ranks in reranking are dense. Each training group has a ranked list of

N-best candidate. For parse reranking N = 27 on average (Collins, 2000), and for machine

translation reranking N = 1000 or more (Och et al., 2004). Therefore, pairwise samples

defined only on consecutive ranks are not enough in the training of reranking.

90

6.2.3 Full Pairwise for Reranking

As we have shown above, in the previous works on reranking, we search for the hyperplane

that separates the best candidate from the rest of the candidates within each group. Given

a group, let ri be the ith best item within the group. If we only look for the hyperplane to

separate the best one from the rest, we, in fact, discard the order information of r2...rN .

For example, we did not employ the information that r2 is better than r50 in the training,

as shown in Figure 6.1.a.

We may regard the weight vector w as a score metric, which assigns the highest score

to the best item within each group, i.e. r1. So the question is whether it should assign the

second highest score to r2, the third highest score to r3, and so on so forth, since w is a

score metric. Therefore, in Figure 6.1.a, wr is more preferable than wb since wr is able to

keep the order of items with respect to their goodness.

In order to search for wr instead of wb, we need to employ more ordering relations in

the training. One solution is to use a set of items as good candidates, rgood , and use the

rest as bad candidates, rbad . For candidates rgood ,rbad within the same group, (rgood ,rbad)

is defined as a positive sample, and (rbad ,rgood) is defined a negative sample. In Section

6.3, we will use the splitting model to capture this idea.

However, there is still a problem with this solution, i.e. it does not distinguish the

differences between the good samples. In the case of machine translation for which N can

be as large as 1000 or even more, r1 and r300 will be both regarded as good candidates for

example, so the splitting model does not try to assign a higher score to r1 than to r300.

As far as this aspect is concerned, we apply the ordinal regression model to reranking

with full pairwise samples. That is to say, for every two candidates ri and r j, i < j, within

the same group, (ri,r j) is used as a positive sample, and (r j,ri) is used as a negative

sample. However, in the next section we will show that ordinal regression is not a desirable

model for reranking either.

91

1

2

5

10

50

3

Wb

Wr

10

Wb

Wr

2

1

5030

a. Full Pairwise b. Uneven Margins

Figure 6.1: Comparison of score metrics

6.2.4 Uneven Margins

Reranking is not an ordinal regression problem. In reranking evaluation, we are only

interested in the quality of the item with the highest score in each group, and we do not

care the order of the other items. Therefore we cannot simply regard a reranking problem

as an ordinal regression problem, since they have different loss functions.

Especially, we want to maintain a larger margin in items of high ranks and a smaller

margin in items of low ranks. For example, in Figure 6.1.b, wb meets the condition of

ordinal regression by keeping the order of all candidates within a group. However, there

is a small margin between r1 and r2, which means that if we are given two candidates

similar to r1 and r2 in the test set, wb is very likely to switch their order. However, wr

maintains a large margin between r1 and r2. Hence, wr is more desirable even it fails to

keep the order of some bad candidates, i.e. r30 and r50, but they are far away from the top

candidates. According to the loss function, we are penalized if we switch the order of r1

and r2, but not for r30 and r50.

In order to handle this, we will introduce the idea of uneven margins in the training.

The technique of uneven margins has been previously employed in binary classification

92

on unbalanced data (Li et al., 2002), for which there are many more negative samples than

positive samples.

Uneven margins were also used in the optimization of Max-Margin Markov Network

(MMMN) in (Taskar et al., 2003) 2. It maximizes the distance between the gold stan-

dard hypothesis and all the other hypotheses with uneven margins proportional to the

loss of each incorrect hypothesis, which is similar to the learning criteria of previous

classification-like reranking algorithms. The optimization criterion of MMMN is as fol-

lows

minimize ||w||

such that ∀i, j w · x̃i−w ·xi, j ≥ L(xi, j),

where x̃i is the gold standard for the ith sentence, and xi, j is the jth hypothesis for the ith

sentence. This framework of optimization originates from the multi-class classification

model developed by Crammer and Singer (2001a). Recently, the use of uneven margins

were also incorporated in other perceptron like learning algorithms, for example, as in

MIRA with hinge loss (Crammer, 2004).

Ordinal Regression with Uneven Margins (ORUM) is more desirable for reranking.

Specifically, we search for a linear function separating items in each group with uneven

margins, for example

margin(r1,r30) > margin(r1,r10) > margin(r21,r30) (6.1)

It is not difficult to exhibit a function that satisfies (6.1), for example

g(ri,r j) =
1
i
− 1

j
(6.2)

Obviously, there are many other candidates for the function of margin ratio, for exam-

ple, like the product of g and the difference of losses. It would be interesting to investigate

2The model of uneven margins for ordinal regression was developed during the JHU Summer Workshop
2003. It was independent of the work of MMMN.

93

which margin function is theoretically desirable. However, in this chapter, we will simply

use the margin function as in (6.2) in our experiments.

6.3 Models for Ranking and Reranking

6.3.1 Problem Definition

We first formalize the reranking problem.

Item x ∈ R d is a d-dimensional vector on the real number. It represents a single parse, or

a single translation in applications.

Group c = (x1, ...,xk) ∈ (R d)k is a vector of k items. It represents a ranked list of parses

or translations for the same source sentence in applications.

Rank rc = (y1, ...,yk) ∈N k, where yi is the rank of item xi in c, 1≤ yi ≤ k.

Learning Let X be the space of groups, X = (R d)k, and let Y be the space of ranks,

Y = N k. The hypothesis class H is X → Y . A learning algorithm L((X ×Y)m)

takes m i.i.d. drawn training groups associated with ranks from X ×Y according to

distribution DX×Y , and outputs a hypothesis h ∈H .

Margin is a function on X ×Y ×H → R .

6.3.2 Splitting

In this framework, we will first propose a splitting model, which is similar to previous

works on reranking, but in a more general form.

Let the training samples be

S = {(xi, j,yi, j) | 1≤ i≤ m, 1≤ j ≤ k},

where m is the number of groups and k is the length of ranks for each group.

94

Let f (x) = w ·x be a linear function, where x is an item, and w is a weight vector. We

construct a hypothesis function h f : X → Y with f as follows.

h f (x1, ...xk) = rank(f (x1), ..., f (xk)),

where rank is a function that returns the vector of ranks for the input vector. For example

rank(4.2,9.0,6.5,8.8)= (4,1,3,2).

