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Motivation

Proof-carrying code (“Syntactic approach”)

HLL with type system

Machine code 
with safety proof

Brief Article

The Author

September 19, 2006

! P : τ
safe(M,SP )

1

Brief Article

The Author

September 19, 2006

! P : τ
safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M) → safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M)
→ (∃τ ′,M ′. ! step(P ) : τ ′ and step(P ) ⇒ M ′)

P0 : τ0 and P0 ⇒ M0

1



Syntactic Approach: PCC

Three pieces
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Need for Soundness Proof

Given P, need to know that
exists, and that

Brief Article

The Author

September 19, 2006

! P : τ
safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M) → safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M)
→ (∃τ ′,M ′. ! step(P ) : τ ′ and step(P ) ⇒ M ′)

P0 : τ0 and P0 ⇒ M0

1

Brief Article

The Author

September 19, 2006

! P : τ
safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M) → safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M)
→ (∃τ ′,M ′. ! step(P ) : τ ′ and step(P ) ⇒ M ′)

P0 : τ0 and P0 ⇒ M0

1

Brief Article

The Author

September 19, 2006

! P : τ
safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M) → safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M)
→ (∃τ ′,M ′. ! step(P ) : τ ′ and step(P ) ⇒ M ′)

P0 : τ0 and P0 ⇒ M0

1

(Standard ‘Progress’ and ‘Preservation’ 
lemmas of soundness proof)



Typed Assembly Language

No term level variables

Several prototypes:

Recursive types

Simple polymorphism

Polymorphism with regions, 
capabilities



TAL Example

(types) τ ::= α | ! | int | ∀σ

(code types) σ ::= Γ | [α]σ

(register file type) Γ ::= {r0:τ0, . . . , r7:τ7}

(type context) ∆ ::= α0,α1, . . . ,αk

(type list) $τ ::= τ0, τ1, . . . , τk

(registers) r ::= r0 | r1 | . . . | r7

(ints, addresses) i, f ::= 0 | 1 | 2 | . . .

(word values) v ::= i | f | v[τ ]

(register file) R ::= {r0 #→v0, . . . , r7 #→v7}

(instructions) ι ::= add rd, rs, rt | addi rd, rs, i | sub rd, rs, rt | subi rd, rs, i

| mov rd, rs | movi rd, i | movf rd, f | bgti rs, i, f [$τ ] | tapp rd[τ ]

(instr sequences) I ::= ι; I | jd f [$τ ] | jmp r

(code values) c ::= code σ. I

(code heap) C ::= {f0 #→c0, . . . , fk #→ck}

(program) P ::= (C, R, I)

Fig. 1. Syntax of TALτ

two classes of variables: de Bruijn indices for bound variables, and an infinite
type of names for representing free variables. Our work may be viewed as
extending and integrating this first-order representation with HOAS.

In the next section, an approach is presented using a standard, first-order
de Bruijn encoding of variables in closed terms. However, whenever such terms
are opened up, or the bound variables are entered into a judgment context, the
resulting free variables are then represented by variables of the metalogic. This
avoids cluttering up almost all of the theorem statements with any explicit
reasoning about variable indices or contexts. We do still need to define the
substitution function explicitly, but in fact never have to reason about it for the
soundness proofs (i.e. there is no need to prove any substitution, weakening,
exchange lemmas or the like, commonly found in first-order developments).

3 TALτ : A Simple Typed Assembly Language

The variant we will look at is a language, TALτ , that has almost nothing
interesting, other than polymorphic code types. The syntax is presented in
Figure 1. It includes at the type level three mutually recursive syntactic
elements. Types of words may be top, for any value, an integer type, or code
pointer. A code pointer type σ specifies the register file type Γ, possibly under
abstraction of some type variables α.

The register file (R, in the right column) maps registers to their contents,
which may be an integer, code address, or a type application. The instructions
of the machine are fairly simple: various arithmetic commands, move instruc-
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What didn’t work
In Coq, of course, full HOAS

Impredicative inductive definition
    (definitions go through, but can’t reason on it)

Didn’t want any axioms, so no weak HOAS

(exp) e ::= x | n | tt | ff | f | fix x :A. f | e e′ | e[A]
| 〈X =A, e :A′〉 | open e as 〈X, x〉 in e′

| 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A, A′](e, X1. e1, X2. e2)

where n ∈ N

(fun) f ::= λx :A. e | ΛX :A. f

(arith) aop ::= + | . . .
(cmp) cop ::= < | . . .

