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Automated proof assistants provide few facilities for incremental development. Generally, if
the underlying structures on which a proof is based are modified, the developer must redo
much of the proof. Yet incremental development is really the most natural approach for
proofs of programming language properties [5, 12]. We propose “proof weaving”, a tech-
nique that allows a proof developer to combine small proofs into larger ones by merging
proof objects. We automate much of the merging process and thus ease incremental proof
development for programming language properties.

To make the discussion concrete we take as an example the problem of proving type-
soundness by proving progress and preservation [17] in Coq [3, 7]. However we believe that
the methods can be generalized to other proof assistants which generate proof objects, and
most directly to those proof assistants which exploit the Curry-Howard isomorphism in rep-
resenting proof terms as λ-terms [16], e.g. Isabelle and Minlog.

We rely on the proof developer to initially prove type-soundness for “tiny” languages. Each
of these languages encapsulates a single well-defined programming feature. For example,
a tiny language of booleans can be restricted to the terms True, False, and If and their
accompanying typing and evaluation rules. Tiny languages have relatively small and easily
developed proofs of type-soundness.

Having developed a repository of small languages along with their associated soundness
proofs, the developer builds larger languages by combining small languages in a pairwise
progression. Proofs are woven together using a multiphase approach. In the first phase, we
rely explicitly on the fact that the proofs are developed using induction on the structure of
the terms of the language 2 . The two proofs being merged thus have a similar structure; each
proof is the application of the induction principle for the terms of the language to subproofs
corresponding to each term. We extract these subproofs from the already existing proofs
for each tiny language and apply the induction principle for the combined language to each
extracted proof.

Generally there will not be a completed proof at the end of the first phase. Each subproof may
contain transparent dependencies 3 on parts of the language in the same way that the whole
proof contains a transparent dependency on the structure of terms. In the second phase,
we rewrite each term that contains a transparent dependency introducing place holders, i.e.,
“holes”, for each constructor not in the original term. We extract a proof template from
existing proof terms that share the same context as the desired term and use the template
to generate a likely subproof for the “hole”. If the system fails to find a valid subproof, we
leave the hole “as is”. If there are any unproven subgoals remaining after the second phase
we present them to the developer to prove using the tactics of the automated proof assistant.

2 Informally the proofs are by induction on the structure of typing derivations [12], but it is necessary to
perform induction on the structure of terms in order to determine which typing rules are applicable.
3 A transparent dependency [4] between a proof term T and an inductive type I occurs when T has a
dependency with an induction principle of I or if a case analysis on type I is performed in T .
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Discussion

Motivation

Programming language properties are difficult to prove formally. Anybody who has used
an automated proof assistant is familiar with the difficulty of expressing a theorem and se-
lecting the appropriate tactics to prove the theorem. In proving properties of programming
languages the proof developer may have to treat separately numerous distinct cases. More-
over, there is the likelihood that the language may be extended in which case the original
proof will no longer be correct.

Automated proof assistants provide few facilities for extending and modifying an existing
proof. Generally, the proof developer must rely on experience and intuition to decide where
to introduce new tactics or modify existing ones so that the proof can be completed. A
single extension may require that the proof be changed in many places; the proof itself may
increase in size by an order of magnitude.

Programming language properties are generally proved by induction, whether it be on the
terms, the types, or the typing rules of the language. Additional terms, types, or typing
rules generally leave the overall structure of a proof unchanged. Yet the addition of certain
features may require the entire proof to be fundamentally modified. For example, if a
functional language is augmented with references, it becomes necessary to represent the
store throughout a proof. Properties which present no difficulty in an informal proof may
be quite difficult to formalize in a tractable way. For example, a number of solutions for
representing binders exist [1] but each one has some drawback which makes its use difficult
in a formal proof.

Languages are assembled according to certain organizing principles. TinkerType [10] ex-
ploits these relationships to automatically generate interpreters for various λ-calculi. In the
TinkerType system, typing and evaluation rules are clauses, these clauses are associated with
features and the dependencies among the features are encoded as a graph. The user specifies
a set of features; TinkerType calculates any necessary dependent features, instantiates the
typing and evaluation rules associated with all the features, and synthesizes an interpreter
for the language.

What we propose is essentially a TinkerType for developing formal proofs. Proof weaving
is the underlying technique that allows us to automatically synthesize subproofs by taking
advantage of the regular structure of programming language proofs.

