A Dependent Dependency Calculus

Pritam Choudhury
Harley Eades IlI
Stephanie Weirich

University of Edinburgh LFCS
June 14, 2022

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependency Analysis

o Consider
z:%Int, y:7 Bool, z:" Bool I if zthen zelse 3 :M Int

where the type system is parameterized by a lattice (L < M < H)

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependency Analysis

o Consider
z:%Int, y:7 Bool, z:" Bool I if zthen zelse 3 :M Int

where the type system is parameterized by a lattice (L < M < H)

o Noninterference: If z:“ A+ b:%2 B and ¢ jé {5 then b cannot
depend on x during computation.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependency Analysis

o Consider
z:%Int, y:7 Bool, z:" Bool I if zthen zelse 3 :M Int

where the type system is parameterized by a lattice (L < M < H)

o Noninterference: If z:“ A+ b:%2 B and ¢ jé {5 then b cannot
depend on x during computation.

e Applications: Security types (information flow, provenance), Compiler
optimizations (binding-time analysis), etc.
Related to Dependency Core Calculus: Abadi et al. (1999), Sealing
Calculus: Shikuma and lgarashi (2006)

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 2/25

Goal: Irrelevance in Dependent Type Theories

o Generalize dependency analysis to dependent type systems

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Goal: Irrelevance in Dependent Type Theories

o Generalize dependency analysis to dependent type systems
@ Why? Use dependency to track two forms of irrelevance
o Run-time irrelevance: some parts of terms can be erased before

execution
o Compile-type irrelevance: some parts of terms can be ignored when

checking type equivalence

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependency and simple types

SDC-VAR
by </
0 AeT

'z A

SDC-ABS
Iz‘A- b B

' Xz:Ab:f A B

(Simple types)

SDC-Aprp
r'+b:*A—>B

'a: A
'ba:!‘B

Choudhury, Eades IIl, Weirich

A Dependent Dependency Calculus

Dependency and simple types

SDC-VAR
by </
0 AeT

'z A

(Simple types)

SDC-Aprp
SDC-ABS r'-s:*4-B
Iz‘A- b B 'ta:f A
't X\z:Ab:* A— B 'ba:B

Internalize judgment with graded modal type
T* A describes terms of type A checked at least at level ¢,

Choudhury, Eades IIl, Weirich

A Dependent Dependency Calculus

Dependency and simple types

(Simple types)

SDC-VAR SDC-Aprp
by < ¢ SDC-ABS r'-b:*!4—-B
zPAel L,z‘A+ b B I'a:tA
r-z:44 ' Xe:Ab A B '-bva:!B
SDC-BIND
SDC-RETURN Tk a:fThA
Ik a2V 4 Dz:YAr b ' B
IEnpfoa:fTh 4 'k bind®z =ainbd * B

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependency and simple types

(Simple types)

SDC-VAR SDC-Aprp
by < ¢ SDC-ABS r'-b:*!4—-B
zPAel L,z‘A+ b B I'a:tA
r-z:44 ' Xe:Ab A B '-bva:!B
SDC-BIND
SDC-RETURN Tk a:fThA
Ik a2V 4 Dz:YAr b ' B
IEnpfoa:fTh 4 'k bind®z =ainbd * B

. .. . A . .
Equivalent elimination form: unseal®q £ bind® z = a¢inz

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependency and simple types

(Simple types)

SDC-VAR SDC-Aprp
by < ¢ SDC-ABS r'-s:*!4-B
zA4el L,z*A- b B 'ta:f A
'taz:4 ' A\z:Ab:* A—B 'ba:B
SDC-BIND
SDC-RETURN Tk a:‘ThA
'k g Vo 4 F,x:eveoAl—b:ZB
Ik plogf T 4 L'k bind®z =ainbd :* B

SEALING-UNSEAL
FhadfTOA fp<t

I' - unseal®q £ A

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Noninterference

Define indexed indistinguishability as when

e o and b differ only in subterms marked by 1, where =(¢y < /),

@ outside of marked subterms, a and b only use variables z: {y € ®,
where ¢y < /.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Noninterference

Define indexed indistinguishability as when

e a and b differ only in subterms marked by 1’0, where =(£y < ¢),

@ outside of marked subterms, a and b only use variables z: {y € ®,
where ¢y < /.

