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Abstract

Dependently typed programming languages provide a mechanism
for integrating verification and programming by encoding invari-
ants as types. Traditionally, dependently typed languages have been
based on constructive type theories, where the connection between
proofs and programs is based on the Curry-Howard correspon-
dence. This connection comes at a price, however, as it is necessary
for the languages to be normalizing to preserve logical soundness.
Trellys is a call-by-value dependently typed programming language
currently in development that is designed to integrate a type the-
ory with unsound programming features, such as general recursion,
Type: Type, and others. In this paper we outline one core language
design for Trellys, and demonstrate the use of the key language
constructs to facilitate sound reasoning about potentially unsound
programs.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs

General Terms Design, Languages, Verification, Theory
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1. Introduction

When writing verified programs, there are two traditional ap-
proaches. Theorem provers like ACL2 and Isabelle are used to
perform verification externally [7, 15]. Programs are defined in-
dependently of the desired invariants, and then those invariants are
verified after the fact. In addition to external verification, languages
based on constructive type theory, such as Coq [18] and Agda [2]
also support encoding program invariants internally, using depen-
dent types. Specifications are tightly connected to code, and the
burden of external proof can be reduced.

For both approaches, general recursion (or the definition of par-
tial functions) poses challenges. Constructive type theories require
functions to terminate on all inputs, to preserve soundness of the
logic under the Curry-Howard isomorphism. Sophisticated tech-
niques, such as encoding possibly-diverging computations as co-
inductive data, are required to define truly partial functions [4]. Al-
ternatively, one can formulate a domain of definition for which the
functions are, in fact, total, using an accessibility predicate [1]. This
basic idea has also been used for higher-order logics [8]. Relatively
few theories have been proposed for direct reasoning about general
recursion; examples are LCF, LTC and VeriFun [3, 19? ].

The Trellys project is a collaborative research initiative to de-
sign a dependently typed programming language with direct sup-
port for general recursion and other features such as Type:Type,
which, like general recursion, are unsound under the Curry-Howard
isomorphism. The goal of Trellys is to bridge the gap between de-
pendently typed languages and program logics, allowing a pro-
grammer to utilize both internal and external verification tech-
niques in the presence of these unsound features.

Trellys is also intended as a practical programming language.
By removing the constraint that all programs terminate, we are
forced to consider details such as evaluation strategy, since the



termination behavior of a term in a language with general recursion
can vary if the reduction strategy is changed. For Trellys, we have
chosen call-by-value reduction because of the simplicity of the
cost model it provides. This choice has far reaching consequences
on the design of the logic used for verification in Trellys. In this
paper, we address and propose solutions to a number of the issues
encountered at this particular point in the design space: a call-by-
value dependently typed language with general recursion.

We identify several problems encountered when trying to inte-
grate dependent types with general recursion:

e How do we exploit the fact that inside programs, variables
bound in those programs range over values, while still allow-
ing quantification over all programs,' including ones which di-
verge?

The theory of call-by-value S-equality is fairly weak, given the
restriction that the argument to S-reduction be a value. How
can we strengthen this equality to include all arguments that
provably have values, but are not syntactically values?

The natural way to prove theorems like associativity of ap-
pend is by induction on the structure of a value. How can we
strengthen such theorems to apply to all programs, including
possibly diverging ones?

In solving these problems, we develop the main contributions of
this paper:

e We define a judgmental notion of value that distinguishes
variables contextually. This is accomplished by marking vari-
ables introduced during quantification by whether or not they
should be treated as values. The syntactic notion of value is
then changed to be a judgmental notion, which classifies those
variables as ranging over values or expressions, depending on
how they are marked in the context.

We integrate a notion of termination cast from our previous
work (see Section 3) with call-by-value reduction, so that pro-
grams which are proven to be terminating can be considered to
be values, for purposes of S-reduction.

We introduce a non-computational termination case form,
which allows us to case-split during reasoning on whether a
program terminates or diverges. Using this, many theorems can
be generalized to hold for all programs, not just terminating
ones. This generalization is quite useful in practice, as it means
that the theorems can be applied without needing to prove that
their arguments are terminating.

This paper concerns the expressiveness of dependently-typed
core languages. Its purpose is to explain these novel features
through examples, describing the problems that non-termination
and call-by-value reasoning bring to full-spectrum dependent type
systems, and informally describing how these features can provide
solutions to these problems. This paper discusses these ideas in the
context of the Sep®, one of several core language designs that we
are developing in the Trellys project. The Sep® core language is a
work-in-progress, and still under development. As a result it has
not been subject to metatheoretic study and proofs of standard type
system results (such as type soundness) are beyond the scope of
this paper.

The remainder of this paper is structured as follows. Section 2
provides a brief overview of a core language design for Trellys,
which we call Sep®, outlining the key design principles we fol-
lowed. In Section 3 we identify the connections between Trellys

' We write “program” for terms in the non-logical fragment of the language,
and write “proof” for terms in the logical fragment.

