Mechanized Reasoning for Binding Constructs in Typed Assembly Language Using Coq

Nadeem Abdul Hamid Berry College, Mount Berry, GA

Overview

- Background
- Motivation
- Nature of TAL encoding
- What didn't work
- what did work
- Conclusion

Motivation

- Proof-carrying code ("Syntactic approach")

Syntactic Approach: PCC

- Three pieces
$\forall P, \tau, M .(\vdash P: \tau$ and $P \Rightarrow M) \rightarrow \operatorname{safe}(M, \mathrm{SP})$
$\forall P, \tau, M$. $(\vdash P: \tau$ and $P \Rightarrow M)$
$\rightarrow\left(\exists \tau^{\prime}, M^{\prime} . \vdash \operatorname{step}(P): \tau^{\prime}\right.$ and $\left.\operatorname{step}(P) \Rightarrow M^{\prime}\right)$
$P_{0}: \tau_{0}$ and $P_{0} \Rightarrow M_{0}$

Need for Soundness Proof

$$
\begin{aligned}
\forall P, \tau, M . & (\vdash P: \tau \text { and } P \Rightarrow M) \\
& \rightarrow\left(\exists \tau^{\prime}, M^{\prime} \cdot \vdash \operatorname{step}(P): \tau^{\prime} \text { and } \operatorname{step}(P) \Rightarrow M^{\prime}\right)
\end{aligned}
$$

- Given P, need to know that step (P) exists, and that $\operatorname{step}(P): \tau^{\prime}$
(Standard 'Progress' and 'Preservation' lemmas of soundness proof)

Typed Assembly Language

- No term level varíables
- Several prototypes:
- Recursíve types
- Símple polymorphism
- Polymorphism with regions, capabilities

TAL Example

(types) $\tau::=\alpha|\top|$ int $\mid \forall \sigma$
(code types)
$\sigma::=\Gamma \mid[\alpha] \sigma$
(registers)
$r \quad::=r 0|r 1| \ldots \mid$
r7
(register file type) $\Gamma::=\left\{\mathrm{r} 0: \tau_{0}, \ldots, \mathrm{r} 7: \tau_{7}\right\}$
(type context)
$\Delta::=\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$
(type list)
$\vec{\tau}::=\tau_{0}, \tau_{1}, \ldots, \tau_{k}$
(ints, addresses) $i, f::=0|1| 2 \mid \ldots$
(word values) $\quad v \quad::=i|f| v[\tau]$
(register file) $\quad R \quad::=\left\{\mathrm{r} 0 \mapsto v_{0}, \ldots, \mathrm{r} 7 \mapsto v_{7}\right\}$
(instructions) $\quad \iota::=$ add $r_{d}, r_{s}, r_{t} \mid$ addi $r_{d}, r_{s}, i \mid$ sub $r_{d}, r_{s}, r_{t} \mid$ subi r_{d}, r_{s}, i mov $\mathrm{r}_{d}, \mathrm{r}_{s} \mid$ movi $\mathrm{r}_{d}, i \mid$ movf $\mathrm{r}_{d}, f \mid$ bgti $\mathrm{r}_{s}, i, f[\vec{\tau}] \mid$ tapp $\mathrm{r}_{d}[\tau]$
(instr sequences) $I::=\iota ; I \mid$ jd $f[\vec{\tau}] \mid$ jmp r
(code values) $\quad c::=$ code $\sigma . I$
(code heap) $\quad \mathcal{C}::=\left\{f_{0} \mapsto c_{0}, \ldots, f_{k} \mapsto c_{k}\right\}$
(program) $\mathcal{P}::=(\mathcal{C}, R, I)$

What didn't work

- In Coq, of course, full HOAS
- Impredicative inductive definition (definitions go through, but can't reason on it)

$$
\begin{aligned}
\text { Inductive } \Omega: \text { Kind }: & =\text { snat }: \text { Nat } \rightarrow \Omega \\
& \mid \text { sbool }: \text { Bool } \rightarrow \Omega \\
& \mid \text { tup }: \Omega \rightarrow \Omega \rightarrow \Omega \\
& \left\lvert\, \begin{array}{ll}
\text { Nat } \rightarrow(\operatorname{Nat} \rightarrow \Omega) \rightarrow \Omega \\
\text { Kind }: \Pi k: \text { Kind. }(k \rightarrow \Omega) \rightarrow \Omega \\
& \mid \exists_{\text {Kind }}: \Pi k: \text { Kind. }(k \rightarrow \Omega) \rightarrow \Omega
\end{array}\right.
\end{aligned}
$$

shao, et al. Type System for Certified Binaries

- Didn't want any axioms, so no weak HOAS

What did work

- Lazy hack...
- 'Locally-nameless' first order encoding - Closed terms use de Bruijn encodíng
- Free varíables => metalevel varíables
- Neat substítution definition chanks sovaleg trifonow

