On the Formalization of Proofs by Logical Relations

Carsten Schürmann and Jeffrey Sarnat ITU/Yale

September 27, 2006

Carsten Schürmann and Jeffrey Sarnat ITU/Yale On the Formalization of Proofs by Logical Relations

回 と く ヨ と く ヨ と

Propositions $A, B ::= o | A \supset B$ Judgments Truth : A true Rules

$$\Gamma, u : A \text{ true}, \Gamma' \vdash u : A \text{ true}$$

$$\frac{\Gamma, u : A \text{ true} \vdash m : B \text{ true}}{\Gamma \vdash \lambda u : A . m : A \supset B \text{ true}} \qquad \frac{\Gamma \vdash m : A \supset B \text{ true}}{\Gamma \vdash m n : B \text{ true}}$$

白 と く ヨ と く ヨ と …

Judgmental Reconstruction of Uniform Derivations

Judgments

Canonical forms
$$\Uparrow A$$
Atomic forms $\downarrow A$

Carsten Schürmann and Jeffrey Sarnat ITU/Yale On the Formalization of Proofs by Logical Relations

.

- Weak head reduction: $m \longrightarrow m'$
- Multi-step reduction: $m \longrightarrow^* m'$

$$\frac{m \longrightarrow m'}{(\lambda u : A. m) \ n \longrightarrow [n/x]m} \quad \frac{m \longrightarrow m'}{m \ n \longrightarrow m' \ n}$$

$$\frac{m \longrightarrow m'}{m \ n \longrightarrow m' \ n}$$

$$\frac{m_1 \longrightarrow^* m_2}{m_1 \longrightarrow^* m_3}$$

Carsten Schürmann and Jeffrey Sarnat ITU/Yale On the Formalization of Proofs by Logical Relations

Weak Normalization

Theorem If *m* : A true there exists an *n*, s.t. $m \longrightarrow^* n$ and *n* : ↑ *A*. Proof Define logical relation. Γ⊢ *m* ∈ [[*o*]] iff $\Gamma \vdash m \longrightarrow^* n$ for some *n* and $\Gamma \vdash n \uparrow o$ $\Gamma \vdash m \in \llbracket A \to B \rrbracket$ iff for all $\Gamma' > \Gamma$ and for all $\Gamma' \vdash n \in \llbracket A \rrbracket$ implies $\Gamma' \vdash m \ n \in \llbracket B \rrbracket$ Show that if $\Gamma \vdash m : A$ then $\Gamma \vdash m \in ||A||$. Show that if $\Gamma \vdash m \in \llbracket A \rrbracket$ then $m \longrightarrow^* n$ and $\Gamma \vdash n \Uparrow A$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Logical Framework

Representation of judgments. Representation of rules.

Assertion Logic

Example: Set Theory

- ► Set comprehension.
- Trans-finite induction.
- Impredicativity.

Meta Logic Proof theory of the logical framework.

- Assertion logic.
- Proof of weak normalization in T welf.
- Proof of weak normalization of System F in Twelf.
- Conclusion.

・日・ ・ ヨ・ ・ ヨ・

Logical framework = Meta logic
Coq in Coq [Barras, Werner '97]
Reducibility candidates [Altenkirch '94]
 Logical framework ≠ Meta logic
 Custom design meta logics
$$\mathcal{M}_{\omega}$$
, Delphin
ATS/LF [CS '01, Poswolsky '06]
(Xi et al '06]
 Work with current meta logic
 \mathcal{M}_2 [CS '00]
This work [Sarnat, CS '05]

Carsten Schürmann and Jeffrey Sarnat ITU/Yale On

On the Formalization of Proofs by Logical Relations

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▲ 臣 ▶ ▲ 臣 ▶ 臣 • • • • • • •

Judgmental Reconstruction of Assertion Logic 1

Judgments Sequent calculus [Gentzen '34, Pfenning '95] hyp : form \rightarrow type. conc : form \rightarrow type. Rules ax : hyp $F \rightarrow \text{conc } F$. ir : (hyp $F_1 \rightarrow \text{conc } F_2$) \rightarrow conc (F₁ ==> F₂). il : conc $F_1 \rightarrow$ (hyp $F_2 \rightarrow$ conc F_3) \rightarrow hyp (F₁ ==> F₂) \rightarrow conc F₃. fr : $(\prod m: tm A. conc (F m))$ \rightarrow conc (forall (λ m:tm A. F m)). fl : ΠM :tm A. (hyp (F₁ M) \rightarrow conc F₂) \rightarrow hyp (forall F₁) \rightarrow conc F₂.