I'kFp:P
'Ft:T
I'kvalt
t1 —<m to

Proof p shows proposition P

Term t has type T

Term t is a value

Term t1 evaluates to t2 within m steps

Figure 2. Basic judgment forms

and prior work. In Sections 4 through 6 we detail the problems
identified above and present their associated solutions. Section 7
gives a brief overview of our experiences using a prototype imple-
mentation of Sep® and discusses an example proof. We conclude
and identify directions for future work in Section 8.

2. Language Overview

The Sep® language is one core-language that we are developing
to explore the design space of dependently typed languages. This
name is short for “separation of proof and program”, indicative of
the syntactic separation in the language between proofs and pro-
grams (and similarly, between propositions and types). Proofs can
mention programs, without invoking them. We dub this capability
“Freedom of Speech”. Conversely, programs can use proofs to help
demonstrate to the type checker that invariants expressed using de-
pendent types hold.

In the exposition and judgments that follow, we use a few con-
ventions to make the syntactic distinction clear. The metavariable
p refers to proofs; the metavariable P refers to propositions. Propo-
sitions classify proofs (i.e. p : P), in the sense that types classify
terms in the programming language. However, the programming
language has a collapsed syntax where terms and types are on the
same level, and are represented by the metavariables t and T. We
write t : T, even though t and T live in the same syntactic level.
Context distinguishes between t and T. We will use the syntactic
metavariable e to represent either proofs (p) or programs (t) and
the metavariable A to represent either propositions (P) or program
types (T).. The metavariables x, y, £, and q range over both program
and proof variables.

Below, we identify a number of major features of Sep® that
we use in the following sections. The syntax of the features of
Sep® that we discuss in this paper is summarized in Figure 1. The
semantics of Sep® is specified by the judgments listed in Figure 2.
We introduce the rules associated with these judgements as we
explain the relevant features of Sep®.

Although Sep® is quite verbose, the language is designed as a
core type theory, and we are willing to sacrifice programmer over-
head toward the goal of simplifying the pending meta-theoretical
study. As the examples later in this paper make apparent, writing
proofs and programs directly in the core language can be quite bur-
densome. However, we plan to eventually reduce this load with
surface-language features — such as proof tactics and integration
with automated reasoning tools — that can automate the insertion of
core-language annotations.

Annotations and Reduction ~As a core language, Sep® requires a
large number of annotations to ensure that typing is algorithmic.
Moreover, these annotations do not have computational content.
For example, changing the type of a term requires a programmer
to explicitly insert the cast into the program. The difficulty this in-
troduces is that such casts — which are only necessary for typing —
could potentially impact reduction. To simplify the definition of re-
duction on the programming language, we define a separate unan-
notated language (Figure 3) in which many of these annotations are
erased. Reduction for the program fragment is defined only over
this unannotated language. The unannotated language is largely a
simplification of the annotated language, so we use the same names



variables xy, £, q
natural numbers m,n
expressions e = plt
classifiers A P|T
proofs P m= x|\(x:A) =>p|p e abstraction and application
join m n equality axiom
valax t value axiom
termcase t {y} of abort — pl | ! — p2 fermination case
ord ordering axiom
ordtrans pl p2 ordering transitivity
ind £f(x : T) [ql. p induction
case t {y} pof C1 - pl ... Cn — pn case analysis
propositions P u=  forall (x : A). p quantification
tl = t2 equality
t! termination
t1 < t2 ordering
programs and types  t,T m= x| \(x:A) >t | te abstraction and application
(x:A) > T dependent function type
Type type of types
rec £(x:T1). t2 recursion
conv t by p at x.T conversion
\[x:A] -> t|t [p] implicit abstraction and application
[x:A] > T implicit function type
C data constructor
case t {y} of C1 — t1 ... Cn — tn case analysis
T t1 . tn datatype
abort T failure
| tcast t by p termination cast
contexts r = (0|, xA|T, xA™
Figure 1. Sep® basic syntax
unannotated programs wU = x| \x ->u|ul u2 abstraction and application