Public observers (at level L) are oblivious to secret data (marked H).

f: Lt f (n" True) ~, f (n" False)

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Noninterference

Define indexed indistinguishability as when

e o and b differ only in subterms marked by 1, where =(¢y < /),

@ outside of marked subterms, a and b only use variables z: {y € ®,
where ¢y < /.

Public observers (at level L) are oblivious to secret data (marked H).

f: Lt f (n" True) ~, f (n" False)

High-level observers can make more distinctions.

f: L+ f (n" True) £y f (n™ False)

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Noninterference

Define indexed indistinguishability as when

e o and b differ only in subterms marked by 1, where =(¢y < /),

@ outside of marked subterms, a and b only use variables z: {y € ®,
where ¢y < /.

Public observers (at level L) are oblivious to secret data (marked H).

f: Lt f (n" True) ~, f (n" False)

High-level observers can make more distinctions.

f: L+ f (n" True) £y f (n™ False)

Indexed indistinguishability is an equivalence relation and closed under
substitution.

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus

Syntactic proof of Noninterference

Theorem (Operational semantics respects indexed indistinguishability)

If ® - a3 ~p af and ay ~ ay then there exists some a), such that aj ~ a,
and ® - ay ~y aj.

Choudhury, Eades Ill, Weirich

A Dependent Dependency Calculus

Syntactic proof of Noninterference

Theorem (Operational semantics respects indexed indistinguishability)

If ® - a3 ~p af and ay ~ ay then there exists some a), such that aj ~ a,

and ® - ay ~y aj.

| A\

Corollary

Given z:H A+ b :L' Int and @ & a1, a3 -7 A, if - b{ay/z} ~* v and
Fb{aa/x} ~~* vy then vy = vs.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 8/25

Label-indexed definitional equality

Define label-indexed definitional equality, ® - a =4 b as the congruence
closure of indexed indistinguishability by S-equality.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Label-indexed definitional equality

Define label-indexed definitional equality, ® - a =4 b as the congruence
closure of indexed indistinguishability by S-equality.

Lemma (Substitution)

Given ®,x: ly = by =p bs.
Q Ifly<land @t a3 =4 ay then D+ bi{ay/z} =4 ba{az/z}.
Q /f—|(€0 < 6) then ® bl{al/x} =y bg{ag/x}.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 9/25

Dependent Dependency Calculus (DDC)

@ DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels ¢

o IT and X types annotated with levels (ITz:* A.B and Xz:‘A.B)

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 10/25

Dependent Dependency Calculus (DDC)

@ DDC is a Pure Type System extended with an arbitrary lattice of

dependency levels ¢
o IT and X types annotated with levels (ITz:* A.B and Xz:‘A.B)

@ Y types encode labelled graded type: T A £ Yz:‘A.unit

LFCS 10/25

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels ¢

IT and X types annotated with levels (ITz:* A.B and Yz:‘A.B)
¥ types encode labelled graded type: T A £ Yz:‘A.unit

Lattice must have a distinguished element C, with L < C < T

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels ¢

IT and X types annotated with levels (ITz:* A.B and Yz:‘A.B)
¥ types encode labelled graded type: T A £ Yz:‘A.unit
Lattice must have a distinguished element C, with L < C < T

Definitional equality: @+ a =¢ b

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependent Dependency Calculus (DDC)

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels ¢

IT and X types annotated with levels (ITz:* A.B and Yz:‘A.B)
¥ types encode labelled graded type: T A £ Yz:‘A.unit
Lattice must have a distinguished element C, with L < C < T
Definitional equality: @+ a =¢ b

Dependency levels intuition
o Executable: T a:+ A4
e Comparable: TFa:© 4
o Irrelevant: T'Fa:T A

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Dependent Dependency Calculus (DDC)

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 10/25

DDC is a Pure Type System extended with an arbitrary lattice of
dependency levels ¢

IT and X types annotated with levels (ITz:* A.B and Yz:‘A.B)
¥ types encode labelled graded type: T A £ Yz:‘A.unit
Lattice must have a distinguished element C, with L < C < T
Definitional equality: @+ a =¢ b
Dependency levels intuition
o Executable: T'Fa:* A
e Comparable: TFa:© 4
o Irrelevant: THa:T A
Results about DDC (noninterference, type soundness) hold regardless
of termination.

Irrelevance for Dependent Types

Use lattice L <C < T
@ Dependency analysis for run-time irrelevance
e What parts of the program can we safely erase before execution?