Carsten Schürmann and Jeffrey Sarnat ITU/Yale On the Formalization of Proofs by Logical Relations

Principle Weak head reduction

 $\llbracket m \longrightarrow m' \rrbracket = \operatorname{wh} m m'$

where wh : tm A \rightarrow tm A \rightarrow form Principle Canonical derivations

[exists *n* such that $m \longrightarrow^* n$ and $n : \Uparrow A$] = hc *m*

where hc : tm $A \rightarrow$ form

Principle Atomic derivations

[exists *n* such that $m \longrightarrow^* n$ and $n : \downarrow A$] = ha *m*

where ha : tm A \rightarrow form

Judgmental Reconstruction of Assertion Logic 2

Right Rules s1 : conc (wh (app (lam M) N) (M N)). s2 : conc (wh M M') \rightarrow conc (wh (app M N) (app M' N)). s3: $(\Pi x: tm A. hyp (ha x))$ \rightarrow conc (hc (app M x))) \rightarrow conc (hc M). s4: ΠM :tm o.conc (wh M M') \rightarrow conc (hc M') \rightarrow conc (hc M). s5: ΠM :tm o. conc (ha M) \rightarrow conc (hc M). s6: conc (hc N) \rightarrow conc (ha M) \rightarrow conc (ha (app M N)).

Definition $\Gamma \vdash m \in [o]$ iff $\Gamma \vdash m \longrightarrow^* n$ for some n and $\Gamma \vdash n \uparrow o$ $\Gamma \vdash m \in \llbracket A \to B \rrbracket$ iff for all $\Gamma' > \Gamma$ and for all $\Gamma' \vdash n \in \llbracket A \rrbracket$ implies $\Gamma' \vdash m \ n \in \llbracket B \rrbracket$ Encoding lr : $\Pi A: tp.$ (tm $A \rightarrow form$) $\rightarrow type$. lr_o : $lr o (\lambda m : tm o. hc m)$. lr_arr : $lr A LR_1 \rightarrow lr B LR_2$ \rightarrow lr (A => B) $(\lambda m: tm (A \Rightarrow B))$. forall ($\lambda n: tm A$. $LR_1 n \implies LR_2 (app m n))$.

Theorem If $\Gamma \vdash m : A$ then $\Gamma \vdash m \in \llbracket A \rrbracket$. Proof by induction on m. Comment Sequent calculus + cut: conc* : form \rightarrow type.

fund : $\Pi M: tm A$. lr A LR \rightarrow conc* (LR M) \rightarrow type.

イロン イボン イヨン イヨン 三日

Theorem If $\Gamma \vdash m \in \llbracket A \rrbracket$ and $m' \longrightarrow m$ then $\Gamma \vdash m' \in \llbracket A \rrbracket$. Proof by induction A.

```
cwhe : lr A LR

\rightarrow conc* (forall (\lambdam:tm A. forall (\lambdam':tm A.

wh m' m ==> LR m ==> LR m'))) \rightarrow type.
```

Theorem

- 1. If $\Gamma \vdash m \in \llbracket A \rrbracket$ then $\Gamma \vdash m \Uparrow N$ for some canonical N.
- 2. If $\Gamma \vdash m \downarrow$ then $\Gamma \vdash m \in \llbracket A \rrbracket$.

escape1 : lr A LR \rightarrow conc* (forall (λ m:tm A. LR m ==> hc m)) \rightarrow type.

escape2 : lr A LR \rightarrow conc* (forall (λ m:tm A. ha m ==> LR m)) \rightarrow type.

· < @ > < 문 > < 문 > · · 문

Theorem

- 1. If conc (hc m) then $m \longrightarrow^* n$ and $n : \Uparrow A$.
- 2. If conc (ha m) then $m \longrightarrow^* n$ and $n : \downarrow A$.
- 3. If conc (wh m m') then $m \longrightarrow m'$.

Discussion

- 1. Works because the assertion logic is sound.
- 2. Cut-elimination implies soundness.
- 3. Syntactic soundness proof. [Pfenning '95]

向下 イヨト イヨト

Theorem Cut elimination

ce : conc* $F \rightarrow$ conc $F \rightarrow$ type.

Conjecture Predicates - as - judgments sound and complete only if the assertion logic is consistent.

Observations Judgments - as - propositions enhances assertion logic by new axioms.

 Right rules: new right commutative conversions. [Sarnat, CS '05]
 Left and right rules: much more complicated. [Miller, McDowell '00]

伺 とう ヨン うちょう

Worry Gödels second incompleteness theorem.

Extension Assertion logic + second order quantifiers.

Good news In Twelf: Weak normalization of System F.

Bad news No syntactic consistency proof of assertion logic known.

[Tait 66, Takahashi 67, Girard 88]

Good news Cut-elimination procedure can be implemented.

Semantics For all LF types $\Gamma \vdash A$: type is there an LF object Mand a LF substitution $\cdot \vdash \sigma : \Gamma$, s.t. $\cdot \vdash M : A[\sigma]$.

Justification Soundness by realizability interpretation.

Totality = Coverage + Termination

But...

 $S(\mathcal{M}_2) < \epsilon_0 < \Psi(\epsilon_{\Omega+1}) < S(\mathcal{SOL})$

[Fefermann, Pohlers, Schütte et al.]

・ 同 ト ・ ヨ ト ・ ヨ ト …

Summary Twelf supports proofs by logical relations. Judgments - as - propositions. Propositions - as - judgments. Consistency of the assertion logic. Termination up to ϵ_0 . Executable cut-elimination proof.

> Explicit meta-theoretic assumptions. Modular assertion logic design.

Future work Twelf's proof - theoretic strength.

直 とう ゆう く ひょう