Technical Discussion

The developer must specify each tiny language in a uniform way so that the languages can be
combined easily. In our work, we express everything, including syntax of terms, evaluation
rules, and typing rules using Coq’s Inductive types. The union of two languages is the union
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Inductive ty : Set :=
  | TyBool : ty
  | TyUnit : ty
.

Inductive term : Set :=
  | TmTrue : term
  | TmFalse : term
  | TmIf : term -> term -> term -> term
  | TmUnit : term
.

Inductive isval : term -> Prop :=
  | VTrue : isval TmTrue
  | VFalse : isval TmFalse
  | VUnit : isval TmUnit
. 

Inductive eval : term -> term -> Prop :=
  | EIfTrue : forall (t2 t3 : term), eval (TmIf TmTrue t2 t3) t2
  | EIfFalse : forall (t2 t3 : term), eval (TmIf TmFalse t2 t3) t3
  | EIf : forall (t1 t1' t2 t3 : term), 
      eval t1 t1' -> eval (TmIf t1 t2 t3) (TmIf t1' t2 t3)
.

Inductive typeof : term -> ty -> Prop :=
  | TTrue : typeof TmTrue TyBool
  | TFalse : typeof TmFalse TyBool
  | TIf : forall (t1 t2 t3 : term) (T : ty),
      typeof t1 TyBool ->
        typeof t2 T ->
          typeof t3 T ->
            typeof (TmIf t1 t2 t3) T
  | TUnit : typeof TmUnit TyUnit
.

Fig. 1. The language of booleans defined in Coq. The language is being combined with the language
of Unit. Constructors taken from the language of Unit are in bold type.

of the constructors for each Inductive type.

A tiny language need not even be useful. The language consisting of the single term isZero,
a function that takes a natural number and returns true if the natural number is zero but
otherwise false is degenerate since no terms can be built; however a proof of type-soundness
is easily developed. This proof is easily combined with a proof of type-soundness for the
language of booleans and the language of natural numbers.

Example

We define the very simple language of booleans combined with Unit in Figure 1 4 . We use
Coq’s Inductive types to define the typing and evaluation rules as well as the types and
terms of the language.

Recall that to prove progress we must prove that if a term is typable in the language then ei-
ther the term is a value or a step can be taken in the evaluation. The subproof corresponding
to TmFalse has the form

(fun _ : exists x : ty, typeof TmFalse x =>
left (exists x : term, eval TmFalse x) VFalse)

Since TmFalse is a value it is only necessary to use the proof that it is a value, VFalse.
The ‘ ’ indicates that the hypothesis that TmFalse has a type is not employed in the proof.
The subproofs for TmTrue and TmUnit follow the same pattern, since each is a value.
On the other hand, a well-typed term constructed using TmIf can always take a further
step of evaluation. The subproof for TmIf uses the inductive hypothesis as well as the
hypothesis that the term is well-typed and is considerably more involved. The fragment
shown in Figure 2 is a small part of the subproof for TmIf. We assume we have already a
proof of progress for the language of booleans alone. The proof has been modified so that

4 The definitions of the terms, types, typing rules and evaluation rules for the language of booleans are
taken directly Figure 3-1, Figure 8-2 and Figure 11-2 of “Types and Programming Languages” [12]
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   right (isval (TmIf tm1 tm2 tm3))
     match H with
     | ex_intro x H0 =>
         match
           H0 in (typeof t t0)
           return
             (t = TmIf tm1 tm2 tm3 ->
              t0 = x -> exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
         with
         | TUnit => _ : (TmUnit = TmIf tm1 tm2 tm3 -> TyUnit = x ->
              exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
         | TTrue =>
             fun (H1 : TmTrue = TmIf tm1 tm2 tm3) (_ : TyBool = x) =>
             False_ind (exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
               (eq_ind TmTrue
                  (fun e : term =>
                   match e with
                   | TmTrue => True
                   | TmFalse => False
                   | TmIf _ _ _ => False
                   | TmUnit => False
                   end) I (TmIf tm1 tm2 tm3) H1)
         | TFalse =>
             fun (H1 : TmFalse = TmIf tm1 tm2 tm3) (_ : TyBool = x) =>
             False_ind (exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
               (eq_ind TmFalse
                  (fun e : term =>
                   match e with
                   | TmTrue => False
                   | TmFalse => True
                   | TmIf _ _ _ => False
                   | TmUnit => False
                   end) I (TmIf tm1 tm2 tm3) H1)

Proof that the typing rule TTrue
cannot be applied

Proof that the typing rule TFalse 
cannot be applied

The type of each matching subproof.
t and t0 are instantiated with 
appropriate values for each subproof.