An r-splitting algorithm searches for a linear function f (x) = w · x that successfully

splits the top r-ranked items from the rest of the items in every group. Let y f = (y f
1 , ...,y

f
k)

= h f (x1, ...xk) for any linear function f . We look for a function f such that

y f
i ≤ r if yi ≤ r (6.3)

y f
i > r if yi > r (6.4)

Suppose there exists a linear function f satisfying (6.3) and (6.4), we say {(xi, j,yi, j)}
is r-splittable by f . Furthermore, we can define the splitting margin γ for group ci as

follows.

γ(f ,r, i) = min
j:yi, j≤r

f (xi, j)− max
j:yi, j>r

f (xi, j)

The minimal splitting margin, γsplit , for f and r is defined as follows.

γsplit(f ,r) = min
i

γ(f ,r, i) = min
i

(min
yi, j≤r

f (xi, j)−max
yi, j>r

f (xi, j))

Obviously, if r = 1, the r-splitting searches for a linear function f that can successfully

separate the best item from the rest in every group, which is similar to some previous

reranking algorithms (Collins, 2000; Collins and Duffy, 2002; Shen and Joshi, 2003).

6.3.3 Ordinal Regression on Groups

In this section we will model a more complicated problem, ordinal regression on groups.

Let xi, j,xi,l be two items where yi, j < yi,l . It means that the rank of xi, j of higher than the

rank of xi,l. We are interested in finding a weight vector w, such that

w ·xi, j > w ·xi,l + τ, if yi, j < yi,l

95

Let the training samples be

S = {(xi, j,yi, j) | 1≤ i≤ m, 1≤ j ≤ k},

where m is the number of groups and k is the length of ranks for each group. Let f (x) =

w ·x. We say the f is an ordinal regression function for the training set S if

w ·xi, j > w ·xi,l, if yi, j < yi,l,

for 1≤ i≤ m, 1≤ j, l ≤ k

Suppose f is an ordinal regression function for the training set S, the regression margin

for group ci is defined as follows

γ(f , i) = min
yi, j<yi,l

f (xi, j)− f (xi,l)

The minimal regression margin, γorder, for f is defined as follows.

γorder(f) = min
i

γ(f , i)

6.3.4 Pairwise Classification

The two models described in the previous two sections can be generalized as a pairwise

classification problem. Let the training samples be

S = {(xi, j,yi, j) | 1≤ i≤ m, 1≤ j ≤ k},

where m is the number of groups and k is the length of ranks for each group.

Let f (x) = w ·x. We say the training data is separable with respect to T by f if

w ·xi, j > w ·xi,l, if (yi, j,yi,l) ∈ T,

for 1≤ i≤m, 1≤ j, l≤ k, and T ⊆K ×K is a partial order on K , where K = {1,2, ...,k}.
It is not difficult to see that both splitting and ordinal regression can be reduce to the

model given above. For splitting,

(yi, j,yi,l) ∈ T ⇐⇒ yi, j ≤ r < yi,l,

96

and for ordinal regression

(yi, j,yi,l) ∈ T ⇐⇒ yi, j < yi,l.

Furthermore, this model can be transformed into a binary classification problem as

follows. ∀(yi, j,yi,l) ∈ T,xi, j−xi,l is defined as a positive sample, and xi,l−xi, j is defined

as a negative sample. Therefore, the model above is equivalent to finding a linear function

separating the positive and negative samples. The classification margin is equivalent to

splitting and regression margin respectively.

6.3.5 Pairwise Classification with Uneven Margins

Let the training samples be

S = {(xi, j,yi, j) | 1≤ i≤ m, 1≤ j ≤ k},

where m is the number of groups and k is the length of ranks for each group.

Let f (x) = w · x, where ||w||= 1. We say the training data is separable with respect

to T by f with margin τ weighted with margin function g if

w · (xi, j−xi,l) > g(yi, j,yi,l)τ, if (yi, j,yi,l) ∈ T, (6.5)

for 1 ≤ i ≤ m, 1 ≤ j, l ≤ k, T ⊆ K ×K is a partial order on K , and g ∈ K 2 → R is a

margin function, where K = {1,2, ...,k}.

6.3.6 Single Group

These models for multi-group samples can be easily reduced to 1-group case, which can

be used to model the ranking problem.

Item x ∈ R d is a d-dimensional vector on the real number.

Rank y ∈N , where 1≤ y≤ k for some fixed number k.

97

Algorithm 6 Pairwise Classification with Uneven Margins

Require: {(xi, j,yi, j)} is separable with respect to T .
Require: a margin function g
Require: a positive learning margin τ.

1: t← 0, initialize w0;
2: repeat
3: for (i = 1, ...,m) do
4: for (1≤ j, l ≤ k) do
5: if ((yi, j,yi,l) ∈ T and wt · (xi, j−xi,l)≤ g(yi, j,yi,l)τ) then
6: wt+1← wt +g(yi, j,yi,l)(xi, j−xi,l)
7: t← t +1
8: end if
9: end for

10: end for
11: until no updates made in the outer for loop

Learning Let X be the space of items, X = R d , and let Y be the space of ranks, Y = N .

The hypothesis class H is X →Y . A learning algorithm L((X ×Y)m) takes m i.i.d.

drawn training groups associated with ranks from X ×Y according to distribution

DX×Y , and outputs a hypothesis h ∈H .

Margin is a function defined on X ×Y ×H → R .

In the case of a single group, items, instead of groups, are drawn i.i.d. with respect to

some distribution.

6.4 Training Algorithms

In this section, we will introduce perceptron like algorithms to employ uneven margins for

reranking.

6.4.1 Perceptron over Full Pairwise Samples

Algorithm 6 is used to solve the Pairwise Classification with Uneven Margins (PCUM)

model proposed in Section 6.3.5. The idea of Algorithm 6 is as follows. For every two

98

items xi, j and xi,l, if

• (yi, j,yi,l) ∈ T , and

• the weight vector w can not successfully separate xi, j and xi,l with a learning margin

g(yi, j,yi,l)τ,

then we need to update w with the addition of g(yi, j,yi,l)(xi, j−xi,l).