unannotated program values v

(x:A) > U

Type

rec f(x). u

C

case u {y} of C1 — ul
T ul . un

abort

tcast t

. Ch — un

n= 0 \x > u |

(x:A) > U
Type

rec f(x). u
C vl . vn
T vl . vn
tcast u

dependent function type
type of types

recursion

data constructor

case analysis

datatype

failure

termination cast

abstraction

dependent function type
type Of types

recursion

constructions

datatype

termination cast

Figure 3. Sep® unannotated syntax



| = x
c| = C
\(x:T) -> t] = \x —> |t|
\[x:Al -> t = |t
\(x:P) -> t] = |t
rec f(x:t). t| = rec £(x). |t]
t1 t2] = |t1]|t2|
t1 [t2]] = |t1]
t1 p = |t1]
conv t by p at x.T| = |t
case t {y} of C1 — t1 ... Cn — tn| = case [t| {y} of C1 — [t1| ... Cn — |tn|
tcast t by p| = tcast |t]
abort t| = abort
(x:4) -> T| = (x:|aAD) > |T|
[x:A] -> T| = (x:|A) -> |T|
Type| = Type
Figure 4. Erasing annotated programs to unannotated programs.
to represent similar constructs in both languages, using the context [ta] =" t5  [t2] ="ty 1 =a t5 .
to distinguish between annotated and unannotated terms. T'F joinmn:t; = t» TJoin
The erasure function | - | (Figure 4) maps annotated programs to
unannotated programs. Note that, in addition to erasing type anno- PFp:ti=ty DI'Fes:[tl/x]es
tations on abstractions and casts (conv), the erasure function also TConv

drops all proofs. This is because proofs in Sep® are purely specifi-
cational, and do not have any run-time behavior. Nevertheless, we
define reduction on the proof language because it is relevant to the
(future work) meta-theoretical study of the proof language, e.g. a
consistency proof.

Erasure drops all proofs from the annotated language, but Sep®
also provides a mechanism for a programmer to specify which pro-
grams should be preserved across erasure, by allowing abstractions
and applications to be annotated as compile time or run time. For
example, type arguments to polymorphic functions generally do
not contain computational content and are annotated as compile
time. In the concrete syntax of the language presented in this paper,
compile time abstractions are marked by wrapping the abstraction
variable and type annotation with square brackets, as shown in the
definition of id below. Similarly, applications to compile-time ar-
guments are marked with square brackets, as in the Nat type argu-
ment to id in the definition of zero below.”

id = \[a:Typel] -> \(x:a) -> x
zero = id [Nat] Z

Applications and abstractions marked as compile time are
erased before executing a program, including when proving terms
equal using join. Erasing compile-time annotations allow proofs
of equality to be constructed without reasoning about specifi-
cational data. For example, equality between two constructions
of VCons ’a’ (VCons ’b’ VNil) indexed by different lengths
(e.g. plus (S 2) Z and (S Z)) can be proved without reason-
ing about equalities of addition if the length index is marked
compile-time. This adapts ideas on erasure from several previous
works [10, 12, 17].

Equality Formulas The Sep® proof language includes a prim-
itive formula representing the propositional equality of two pro-
grams, written t; = t,. A proof of an equality is given by the term
join n m where n and m are meta-level natural numbers serving as
upper bounds on the number of reductions steps that the respective
terms will take when deciding equality. The typing rule for join is
shown as TJoin in Figure 5. This rule makes use of the function | - |

2 For abstraction over proofs, and application of programs to proofs, the
square brackets are unnecessary, as these arguments will always be erased

I'+ convel bypat x. e2: [t2/x]e2

Figure 5. Join and Conversion Typing Rules

that erases type annotations and implicit arguments. If a term in an
equality proved by join reduces to a normal form or a stuck term
in fewer steps than the bound given as an argument to join, then
we compare that stuck term or normal form with the term resulting
from reducing the other side of the equality in a similar manner.
Equalities can be proved between terms that are non-terminating,
provided that the two terms are joinable in a number of steps less
than or equal to the given bounds. Furthermore, equalities can be
proved between open terms; in this sense the joinability relation
relies on the partial evaluation of terms.

Conversion Sep® programs and proofs can utilize equalities to
change the type of a given proof or program. The type rule for
conversion is shown in Figure 5.

Syntactically, a conversion has the form conv e by p at x.e’,
where x is a variable possibly occurring free in e’, and p is a proof
of an equality t1 = t2. This will cast the expression e from the
type [t1/x]e’ to [t2/x]e’.

Consider the example of a length-indexed vector, v of length
plus Z n. Using join, we can construct a proof that plus Z n = n
in a bounded number of steps. Using a conv, we can then cast
the type of v from Vector [a] [plus Z n] to Vector [a] [n] by
changing the index from plus Z n to n using the supplied equality
proof.

conv v by (join 10 O
at x. Vector a x

plus Z n = n)

Conversion in Sep® is not automatically inferred. Casts must be
supplied by the programmer. This is because conversion is based on
equality between programs and it is not possible to decide equality
of programs, since they may not terminate.

Termination Reasoning Termination of programs is expressed
with the termination formula, t!, indicating a term t is total. Ter-
mination proofs can be constructed in two ways. First, terms which
can be judged (see Section 4) to be values, can trivially be proved
terminating using the valax (pronounced “value axiom”) form. The
typing rule for valax is shown in Figure 7. This includes terms



which are syntactic values. Furthermore, termination proofs can be
introduced using a termination case proof construct, termcase, that
non-constructively case-splits on the termination behavior of a term
(see Section 6).