Results

■ No variable contexts, 'var' terms

- No reasoning on substitution itself
- For either type soundness, or any PCC proofs
- Working with proofs, generating terms messy

Example

$$
\tau:=\alpha|\top| \tau_{1} \rightarrow \tau_{2} \mid \forall \alpha . \tau
$$

- Encode with two inductive definitions
- One representing terms with free varíables as de Bruín índices
- One with no explicit variables

Example: Syntax Encoding

Inductive type : Set :=
I top : type
| arrow : type -> type -> type
| bind : ttype 1 -> type.

$$
\tau:=\alpha|\top| \tau_{1} \rightarrow \tau_{2} \mid \forall \alpha . \tau
$$

Inductive ttype : nat -> Set :=
I tvar : forall i, ttype (S i)
I tlift : forall i, ttype i \rightarrow ttype (S i)
I ttop : ttype 0
I tarrow : forall i, ttype i -> ttype i -> ttype i
I tbind : forall i, ttype (S i) \rightarrow ttype i.

Substitution

Fixpoint subst_aux (i:nat) (t :ttype i) \{struct t \}
: forall j, i=(S j) \rightarrow ttype j \rightarrow ttype $j:=$ match t in (ttype i)
return (forall j, i=S j \rightarrow ttype j \rightarrow ttype j) with l tvar $n \quad \Rightarrow$ fun $j{ }_{j}$ e $=>$ e
| tlift $n t^{\prime} \Rightarrow$ fun $j(D: S n=S j)$ _
$\Rightarrow e_{-} r e c n t^{\prime} j$ (myeqaddS $\left.n j D\right)$
I ttop $\quad \Rightarrow$ fun $j(D: 0=S j) \quad \Rightarrow 0_{1} S _s e t ~-~ j D$
l tarrow n t1 $t 2 \Rightarrow$ fun $j(D: n=S j) e$
=> tarrow j (subst_aux n t1 j De)
(subst_aux n t2 j D e)
l tbind $n t^{\prime} \Rightarrow$ fun $j(D: n=S j) e$
=> tbind j (subst_aux (S n) t' (S j) (eq_S _ _ D)
(tlift je))
end.

Notes on Substitution

- Substitution only defined for outermost variable... it's all we needed in practice
- Dependent parameter tracks number of free varíables
- Maybe not useful other than as an exercíse
- Would complicate any reasoning

Between Representations

Fixpoint unlift_aux i (t:ttype i) \{struct t\} : 0=i -> type := match t in (ttype i) return ($0=$ i \rightarrow type) with

I tvar n \Rightarrow fun D \Rightarrow 0_S_set _ n D
| tlift n _ => fun D => 0_S_set _ n D
I ttop \Rightarrow fun _ \Rightarrow top
I tarrow n t1 $t 2$ => fun D => arrow (unlift_aux n t1 D) (unlift_aux n t2
I tbind $n t^{\prime} \Rightarrow$ fun $D=>$ bind (eq_rec n (fun $n=>$ ttype (S n)) t' 0 (s) end.

Definition unlift : ttype 0 -> type

$$
:=\text { fun } t \Rightarrow \text { unlift_aux } 0 t \text { (refl_equal 0). }
$$

Fixpoint lift (t:type) : ttype 0 := match t with
| top => ttop
| arrow t1 t2 => tarrow 0 (lift t1) (lift t2)
| bind t' => tbind 0 t'
end.

Top-level Substitution

Definition subst : ttype 1 -> type -> type := fun t e => unlift (subst_aux _ t _ (refl_equal 1) (lift e)).

Typing Rules

$$
\begin{gathered}
\frac{\Delta, \alpha \vdash e: \tau}{\Delta \vdash \text { all } \alpha . e: \forall \alpha . \tau} \\
\frac{\Delta \vdash \text { all } \alpha . e: \forall \alpha . \tau}{\Delta \vdash(\text { all } \alpha . e)\left[\tau^{\prime}\right]: \tau\left[\tau^{\prime} / \alpha\right]}
\end{gathered}
$$

Encoding Typing Rules

Inductive typeof : exp -> type -> Prop :=
I wf_all : forall (e:exp) (t:ttype 1),
(forall a, typeof e (subst ta)) -> typeof (all e) (bind t)

```
| ...
| wf_tapp : forall (e:exp) (t':type) (t:ttype 1),
    typeof (all e) (bind t) ->
    typeof (tapp (all e) t') (subst t t')
```

in evaluation rules: tapp (all e) t' ==> e

Notes: Typing Rules

- Locally-nameless does not eliminate environments from encoding, in general
- In TAL, because there are no term level variables, there is nothing in the rules like:

$$
\Delta, x: \tau \vdash \ldots
$$

- More complex type level would not be as clean? (e.g. substitution under binders)