Fig. 2. A fragment of a proof of progress for the language of booleans and Unit. The hole corre-
sponding to TUnit is annotated with its type which can be inferred from the return value of the
match clause.

the added TmUnit constructor appears in the match statement. The abstract syntax trees
for the subproof corresponding to TmTrue and the subproof corresponding to TmFalse are
identical. The constants False ind, eq ind, I and TmIf also occur at corresponding locations
in both subproofs. The variables H1, tm1, tm2, and tm3 correspond exactly.

The reason for this strong similarity is that the subproof corresponding to TTrue and the
subproof corresponding to TFalse are proofs that the typing rules TTrue and TFalse can
not be applied to a term constructed using TmIf. In an informal proof a statement such as
“TIf is the only typing rule that applies,...” would be all that was required, however, in a
formal proof we must prove for each rule separately that it does not apply. Of course, the
typing rule TUnit does not apply either, so we would expect its subproof to be similar to
the subproofs for TTrue and TFalse.

The alert reader will have noticed that we have already filled in some holes; the anonymous
function in each subproof returns False in the TmUnit case. We chose False arbitrarily;
any proposition at all will satisfy the typechecker.

Figure 3 shows the template constructed from the subproofs corresponding to TTrue and
Tfalse. The holes in the template are marked with ‘?’s. We leave holes wherever there is
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             fun (H1 : ?0 : term = TmIf tm1 tm2 tm3) (_ : ?1 : ty = x) =>
             False_ind (exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
               (eq_ind ?2 : term
                  (fun e : term =>
                   match e with
                   | TmTrue => ?3 : Prop
                   | TmFalse => ?4 : Prop
                   | TmIf _ _ _ => False
                   | TmUnit => ?5 : Prop
                   end) I (TmIf tm1 tm2 tm3) H1)

Fig. 3. A proof template. The holes are annotated with their types.

a constructor from our language definition, the two subproofs disagree, or we have chosen
a value arbitrarily as discussed above. Using the type of the subproof for TUnit we can
immediately fill in ?0 with TmUnit and ?1 with TyUnit.

At this point we must find an assignment for the other holes. We use a type reconstruction
algorithm to infer the values for ?2 and ?5. In this case we find that ?2 = TmUnit and ?5 =
True. Again, any proposition will do for ?3 and ?4 so we choose them arbitrarily. The term
typechecks, so we are done. Figure 4 shows the proof fragment from Figure 2 including the
synthesized term for TUnit. If TmUnit were a constructor with arguments or if TUnit were
a typing rule with hypotheses the correct subproof would still be found by our algorithm.

Comparison with the use of tactics

Tactics, although an excellent tool for interactive use, are not a good choice as the basic
building blocks for automation. In the above example, a skillful user might observe that
two of the subgoals can be solved by the sequence of tactics intros; simplify eq in H.
and conclude that most of the subgoals could be solved in the same way. In anticipation of
additions to the language the user would construct the sequence of tactics thus:

...; try (intros; simplify_eq in H).
(* additional tactics for the case where the typechecking rule does apply *)

But this approach is extremely brittle. First, the hypothesis H must be named in the
simplify eq tactic. Should the name of the hypothesis change the tactic will fail. A more
sophisticated tactic, which searches the available hypotheses for one of the correct form and
applies the simplify eq tactic to the chosen hypothesis, could be built from existing tactic
primitives. But this requires much additional effort on the part of the proof developer. Sec-
ond, an additional typing rule that does apply to TmIf could be added to the language. In
this case, subsequent tactics may be ordered wrongly and the proof is almost certain to fail.