Recursion and Induction The Sep® programming language in-
cludes a rec form for defining general recursive functions. This
construct does not constrain the arguments to recursive calls, poten-
tially allowing diverging computation. The proof language, in con-
trast, provides an ind form for induction over programs. This form
requires the argument to recursive calls to be strictly decreasing in
size. Recursive invocations of the formula must provide a proof of
this, written t’> < t, constructed using the ord form (Figure 6). An
ordering can only be constructed between a known terminating data
structure and one of its immediate sub-terms, ensuring that the in-
duction is well-founded. A ordtrans construct allows induction to
proceed on data that is not an immediate sub-term of its parent. The
typing rules for rec, ind, ord, and ordtrans are shown in Figure 6.

Effects Tn the current Sep® design, we do not provide a primitive
language mechanism for handling effects such as imperative state
and exceptions. We instead assume that these effects can be en-
coded monadically. This design decision may lead readers to ques-
tion why we handle non-termination in a special manner, when it
can be encoded as a monadic effect as well. Our response is one of
intent — in this design we’re interested in allowing non-termination
not necessarily because we want to define non-terminating com-
putations, but rather because general recursion is often the most
straightforward way to define functions of interest, regardless of
whether they terminate. Type theories that require termination of
all functions in contrast take the approach of requiring all functions
to terminate, and then allowing an encoding of non-termination. In
the Sep® design, we allow a programmer to define functions di-
rectly with general recursion, and then later prove termination sep-
arately. These positions occupy two different points in the design
space; we believe that the Sep® design offers the advantage of in-
crementality.

3. Related Work

It is surprising that relatively few works and systems are concerned
with external reasoning for call-by-value, general-recursive higher-
order functional programs. Indeed, we are aware of no prior theo-
rem proving systems which exactly address this very natural prob-
lem! NuPRL might be the closest, since it supports external rea-
soning about higher-order functional programs with general recur-
sion, but it appears that the semantics is lazy rather than call-by-
value [5]. The logics of theorem provers like Coq and Isabelle re-
quire all functions to be terminating, and then need not (and do
not) include a particular reduction strategy as part of their seman-
tics [15, 18]. ACL2 also requires totality of functions [11]. As men-
tioned above, there are methods for defining and reasoning about
general-recursive functions, but these require a non-trivial encod-
ing, for example, using co-inductive data types, domain predicates,
or domain theory [4, 8? , 9]. Systems or theories for direct reason-
ing about general-recursive functions seem to be less widely used
or known. LTC supports explicit reasoning about totality, conver-
sion, and typing for (untyped) PCF programs (for a recent work on
LTC, see [3]). Equality is based on conversion, rather than reduc-
tion, and hence no reduction strategy is privileged in the axioma-
tization of the theory. VeriFun supports reasoning about general-
recursive, possibly underdefined functions [19]. The language of
VeriFun does have call-by-value semantics and polymorphic types,
but only first-order functions. Feferman’s System W is a logical
theory intended for the formalization of mathematics [6, Chap-
ter 13]. Its language for function definition uses a (generally non-
computable) search operator in place of general recursion, and its

theory, like LTC, is based on conversion rather than reduction. The
CFML tool automatically extracts a formula from an OCaml pro-
gram that can be used for verification in Cogq. It’s used for external
verification only, and not for a dependently-typed language [? ].

The Ynot system, based on Hoare Type Theory, is a generaliza-
tion of Hoare Logic to higher-order functional programs with gen-
eral recursion, state, and call-by-value semantics [13, 14]. Thus,
Ynot provides an internal verification solution to the problem of
interest in this paper, and indeed to the further difficult matter of
reasoning about state. But, to our knowledge, Ynot is not intended
for external reasoning about programs; rather, it uses a monad in-
dexed by pre- and post-conditions on the imperative state in order to
perform internal verification of programs. Previous work of Stump
and co-authors on Guru has similar goals as Sep®, with a similar
language design separating proofs and programs, and using termi-
nation casts with a judgmental notion of value [16, 17]. But in those
works, quantifiers range only over values, rather than arbitrary pro-
grams; there is no construct for termination case; and the issue of
call-by-value S-reduction is not addressed. Indeed, the Guru im-
plemer%tation unsoundly allows S-reduction with non-value argu-
ments.”

4. A Value Judgment

In Sep>, we syntactically classify some programs as values, as is
usual when defining a language. Typically, in a call-by-value lan-
guage like Sep® variables are identified as values, since the oper-
ational semantics of the language dictates that when instantiating
a quantification the term used for the instantiation be reduced to a
value before the instantiation takes place. Hence, inside the body of
the quantification, the quantified variable can be assumed to range
over values, since it will only be instantiated by values.

However, in Sep® we must distinguish between quantification
in the program fragment and in the proof fragment: variables intro-
duced by quantification in programs will only be instantiated with
values, while logical quantification of programs is over program
expressions, not values. The distinction is important, because it en-
ables our “freedom of speech” principle. Proofs can mention pro-
grams without the expectation that those programs will be reduced
(which would be dangerous if they diverged). If it were necessary
to reduce programs to values to instantiate a proof quantifying over
programs, then one of two strategies would be required.

