
A Dependent Dependency Calculus

Pritam Choudhury
Harley Eades III

Stephanie Weirich

University of Edinburgh LFCS
June 14, 2022

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 1 / 25

Dependency Analysis

Consider

x :L Int, y :HBool, z :M Bool ` if z then x else 3 :M Int

where the type system is parameterized by a lattice (L < M < H)

Noninterference: If x :`1 A ` b :`2 B and `1 � `2 then b cannot
depend on x during computation.

Applications: Security types (information flow, provenance), Compiler
optimizations (binding-time analysis), etc.
Related to Dependency Core Calculus: Abadi et al. (1999), Sealing
Calculus: Shikuma and Igarashi (2006)

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 2 / 25

Dependency Analysis

Consider

x :L Int, y :HBool, z :M Bool ` if z then x else 3 :M Int

where the type system is parameterized by a lattice (L < M < H)

Noninterference: If x :`1 A ` b :`2 B and `1 � `2 then b cannot
depend on x during computation.

Applications: Security types (information flow, provenance), Compiler
optimizations (binding-time analysis), etc.
Related to Dependency Core Calculus: Abadi et al. (1999), Sealing
Calculus: Shikuma and Igarashi (2006)

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 2 / 25

Dependency Analysis

Consider

x :L Int, y :HBool, z :M Bool ` if z then x else 3 :M Int

where the type system is parameterized by a lattice (L < M < H)

Noninterference: If x :`1 A ` b :`2 B and `1 � `2 then b cannot
depend on x during computation.

Applications: Security types (information flow, provenance), Compiler
optimizations (binding-time analysis), etc.
Related to Dependency Core Calculus: Abadi et al. (1999), Sealing
Calculus: Shikuma and Igarashi (2006)

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 2 / 25

Goal: Irrelevance in Dependent Type Theories

Generalize dependency analysis to dependent type systems

Why? Use dependency to track two forms of irrelevance

Run-time irrelevance: some parts of terms can be erased before
execution
Compile-type irrelevance: some parts of terms can be ignored when
checking type equivalence

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 3 / 25

Goal: Irrelevance in Dependent Type Theories

Generalize dependency analysis to dependent type systems

Why? Use dependency to track two forms of irrelevance

Run-time irrelevance: some parts of terms can be erased before
execution
Compile-type irrelevance: some parts of terms can be ignored when
checking type equivalence

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 3 / 25

Dependency and simple types

Γ ` a :` A (Simple types)

SDC-Var
`0 ≤ `

x :`0 A ∈ Γ

Γ ` x :` A

SDC-Abs
Γ, x :`A ` b :` B

Γ ` λx :A.b :` A→ B

SDC-App
Γ ` b :` A→ B

Γ ` a :` A

Γ ` b a :` B

Internalize judgment with graded modal type
T `0 A describes terms of type A checked at least at level `0

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 4 / 25

Dependency and simple types

Γ ` a :` A (Simple types)

SDC-Var
`0 ≤ `

x :`0 A ∈ Γ

Γ ` x :` A

SDC-Abs
Γ, x :`A ` b :` B

Γ ` λx :A.b :` A→ B

SDC-App
Γ ` b :` A→ B

Γ ` a :` A

Γ ` b a :` B

Internalize judgment with graded modal type
T `0 A describes terms of type A checked at least at level `0

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 4 / 25

Dependency and simple types

Γ ` a :` A (Simple types)

SDC-Var
`0 ≤ `

x :`0 A ∈ Γ

Γ ` x :` A

SDC-Abs
Γ, x :`A ` b :` B

Γ ` λx :A.b :` A→ B

SDC-App
Γ ` b :` A→ B

Γ ` a :` A

Γ ` b a :` B

SDC-Return
Γ ` a :`∨`0 A

Γ ` η`0 a :` T `0 A

SDC-Bind
Γ ` a :` T `0 A

Γ, x :`∨`0 A ` b :` B

Γ ` bind`0 x = a in b :` B

Equivalent elimination form: unseal`0a , bind`0 x = a in x

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 5 / 25

Dependency and simple types

Γ ` a :` A (Simple types)

SDC-Var
`0 ≤ `

x :`0 A ∈ Γ

Γ ` x :` A

SDC-Abs
Γ, x :`A ` b :` B

Γ ` λx :A.b :` A→ B

SDC-App
Γ ` b :` A→ B

Γ ` a :` A

Γ ` b a :` B

SDC-Return
Γ ` a :`∨`0 A

Γ ` η`0 a :` T `0 A

SDC-Bind
Γ ` a :` T `0 A

Γ, x :`∨`0 A ` b :` B

Γ ` bind`0 x = a in b :` B

Equivalent elimination form: unseal`0a , bind`0 x = a in x

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 5 / 25

Dependency and simple types

Γ ` a :` A (Simple types)