In Section 6.5 we will give the theoretical justification for algorithm 6.

If T is the full order, the size of T is k(k− 1)/2, where k is the size of a group. If

we represent all the pairwise sample explicitly, the data complexity will be dmk(k−1)/2,

where d is the dimensionality of a sample. In machine translation reranking (Och et al.,

2004), we have roughly 1000 source sentences, each of which has 1000 best translations,

and each candidate is represented with a vector of 20 real-valued features. In this case,

the size of pairwise samples is roughly 40G bytes. Thus, we can only compute pairwise

samples dynamically in our algorithm.

In Algorithm 6, for each iteration of a group, we need execute the dot product operation

|T | times, which is usually O(k2). Thus the complexity of outer iteration is O(k2d). In the

next section, we will give an alternative algorithm, which reduces the complexity of outer

iteration to O(k2 + kd).

6.4.2 Fast Perceptron Training

Algorithm 7 is similar to Algorithm 6 except that the updating operation is executed

on the group level instead of sample level. For each iteration of a group, we first compute

w · xi, j for each item xi, j. Then we use these values to check whether an update on w is

required for each pair in T . However, the update is not executed immediately. Instead,

for each item, there is a valuable ui, j that records all the updates. After all the pairs are

checked, updating is executed once and for all.

It is easy to show that the complexity of each iteration of a group is O(k2 + kd). In

Section 6.5 we will show that Algorithm 7 is theoretically correct, and in the experimental

99

Algorithm 7 Fast Pairwise Classification with Uneven Margins

Require: {(xi, j,yi, j)} is separable with respect to T .
Require: a margin function g
Require: a positive learning margin τ.

1: t← 0, initialize w0;
2: repeat
3: for (i = 1, ...,m) do
4: for (j = 1, ...,k) do
5: compute wt ·xi, j for all j’s;
6: u j← 0;
7: end for
8: for (1≤ j, l ≤ k) do
9: if ((yi, j,yi,l) ∈ T and wt · (xi, j−xi,l)≤ g(yi, j,yi,l)τ) then

10: u j← u j +g(yi, j,yi,l); ul ← ul−g(yi, j,yi,l);
11: end if
12: end for
13: if (∑ j |u j|> 0) then
14: wt+1← wt +∑ j u jxi, j;
15: t← t +1;
16: end if
17: end for
18: until no updates made in the outer for loop

section we will show the superiority of Algorithm 7 over Algorithm 6.

6.5 Theoretical Justification

In the previous subsections, we have proposed two perceptron based large margin algo-

rithms for splitting and ordinal regression models. Now we show that these two algorithms

stop in finite steps if the training data is separable, and present a lower bound of the re-

sulting margins.

6.5.1 Justification for Algorithm 1

Theorem 6.1 gives us an upper bound on the number of steps needed for Algorithm 6 to

stop, if the training data is separable. The proof for Theorem 6.1 is given the Appendix B.

100

Theorem 6.1 Suppose the training samples {(xi, j,yi, j)} are separable with respect to T

by a linear function defined on the weight vector w∗ with a margin γ weighted on margin

function g as in (6.5), where ||w∗||= 1. Let R = maxi, j ||xi, j|| and λ = mini, j,l g(yi, j,yi,l).

Then we have

a Algorithm 6 stops in t steps of updates, where

t ≤ 2τ+4R2

λ2γ2 (6.6)

b The resulting weight vector separates any two item xi, j and xi,l, where yi, j < yi,l ,

with margin

γi, j,l ≥ g(yi, j,yi,l)γ
τ

2τ+4R2 (6.7)

According to (6.7), if τ >> R, Algorithm 6 stops with resulting margins at least half of

the optimum margins, g(yi, j,yi,l)γ. This result can be viewed as an extension of (Krauth

and Mezard, 1987), as described in Section 1.3.2.

6.5.2 Justification for Algorithm 2

For Algorithm 7, we will show that if the training data is separable, the algorithm will

stop in a finite number of step with a resulting margin on the training data. For the sake of

simplicity, we will only take a weak version of the algorithm, by assuming g(yi, j,yi,l)≡ 1

for all i, j, l. However, the theorem and the proof given here can be extended to the original

algorithm.

Theorem 6.2 Suppose the training samples {(xi, j,yi, j)} are separable by a linear func-

tion defined on the weight vector w∗ with a margin γ, where ||w∗||=1. Let R =maxi, j ||xi, j||.
Then we have

a Algorithm 7 makes at most 2τ+k2R2

γ2 mistakes on the pairwise samples during the

training.

101

b Algorithm 7 stops in t steps of updates, where

t ≤ 2τ+ k2R2

γ2 (6.8)

c The resulting margin on the training data is at least

γ
τ

2τ+ k2R2 (6.9)

The proof of Theorem 6.2 is given in the Appendix B.

It should be noted that Algorithm 7 needs more iterations for convergence than Algo-

rithm 6 theoretically, while the former runs much faster in each iteration. Experiments

given in the next section show that the running time for Algorithm 7 is shorter, and the

result is more stable.

6.5.3 Inseparable Data

The theorems given in the previous two sections apply to separable data only. One way to

handle inseparable data is to make the training data artificially separable, which is called

the λ-trick as described in (Herbrich, 2002).

The idea of the λ-trick is the following. Suppose we have m groups, and for each

group we have k hypotheses. We augment each sample xi, j with a vector
√

λeik+ j, where

parameter λ > 0 and unit vector eik+ j ∈ Rmk. It is easy to verify that, if λ is large enough,

the augmented samples are always separable. However, we always try to use a relatively

small value for λ. Intuitively, the weight for an augmented dimension denotes the weight

updates in learning. We will use this technique in our experiments.

Another way to handle inseparable data is to use voted perceptron in (Freund and

Schapire, 1999), as described in Section 1.3.2. However, our experiments show no im-

provement by using both voted perceptron and λ-trick.

102

6.6 Experiments and Analysis

In this section, we show the experimental results on two NLP tasks, parse reranking and

discriminative reranking for machine translation, which were partially reported in (Shen

and Joshi, 2004) and (Shen et al., 2004) respectively. A single Pentium III 1.13GHz CPU

with 2GB memory is used for all experiments. The algorithms are coded in Java, running

on the Linux operating system.