1. The operational semantics of the proof language defined for
meta-theoretical study would use a call-by-value S-reduction
rule. Then the soundness of the proof fragment would depend
on termination of the program fragment, but allowing non-
termination of the program fragment is an explicit goal of the
Sep® language design.

2. The second possibility is to only instantiate theorems about
known terminating programs, perhaps by requiring a syntactic
value restriction on applications of theorems quantified over
terminating programs. This restriction, while sound, reduces the
expressiveness of the language, as there are many theorems that
are true regardless of whether it is possible to reduce programs
those theorems quantify over to values. For example plus x Z
= x regardless of whether x terminates. If x diverges then both
sides of the equality diverge, and are hence still equal.

For Sep®, we modify the definition of the set of terms which are
values. Rather than a simple syntactic definition, we instead utilize
a judgmental definition of value, allowing the context to be used
when determining whether a term is a value. Figure 7 shows the

3 This issue with the Guru implementation, discovered in the course of the
current research on Sep?, is currently being repaired.



Ix:T,f:forall(y:T)(.:y <x).[y/x]PFp:P
I'Findf (x:T) [u].p: forall(x: T)(u: x!).P

TInd

Dyx:T,f:(x:T1) > Tabt: T

F}_p12t1<t2 F}_p21t2<t3

I'twvalt; T'Fwvalt, F}_pltz =Ciup...t1...1u

TOrdTrans

I'F ordtrans p; p2 : t1 < ts3

Pkrecf(x:Ti)t:(x:T1) > Ts TRec Thordp:ti <t» TOrd
Figure 6. Induction and Recursion Typing Rules
Dx:T® g T TLamP I'p:tl!
amPro Cr .
FE\(x:T)—>t:(x:T) > T & F,y.t—le—pl,P
Ix:Nat"™,y:t = Sxbkpy:P
T Thkp:P 't :Nat
X P TCaseProofNat

PF\(x:T)=p: forall(x:T).P TLamProof
I'valt

I'tvalaxt:t! TValAx

Figure 7. Typing rules for quantification and valax

x:A® el

Trvalx VYT

Ikval\x:At ValLam

Vi.T' F val t;
I'FvalCto ... ta

ValCons

' val tcast t by p ValTCast

Figure 8. Selected Value Judgment Rules

rules for quantification over programs in both the proof and pro-
gram languages. In the case of quantification in the proof language
(rule TLamProof), the quantification variable is added to the con-
text without a value annotation. Conversely, in the program frag-
ment (rule TLamProg) the quantification is added with an addi-
tional val annotation on the typing assumption.

The value judgment for programs (Figure 8) includes a rule,
ValVar, which identifies a variable as a value if it occurs in the con-
text with a val annotation. The value judgment includes a number
of axioms for each syntactic value form. We also show a repre-
sentative subset of syntactic forms that are axiomatically judged
values; others not depicted include dependent products, recursive
functions, and the classifier Type. Programs that can be judged to be
values can be proved to be terminating using the valax construct.
The typing rule for valax is shown in Figure 7. As an example,
we can construct a proof p : S z ! for a ground constructor value
S z, which is judgmentally a value. More interestingly, if we have
x : Nat®! in context, then we can prove S x ! using valax.

The ValCons rule identifies a constructor application to argu-
ments, each judged as values, to be judged as a value. We utilize
this rule when typing case expressions in proofs scrutinizing pro-
gram values. When case-splitting on a program value in a proof, it
is necessary to supply a proof to the case expression that the scruti-
nee terminates, to ensure that divergence of programs does not leak
into the proof language. We are guaranteed (by virtue of the termi-
nation proof) that the scrutinee will terminate, so we are also guar-
anteed that the normal form of the scrutinee will be a construction
with arguments that are values. Thus, when performing reasoning

I'caset{y}pofZ—pi|Sx—p2:P

Figure 9. Typing for Case in Proofs, Specialized to Nat

within a case branch, the pattern variables for the case branch will
necessarily be instantiated with values. Consequently, when adding
those variable to the context when type checking a case branch, we
mark those variables as values, as shown in the ProofCase rule in
Figure 9.

5. Evaluation with Termination Cast

In Sep®, propositional equalities are proved using the join con-
struct, which forms equalities by evaluating the erasure of each
side of the equality to a normal form, a stuck term, or a maximum
number of steps and then comparing the resulting terms modulo
a-equality. This means that join depends on call-by-value reduc-
tion of programs, where S-reduction can only be performed in a
context where the function argument is a value. However, reason-
ing in proofs is often over open terms, where variables occurring
in the propositional equalities range over programs which need not
be values. Variables representing quantification over programs are
not treated as values due to the freedom-of-speech principle. This
principle was designed to allow proofs to quantify over programs,
including those that diverge.