SDC-Var
`0 ≤ `

x :`0 A ∈ Γ

Γ ` x :` A

SDC-Abs
Γ, x :`A ` b :` B

Γ ` λx :A.b :` A→ B

SDC-App
Γ ` b :` A→ B

Γ ` a :` A

Γ ` b a :` B

SDC-Return
Γ ` a :`∨`0 A

Γ ` η`0 a :` T `0 A

SDC-Bind
Γ ` a :` T `0 A

Γ, x :`∨`0 A ` b :` B

Γ ` bind`0 x = a in b :` B

Sealing-Unseal
Γ ` a :` T `0 A `0 ≤ `

Γ ` unseal`0a :` A

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 6 / 25

Noninterference

Define indexed indistinguishability as Φ ` a ∼` b when

a and b differ only in subterms marked by η`0 , where ¬(`0 ≤ `),

outside of marked subterms, a and b only use variables x : `0 ∈ Φ,
where `0 ≤ `.

Public observers (at level L) are oblivious to secret data (marked H).

f : L ` f (ηH True) ∼L f (ηH False)

High-level observers can make more distinctions.

f : L ` f (ηH True) 6∼H f (ηH False)

Indexed indistinguishability is an equivalence relation and closed under
substitution.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 7 / 25

Noninterference

Define indexed indistinguishability as Φ ` a ∼` b when

a and b differ only in subterms marked by η`0 , where ¬(`0 ≤ `),

outside of marked subterms, a and b only use variables x : `0 ∈ Φ,
where `0 ≤ `.

Public observers (at level L) are oblivious to secret data (marked H).

f : L ` f (ηH True) ∼L f (ηH False)

High-level observers can make more distinctions.

f : L ` f (ηH True) 6∼H f (ηH False)

Indexed indistinguishability is an equivalence relation and closed under
substitution.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 7 / 25

Noninterference

Define indexed indistinguishability as Φ ` a ∼` b when

a and b differ only in subterms marked by η`0 , where ¬(`0 ≤ `),

outside of marked subterms, a and b only use variables x : `0 ∈ Φ,
where `0 ≤ `.

Public observers (at level L) are oblivious to secret data (marked H).

f : L ` f (ηH True) ∼L f (ηH False)

High-level observers can make more distinctions.

f : L ` f (ηH True) 6∼H f (ηH False)

Indexed indistinguishability is an equivalence relation and closed under
substitution.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 7 / 25

Noninterference

Define indexed indistinguishability as Φ ` a ∼` b when

a and b differ only in subterms marked by η`0 , where ¬(`0 ≤ `),

outside of marked subterms, a and b only use variables x : `0 ∈ Φ,
where `0 ≤ `.

Public observers (at level L) are oblivious to secret data (marked H).

f : L ` f (ηH True) ∼L f (ηH False)

High-level observers can make more distinctions.

f : L ` f (ηH True) 6∼H f (ηH False)

Indexed indistinguishability is an equivalence relation and closed under
substitution.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 7 / 25

Syntactic proof of Noninterference

Theorem (Operational semantics respects indexed indistinguishability)

If Φ ` a1 ∼` a
′
1 and a1 a2 then there exists some a ′2 such that a ′1 a ′2

and Φ ` a2 ∼` a
′
2.

Corollary

Given x :HA ` b :L Int and ∅ ` a1, a2 :H A, if ` b{a1/x} ∗ v1 and
` b{a2/x} ∗ v2 then v1 = v2.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 8 / 25

Syntactic proof of Noninterference

Theorem (Operational semantics respects indexed indistinguishability)

If Φ ` a1 ∼` a
′
1 and a1 a2 then there exists some a ′2 such that a ′1 a ′2

and Φ ` a2 ∼` a
′
2.

Corollary

Given x :HA ` b :L Int and ∅ ` a1, a2 :H A, if ` b{a1/x} ∗ v1 and
` b{a2/x} ∗ v2 then v1 = v2.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 8 / 25

Label-indexed definitional equality

Define label-indexed definitional equality, Φ ` a ≡` b as the congruence
closure of indexed indistinguishability by β-equality.

Lemma (Substitution)

Given Φ, x : `0 ` b1 ≡` b2.