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 11/25

Irrelevance for Dependent Types

Use lattice L < C'< T
@ Dependency analysis for run-time irrelevance

e What parts of the program can we safely erase before execution?
o Type check all “executable” parts of the program at level L and
“eraseable” parts at least at level C'

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 11/25

Irrelevance for Dependent Types

Use lattice L < C' < T
@ Dependency analysis for run-time irrelevance
e What parts of the program can we safely erase before execution?
o Type check all “executable” parts of the program at level L and

“eraseable” parts at least at level C'
o Noninterference tells us that erasure is safe

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Irrelevance for Dependent Types

Use lattice L < C'< T
@ Dependency analysis for run-time irrelevance

e What parts of the program can we safely erase before execution?

o Type check all “executable” parts of the program at level L and
“eraseable” parts at least at level C'

o Noninterference tells us that erasure is safe

@ Dependency analysis for compile-time irrelevance

e What parts of the program can we safely ignore when checking
equivalence?

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 11/25

Irrelevance for Dependent Types

Use lattice L < C' < T
@ Dependency analysis for run-time irrelevance
e What parts of the program can we safely erase before execution?
o Type check all “executable” parts of the program at level L and

“eraseable” parts at least at level C'
o Noninterference tells us that erasure is safe

@ Dependency analysis for compile-time irrelevance
e What parts of the program can we safely ignore when checking
equivalence?
o Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level T

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 11/25

Irrelevance for Dependent Types

Use lattice L < C' < T
@ Dependency analysis for run-time irrelevance
e What parts of the program can we safely erase before execution?
o Type check all “executable” parts of the program at level L and

“eraseable” parts at least at level C'

o Noninterference tells us that erasure is safe

@ Dependency analysis for compile-time irrelevance

e What parts of the program can we safely ignore when checking
equivalence?

o Type check all “comparable” parts of the program at most at level C
and all “ignorable” parts at level T

o Noninterference tells us that indexed equality is consistent

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 11/25

Polymorphic identity function
id :+ II x:"Type. x* -> x
id = M'x. Ayt v

Type parameter x is both eraseable and ignorable.
Term parameter y is neither.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 12/25

Polymorphic identity function
id :+ II x:"Type. x* -> x
id = M'x. Ayt v

Type parameter x is both eraseable and ignorable.
Term parameter y is neither.

To decrease clutter in examples, elide 1 labels

id : II x:"Type. x -> x
id = M'x. \y. vy

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Example

Polymorphic identity function

id : II x:"Type. x -> x
id = M'x. M\y. vy

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 13/25

Polymorphic identity function
id : II x:"Type. x -> x
id = M'x. M\y. vy

@ \-bound y (at level L) can be used in the body of the function.

@ \-bound z (at level T) cannot be used.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 13/25

Polymorphic identity function
id : II x:"Type. x -> x
id = M'x. M\y. vy

@ \-bound y (at level L) can be used in the body of the function.

@ \-bound z (at level T) cannot be used.

@ Label T on II-bound z describes level of A\-bound x.

@ II-bound x can be used in the body of the II-type.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Polymorphic identity function
id : II x:"Type. x -> x
id = M'x. M\y. vy

@ \-bound y (at level L) can be used in the body of the function.

@ \-bound z (at level T) cannot be used.

Label T on II-bound x describes level of A-bound z.
II-bound x can be used in the body of the II-type.

When evaluating id AT true can erase argument A

During type checking, if comparing id AT true and id B" true for
equality, can ignore A and B

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 13/25

Example: vectors (Haskell GADT-style)

Vec : Nat -> Type -> Type

Nil : Il n:"Nat. II a:'Type. (n ~ Zero) => Vec n a

Cons : Il n:"Nat. II a:'Type. Il m:'Nat. (n ~ Succ m) =>
a—>Vecma->Vecna

@ Applications of Nil and Cons can erase and ignore length and type
parameters. (Will elide from examples.)

o Applications of Vec cannot. (Shouldn't equate vectors with different
lengths/element types.)

@ In type of Nil and Cons, n and a can be used freely.

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus LFCS 14 /25

Example: vectors (Haskell GADT-style)

Vec : Nat -> Type -> Type

Nil : Il n:"Nat. II a:'Type. (n ~ Zero) => Vec n a

Cons : Il n:"Nat. II a:'Type. Il m:'Nat. (n ~ Succ m) =>
a—>Vecma->Vecna

@ Applications of Nil and Cons can erase and ignore length and type
parameters. (Will elide from examples.)

o Applications of Vec cannot. (Shouldn't equate vectors with different
lengths/element types.)