Unfortunately, quantifying over all programs, not just values,
causes difficulty. Evaluating expressions which include free pro-
gram variables introduced by quantifiers in proofs will result in a
stuck term whenever such a variable occurs in the argument po-
sition of a B-redex. We want to reason about terms, but our most
powerful tool (reasoning about equality under S-reduction), is re-
stricted because the programs we wish to reason about might pos-
sibly diverge.

Consider the following theorem, that expresses that the poly-
morphic identity function is, in fact, an identity.

type id [a:Type]l -> (y:a) -> a
prog id = \[a:Typel(y:a) -> y

theorem id_is_id :

forall (a:Type)(x:a).id [al x = x
proof id_is_id =

\(a:Type)(x:a) => join 100 O

This proof fails because the two terms are not joinable. The
reduction sequence shown below demonstrates the problem.

id [a]l x {by erasure}
id x {by def. of id}
Ay.y) x A

The B-redex (\y.y) x is blocked because the Sep® program-
ming language has a call-by-value semantics, and the variable x
is not a value, as it was introduced by a proof quantification. The
equality proved by join is too fine, because it can only equate terms



THt:T Thkp:t!
I'tcasttbyp: T

TTCast

E[tcast v] — Ejv] L CastVal

E[(\xu) v] — E[v/xq COCt

Figure 10. Termination cast typing and reduction rules

based on joinability using the call-by-value reduction semantics of
the programming language.

Consider the above example if a call-by-name evaluation strat-
egy were used when proving equalities using join. The blocked -
redex (\y.y) x would step, because it is not necessary to reduce the
argument to an application to a value prior to S-reduction. Making
such a change would be unsafe, however, because it could allow us
to observe different termination behaviors of the program, depend-
ing on whether the program is being reduced inside a proof (using
call by name) or during actual execution (using call by value).

To illustrate, consider the term (\x:Nat.Z) loop, where loop
stands for any diverging computation. Inside a proof, using a call-
by-name semantics we could prove (\x:Nat.Z) loop = Z, while
at run-time using call-by-value the program would diverge.

On the other hand, if the argument t to an application is known
to be terminating, because a proof p:t ! is available, then the
termination behavior of such an application will remain the same,
regardless of whether it is reduced using call-by-name or call-by-
value S reduction.

Sep?® provides a termination cast construct, tcast, that allows a
programmer to mark expressions as known to be terminating. The
tcast construct takes a program and a proof that the program has a
value. The typing rule for tcast is shown in Figure 10.

To allow reasoning over expressions including tcast terms, the
semantics of the programming language is augmented to allow an
application with a tcast argument to step, despite the subject of the
termination cast not necessarily being reduced to a value. In effect,
tcast allows a programmer to posit a hypothetical value that the
expression will reduce to, and then continue reduction based on
that hypothesized value. This allows the language to prove more
equalities than would be possible if tcast were not included.

Using tcast, a weaker form of the id_is_id theorem can be
proved. The theorem is weakened to only hold for terminating
arguments, by adding an additional parameter to the theorem that
proves x is terminating. The proof is shown below.

theorem id_is_id_term
forall (a:Type)(x:a)(x_term:x!).id [a]l x = x
proof id_is_id_term =
\(a:Type) (x:a)(x_term:x!) =>
join 100 O id [a] (tcast x by x_term) = x

In Section 4 we introduced a value judgment to differentiate
between variables introduced by proof abstractions from those in-
troduced by program abstractions. Using the value judgment, it is
possible to redefine the (3, to use the value judgment.

'k valv
E[(A x.u) v'] — E[[u'/x]u]

EBeta

This rule allows the reduction rule to reuse the value judgment,
but it comes at the cost of complicating the reduction relation. No
longer is reduction defined syntactically, but now it is a contextual
relation. The alternative approach, and the one we take in Sep?, is
to use the syntactic view of evaluation. We define a syntactic class
of values for reduction purposes that contains all of the syntactic

forms judged axiomatically to be values by the value judgment,
represented by the production v in Figure 3. Also included in this
syntactic category are programs wrapped with termination casts.
Variables are not classified as values, as before. If a term can be
judged a value, then it is possible to extract a term in this class of
syntactic values using a termination cast. For example, if a variable
x is judged a value (but would not be syntactically classified a
value), then tcast x by valax x is the associated syntactic value.
In this way, we simplify the reduction relation to use standard S,
over a class of syntactic values including tcast terms, while still
using the value judgment for typing.

When constructing a proof of equality using join, the terms
being equated are erased, as described previously. However, the
tcast terms are preserved (although the termination proof can be
dropped, as it has no computational content). Additionally, the
programming language semantics are extended with the ETCastVal
rule shown in Figure 10 that allows a tcast to be dropped when the
expression being cast is a syntactic value. This prevents tcast from
blocking a redex, as would be the case with (tcast \x.x by p) v.

Preserving termination casts during join reduction is necessary
to allow join to construct equalities between terms involving ex-
pressions that do not normalize to values. After terms are reduced
with join, they are compared modulo termination casts and renam-
ing of bound variables.