1 If `0 ≤ ` and Φ ` a1 ≡` a2 then Φ ` b1{a1/x} ≡` b2{a2/x}.
2 If ¬(`0 ≤ `) then Φ ` b1{a1/x} ≡` b2{a2/x}.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 9 / 25

Label-indexed definitional equality

Define label-indexed definitional equality, Φ ` a ≡` b as the congruence
closure of indexed indistinguishability by β-equality.

Lemma (Substitution)

Given Φ, x : `0 ` b1 ≡` b2.

1 If `0 ≤ ` and Φ ` a1 ≡` a2 then Φ ` b1{a1/x} ≡` b2{a2/x}.
2 If ¬(`0 ≤ `) then Φ ` b1{a1/x} ≡` b2{a2/x}.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 9 / 25

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels `

Π and Σ types annotated with levels (Πx :`A.B and Σx:`A.B)

Σ types encode labelled graded type: T ` A , Σx:`A.unit

Lattice must have a distinguished element C, with ⊥ ≤ C ≤ >
Definitional equality: Φ ` a ≡C b

Dependency levels intuition

Executable: Γ ` a :⊥ A
Comparable: Γ ` a :C A
Irrelevant: Γ ` a :> A

Results about DDC (noninterference, type soundness) hold regardless
of termination.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 10 / 25

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels `

Π and Σ types annotated with levels (Πx :`A.B and Σx:`A.B)

Σ types encode labelled graded type: T ` A , Σx:`A.unit

Lattice must have a distinguished element C, with ⊥ ≤ C ≤ >
Definitional equality: Φ ` a ≡C b

Dependency levels intuition

Executable: Γ ` a :⊥ A
Comparable: Γ ` a :C A
Irrelevant: Γ ` a :> A

Results about DDC (noninterference, type soundness) hold regardless
of termination.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 10 / 25

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels `

Π and Σ types annotated with levels (Πx :`A.B and Σx:`A.B)

Σ types encode labelled graded type: T ` A , Σx:`A.unit

Lattice must have a distinguished element C, with ⊥ ≤ C ≤ >

Definitional equality: Φ ` a ≡C b

Dependency levels intuition

Executable: Γ ` a :⊥ A
Comparable: Γ ` a :C A
Irrelevant: Γ ` a :> A

Results about DDC (noninterference, type soundness) hold regardless
of termination.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 10 / 25

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels `

Π and Σ types annotated with levels (Πx :`A.B and Σx:`A.B)

Σ types encode labelled graded type: T ` A , Σx:`A.unit

Lattice must have a distinguished element C, with ⊥ ≤ C ≤ >
Definitional equality: Φ ` a ≡C b

Dependency levels intuition

Executable: Γ ` a :⊥ A
Comparable: Γ ` a :C A
Irrelevant: Γ ` a :> A

Results about DDC (noninterference, type soundness) hold regardless
of termination.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 10 / 25

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels `

Π and Σ types annotated with levels (Πx :`A.B and Σx:`A.B)

Σ types encode labelled graded type: T ` A , Σx:`A.unit

Lattice must have a distinguished element C, with ⊥ ≤ C ≤ >
Definitional equality: Φ ` a ≡C b

Dependency levels intuition

Executable: Γ ` a :⊥ A
Comparable: Γ ` a :C A
Irrelevant: Γ ` a :> A

Results about DDC (noninterference, type soundness) hold regardless
of termination.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 10 / 25

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels `

Π and Σ types annotated with levels (Πx :`A.B and Σx:`A.B)

Σ types encode labelled graded type: T ` A , Σx:`A.unit

Lattice must have a distinguished element C, with ⊥ ≤ C ≤ >
Definitional equality: Φ ` a ≡C b

Dependency levels intuition

Executable: Γ ` a :⊥ A
Comparable: Γ ` a :C A
Irrelevant: Γ ` a :> A

Results about DDC (noninterference, type soundness) hold regardless
of termination.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 10 / 25

Irrelevance for Dependent Types

Use lattice ⊥ < C < >
Dependency analysis for run-time irrelevance

What parts of the program can we safely erase before execution?