6.6.1 Parse Reranking

For parse reranking, we use the same data set as described in (Collins, 2000). Section

2-21 of the WSJ Penn Treebank (PTB) (Marcus et al., 1994) are used as training data, and

Section 23 is used for testing. The training data contains around 40,000 sentences, each of

which has 27 distinct parses on average. Of the 40,000 training sentences, the first 36,000

are used to train Perceptrons. The remaining 4,000 sentences are used as development

data for parameter estimation, such as the number of rounds of iteration in training. The

36,000 training sentences contain 1,065,620 parses in total.

We use the same feature set as in Collins (Collins, 2000). Features are defined on the

fragments of CFG parse trees. There are 521,498 features in all.

We use Algorithm 7 in the first set of experiments. By using different settings of the

pairwise samples and the margins, we design the experiments as follows.

• 1-splitting, CD02: This setting is used to simulate the perceptron algorithm intro-

duced in (Collins and Duffy, 2002).3 Only one of the best parses for each sentence

is used as the good parse and the other best parses are dropped. Other parses are

used as bad parses.

• r-splitting, even margins: all the best parses are used as good parses. Other parses

are used as bad parses.

3In (Collins and Duffy, 2002), the tree kernel is used as features on all tree segments. Here we use the
feature set used in (Collins, 2000; Shen and Joshi, 2003).

103

section 23, ≤100 words (2416 sentences)
model recall% precision% f-score%

baseline (Collins, 1999) 88.1 88.3 88.2
1-splitting, CD02 89.2 89.8 89.5
r-splitting, even margins 89.1 89.8 89.5
r-splitting, uneven margins 89.3 90.0 89.6
ordinal regression, even margins 88.1 87.8 88.0
ordinal regression, uneven margins 89.5 90.0 89.8

Table 6.1: Experimental Results

• r-splitting, uneven margins: all the best parses are used as good parses. The margin

function g(ri,r j) = 1
i − 1

j , which was previously defined in (6.2), is employed.

• ordinal regression, even margins: T = {(j, l) | j < l}.

• ordinal regression, uneven margins: T = {(j, l) | j < l}. The margin function

defined in (6.2) is employed.

By estimating the number of rounds of iterations on the development data, we obtain

the results on the test data as shown in Table 6.1. Ordinal regression with uneven margins

achieves the best result in f-score. It verifies that using more pairs in training is helpful for

the reranking problem. Uneven margins are crucial for employing full pairwise models to

reranking.

We compare the performance of Algorithm 1 and Algorithm 2 on our best model,

ordinal regression with uneven margins. Figure 2 shows the comparison of the learning

curves of these two algorithms. For Algorithm 6, we compute the score of all pairwise

samples, wt ·xi, j−wt ·xi,l, on the fly.

Algorithm 6 converges faster than Algorithm 7 in terms of rounds, which is consistent

with the theoretical justification. However, Algorithm 7 converges faster in terms of run-

ning time. The results of f-scores are similar, But the result of Algorithm 7 is more stable;

it does not over-fit the training data even after 3000 rounds of iteration, while Algorithm

104

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0 5 10 15 20

f-
sc

or
e

hours

Algorithm 1 (100 rounds)
Algorithm 2 (3000 rounds)

Figure 6.2: Learning curves of Algorithm 1 and Algorithm 2 on PTB Section 23

6 over-trains quickly in terms of rounds. We think the reason is that Algorithm 6 updates

the weight vector whenever there is a classification error on a pairwise sample, thus it is

more likely to drop into a local optimum. While Algorithm 7 to some extent alleviates the

ill-posed problem4 of the perceptron algorithm.

6.6.2 Discriminative Reranking for Machine Translation

We provide experimental results on the NIST 2003 Chinese-English large data track eval-

uation. We use the data set used in (Och et al., 2004). The training data consists of about

170M English words, on which the baseline translation system is trained. The training data

is also used to build language models which are used to define feature functions on various

syntactic levels. The development data consists of 993 Chinese sentences. Each Chinese

sentence is associated with 1000-best English translations generated by the baseline MT

system. The development data set is used to estimate the parameters for the feature func-

tions for the purpose of reranking. The test data consists of 878 Chinese sentences. Each

Chinese sentence is associated with 1000-best English translations too. The test set is used

4The result of the algorithm depends on the order in which the training samples are used.

105

29

30

31

32

33

34

0 100 200 300 400 500 600

bl
eu

%
 o

n
te

st

lo
g-

lo
ss

 o
n

de
v

iteration

bleu% on test
log-loss on dev

Figure 6.3: Splitting with uneven margins

to assess the quality of the reranking output.

In (Och et al., 2004), aggressive search was used to combine features (Och, 2003).

After combining about a dozen features, the BLEU score (Papineni et al., 2001) did not

improve any further, and the score was 32.9%. In our experiments, we will use the top

20 individual features developed by Och et al. (2004). Algorithm 2 is used with the three

different settings as follows.

• best vs rest: T = {(1, j) | j > 1} and even margin.

• splitting, uneven margins: T = {(j, l) | j <= 300 and l >= 700}. The margin

function defined in (6.2) is employed.

• ordinal regression, uneven margins: T = {(j, l) | j ∗ 2 < l and j + 20 < l}. The

margin function defined in (6.2) is employed.

The best vs. rest setting is used to simulate the previous perceptron reranking algo-

rithm (Collins and Duffy, 2002). It converged in 7 iterations, and achieved BLEU score

of 30.9%. The learning curve of the Splitting and the ORUM is shown in figure 6.3 and

106

29

30

31

32

33

34

0 2000 4000 6000 8000 10000

bl
eu

%
 o

n
te

st

lo
g-

lo
ss

 o
n

de
v

iteration

bleu% on test
log-loss on dev

Figure 6.4: Ordinal regression with uneven margins

6.4. The Splitting algorithm achieved BLEU score of 32.6%, and the ORUM algorithm

achieved BLEU score of 32.9%, which is significantly better than the best vs. rest model.

According to the learning curves, we notice that whenever the log-loss on the develop-

ment set decreases, the BLEU score on the test set increases. It shows the generalization

capability of these two algorithms.

6.7 Summary

To sum up, we have proposed a general framework for ranking and reranking. In this

framework, we have proposed two variants of perceptron, which are trained on pairwise

samples. Using these two algorithms, we can employ more pairwise samples, which are

useful in training a ranker or reranker. We also keep the data complexity unchanged and

make the training efficient with these algorithms.