@ In type of Nil and Cons, n and a can be used freely.

vmap : II n:'Nat.IIl a b: Type. (a -> b) -> Vec n a -> Vec n b
vmap = A" n a b. A f xs.
case xs of
Nil -> Nil

Cons m' x xs -> Cons m' (f x) (vmap m" a' b’ f xs)

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 14 /25

Filter example

Suppose we have
-- type of wvector elements

a: ' Type
-- predicate to filter with

f: a -> Bool
Consider vector filter

filter : IIn:"Nat. Vec n a -> Ym: 'Nat. Vec m a

LFCS 15 /25

A Dependent Dependency Calculus

Choudhury, Eades IIl, Weirich

Filter example

Suppose we have
-- type of wvector elements

a: ' Type
-- predicate to filter with

f: a -> Bool

Consider vector filter

filter : IIn:"Nat. Vec n a -> Ym: 'Nat. Vec m a

filter = AT n. \ vec.
case vec of
Nil -> (Zero', Nil)

A Dependent Dependency Calculus

Choudhury, Eades IIl, Weirich

Filter example

Suppose we have

a: ' Type -- type of wvector elements
f: a -> Bool -- predicate to filter with

Consider vector filter

filter : IIn:"Nat. Vec n a -> Ym: 'Nat. Vec m a

filter = AT n. \ vec.
case vec of
Nil -> (Zero', Nil)
Cons n1' x xs
| £ x ->
let (m1', v1) = filter n1’ xs in

A Dependent Dependency Calculus

Choudhury, Eades Ill, Weirich

Filter example

Suppose we have

a: ' Type -- type of wvector elements
f: a -> Bool -- predicate to filter with

Consider vector filter

filter : IIn:"Nat. Vec n a -> Ym: 'Nat. Vec m a

filter = A n.)\ vec.
case vec of
Nil -> (Zero', Nil)
Cons n1' x xs
| £ x ->
let (m1', v1) = filter n1’ xs in
((Succ m1) T, Coms m1' x v1)

A Dependent Dependency Calculus

Choudhury, Eades Ill, Weirich

Filter example

Suppose we have

a: ' Type -- type of wvector elements
f: a -> Bool -- predicate to filter with

Consider vector filter

filter : IIn:"Nat. Vec n a -> Ym: 'Nat. Vec m a

filter = A n.)\ vec.
case vec of
Nil -> (Zero', Nil)
Cons n1' x xs
| £ x ->
let (m1', v1) = filter n1’ xs in
((Succ m1) T, Coms m1' x v1)
| otherwise -> filter nl' xs

A Dependent Dependency Calculus

Choudhury, Eades Ill, Weirich

Filter example

Suppose we have

a: ' Type -- type of wvector elements
f: a -> Bool -- predicate to filter with

Consider vector filter

filter : IIn:"Nat. Vec n a -> Ym: 'Nat. Vec m a

filter = AT n. \ vec.
case vec of
Nil -> (Zero', Nil)
Cons n1' x xs
| £ x ->
let (m1', v1) = filter n1’ xs in

((Succ m1) T, Coms m1' x v1)
| otherwise -> filter nl' xs

This version is overly strict. Must filter entire list before returning

anything.

A Dependent Dependency Calculus

Choudhury, Eades IIl, Weirich

Filter example

Suppose we have

fst : Yx:‘A.B > A
snd : Ip:(Xx:‘A.B). B { fst p / x }

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 16 /25

Filter example

Suppose we have

fst : Yx:‘A.B > A
snd : Ip:(Xx:‘A.B). B { fst p / x }

filter : IIn:"Nat. Vec n a -> Ym:Nat. Vec m a
filter = AT n. \ vec.
case vec of
Nil -> (Zero, Nil)
Cons nl1' x xs
| £ x ->
((Succ (fst ys)), Cons (fst ys)' x (snd ys))
where
ys : ¥ m : Nat. Vec m a
ys = filter n1’ xs
| otherwise -> filter nl' xs

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 16 /25

Filter example

Suppose we have

fst : Yx:‘A.B > A
snd : Ip:(Xx:‘A.B). B { fst p / x }

filter : IIn:"Nat. Vec n a -> Ym:Nat. Vec m a
filter = AT n. \ vec.
case vec of
Nil -> (Zero, Nil)
Cons nl1' x xs
| £ x ->
((Succ (fst ys)), Cons (fst ys)' x (snd ys))
where
ys : ¥ m : Nat. Vec m a
ys = filter n1’ xs
| otherwise -> filter nl' xs

Can we mark m in the X-type as T (ignorable)?