Type check all “executable” parts of the program at level ⊥ and
“eraseable” parts at least at level C
Noninterference tells us that erasure is safe

Dependency analysis for compile-time irrelevance

What parts of the program can we safely ignore when checking
equivalence?
Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level >
Noninterference tells us that indexed equality is consistent

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 11 / 25

Irrelevance for Dependent Types

Use lattice ⊥ < C < >
Dependency analysis for run-time irrelevance

What parts of the program can we safely erase before execution?
Type check all “executable” parts of the program at level ⊥ and
“eraseable” parts at least at level C

Noninterference tells us that erasure is safe

Dependency analysis for compile-time irrelevance

What parts of the program can we safely ignore when checking
equivalence?
Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level >
Noninterference tells us that indexed equality is consistent

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 11 / 25

Irrelevance for Dependent Types

Use lattice ⊥ < C < >
Dependency analysis for run-time irrelevance

What parts of the program can we safely erase before execution?
Type check all “executable” parts of the program at level ⊥ and
“eraseable” parts at least at level C
Noninterference tells us that erasure is safe

Dependency analysis for compile-time irrelevance

What parts of the program can we safely ignore when checking
equivalence?
Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level >
Noninterference tells us that indexed equality is consistent

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 11 / 25

Irrelevance for Dependent Types

Use lattice ⊥ < C < >
Dependency analysis for run-time irrelevance

What parts of the program can we safely erase before execution?
Type check all “executable” parts of the program at level ⊥ and
“eraseable” parts at least at level C
Noninterference tells us that erasure is safe

Dependency analysis for compile-time irrelevance

What parts of the program can we safely ignore when checking
equivalence?

Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level >
Noninterference tells us that indexed equality is consistent

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 11 / 25

Irrelevance for Dependent Types

Use lattice ⊥ < C < >
Dependency analysis for run-time irrelevance

What parts of the program can we safely erase before execution?
Type check all “executable” parts of the program at level ⊥ and
“eraseable” parts at least at level C
Noninterference tells us that erasure is safe

Dependency analysis for compile-time irrelevance

What parts of the program can we safely ignore when checking
equivalence?
Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level >

Noninterference tells us that indexed equality is consistent

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 11 / 25

Irrelevance for Dependent Types

Use lattice ⊥ < C < >
Dependency analysis for run-time irrelevance

What parts of the program can we safely erase before execution?
Type check all “executable” parts of the program at level ⊥ and
“eraseable” parts at least at level C
Noninterference tells us that erasure is safe

Dependency analysis for compile-time irrelevance

What parts of the program can we safely ignore when checking
equivalence?
Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level >
Noninterference tells us that indexed equality is consistent

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 11 / 25

Example

Polymorphic identity function

id :⊥ Π x:>Type. x⊥ -> x

id = λ>x. λy⊥. y

Type parameter x is both eraseable and ignorable.
Term parameter y is neither.

To decrease clutter in examples, elide ⊥ labels

id : Π x:>Type. x -> x

id = λ>x. λy. y

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 12 / 25

Example

Polymorphic identity function

id :⊥ Π x:>Type. x⊥ -> x

id = λ>x. λy⊥. y

Type parameter x is both eraseable and ignorable.
Term parameter y is neither.

To decrease clutter in examples, elide ⊥ labels

id : Π x:>Type. x -> x

id = λ>x. λy. y

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 12 / 25

Example

Polymorphic identity function

id : Π x:>Type. x -> x

id = λ>x. λy. y

λ-bound y (at level ⊥) can be used in the body of the function.

λ-bound x (at level >) cannot be used.

Label > on Π-bound x describes level of λ-bound x.

Π-bound x can be used in the body of the Π-type.

When evaluating id A> true can erase argument A

During type checking, if comparing id A> true and id B> true for
equality, can ignore A and B

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 13 / 25

Example

Polymorphic identity function

id : Π x:>Type. x -> x

id = λ>x. λy. y

λ-bound y (at level ⊥) can be used in the body of the function.

λ-bound x (at level >) cannot be used.

Label > on Π-bound x describes level of λ-bound x.

Π-bound x can be used in the body of the Π-type.

When evaluating id A> true can erase argument A

During type checking, if comparing id A> true and id B> true for
equality, can ignore A and B

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 13 / 25

Example

Polymorphic identity function

id : Π x:>Type. x -> x

id = λ>x. λy. y

λ-bound y (at level ⊥) can be used in the body of the function.

λ-bound x (at level >) cannot be used.

Label > on Π-bound x describes level of λ-bound x.

Π-bound x can be used in the body of the Π-type.

When evaluating id A> true can erase argument A

During type checking, if comparing id A> true and id B> true for
equality, can ignore A and B

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 13 / 25

Example

Polymorphic identity function

id : Π x:>Type. x -> x

id = λ>x. λy. y

λ-bound y (at level ⊥) can be used in the body of the function.

λ-bound x (at level >) cannot be used.

Label > on Π-bound x describes level of λ-bound x.