Using these two algorithms, we investigated the margin selection problem for the

reranking tasks. By using uneven margins on ordinal regression, we achieves an f-score of

107

89.8% on sentences with ≤ 100 words in Section 23 of Penn Treebank. In machine trans-

lation reranking, our perceptron-like algorithm matches the state-of-the-art discriminative

MT reranking system reported in (Och, 2003).

108

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Statistical LTAG parsing is a well known hard problem due to its increased computational

complexity as compared to CFG parsing. In this work, we investigated two aspects of the

problem, the structure and the algorithm.

As to the data structure, we introduce LTAG-spinal, a variant of LTAG with very de-

sirable linguistic, computational and statistical properties. As to the algorithm, we not

only explore various parsing strategies, but also investigate the reranking approach. We

achieved state-of-the-art results in both approaches.

To sum up, we have accomplished the following achievements in this research.

• We introduced a new formalism, LTAG-spinal, which is weakly equivalent to LTAG

and has desirable linguistic, computational and statistical properties.

• We extracted an LTAG-spinal Treebank extracted from the PTB with Propbank an-

notation. This treebank provides a desirable resource for parsing and semantic role

labeling.

• We implemented a left-to-right incremental parser for LTAG-spinal. The incremen-

tal parser achieved an f-score of 89.3% on LTAG dependency on section 23 of the

109

LTAG-spinal Treebank.

• We implemented a bidirectional LTAG-spinal dependency parser. The bidirectional

parser achieved an f-score of 90.5% on LTAG dependency on the same data set as

the left-to-right parser.

• We proposed a novel graph-based incremental construction algorithm, which could

be applied to many structure prediction problems in NLP, e.g. semantic role label-

ing.

• We also proposed a novel discriminative reranking algorithm, Ordinal Regression

with Uneven Margins, which could be applied many reranking problems in NLP,

including LTAG parse reranking.

7.2 Future Work

• Semantic Role Labeling

The domain of locality property of LTAG makes derivation tree a very attractive

representation for Semantic Role Labeling (SRL). In addition, we can handle most

of the discontinuous arguments which are troublesome for the CFG based represen-

tation. As described in Chapter 5, the LTAG-spinal treebank shows desirable com-

patibility with Propbank annotations It seems to us that high quality LTAG parsing

result will be very useful in the SRL task on Propbank.

• Semantic Parsing

LTAG derivation trees reveal deep syntactic relations. It will be desirable to compute

formal semantics of a sentence over an LTAG derivation. In previous works (Zettle-

moyer and Collins, 2005), machine learning methods have been successfully used

to map sentences to logic form. We will explore the learning methods of mapping

LTAG derivation trees to logic form.

110

• Improvement on graph-based incremental construction

We will investigate the methods of making graph-based incremental construction

more efficient. In addition to the greedy search approach, we are also interested in

the methods of precise search with dynamic programming. We will build a generic

tool for this algorithm, which could be used in other NLP learning algorithms, for

example, like semantic role labeling.

• Incorporating POS Tagging and Chunking

The bidirectional parsing algorithm can be viewed as a natural extension of the

chunking-attachment approach for parsing. We are interested in the methods of in-

corporating POS tagging and chunking into this discriminative learning framework.

We hope to build an end-to-end system centering on LTAG derivation trees.

111

Appendix A

LTAG-spinal

Proof of Theorem 2.1

We show Theorem 2.1 by the following two lemmas.

Lemma A.1 For any LTAG grammar G, there exists a weakly equivalent LTAG grammar

G′, such that, any node in an elementary tree is either on the spines or a child of a spinal

node. G′ is called a slim grammar.

Proof We show it by construction. Suppose elementary tree T is not slim. Let node B be

an internal node and B is a child of a spine node, as shown in Figure A.1. We decompose

T into a lexicalized tree Tx and a non-lexicalized tree Ty, by replacing the subtree rooted

on B with the node with a unique label X . Therefore, Ty must attach to node X . We remove

T from G, put Tx into G, and put Ty into U , a set used collect non-lexicalized elementary

trees.

We repeat this operation until all the elementary trees in G are slim. Then we lexicalize

the trees in U with the slim elementary trees in G. For example, as to Ty in Figure A.1,

we could lexicalize this tree by attaching all the B1-rooted elementary trees in G to the B1

node. Then we put all the lexicalized trees into G, and set U to empty.

We repeat the whole procedure if there is non-slim trees in G. This loop is guaranteed

to stop, since the maximal number of nodes which are neither spinal nodes or children of

112

A1

A2

A3X C

Tx: Ty:

DB1

B

X

lex

A1

A2

A3 C

T:

B

DB1

lex

Figure A.1: Replacing elementary trees in G with slim trees

a spinal node in an elementary tree always decreases.

The resulting G is the slim grammar G′ that we are searching for.

It is easy to verify that, at each step, G∪U generates the same string language. So we

have shown G and G′ are weakly equivalent.

Lemma A.2 For any slim LTAG grammar G, there exists a weakly equivalent LTAG-

spinal grammar Gs.

Proof We show it by recursively replacing a non-spinal elementary tree with a set of of

elementary trees which generate the same language. We divide it into two cases, initial

trees and auxiliary trees.

• Suppose we have an initial tree Ta which is not spinal. We can decompose Ta into a

lexicalized tree Tx and a non-lexicalized tree Ty so as to remove nodes which are not

on the spine one by one, for example, node B1 as shown in Figure A.2.

The idea is that we insert a node with a unique label X1 into the spine, where X1

requires obligatory adjunction. In this way, Ty has to adjoins to Tx whenever Tx is

used. The combined tree is designed to replace Ta in G.

113

X1

X1*B1

A1

A2

A3B2B1 C

Ta:

Ty:

A1

A2

X1

Tx:

(OA)

A3B2 C

Figure A.2: Spinalization for initial trees

X1

X1*B2

A1

A2

A3B2B1 C

Ty:

Ax

A1

A2

X1(OA)B1Ax C

Tx:Tb:

A3

Figure A.3: Spinalization for auxiliary trees

114

We remove Ta from G, add Tx in G, and put Ty into U , a set used collect non-

lexicalized elementary trees.