Preserving termination casts when reasoning about programs
using join may cause a term to take more reduction steps in-
side proofs, because the EBeta reduction step may duplicate tcast
terms requiring a non-zero number of reduction steps to normalize
to values. This need not introduce inefficiencies in compiled pro-
grams, because termination casts only occur in proofs, which are
erased during compilation.

6. Termination Case

Sep® includes a termcase (Figure 11) construct that allows a proof
to case-split on whether a scrutinized program terminates or di-
verges, with y bound as a proof of the corresponding termination
assumption in each branch. In the terminates (!) branch, y is a proof
that the scrutinee terminates. In the diverges (abort) branch, y is
a proof that the scrutinee is equal to abort, signifying divergence.
The typing rule TAbort, for abort in the annotated language, re-
quires an annotation t providing the type of the abort term. Re-
duction for abort is defined by the rule EAbort. If abort appears in
evaluation position, then the term immediately steps to abort. This
means that all provably diverging terms (identified by equivalence
to abort) are contextually equivalent.

The termcase construct is non-constructive, as it axiomatizes
excluded middle for termination, an undecidable property. The
construct is not computational, as the proof language reduction
rules for termcase defined by the ETermCaseAbort and ETerm-
CaseTerm rules listed in Figure 11 show.

Reduction of termcase relies on an unimplementable oracle
(represented by the premises of ETermCaseAbort and ETerm-
CaseEval) that can determine whether any given term normalizes
to a value. The construct can be viewed as an internalization of
the theorem of type soundness for the program fragment, relaxed
to partial correctness: if - t : T, then either t —* v (where v is a
syntactic value) and - v : T!, or else t diverges. This has already
been observed in Wright and Felleisen’s classic paper [20].

Using termcase we can strengthen proofs of algebraic theo-
rems, which are subject to termination preconditions, to stronger
theorems that do not require termination preconditions. As a sim-
ple example, we can return to the proof of id_is_id from Section 5.
To prove the theorem above, it is necessary to have a proof of ter-
mination available to tcast the variable x, so that the join proof
can succeed. Nevertheless, the theorem is valid for all inputs, irre-
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Figure 11. Termination Case Typing and Reduction Rules

spective of termination behavior. Using termcase, this theorem can
be strengthened.

theorem id_is_id :
forall (a:Type)(x:a).id [a]l x = x
proof id_is_id =
\(a:Type) (x:a) =>
termcase x {x_term} of
abort ->
let ul [ul_eq] = join 100 100
id [a]l (abort a) = (abort a)
in conv ul by x_term
at hole. (id [a] hole = hole)
| ! =-> id_is_id_term a x x_term

The proof does not require a separate lemma proving id to be
a total function on terminating inputs. This capability — proving
theorems about programs without proving those programs total —
is an important proof technique enabled by termcase. Although
id_is_id amounts to such a proof for this particular example,
in general termcase allows us to do algebraic reasoning without
resorting to proving termination of the functions we are reasoning
over.

7. Implementation and Experience

To gauge the feasibility of the Sep® language design, we have im-
plemented a prototype type checker and evaluator. This implemen-
tation has been useful in guiding the language design, and the de-
sign of Sep® and the implementation have continued to evolve in
tandem.

Sep? is designed as a core language, and requires a large num-
ber of programmer annotations to get the type checker to accept a
program. Requiring such a large number of annotations simplifies
the design of the language and the implementation of the tools, but
it complicates using the language, as the annotation burden is quite
great. A second goal of the Trellys project is to design a surface
language that allows many of the necessary core annotations to be
synthesized by a program analysis algorithm. Through use of the
core language implementation, we have identified some initial ap-
proaches to automating proof and program construction, reducing
the programmer burden.

The use of explicit conversion in Sep® requires a large num-
ber of programmer annotations to change the type of programs and
proofs. The process of proving an equality often involves construct-
ing a proof relating the desired left-hand side of an equality to some
intermediate term, changing the equality using a conversion, build-
ing another equality with the converted intermediate term and the
desired right-hand side, and then linking the two using transitivity

of equality. While a laborious and verbose task, the process is rel-
atively straightforward. We have implemented a small proof tactic,
morejoin that allows a programmer to specify a number of equal-
ity proofs. The morejoin tactic behaves in the same way as join,
but when a term is stuck it attempts to rewrite the term using one
of the supplied equalities and continue evaluating. This simple ap-
proach elaborates directly to the manual process described above,
yet has the potential to vastly simplify proofs. A small enhance-
ment to morejoin allows the programmer to also specify termina-
tion proofs, which will then be used to automatically insert termi-
nation casts to step blocked [3-redexes.

Figures 12-15 show an example proof of associativity of ap-
pend for lists using the prototype Sep® implementation. The proofs
liberally use morejoin to automatically insert conversions and ter-
mination casts when constructing equalities, rather than using the
more verbose join.