Π-bound x can be used in the body of the Π-type.

When evaluating id A> true can erase argument A

During type checking, if comparing id A> true and id B> true for
equality, can ignore A and B

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 13 / 25

Example: vectors (Haskell GADT-style)

Vec : Nat -> Type -> Type

Nil : Π n:>Nat. Π a:>Type. (n ∼ Zero) => Vec n a

Cons : Π n:>Nat. Π a:>Type. Π m:>Nat. (n ∼ Succ m) =>

a -> Vec m a -> Vec n a

Applications of Nil and Cons can erase and ignore length and type
parameters. (Will elide from examples.)

Applications of Vec cannot. (Shouldn’t equate vectors with different
lengths/element types.)

In type of Nil and Cons, n and a can be used freely.

vmap : Π n:>Nat.Π a b:>Type. (a -> b) -> Vec n a -> Vec n b

vmap = λ> n a b. λ f xs.

case xs of

Nil -> Nil

Cons m> x xs -> Cons m> (f x) (vmap m> a> b> f xs)

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 14 / 25

Example: vectors (Haskell GADT-style)

Vec : Nat -> Type -> Type

Nil : Π n:>Nat. Π a:>Type. (n ∼ Zero) => Vec n a

Cons : Π n:>Nat. Π a:>Type. Π m:>Nat. (n ∼ Succ m) =>

a -> Vec m a -> Vec n a

Applications of Nil and Cons can erase and ignore length and type
parameters. (Will elide from examples.)

Applications of Vec cannot. (Shouldn’t equate vectors with different
lengths/element types.)

In type of Nil and Cons, n and a can be used freely.

vmap : Π n:>Nat.Π a b:>Type. (a -> b) -> Vec n a -> Vec n b

vmap = λ> n a b. λ f xs.

case xs of

Nil -> Nil

Cons m> x xs -> Cons m> (f x) (vmap m> a> b> f xs)

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 14 / 25

Filter example

Suppose we have

a:> Type -- type of vector elements

f: a -> Bool -- predicate to filter with

Consider vector filter

filter : Πn:>Nat. Vec n a -> Σm:>Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero>, Nil)

Cons n1> x xs

| f x ->

let (m1>, v1) = filter n1> xs in

((Succ m1)>, Cons m1> x v1)

| otherwise -> filter n1> xs

This version is overly strict. Must filter entire list before returning
anything.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 15 / 25

Filter example

Suppose we have

a:> Type -- type of vector elements

f: a -> Bool -- predicate to filter with

Consider vector filter

filter : Πn:>Nat. Vec n a -> Σm:>Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero>, Nil)

Cons n1> x xs

| f x ->

let (m1>, v1) = filter n1> xs in

((Succ m1)>, Cons m1> x v1)

| otherwise -> filter n1> xs

This version is overly strict. Must filter entire list before returning
anything.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 15 / 25

Filter example

Suppose we have

a:> Type -- type of vector elements

f: a -> Bool -- predicate to filter with

Consider vector filter

filter : Πn:>Nat. Vec n a -> Σm:>Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero>, Nil)

Cons n1> x xs

| f x ->

let (m1>, v1) = filter n1> xs in

((Succ m1)>, Cons m1> x v1)

| otherwise -> filter n1> xs

This version is overly strict. Must filter entire list before returning
anything.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 15 / 25

Filter example

Suppose we have

a:> Type -- type of vector elements

f: a -> Bool -- predicate to filter with

Consider vector filter

filter : Πn:>Nat. Vec n a -> Σm:>Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero>, Nil)

Cons n1> x xs

| f x ->

let (m1>, v1) = filter n1> xs in

((Succ m1)>, Cons m1> x v1)

| otherwise -> filter n1> xs

This version is overly strict. Must filter entire list before returning
anything.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 15 / 25

Filter example

Suppose we have

a:> Type -- type of vector elements

f: a -> Bool -- predicate to filter with

Consider vector filter

filter : Πn:>Nat. Vec n a -> Σm:>Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero>, Nil)

Cons n1> x xs

| f x ->

let (m1>, v1) = filter n1> xs in

((Succ m1)>, Cons m1> x v1)

| otherwise -> filter n1> xs

This version is overly strict. Must filter entire list before returning
anything.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 15 / 25

Filter example

Suppose we have

a:> Type -- type of vector elements

f: a -> Bool -- predicate to filter with

Consider vector filter

filter : Πn:>Nat. Vec n a -> Σm:>Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero>, Nil)

