
(Extended Abstract - Submitted to the 1st Informal ACM SIGPLAN Workshop on Mechanizing Metatheory, WMM 2006)

Mechanized Reasoning for Binding Constructs
in Typed Assembly Language Using Coq

Nadeem Abdul Hamid
Berry College, Mount Berry, GA 30149-5014, USA

nhamid@berry.edu

1. Problem and Motivation
Mechanized reasoning about programming languages and type sys-
tems is becoming increasingly important for the development of
certified code frameworks. For instance, in order to realize the
safety and security potential of proof-carrying code (PCC) [3] the
development of formal, machine-checkable proofs is a necessity.
Much of the difficulty and research surrounding PCC involves the
generation of large, complex proofs in a user-friendly, automated
way. Several approaches in this respect [2, 1] rely on encoding
a typed assembly language (TAL) and mechanically proving its
safety properties.

This work describes some aspects of the author’s experience
with the mechanical encoding of TAL for several prototype sys-
tems developed in the Yale FLINT group’s PCC project. In partic-
ular, an approach to encoding TAL binding constructs is presented
in which a first-order representation using de Bruijn indices is used
for bound type variables, while free variables are represented by
meta-level variables. This method allows for encoding and reason-
ing about the semantics of TAL without the need for maintaining
explicit variable contexts, in a logic that otherwise does not support
the use of higher order abstract syntax (HOAS).

2. Related Work
Current approaches to formalizing binders fall into one of a few cat-
egories: concrete, first-order representations; specialized logics that
include a notion of “freshness”; or the use of higher-order abstract
syntax (HOAS) [4]. One of the most popular concrete methods of
representing binders is the use of de Bruijn’s nameless dummies. de
Bruijn indices are very direct and simple, however they complicate
the entire development of proofs because the statements of theo-
rems require extra clauses involving shifting of terms and contexts.
The approach presented here avoids much of this problem.

A much different approach to handling issues of binding is that
of HOAS, in which object language variables are represented by
variables of the metalanguage or logic. While this approach works
very elegantly with frameworks such as Twelf, it has obstacles in
the context of a theory of inductive definitions, such as CiC.

Currently, the most similar approach to the one presented in this
work is the “locally nameless” approach [5]. In this representation,
there are two classes of variables: de Bruijn indices for bound vari-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WMM 2006 September 21, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM [to be supplied]. . . $5.00.

ables, and an infinite type of names for representing free variables.
Our work may be viewed as extending and integrating this first-
order representation with HOAS in the context of CiC/Coq.

3. Results and Contributions
Over the course of several years, a progression of TAL variants
have been formalized for various prototype PCC systems, the most
ambitious being a variant supporting region-based memory man-
agement, with a type system based on the capability calculus [6],
supporting polymorphism over several different kinds of construc-
tors. Here, I present a simple variant of TAL to illustrate the ap-
proach used to encode binding constructs in these various flavors.

An approach is presented using a standard, first-order de Bruijn
encoding of variables in closed terms. However, whenever such
terms are opened up, or the bound variables are entered into a
judgment context, the resulting free variables are then represented
by variables of the metalogic. This avoids cluttering up almost all of
the theorem statements with any explicit reasoning about variable
indices or contexts. We do still need to define the substitution
function explicitly, but in fact never have to reason about it for the
soundness proofs (i.e. there is no need to prove any substitution,
weakening, exchange lemmas or the like, commonly found in first-
order developments).

An additional interesting feature of the de Bruijn representation
here is the use of dependent types to encode the number of free
variables in a term, providing a measure of partial correctness for
definitions like substitution. While the use of such an encoding
may be a common exercise to experienced users of proof assistants
such as Coq and LEGO, we were not able to find any published
description of such an encoding when we embarked on our own
developments.

References
[1] K. Crary. Toward a foundational typed assembly language. In

Proceedings 30th ACM Symposium on Principles of Programming
Languages, pages 198–211. ACM Press, Jan. 2003.

[2] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic
approach to foundational proof carrying-code. In Proceedings 17th
Annual IEEE Symposium on Logic in Computer Science (LICS’02),
pages 89–100. IEEE Computer Society, July 2002.

[3] G. C. Necula. Proof-carrying code. In Proceedings 24th ACM
Symposium on Principles of Programming Languages, pages 106–119.
ACM Press, Jan. 1997.

[4] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings
ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation, pages 199–208. ACM Press, 1988.

[5] R. Pollack. Reasoning about languages with binding. (Talk), 2005.

[6] D. Walker, K. Crary, and G. Morrisett. Typed memory management via
static capabilities. ACM Trans. Prog. Lang. Syst., 22(4):701–771, 2000.