The developer may choose instead to write a problem specific tactic, eliminate typing rules,
and incorporate it into the library of tactics available to the user. But this approach is also
quite brittle. It is difficult for the developer to anticipate underlying changes in the structure
of the language. In the example above, typing rules are quite straightforward, depending
only on the structure of the terms. It is unreasonable to assume that the developer will be

6



Mulhern

   right (isval (TmIf tm1 tm2 tm3))
     match H with
     | ex_intro x H0 =>
         match
           H0 in (typeof t t0)
           return
             (t = TmIf tm1 tm2 tm3 ->
              t0 = x -> exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
         with
         | TUnit => 
              fun (H1 : TmUnit = Tmif tm1 tm2 tm3) (_ : TyUnit = x) =>
              False_ind (exists x0 : term, eval (Tmif tm1 tm2 tm3) x0)
                 (eq_ind TmUnit 
                    (fun e : term =>
                     match e with
                     | TmTrue => False
                     | TmFalse => False
                     | TmIf _ _ _ => False
                     | TmUnit => True
                     end) I (TmIf tm1 tm2 tm3) H1)
         | TTrue =>
             fun (H1 : TmTrue = TmIf tm1 tm2 tm3) (_ : TyBool = x) =>
             False_ind (exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
               (eq_ind TmTrue
                  (fun e : term =>
                   match e with
                   | TmTrue => True
                   | TmFalse => False
                   | TmIf _ _ _ => False
                   | TmUnit => False
                   end) I (TmIf tm1 tm2 tm3) H1)
         | TFalse =>
             fun (H1 : TmFalse = TmIf tm1 tm2 tm3) (_ : TyBool = x) =>
             False_ind (exists x0 : term, eval (TmIf tm1 tm2 tm3) x0)
               (eq_ind TmFalse
                  (fun e : term =>
                   match e with
                   | TmTrue => False
                   | TmFalse => True
                   | TmIf _ _ _ => False
                   | TmUnit => False
                   end) I (TmIf tm1 tm2 tm3) H1)

Proof that the typing rule TTrue
cannot be applied

Proof that the typing rule TFalse 
cannot be applied

The type of each matching subproof.
t and t0 are instantiated with 
appropriate values for each subproof.

Synthesized proof that the typing 
rule TUnit cannot be applied

Fig. 4. A fragment of a proof of progress for the language of booleans and Unit. A subproof has
been correctly synthesized for the hole corresponding to TUnit.

able to write a tactic that handles typing environments correctly when they are not in the
language for which the tactic was originally developed. Furthermore, developing a tactic and
incorporating it into the automated proof assistant’s environment is a considerable effort.
And this solution does not address the problem of additional typing rules that match TmIf
any better than the previous solution.

Designing tactic scripts in anticipation of future additions requires foresight. The developer
must anticipate what the future additions might be and where they might occur. Proof
weaving, on the other hand, is a mechanism that responds to additions, whatever they may
turn out to be. Proof weaving is far more general than any problem specific tactic. The
developer need only provide examples which are sufficiently similar to the subgoals that need
to be proved and the proof weaver will supply the necessary subproof.
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Related Work

Reuse of proofs and theorems has been an active area for many years [2, 4, 6, 8, 9, 11, 13, 14].
Proof abstraction [8, 9, 13] is concerned with generalizing a proof that works in a specific
case to one that works in a more general case. For example, a proof that multiplication on
the natural numbers is commutative can be abstracted to a proof that any binary operation
that is symmetric and left-associative must be commutative [13]. This sort of abstraction
is ubiquitous in mathematics as well as in computer science; a familiar example is the data
structure that is parameterized on the type of its elements. However, this approach is not
a good fit for proofs of programming language properties which, as noted above, generally
proceed by induction.

Boite’s work on proof extension [4] is concerned with reusing proofs when additional con-
structors are added to inductive types and is much closer in spirit to our work. There are two
significant ways in which our work differs. In the first place, we combine two languages by
taking the union of the constructors of their inductive types while Boite adds constructors to
an existing inductive type, thereby forming an extended type. Boite’s approach enforces an
extension relationship much like the inheritance relationship of object oriented languages.
Using this approach the user must choose whether the language of natural numbers and
booleans is an extension of the language of natural numbers or an extension of the language
of booleans though neither relationship is superior. In our approach the constructors from
each language are equal citizens in the combined language. Furthermore, where Boite leaves
“holes” corresponding to every new constructor, an approach that can result in a vestigial
proof when constructors have been added to many types, we synthesize proofs for as many
of the subgoals as possible, ideally leaving only the interesting work to the developer.

Conclusion

We introduce a new technique for proof reuse, proof weaving. This technique is quite general
but it is particularly useful when the underlying definitions on which a proof is built may
be extended and when the structure of a proof is quite repetitive. Proofs of programming
language properties are likely to have both these characteristics; hence this technique is
particularly suitable.
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