Figure 4: Syntax of the computation language λH .

all the reasoning in CIC. However our exposition of the language
TL is focused on its use as a type language, and consequently it
does not include all features of CIC. We therefore leave this possi-
bility for future work, and give a standard meta-logical presentation
instead; we address some of the issues related to adequacy in our
discussion of type safety.

In this section we often use the unqualified “term” to refer to a
computation term (expression) e, with syntax defined in Figure 4.
Most of the constructs are borrowed from standard higher-order
typed calculi. To simplify the exposition we only consider con-
stants representing natural numbers (n is the value representing
n ∈ N) and boolean values (tt and ff). The term-level abstraction
and application are standard; type abstractions and fixed points are
restricted to function values, with the call-by-value semantics in
mind and to simplify the CPS and closure conversions. The type
variable bound by a type abstraction, as well as the one bound by
the open construct for packages of existential type, can have either
a kind or a kind schema. Dually, the type argument in a type ap-
plication, and the witness type term A in the package construction
〈X =A, e :A′〉 can be either a type term or a kind term.

The constructs implementing tuple operations, arithmetic, and
comparisons have nonstandard static semantics, on which we focus
in section 4.1, but their runtime behavior is standard. The branch-
ing construct is parameterized at the type level with a proposition
(which is dependent on the value of the test term) and its proof; the
proof is passed to the executed branch.

Dynamic semantics We present a small step call-by-value op-
erational semantics for λH in the style of Wright and Felleisen [42].
The values are defined as

v ::= n | tt | ff | f | fix x :A.f | 〈X =A, v :A′〉 | 〈v0, . . . vn−1〉

The reduction relation ↪→ is specified by the rules

(λx :A.e) v ↪→ [v/x]e (R-β)

(ΛX :B. f)[A] ↪→ [A/X]f (R-TY-β)

sel[A](〈v0, . . . vn−1〉, m) ↪→ vm (m < n) (R-SEL)

open 〈X ′ =A, v :A′〉 as 〈X, x〉 in e
↪→ [v/x][A/X]e

(R-OPEN)

(fix x :A.f) v ↪→ ([fix x :A.f/x]f) v (R-FIX)

(fix x :A.f)[A′] ↪→ ([fix x :A.f/x]f)[A′] (R-TYFIX)

m +n ↪→ m + n (R-ADD)

m <n ↪→ tt (m < n) (R-LT-T)

m <n ↪→ ff (m ≥ n) (R-LT-F)

if[B, A](tt, X1. e1, X2. e2) ↪→ [A/X1]e1 (R-IF-T)

if[B, A](ff, X1. e1, X2. e2) ↪→ [A/X2]e2 (R-IF-F)

An evaluation context E encodes the call-by-value discipline:

E ::= • | E e | v E | E[A] | 〈X =A, E :A′〉
| open E as 〈X, x〉 in e | open v as 〈X, x〉 in E
| 〈v0, . . . vi, E, ei+2, . . . , en−1〉 | sel[A](E, e)
| sel[A](v, E) | E aop e | v aop E | E cop e
| v cop E | if[A, A′](E, X1. e1, X2. e2)

The notation E{e} stands for the term obtained by replacing the
hole • in E by e. The single step computation &→ relates E{e} to
E{e′} when e ↪→ e′, and &→∗ is its reflexive transitive closure.

As shown the semantics is standard except for some additional
passing of type terms in R-SEL and R-IF-T/F. However an inspec-
tion of the rules shows that types are irrelevant for the evaluation,
hence a type-erasure semantics, in which all type-related operations
and parameters are erased, would be entirely standard.

4.1 Static semantics

The static semantics of λH shows the benefits of using a type lan-
guage as expressive as TL. We can now define the type construc-
tors of λH as constructors of an inductive kind Ω, instead of having
them built into λH . As we will show in Section 5, this property is
crucial for the conversion to CPS, since it makes possible trans-
forming direct-style types to CPS types within the type language.