More Complex TAL

(kinds)	κ	$::=$ Type \mid Rgn \mid Cap
(constructors)	c	$::=\tau\|g\| A$
\quad(types)	τ	$::=\alpha \mid$ int $\mid g$ handle $\mid\left\langle\tau_{1} \times \tau_{2}\right\rangle$ at $g\|\forall[\Delta](A, \Gamma)\| \mu \alpha . \tau$
\quad (regions)	g	$::=\rho \mid \nu$
\quad (capabilities)	A	$::=\epsilon\|\emptyset\|\left\{g^{1}\right\}\left\|\left\{g^{+}\right\}\right\| A_{1} \oplus A_{2} \mid \bar{A}$
(con. contexts)	$\Delta::=\cdot\|\Delta, \alpha: \kappa\| \Delta, \epsilon \leq A$	
(register file types)	Γ	$::=\left\{\mathrm{r} 0: \tau_{0}, \ldots, r 7: \tau_{\tau}\right\}$
(region types)	Υ	$::=\left\{l_{0}: \tau_{0}, \ldots, l_{n}: \tau_{n}\right\}$
(memory types)	$\Psi::=\left\{\nu_{0}: \Upsilon_{0}, \ldots, \nu_{n}: \Upsilon_{n}\right\}$	

RgnTAL Term Level

(labels)	$l, f::=\mathbf{0}\|\mathbf{1}\|$.
(user registers)	$r \quad::=r 0\|r 1\| \ldots \mid r 7$
(word values)	$v \quad::=i\|\nu . l\| f \mid$ handle $(\nu)\|v[c]\|$ fold v as τ
(register file)	$R::=\left\{\mathrm{r} 0 \mapsto v_{0}, \ldots, \mathrm{r} 7 \mapsto v_{7}\right\}$
(data heap values)	$h::=\left(v_{1}, v_{2}\right)$
(heap region)	$H::=\left\{l_{0} \mapsto h_{0}, \ldots, l_{n} \mapsto h_{n}\right\}$
(data memory)	$\mathcal{D}::=\left\{\nu_{0} \mapsto H_{0}, \ldots, \nu_{n} \mapsto H_{n}\right\}$
(instructions)	$\begin{aligned} \iota \quad: & :=\text { add } r_{d}, r_{s}, r_{t} \mid \text { addi } r_{d}, r_{s}, i \mid \text { sub } r_{d}, r_{s}, r_{t} \mid \text { subi } r_{d}, r_{s}, i \\ & \mid \text { mov } r_{d}, r_{s} \mid \text { movi } r_{d}, i \mid \text { movf } r_{d}, f \mid \operatorname{ld} r_{d}, r_{s}(i) \\ & \mid \text { st } r_{d}(i), r_{s} \mid \text { bgt } r_{s}, r_{t}, f \mid \text { bgti } r_{s}, i, f \mid \operatorname{tapp} r[c] \\ & \mid \text { fold } r[\tau] \mid \text { unfold } r \end{aligned}$
(instr. sequences)	$I \quad::=\iota ; I \mid$ jd $f \mid$ jmp r
(code heap values)	$\bar{h} \quad:=\operatorname{code}[\Delta](A, \Gamma) \cdot I \mid$ stub $[\Delta](A, \Gamma) . \emptyset$
(code memory)	$\mathcal{C} \quad::=\left\{f_{0} \mapsto \bar{h}_{0}, \ldots, f_{n} \mapsto \bar{h}_{n}\right\}$
(program)	$\mathcal{P}::=(\mathcal{D}, R, I)$

Caveat

- No reasoning needed about substitution for proofs, but actually producing typing derivation requíres equalíty reasoning
- Can't míx encodíng styles

Inductive type : Set :=
I tint : type
| thandle : rgn -> type
(* int *)
| tpair : type $->$ type $->$ rgn $->$ type
(* p handle *)
| tabsr : (rgn \rightarrow type) \rightarrow type
(* t1 x t2 at p^{*})
I tabst : (ttype 1) \rightarrow type
(* V p:Rgn. t^{*})
I ...

Conclusion

- Locally-nameless (independently discovered) provides 'non-intrusive' treatment of binding constructs
- Much boilerplate code
- Parameterized definition of de Bruijn terms fun but complicate reasoning if it were needed

Thank you!

nadeem@acm.org