Cons n1> x xs

| f x ->

let (m1>, v1) = filter n1> xs in

((Succ m1)>, Cons m1> x v1)

| otherwise -> filter n1> xs

This version is overly strict. Must filter entire list before returning
anything.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 15 / 25

Filter example

Suppose we have

fst : Σx:`A.B -> A

snd : Πp:(Σx:`A.B). B { fst p / x }

filter : Πn:>Nat. Vec n a -> Σm:Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero, Nil)

Cons n1> x xs

| f x ->

((Succ (fst ys)), Cons (fst ys)> x (snd ys))

where

ys : Σ m : Nat. Vec m a

ys = filter n1> xs

| otherwise -> filter n1> xs

Can we mark m in the Σ-type as > (ignorable)?
No! fst ys cannot be ignored in the type of snd ys.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 16 / 25

Filter example

Suppose we have

fst : Σx:`A.B -> A

snd : Πp:(Σx:`A.B). B { fst p / x }

filter : Πn:>Nat. Vec n a -> Σm:Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero, Nil)

Cons n1> x xs

| f x ->

((Succ (fst ys)), Cons (fst ys)> x (snd ys))

where

ys : Σ m : Nat. Vec m a

ys = filter n1> xs

| otherwise -> filter n1> xs

Can we mark m in the Σ-type as > (ignorable)?
No! fst ys cannot be ignored in the type of snd ys.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 16 / 25

Filter example

Suppose we have

fst : Σx:`A.B -> A

snd : Πp:(Σx:`A.B). B { fst p / x }

filter : Πn:>Nat. Vec n a -> Σm:Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero, Nil)

Cons n1> x xs

| f x ->

((Succ (fst ys)), Cons (fst ys)> x (snd ys))

where

ys : Σ m : Nat. Vec m a

ys = filter n1> xs

| otherwise -> filter n1> xs

Can we mark m in the Σ-type as > (ignorable)?

No! fst ys cannot be ignored in the type of snd ys.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 16 / 25

Filter example

Suppose we have

fst : Σx:`A.B -> A

snd : Πp:(Σx:`A.B). B { fst p / x }

filter : Πn:>Nat. Vec n a -> Σm:Nat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (Zero, Nil)

Cons n1> x xs

| f x ->

((Succ (fst ys)), Cons (fst ys)> x (snd ys))

where

ys : Σ m : Nat. Vec m a

ys = filter n1> xs

| otherwise -> filter n1> xs

Can we mark m in the Σ-type as > (ignorable)?
No! fst ys cannot be ignored in the type of snd ys.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 16 / 25

Filter example

Use of C to mark eraseable but not ignorable data.

filter : Πn:>Nat. Vec n a -> Σm:CNat. Vec m a

filter = λ> n. λ vec.

case vec of

Nil -> (ZeroC, Nil)

Cons n1> x xs

| f x ->

((Succ (fst ys))C, Cons (fst ys)> x (snd ys))

where

ys = filter n1> xs

| otherwise -> filter n1> xs

Three levels provides us with the precision that we need to write this code.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 17 / 25

Type system in depth

T-AbsC
Γ, x :`0∨`A ` b :` B

Γ ` (Πx :`0 A.B) :> s

Γ ` λx :`0 A.b :` Πx :`0 A.B

T-AppC
Γ ` b :` Πx :`0 A.B

Γ ` a :`0∨` A

Γ ` b a`0 :` B{a/x}
T-Pi
Γ ` A :` s1 Γ, x :`A ` B :` s2 R(s1, s2, s3)

Γ ` Πx :`0 A.B :` s3

Invariant: when Γ ` a :` A must have ` ≤ C
Define Γ ` a :> A using “resurrection”, i.e. C ∧ Γ ` a :C A

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 18 / 25

Type system in depth

T-AbsC
Γ, x :`0∨`A ` b :` B

Γ ` (Πx :`0 A.B) :> s

Γ ` λx :`0 A.b :` Πx :`0 A.B

T-AppC
Γ ` b :` Πx :`0 A.B

Γ ` a :`0∨` A

Γ ` b a`0 :` B{a/x}
T-Pi
Γ ` A :` s1 Γ, x :`A ` B :` s2 R(s1, s2, s3)