• As to an auxiliary tree Tb which is not spinal. We remove nodes which are neither

on the lexical spine nor on the recursive spine one by one, in a way similar to the

case of initial trees. What is a little bit different is the case that we need to remove

a node which is a child of the lowest node of the shared spine, between the anchor

and the foot of the auxiliary tree, as shown in Figure A.3.

Here, A3 dominates the anchor and Ax dominates the foot node. B2 is a child of A2,

the lowest node in the shared spine, and B2 is between A3 and Ax.

We remove Tb from G, put Tx into G, and put Ty into U .

We recursively replace elementary trees in G until all the trees in G are in the spinal

form. For each non-lexicalized tree Ty in U , we generate a set of lexicalized trees for Ty by

expanding the single non-terminal in Ty with all compatible initial tree in G, and put them

in G.

The resulting grammar G is the spinal grammar Gs that we are searching for.

It is easy to verify that, at each step, G∪U generates the same string language. So we

have shown that L(LTAG) ⊆ L(LTAG-spinal).

By combining Lemma A.1 and Lemma A.2, we have L(LTAG) ⊆ L(LTAG-spinal).

On the other hand, it is straightforward to show that L(LTAG) ⊇ L(LTAG-spinal), since

attachment can be simulated by adjunction so that LTAG-spinal can be viewed as a sub-set

of LTAG. Therefore,

L(LTAG) = L(LTAG-spinal).

Theorem 2.1 holds.

115

Appendix B

Ordinal Regression with Uneven

Margins

PROOF OF THEOREM 6.1

Proof: We show it by bounding ||wt||2 from above and below. Suppose {(xi, j,yi, j)} is

separable with respect to T with margin γ weighted on a margin function g as in (6.5), and

g(a,b) = −g(b,a) if b < a. The training data can be noted as S = {(ur,vr)} with margin

weight {λr} where

ur = xi, j−xi,l,

vr =

1 if (yi, j,yi,l) ∈ T ,

−1 if (yi,l,yi, j) ∈ T ,

λr = vrg(yi, j,yi,l),

for i, j, l s.t. (yi, j,yi,l) ∈ T or (yi,l,yi, j) ∈ T . Therefore, we have

vr(w∗ ·ur) > λrγ, (B.1)

where 1≤ r ≤ |S|, ||w∗||t = 1. Thus

According to algorithm 6,

wt = wt−1 + vtλtut , if vtwt−1 ·ut ≤ λtτ

116

Thus

||wt||2 = (wt−1 + vtλtut)2

= ||wt−1||2 +2λtvtwt−1 ·ut +λtλt||ut ||2

≤ ||wt−1||2 +2λtλtτ+λtλt(2R)2

≤
t

∑
p=1

λpλp(2τ+4R2) (B.2)

On the other hand,

w∗ ·wt = w∗ · (wt−1 + vtλtut) = w∗ ·wt−1 + vtλtw∗ ·ut

> w∗ ·wt−1 +λtλtγ >
t

∑
p=1

λpλpγ (B.3)

Combining (B.2) and (B.3), we have

(
t

∑
p=1

λpλpγ)2 < ||w∗ ·wt ||2 = ||wt||2 ≤
t

∑
p=1

λpλp(2τ+4R2)

(
t

∑
p=1

λpλp) ≤
∑t

p=1 λpλp(2τ+4R2)

∑t
p=1 λpλpγ2 =

2τ+4R2

γ2 (B.4)

Let λmin = minr λr. With (B.4), we have

t ≤
∑t

p=1 λpλp

λ2
min

≤ 2τ+4R2

λ2
minγ2

(B.5)

Therefore claim a of Theorem 6.1 holds. Now we show claim b. With (B.2) and (B.4)

we have,

||wt||2 ≤
t

∑
p=1

λpλp(2τ+4R2)≤ 2τ+4R2

γ2 (2τ+4R2)

= (
2τ+4R2

γ
)2, so

||wt|| ≤ 2τ+4R2

γ
(B.6)

Then the resulting margin for xr given by wt is bounded from below.

γt
r =

vrwt ·ur

||wt || ≥
λrτ
||wt|| ≥ λrγ

τ
2τ+4R2 (B.7)

Therefore claim b of Theorem 6.1 holds.

117

PROOF OF THEOREM 6.2

Proof: We show it by bounding ||wt||2 from above and below. Suppose {(xi, j,yi, j)} is

separable by w∗ with margin γ, so

w∗ ·xi, j−w∗ ·xi,l > γ, (B.8)

where 1 ≤ i ≤ m,1 ≤ j, l ≤ k. Let us consider each updating wt = wt−1 + ∑s usxi,s for

some fixed i. According to the algorithm, we have

1≤ 1
2 ∑

s
|us| ≤

k(k−1)/2
2

<
k2

4
(B.9)

∑
s

usxi,s = ∑
(j,l)∈St

xi, j−xi,l, (B.10)

where St = {(j, l) | 1≤ j, l≤ k,wt ·(xi, j−xi,l)≤ τ}, |St|= 1
2 ∑s |us| for each iteration. Here

1
2 ∑s |us| represents the number of mistakes made by wt on sentence i at the tth updating.

We define et as et ≡ 1
2 ∑s |us|.

We first bound ||wt ||2 from below. We have

w∗ ·wt = w∗ ·wt−1 +∑
s

usw∗ ·xs

= w∗ ·wt−1 + ∑
(j,l)∈St−1

w∗(xi, j−xi,l)

≥ w∗ ·wt−1 + ∑
(j,l)∈St−1

γ

= w∗ ·wt−1 + et−1γ

≥
t−1

∑
p=1

epγ

||wt||2 = ||w∗||2||wt||2 ≥ (w∗ ·wt)2 ≥ (
t−1

∑
p=1

ep)
2γ2 (B.11)

Then we bound ||wt||2 from above.

||wt||2 = ||wt−1||2 +2wt−1 ∑
s

usxi,s + ||∑
s

usxi,s||2

= ||wt−1||2 +2 ∑
(j,l)∈St−1

wt−1 · (xi, j−xi,l)+ ||∑
s

usxi,s||2

118

≤ ||wt−1||2 +2et−1τ+ ||∑
s

usxi,s||2

≤ ||wt−1||2 +2et−1τ+4e2
t−1R2

≤ 2
t−1

∑
p=1

epτ+4
t−1

∑
p=1

e2
pR2 (B.12)