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 16 /25

Filter example

Suppose we have

fst : Yx:‘A.B > A
snd : Ip:(Xx:‘A.B). B { fst p / x }

filter : IIn:"Nat. Vec n a -> Ym:Nat. Vec m a
filter = AT n. \ vec.
case vec of
Nil -> (Zero, Nil)
Cons nl1' x xs
| £ x ->
((Succ (fst ys)), Cons (fst ys)' x (snd ys))
where
ys : ¥ m : Nat. Vec m a
ys = filter n1’ xs
| otherwise -> filter nl' xs

Can we mark m in the X-type as T (ignorable)?
No! fst ys cannot be ignored in the type of snd ys.

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus LFCS 16 /25

Filter example

Use of C to mark eraseable but not ignorable data.

filter : IIn:"Nat. Vec n a -> Ym:“Nat. Vec m a
filter = AT n.)\ vec.
case vec of
Nil -> (Zero®, Nil)
Cons ni1' x xs
| £ x ->
((Succ (fst ys))®, Cons (fst ys)' x (snd ys))
where
ys = filter n1’ xs
| otherwise -> filter nl' xs

Three levels provides us with the precision that we need to write this code.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 17 /25

Type system in depth

T-ABsC T-AppC
I zVA-b B THob: Tz AB
Ik (z:"AB):" s ka4
CHAz:%Ab: TIz2AB T+ ba®:f B{a/z}
T-P1

r-4:4g Lz:XAF B¢ s R(s1, $2,53)
Iz A.B ¢ s

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus

Type system in depth

T-ABsC T-AppC
I zVA-b B THob: Tz AB
Ik (z:"AB):" s ka4
CHAz:%Ab: TIz2AB T+ ba®:f B{a/z}
T-P1

r-4:4g Lz:XAF B¢ s R(s1, $2,53)
Iz A.B ¢ s

@ Invariant: when T'+ a :Y A must have ¢ < C

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus

Type system in depth

T-ABsC T-AppC
I zVA-b B THob: Tz AB
Ik (z:"AB):" s ka4
CHAz:%Ab: TIz2AB T+ ba®:f B{a/z}
T-P1

r-4:4g Lz:XAF B¢ s R(s1, $2,53)
Iz A.B ¢ s

@ Invariant: when T'+ a :Y A must have ¢ < C
o DefineT'F a:T A using “resurrection”, ie. CATF a:¢ A

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Type system in depth

T-ABS T-AprrC
Lz Arb'B kb z:oAB
CATF (Ilz:% A.B) :“ s LFoa:vA
Tz Ab ‘Tz A.B '-ba:* B{a/z}
T-P1

I'A:fg I,z'A-B:s R(s1, $2,53)
1z A.B ¢ s

o TIz:* A.B acts a little like TTz: (T* A).B, so rule T-ABS looks like
rule SDC-BIND and rule T-APPC looks like rule SDC-RETURN.

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus LFCS 19 /25

Type system in depth

T-ABS T-AprrC
Lz Arb'B kb z:oAB
CATF (Ilz:% A.B) :“ s LFoa:vA
Tz Ab ‘Tz A.B '-ba:* B{a/z}
T-P1

I'A:fg I,z'A-B:s R(s1, $2,53)
1z A.B ¢ s

o TIz:* A.B acts a little like TTz: (T* A).B, so rule T-ABS looks like
rule SDC-BIND and rule T-APPC looks like rule SDC-RETURN.

o Important difference: z labelled with ¢ instead of ¢y VV £ in rule T-P1.

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus LFCS 19 /25

Type system in depth

T-ABS T-AprrC
Lz Arb'B kb z:oAB
CATF (Ilz:% A.B) :“ s LFoa:vA
Tz Ab ‘Tz A.B '-ba:* B{a/z}
T-P1

I'A:fg I,z'A-B:s R(s1, $2,53)
1z A.B ¢ s

o TIz:* A.B acts a little like TTz: (T* A).B, so rule T-ABS looks like
rule SDC-BIND and rule T-APPC looks like rule SDC-RETURN.

o Important difference: z labelled with ¢ instead of ¢y VV £ in rule T-P1.