Γ ` Πx :`0 A.B :` s3

Invariant: when Γ ` a :` A must have ` ≤ C

Define Γ ` a :> A using “resurrection”, i.e. C ∧ Γ ` a :C A

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 18 / 25

Type system in depth

T-AbsC
Γ, x :`0∨`A ` b :` B

Γ ` (Πx :`0 A.B) :> s

Γ ` λx :`0 A.b :` Πx :`0 A.B

T-AppC
Γ ` b :` Πx :`0 A.B

Γ ` a :`0∨` A

Γ ` b a`0 :` B{a/x}
T-Pi
Γ ` A :` s1 Γ, x :`A ` B :` s2 R(s1, s2, s3)

Γ ` Πx :`0 A.B :` s3

Invariant: when Γ ` a :` A must have ` ≤ C
Define Γ ` a :> A using “resurrection”, i.e. C ∧ Γ ` a :C A

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 18 / 25

Type system in depth

T-Abs
Γ, x :`0∨`A ` b :` B

C ∧ Γ ` (Πx :`0 A.B) :C s

Γ ` λx :`0 A.b :` Πx :`0 A.B

T-AppC
Γ ` b :` Πx :`0 A.B

Γ ` a :`0∨` A

Γ ` b a`0 :` B{a/x}
T-Pi
Γ ` A :` s1 Γ, x :`A ` B :` s2 R(s1, s2, s3)

Γ ` Πx :`0 A.B :` s3

Πx :`A.B acts a little like Πx : (T ` A).B , so rule T-Abs looks like
rule SDC-Bind and rule T-AppC looks like rule SDC-Return.

Important difference: x labelled with ` instead of `0 ∨ ` in rule T-Pi.

To know result type of rule T-AppC is well-formed, have
C ∧ Γ, x :CA ` B :C s2, so label of a must be ≤ C, motivating use
of “resurrection”

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 19 / 25

Type system in depth

T-Abs
Γ, x :`0∨`A ` b :` B

C ∧ Γ ` (Πx :`0 A.B) :C s

Γ ` λx :`0 A.b :` Πx :`0 A.B

T-AppC
Γ ` b :` Πx :`0 A.B

Γ ` a :`0∨` A

Γ ` b a`0 :` B{a/x}
T-Pi
Γ ` A :` s1 Γ, x :`A ` B :` s2 R(s1, s2, s3)

Γ ` Πx :`0 A.B :` s3

Πx :`A.B acts a little like Πx : (T ` A).B , so rule T-Abs looks like
rule SDC-Bind and rule T-AppC looks like rule SDC-Return.

Important difference: x labelled with ` instead of `0 ∨ ` in rule T-Pi.

To know result type of rule T-AppC is well-formed, have
C ∧ Γ, x :CA ` B :C s2, so label of a must be ≤ C, motivating use
of “resurrection”

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 19 / 25

Type system in depth

T-Abs
Γ, x :`0∨`A ` b :` B

C ∧ Γ ` (Πx :`0 A.B) :C s

Γ ` λx :`0 A.b :` Πx :`0 A.B

T-AppC
Γ ` b :` Πx :`0 A.B

Γ ` a :`0∨` A

Γ ` b a`0 :` B{a/x}
T-Pi
Γ ` A :` s1 Γ, x :`A ` B :` s2 R(s1, s2, s3)

Γ ` Πx :`0 A.B :` s3

Πx :`A.B acts a little like Πx : (T ` A).B , so rule T-Abs looks like
rule SDC-Bind and rule T-AppC looks like rule SDC-Return.

Important difference: x labelled with ` instead of `0 ∨ ` in rule T-Pi.

To know result type of rule T-AppC is well-formed, have
C ∧ Γ, x :CA ` B :C s2, so label of a must be ≤ C, motivating use
of “resurrection”

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 19 / 25

Related Work

DDC is only type system with multiple, independent levels of irrelevance.
This distinction is essential for strong Σ-types with erasable first
components.

Both run-time and compile-time irrelevance, but no distinction
between them. ICC (Miquel 2001, Barras and Bernardo 2009),
Mishra-Linger Sheard (2008), Dependent Haskell (2017). Implicit
version omits irrelevant data. Explicit version relies on erasure.

Run-time irrelevance only. Brady (2004, 2013). Quantitative type
theory (McBride 2016, Atkey 2018). Generalizes to arbitrary semiring,
but does not track irrelevance in types. Tejǐsčák (2020) notes that
erasure should be different from ignorability, but only supports
erasure.

Compile-time irrelevance only. Pfenning (2001), Abel and Scherer
(2012). Type-sensitive definitional equivalence, so fewer arguments
can be ignored in types. Usage of variable in Π must match use in λ.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 20 / 25

Related Work

DDC is only type system with multiple, independent levels of irrelevance.
This distinction is essential for strong Σ-types with erasable first
components.