Inductive Ω : Kind := snat : Nat→Ω
| sbool : Bool→Ω
| →→ : Ω→Ω→Ω
| tup : Nat→ (Nat→Ω)→Ω
| ∀∀Kind : Πk :Kind. (k→Ω)→Ω
| ∃∃Kind : Πk :Kind. (k→Ω)→Ω
| ∀∀Kscm : Πz :Kscm. (z→Ω)→Ω
| ∃∃Kscm : Πz :Kscm. (z→Ω)→Ω

Informally, all well-formed computations have types of kind Ω, in-
cluding singleton types of natural numbers snat A and boolean val-
ues sbool B, as well as function, tuple, polymorphic and existential
types. To improve readability we also define the syntactic sugar

A → B ≡ →→ A B
∀sX :A. B
∃sX :A. B

≡
≡

∀∀s A (λX :A.B)
∃∃s A (λX :A.B)

}
where s ∈ {Kind, Kscm}

and often drop the sort s when s = Kind; e.g. the type void, con-
taining no values, is defined as ∀t :Ω. t ≡ ∀∀Kind Ω (λt :Ω. t).

Using this syntactic sugar we can give a familiar look to many
of the formation rules for λH expressions and functional values.
Figure 5 contains the inference rules for deriving judgments of the
form ∆; Γ * e : A, which assign type A to the expression e in a
context ∆ and a type environment Γ defined by

(type env) Γ ::= · | Γ, x :A

We introduce some of the notation used in these rules in the course
of the discussion.

Rules E-NAT, E-TRUE, and E-FALSE assign singleton types to
numeric and boolean constants. For instance the constant 1 has
type snat (succ zero) in any valid environment. In rule E-NAT we
use the meta-function ·̂ to map natural numbers n ∈ N to their

representations as type terms. It is defined inductively by 0̂ = zero
and n̂+1 = succ n̂, so ∆ * n̂ : Nat holds for all valid ∆ and
n ∈ N.
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What did work

Lazy hack... 

‘Locally-nameless’ first order encoding

Closed terms use de Bruijn encoding

Free variables => metalevel variables

Neat substitution definition (thanks to Valery Trifonov)     



Results

No variable contexts, ‘var’ terms

No reasoning on substitution itself

For either type soundness, or any 
PCC proofs

Working with proofs, generating terms 
messy



Example

Encode with two inductive definitions

One representing terms with free 
variables as de Bruijn indices

One with no explicit variables
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Example: Syntax Encoding
Inductive type : Set :=
  | top : type
  | arrow : type -> type -> type
  | bind : ttype 1 -> type.

Inductive ttype : nat -> Set :=
  | tvar : forall i, ttype (S i)
  | tlift : forall i, ttype i -> ttype (S i)

  | ttop : ttype 0
  | tarrow : forall i, ttype i -> ttype i -> ttype i
  | tbind : forall i, ttype (S i) -> ttype i.
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Substitution
Fixpoint subst_aux (i:nat) (t:ttype i) {struct t}
  : forall j, i=(S j) -> ttype j -> ttype j :=
    match t in (ttype i)
      return (forall j, i=S j -> ttype j -> ttype j) with
      | tvar n     => fun j _ e => e
      | tlift n t' => fun j (D:S n=S j) _ 
             => eq_rec n _ t' j (myeqaddS n j D)
      | ttop       => fun j (D:0=S j) _   => O_S_set _ j D
      | tarrow n t1 t2 => fun j (D:n=S j) e
             => tarrow j (subst_aux n t1 j D e)

                     (subst_aux n t2 j D e)
      | tbind n t' => fun j (D:n=S j) e 

           => tbind j (subst_aux (S n) t' (S j) (eq_S _ _ D) 
                                         (tlift j e))
    end.



Notes on Substitution

Substitution only defined for outermost 
variable... it’s all we needed in practice

Dependent parameter tracks number of 
free variables

Maybe not useful other than as an 
exercise

Would complicate any reasoning



Between Representations
Fixpoint unlift_aux i (t:ttype i) {struct t} : 0=i -> type :=
  match t in (ttype i) return (0=i -> type) with
    | tvar n    => fun D => O_S_set _ n D
    | tlift n _ => fun D => O_S_set _ n D
    | ttop      => fun _ => top
    | tarrow n t1 t2 => fun D => arrow (unlift_aux n t1 D) (unlift_aux n t2 D)
    | tbind n t' => fun D => bind (eq_rec n (fun n => ttype (S n)) t' 0 (sym_eq D))
  end.

Definition unlift : ttype 0 -> type 
   := fun t => unlift_aux 0 t (refl_equal 0).

Fixpoint lift (t:type) : ttype 0 :=
  match t with
    | top => ttop
    | arrow t1 t2 => tarrow 0 (lift t1) (lift t2)
    | bind t' => tbind 0 t'
  end.