Combining (B.11) and (B.12), we have

(
t

∑
p=1

ep)
2γ2 ≤ 2

t

∑
p=1

epτ+4
t

∑
p=1

e2
pR2 (B.13)

Therefore, the number of mistakes made in the first t updates is

t

∑
p=1

ep ≤
2∑t

p=1 epτ
∑t

p=1 epγ2 +
4∑t

p=1 e2
pR2

∑t
p=1 epγ2

≤ 2τ
γ2 +

4(k2/4)∑t
p=1 epR2

∑t
p=1 epγ2

=
k2R2 +2τ

γ2 (B.14)

Since ∀p,1≤ ep, thus t ≤∑t
p=1 ep. Therefore Algorithm 7 stops after t updates, where

t ≤
t

∑
p=1

ep ≤
k2R2 +2τ

γ2

Therefore claim a and b of Theorem 6.2 hold. For claim c, we use the same technique

as in the proof of Theorem 6.1, and we have

γt ≥ γ
τ

2τ+ k2R2

119

Bibliography

Christopher M. Bishop. 1996. Neural Networks for Pattern Recognition. Oxford

University Press.

L. Bottou. 1991. Une approche thérique de l’apprentissage connexionniste: Applica-

tions à la reconnaissance de la parole. Ph.D. thesis, Université de Paris XI.

C. Chelba and F. Jelinek. 2000. Structured language modeling. Computer Speech and

Language, 14(4):283–332.

J. Chen. 2001. Towards Efficient Statistical Parsing using Lexicalized Grammatical

Information. Ph.D. thesis, University of Delaware.

D. Chiang. 2000. Statistical Parsing with an Automatically-Extracted Tree Adjoining

Grammar. In Proceedings of the 38th Annual Meeting of the Association for Computa-

tional Linguistics (ACL).

Michael Collins and Nigel Duffy. 2002. New ranking algorithms for parsing and

tagging: Kernels over discrete structures, and the voted perceptron. In Proceedings of

the 40th Annual Meeting of the Association for Computational Linguistics (ACL).

M. Collins and B. Roark. 2004. Incremental parsing with the perceptron algorithm.

In Proceedings of the 42nd Annual Meeting of the Association for Computational Lin-

guistics (ACL).

120

M. Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing.

Ph.D. thesis, University of Pennsylvania.

M. Collins. 2000. Discriminative reranking for natural language parsing. In Proceed-

ings of the 17th International Conference on Machine Learning.

M. Collins. 2002. Discriminative training methods for hidden markov models: Theory

and experiments with perceptron algorithms. In Proceedings of the 2002 Conference of

Empirical Methods in Natural Language Processing.

M. Collins. 2004. Parameter estimation for statistical parsing models: Theory and

practice of distribution-free methods. In H. Bunt, J. Carroll, and G. Satta, editors, New

Developments in Parsing Technology. Kluwer Academic Publishers.

K. Crammer and Y. Singer. 2001a. On the algorithmic implementation of multiclass

kernel-based vector machines. Journal of Machine Learning Research.

K. Crammer and Y. Singer. 2001b. PRanking with Ranking. In Proceedings of the 15th

Annual Conference Neural Information Processing Systems.

K. Crammer and Y. Singer. 2003. Ultraconservative online algorithms for multiclass

problems. Journal of Machine Learning Research, 3:951–991.

K. Crammer. 2004. Online Learning of Complex Categorial Problems. Ph.D. thesis,

Hebrew Univeristy of Jerusalem.

H. Daumé III and D. Marcu. 2005. Learning as search optimization: Approximate

large margin methods for structured prediction. In ICML 2005.

R. Frank. 2002. Phrase Structure Composition and Syntactic Dependencies. The MIT

Press.

Y. Freund and R. E. Schapire. 1999. Large margin classification using the perceptron

algorithm. Machine Learning, 37(3):277–296.

121

E. F. Harrington. 2003. Online Ranking/Collaborative Filtering Using the Perceptron

Algorithm. In Proceedings of the 20th International Conference on Machine Learning.

J. Henderson. 2000. A neural network parser that handles sparse data. In IWPT 2000.

J. Henderson. 2003. Generative versus discriminative models for statistical left-corner

parsing. In IWPT 2003.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. 2000. Large margin rank bound-

aries for ordinal regression. In Advances in Large Margin Classifiers, pages 115–132.

The MIT Press.

R. Herbrich. 2002. Learning Kernel Classifiers: Theory and Algorithms. The MIT

Press.

Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In Pro-

ceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD).

A. K. Joshi and Y. Schabes. 1997. Tree-adjoining grammars. In G. Rozenberg and

A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 69 – 124.

Springer-Verlag.

A. K. Joshi and B. Srinivas. 1994. Disambiguation of super parts of speech (or su-

pertags): Almost parsing. In Proceedings of COLING ’94: The 15th Int. Conf. on

Computational Linguistics.

A. K. Joshi, L. S. Levy, and M. Takahashi. 1975. Tree adjunct grammars. Journal of

Computer and System Sciences, 10(1).

A. K. Joshi, T. Becker, and O. Rambow, 2002. Complexity of scrambling: A new twist

to the competence performance distinction, chapter Tree-Adjoining Grammars. Univ.

of Chicago Prress.

122

A. K. Joshi. 1985. Tree adjoining grammars: How much context sensitivity is re-

quired to provide a reasonable structural description. In I. Karttunen, D. Dowty, and

A. Zwicky, editors, Natural Language Parsing, pages 206–250. Cambridge University

Press.

M. Kay, 1980. Readings in Natural Language Processing, chapter Algorithmic

schemata and data structures in syntactic processing. Morgan Kaufmann.

D. Klein and C. Manning. 2003. A* parsing: Fast exact viterbi parse selection. In Pro-

ceedings of the 2003 Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics.

W. Krauth and M. Mezard. 1987. Learning algorithms with optimal stability in neural

networks. Journal of Physics A, 20:745–752.

A. Kroch and A. K. Joshi. 1985. The linguistic relevance of tree adjoining grammar.

Report MS-CIS-85-16. CIS Department, University of Pennsylvania.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional random fields: Proba-

bilistic models for stgmentation and labeling sequence data. In Proceedings of the 18th

International Conference on Machine Learning.

Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-Taylor, and Jaz Kandola.

2002. The perceptron algorithm with uneven margins. In Proceedings of the 19th

International Conference on Machine Learning.

D. Magerman. 1995. Statistical decision-tree models for parsing. In Proceedings of

the 33rd Annual Meeting of the Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1994. Building

a large annotated corpus of English: The Penn Treebank. Computational Linguistics,

19(2):313–330.

123

R. McDonald, K. Crammer, and F. Pereira. 2005. Online large-margin training of

dependency parsers. In Proceedings of the 43th Annual Meeting of the Association for

Computational Linguistics (ACL).

A. B. J. Novikoff. 1962. On convergence proofs on perceptrons. In The Symposium on

the Mathematical Theory of Automata, volume 12.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji Yamada,

Alex Fraser, Shankar Kumar, Libin Shen, David Smith, Katherine Eng, Viren Jain,

Zhen Jin, and Dragomir Radev. 2004. A smorgasbord of features for statistical machine

translation. In Susan Dumais, Daniel Marcu, and Salim Roukos, editors, Proceedings

of the 2004 Human Language Technology Conference of the North American Chapter

of the Association for Computational Linguistics, pages 161–168, Boston, MA, USA,

May.

F. J. Och. 2003. Minimum error rate training for statistical machine translation. In

Erhard W. Hinrichs and Dan Roth, editors, Proceedings of the 41st Annual Meeting of

the Association for Computational Linguistics (ACL), pages 160–167, Sapporo, Japan,

July.

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The proposition bank: An annotated

corpus of semantic roles. Computational Linguistics, 31(1).

K. Papineni, S. Roukos, and T. Ward. 2001. Bleu: a method for automatic evaluation

of machine translation. IBM Research Report, RC22176.

S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. Martin, and D. Jurafsky. 2004. Shal-

low semantic parsing using support vector machines. In Proceedings of the 2004 Hu-

man Language Technology Conference of the North American Chapter of the Associa-

tion for Computational Linguistics.

C. Prolo. 2003. LR Parsing for Tree Adjoining Grammars and its Application to

Corpus-based Natural Language Parsing. Ph.D. thesis, University of Pennsylvania.

124

V. Punyakanok and D. Roth. 2001. The use of classifiers in sequential inference. In

Proceedings of the 15th Annual Conference Neural Information Processing Systems.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. 2005. Learning and Inference over

Constrained Output. In Proc. of the International Joint Conference on Artificial Intel-

ligence (IJCAI).

A. Ratnaparkhi. 1997. A linear observed time statistical parser based on maximum

entropy models. In Proceedings of the 2nd Conference of Empirical Methods in Natural

Language Processing.

B. Roark. 2001. Probabilistic top-down parsing and language modeling. Computational

Linguistics, 27(2):249–276.

F. Rosenblatt. 1958. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65:386–408.

A. Sarkar and A. K. Joshi. 1996. Coordination in tree adjoining grammars: Formal-

ization and implementation. In Proceedings of COLING ’96: The 16th Int. Conf. on

Computational Linguistics.

G. Satta and O. Stock. 1994. Bi-Directional Context-Free Grammar Parsing for Natural

Language Processing. Artificial Intelligence, 69(1-2).

Y. Schabes and R. C. Waters. 1995. A cubic-time, parsable formalism that lexicalizes

context-free grammar without changing the trees produced. Computational Linguistics,

21(4).

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. 1997. Boosting the margin: a

new explanation for the effectiveness of voting methods. In Proceedings of the 14th

International Conference on Machine Learning, pages 322–330.

125

L. Shen and A. K. Joshi. 2003. An SVM based voting algorithm with application

to parse reranking. In Proceedings of the 7th Conference on Computational Natural

Language Learning.

L. Shen and A. K. Joshi. 2004. Flexible margin selection for reranking with full pair-

wise samples. In K. Su and J. Tsujii, editors, Proceedings of the 1st International Joint

Conference of Natural Language Processing, pages 467–474, Sanya, Hainan Island,

China, March.

L. Shen, A. Sarkar, and A. K. Joshi. 2003. Using ltag based features in parse reranking.

In Proceedings of the 2003 Conference of Empirical Methods in Natural Language

Processing.

L. Shen, A. Sarkar, and F. J. Och. 2004. Discriminative reranking for machine transla-

tion. In Susan Dumais, Daniel Marcu, and Salim Roukos, editors, Proceedings of the

2004 Human Language Technology Conference of the North American Chapter of the

Association for Computational Linguistics, pages 177–184, Boston, MA, USA, May.

B. Srinivas. 1997. Performance evaluation of supertagging for partial parsing. In IWPT

1997.

P. Sturt and V. Lombardo. 2005. Processing coordinated structures: Incrementality and

connectedness. Cognitive Science, to appear.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin markov networks. In Pro-

ceedings of the 17th Annual Conference Neural Information Processing Systems.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. 2004. Max-margin parsing.

In Proceedings of the 2004 Conference of Empirical Methods in Natural Language

Processing.

Vladimir N. Vapnik. 1998. Statistical Learning Theory. John Wiley.

126

K. Vijay-Shanker. 1987. A study of Tree Adjoining Grammar. Ph.D. thesis, University

of Pennsylvania.

William Woods. 1976. Parsers in speech understanding systems. Technical Report

3438, Vol. 4, 1–21, Bolt, Beranek and Newman Inc.

F. Xia and T. Bleam. 2000. A corpus-based evaluation of syntactic locality in tags. In

TAG+5.

F. Xia. 2001. Automatic Grammar Generation From Two Different Perspectives. Ph.D.

thesis, University of Pennsylvania.

XTAG-Group. 2001. A lexicalized tree adjoining grammar for english. Technical

Report 01-03, IRCS, Univ. of Pennsylvania.

P. Xu, C. Chelba, and F. Jelinek. 2002. A study on richer syntactic dependencies

for structured language modeling. In Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics (ACL).

H. Yamada and Y. Matsumoto. 2003. Statistical dependency analysis with Support

Vector Machines. In IWPT 2003.

L. Zettlemoyer and M. Collins. 2005. Learning to map sentences to logical form:

Structured classification with probabilistic categorial grammars.

127