Both run-time and compile-time irrelevance, but no distinction
between them. ICC (Miquel 2001, Barras and Bernardo 2009),
Mishra-Linger Sheard (2008), Dependent Haskell (2017). Implicit
version omits irrelevant data. Explicit version relies on erasure.

Run-time irrelevance only. Brady (2004, 2013). Quantitative type
theory (McBride 2016, Atkey 2018). Generalizes to arbitrary semiring,
but does not track irrelevance in types. Tejǐsčák (2020) notes that
erasure should be different from ignorability, but only supports
erasure.

Compile-time irrelevance only. Pfenning (2001), Abel and Scherer
(2012). Type-sensitive definitional equivalence, so fewer arguments
can be ignored in types. Usage of variable in Π must match use in λ.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 20 / 25

Related Work

DDC is only type system with multiple, independent levels of irrelevance.
This distinction is essential for strong Σ-types with erasable first
components.

Both run-time and compile-time irrelevance, but no distinction
between them. ICC (Miquel 2001, Barras and Bernardo 2009),
Mishra-Linger Sheard (2008), Dependent Haskell (2017). Implicit
version omits irrelevant data. Explicit version relies on erasure.

Run-time irrelevance only. Brady (2004, 2013). Quantitative type
theory (McBride 2016, Atkey 2018). Generalizes to arbitrary semiring,
but does not track irrelevance in types. Tejǐsčák (2020) notes that
erasure should be different from ignorability, but only supports
erasure.

Compile-time irrelevance only. Pfenning (2001), Abel and Scherer
(2012). Type-sensitive definitional equivalence, so fewer arguments
can be ignored in types. Usage of variable in Π must match use in λ.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 20 / 25

Conclusion

We have syntactic proofs of noninterference and type soundness for
DDC, mechanized using Coq
http://github.com/sweirich/graded-haskell/

These proofs are for an arbitrary pure type system and do not require
the type system to be strongly normalizing. Future work: Prove
consistency and decidable type checking for some instance of DDC.

In DDC, indexed definitional equality is untyped. Future work: use a
type-sensitive equality.

Type system is general enough to support a lattice of run-time
security levels below C. Future work: propositional form of indexed
equivalence for reasoning about security-typed programs.

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 21 / 25

http://github.com/sweirich/graded-haskell/

Backup slides

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 22 / 25

Typing rules for DDC

Γ ` a :` A (DDC typing rules)

T-Var
`0 ≤ `

x :`0 A ∈ Γ
` ≤ C

Γ ` x :` A

T-Pi
Γ ` A :` s1

Γ, x :`A ` B :` s2
R(s1, s2, s3)

Γ ` Πx :`0 A.B :` s3

T-AbsC
Γ, x :`0∨`A ` b :` B

Γ ` (Πx :`0 A.B) :> s

Γ ` λx :`0 A.b :` Πx :`0 A.B

T-AppC
Γ ` b :` Πx :`0 A.B

Γ ` a :`0∨` A

Γ ` b a`0 :` B{a/x}

T-ConvC
Γ ` a :` A

|C ∧ Γ| ` A ≡C B

Γ ` B :> s

Γ ` a :` B

T-Type

` ≤ C A(s1, s2)

Γ ` s1 :` s2

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 23 / 25

Typing rules for DDC (continued)

Γ ` a :` A (Truncate at >)

CT-Leq

Γ ` a :` A ` ≤ C
Γ ` a :` A

CT-Top
C ∧ Γ ` a :C A C < `

Γ ` a :` A

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 24 / 25

Typing rules for Σ-types

T-SPair
C ∧ Γ ` Σx:`0A.B :C s

Γ ` a :`0∨` A Γ ` b :` B{a/x} `0 ≤ C
Γ ` (a`0 , b) :` Σx:`0A.B

T-LetPairC
Γ ` a :` Σx:`0A.B

Γ, x :`0∨`A, y :`B ` c :` C{(x `0 , y)/z} Γ, z :> (Σx:`0A.B) ` C :> s

Γ ` let (x `0 , y) = a in c :` C{a/z}
T-Proj1
Γ ` a :` Σx:`0A.B

`0 ≤ `
Γ ` π`01 a :` A

T-Proj2
Γ ` a :` Σx:`0A.B

`0 ≤ C
Γ ` π`02 a :` B{π`01 a/x}

Choudhury, Eades III, Weirich A Dependent Dependency Calculus LFCS 25 / 25

	Motivation
	Simple Types
	Dependent Types
	Examples