@ To know result type of rule T-ApPpPC is well-formed, have

CAT,z:CAF B :© s, so label of a must be < C, motivating use
of “resurrection”

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus LFCS 19/25

Related Work

DDC is only type system with multiple, independent levels of irrelevance.
This distinction is essential for strong >-types with erasable first
components.

@ Both run-time and compile-time irrelevance, but no distinction
between them. 1CC (Miquel 2001, Barras and Bernardo 2009),
Mishra-Linger Sheard (2008), Dependent Haskell (2017). Implicit
version omits irrelevant data. Explicit version relies on erasure.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 20/25

Related Work

DDC is only type system with multiple, independent levels of irrelevance.
This distinction is essential for strong >-types with erasable first
components.

@ Both run-time and compile-time irrelevance, but no distinction
between them. 1CC (Miquel 2001, Barras and Bernardo 2009),
Mishra-Linger Sheard (2008), Dependent Haskell (2017). Implicit
version omits irrelevant data. Explicit version relies on erasure.

e Run-time irrelevance only. Brady (2004, 2013). Quantitative type
theory (McBride 2016, Atkey 2018). Generalizes to arbitrary semiring,
but does not track irrelevance in types. Tejis¢ak (2020) notes that
erasure should be different from ignorability, but only supports
erasure.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 20/25

Related Work

DDC is only type system with multiple, independent levels of irrelevance.
This distinction is essential for strong >-types with erasable first
components.

@ Both run-time and compile-time irrelevance, but no distinction
between them. 1CC (Miquel 2001, Barras and Bernardo 2009),
Mishra-Linger Sheard (2008), Dependent Haskell (2017). Implicit
version omits irrelevant data. Explicit version relies on erasure.

e Run-time irrelevance only. Brady (2004, 2013). Quantitative type
theory (McBride 2016, Atkey 2018). Generalizes to arbitrary semiring,
but does not track irrelevance in types. Tejis¢ak (2020) notes that
erasure should be different from ignorability, but only supports
erasure.

e Compile-time irrelevance only. Pfenning (2001), Abel and Scherer
(2012). Type-sensitive definitional equivalence, so fewer arguments
can be ignored in types. Usage of variable in IT must match use in A.

Choudhury, Eades Ill, Weirich A Dependent Dependency Calculus LFCS 20/25

Conclusion

@ We have syntactic proofs of noninterference and type soundness for
DDC, mechanized using Coq
http://github.com/sweirich/graded-haskell/

@ These proofs are for an arbitrary pure type system and do not require
the type system to be strongly normalizing. Future work: Prove
consistency and decidable type checking for some instance of DDC.

o In DDC, indexed definitional equality is untyped. Future work: use a
type-sensitive equality.

@ Type system is general enough to support a lattice of run-time
security levels below C. Future work: propositional form of indexed
equivalence for reasoning about security-typed programs.

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 21/25

http://github.com/sweirich/graded-haskell/

Backup slides

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus

Typing rules for DDC

(DDC typing rules)

T-VAR T-P1 , T ABSC
EOSE I'HA: S1 -ABS AW ¢

z:Ael L,z:tAF B s Iz AF b B

(t<C R(s1, 52, 3) I'F Iz A.B):" s
Ftz:‘4 Iz AB ¢ s LAz Ab: Tz AB

T-ConvC ,

T—APPCE , IFa: A T-TYPE
'Eb:"Tz:"° A.B |ICAT|FA=¢B

'k aq:vE A 'B:"Ts (1< C A(s1, $2)
L+ ba®:f B{a/z} I'a:*B TF s s

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 23 /25

Typing rules for DDC (continued)

I'Fa:fA (Truncate at T)
CT-LEQ CT-Top
F'tafd4 ¢<C CATFa:%4 C<¢
F'a:tA F'Fa:tA

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 24 /25

Typing rules for Y-types

T-SPAIR
CATFXzfoAB:C s

LFoa:vfA kb Bla/z} bh<C
T (a%, b) ! Yo0AB

T-LETPAIRC
I'Fa:Ye:A.B

D,z A !Bt c:f C{(z%,y)/z} [,z (Sz:A.B)FC:" s
THlet (z,y) = ain ¢:* C{a/z}

T-ProJl T-PRrR0J2
I'ta:!SzAB I'ta:!SzAB
by <Y lh<C
CH7toa:l A [k 7a:* B{x% a/z}

Choudhury, Eades IIl, Weirich A Dependent Dependency Calculus LFCS 25/25

	Motivation
	Simple Types
	Dependent Types
	Examples