Top-level Substitution

Definition subst : ttype 1 -> type -> type :=
  fun t e => unlift (subst_aux _ t _ (refl_equal 1) (lift e)).



Typing Rules

Brief Article

The Author

September 19, 2006

! P : τ
safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M) → safe(M,SP)

∀P, τ, M. (! P : τ and P ⇒ M)
→ (∃τ ′,M ′. ! step(P ) : τ ′ and step(P ) ⇒ M ′)

P0 : τ0 and P0 ⇒ M0

τ := α | & | τ1 → τ2 | ∀α.τ

∆,α ! e : τ

∆ ! all α.e : ∀α.τ

∆ ! all α.e : ∀α.τ

∆ ! (all α.e)[τ ′] : τ [τ ′/α]

1



Encoding Typing Rules

Inductive typeof : exp -> type -> Prop :=
  | wf_all  : forall (e:exp) (t:ttype 1),
              (forall a, typeof e (subst t a)) ->
              typeof (all e) (bind t)
  | ...
  | wf_tapp : forall (e:exp) (t':type) (t:ttype 1),
              typeof (all e) (bind t) ->
              typeof (tapp (all e) t') (subst t t')

in evaluation rules:
   tapp (all e) t' ==> e

Ties together for Preservation lemma...



Notes: Typing Rules
Locally-nameless does not eliminate 
environments from encoding, in general

In TAL, because there are no term level 
variables, there is nothing in the rules 
like:

More complex type level would not be as 
clean? (e.g. substitution under binders)
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More Complex TAL
(kinds) κ ::= Type | Rgn | Cap

(constructors) c ::= τ | g | A
(types) τ ::= α | int | g handle | 〈τ1 × τ2〉 at g | ∀[∆](A, Γ) | µα.τ

(regions) g ::= ρ | ν
(capabilities) A ::= ε | ∅ | {g1} | {g+} | A1 ⊕ A2 | A

(con. contexts) ∆ ::= · | ∆, α :κ | ∆, ε≤A

(register file types) Γ ::= {r0:τ0 , . . . , r7:τ7}
(region types) Υ ::= {l0 :τ0 , . . . , ln :τn}
(memory types) Ψ ::= {ν0 :Υ0, . . . , νn :Υn}

(labels) l, f ::= 0 | 1 | . . .
(user registers) r ::= r0 | r1 | . . . | r7
(word values) v ::= i | ν.l | f | handle (ν) | v[c] | fold v as τ

(register file) R ::= {r0 (→ v0, . . . , r7 (→ v7}

(data heap values) h ::= (v1, v2)

(heap region) H ::= {l0 (→ h0, . . . , ln (→ hn}
(data memory) D ::= {ν0 (→ H0, . . . , νn (→ Hn}

(instructions) ι ::= add rd, rs, rt | addi rd, rs, i | sub rd, rs, rt | subi rd, rs, i
| mov rd, rs | movi rd, i | movf rd, f | ld rd, rs(i)
| st rd(i), rs | bgt rs, rt, f | bgti rs, i, f | tapp r[c]
| fold r[τ] | unfold r

(instr. sequences) I ::= ι; I | jd f | jmp r

(code heap values) h ::= code [∆](A, Γ).I | stub [∆](A, Γ).∅

(code memory) C ::= {f0 (→ h0, . . . , fn (→ hn}
(program) P ::= (D, R, I)

Figure 5.1: RgnTAL syntax.
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RgnTAL Term Level

(kinds) κ ::= Type | Rgn | Cap

(constructors) c ::= τ | g | A
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Caveat
No reasoning needed about substitution for 
proofs, but actually producing typing 
derivation requires equality reasoning

Can’t mix encoding styles

Inductive type : Set :=
  | tint    : type         (* int *)
  | thandle : rgn -> type             (* p handle *)
  | tpair   : type -> type -> rgn -> type  (* t1 x t2 at p *)
  | tabsr   : (rgn -> type) -> type       (* \/ p:Rgn. t *)
  | tabst   : (ttype 1) -> type            (* \/ t:Type. t' *)
  | ...



Conclusion
Locally-nameless (independently 
discovered) provides ‘non-intrusive’ 
treatment of binding constructs

Much boilerplate code 

Parameterized definition of de Bruijn 
terms fun but complicate reasoning if it 
were needed
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