The proof of associativity of is by induction on the structure of
the list argument. Because the lists are programs, it is necessary to
provide proofs that the arguments to append terminate. The weak
form of the theorem is shown in Figure 14. The proof proceeds by
induction on xs, so it requires a proof that xs is terminating. Within
the body of the proof, we prove equalities involving the variables
ys and zs. Because these variables are quantified by a proof, they
range over expressions, so it is necessary to use termination casts,
inserted by morejoin using the supplied termination proofs, to
reduce terms involving these variables.

The proof uses an additional lemma (Figure 13) that proves
append total on terminating inputs. This is a convenience, to sim-
plify presentation, and could be avoided with additional reasoning
using termcase. For more complex functions, where the proof of
totality is not so straightforward, using termcase may be prefer-
able.

Because the programs xs, ys, and zs are all used in strict posi-
tions on both sides of the equality, the formula can be strengthened
to an equality over all program terms producing lists, regardless
of whether they terminate. Figure 15 shows the generalization of
the proof of associativity of append to potentially non-terminating
arguments.

The proof uses termcase to consider the termination behavior of
each argument in turn. In each abort branch, the EAbort rule allows
us to join an application of append to the diverging argument with
abort, demonstrating that both sides of the associativity formula
join with abort. In the final terminates branch, the context contains
proofs xs_term, ys_term, and zs_term that prove the associated
arguments are terminating. With these proofs available, the weaker
append_assoc lemma can be invoked.



data List : (a:Type) -> Type where
Nil : List a
| Cons : (x:a) -> (xs:List a) -> List a

type append : [b:Type]l -> (xs:List b) -> (ys:List b) -> List b
prog rec append [b:Typel (xs:List b) = \ (ys:List b) ->
case xs {xs_eql} of
Nil -> ys
| Cons x xs’ -> Cons [b] x (append [b] xs’ ys)

Figure 12. List Append

theorem append_term : forall(a:Type)(xs:List a)(xs_term:xs!)(ys:List a)(ys_term:ys!).(append [a] xs ys)!
proof ind append_term [a:Typel(xs:List a){xs_term} = \(ys:List a)(ys_term:ys!) =>
case xs {xs_eq} xs_term of

Nil -> let ul [ul_eq] = morejoin {sym xs_eq, xs_term, ys_term} : append [a]l xs ys = ys
in conv ys_term by (sym ul) at hole. hole !
| Cons x xs’ -> let ih [ih_eq] = append_term [a] xs’ (ord xs_eq : xs’ < xs) ys ys_term;
x_term [x_term_eq] = valax x : x!;
unroll_app [unroll_app] = morejoin {sym xs_eq,xs_term,ys_term }
append [a] xs ys = Cons [a] x (append [a] xs’ ys);
ul [ul_eql = value (Cons [al “x_term ~ih)

in conv ul by (sym unroll_app) at hole. hole !

Figure 13. Proof that append terminates on terminating inputs

theorem append_assoc_term
forall (a:Type) (xs:List a)(xs_term:xs!) (ys:List a)(ys_term:ys!)(zs:List a)(zs_term:zs!)
append [a]l xs (append [al ys zs) = append [a]l (append [a]l xs ys) zs
proof ind append_assoc_term [a:Typel](xs:List a){xs_term} =
\(ys:List a)(ys_term:ys!) (zs:List a)(zs_term:zs!) =>

let term_xs_ys [txy_eql = append_term [a] xs xs_term ys ys_term;
term_ys_zs [tyz_eq] = append_term [a] ys ys_term zs zs_term
in case xs {xs_eql} xs_term of
Nil ->
let ul [ul_eq] = morejoin {sym xs_eq, ys_term, xs_term}
ys = append [al]l xs ys;
u2 [u2_eq] = morejoin {sym xs_eq, xs_term}

append [a] xs (tcast (append [al] ys zs) by term_ys_zs)
= append [al ys zs;
u3 [u3_eql] = morejoin {sym xs_eq, xs_term, ys_term}
ys = append [a]l xs ys
in conv u2 by u3

at hole. append [a] xs (append [a]l ys zs) = append [a] hole zs
| Cons x xs’ ->
let unroll_app [ual] = morejoin {sym xs_eq,xs_term, term_ys_zs}

append [a] xs (append [al ys zs)

= Cons [al] x (append [a] xs’ (append [a] ys zs));
ih [ih_eq] = append_assoc_term [a] xs’ (ord xs_eq) ys ys_term zs zs_term;
ul [ul_eq] = conv unroll_app by ih at hole.

append [a]l xs (append [al] ys zs) = Cons [al] x hole;

u2 [u2_eql] = morejoin {sym xs_eq, xs_term, ys_term}

append [al]l xs ys = Cons [a]l x (append [al xs’ ys);
term_xs’_ys [tx_eq] = append_term [a] xs’ (valax xs’) ys ys_term;
u3 [u3_eq] = morejoin {sym xs_eq, xs_term,ys_term}

(append [a] (append [al xs ys) zs)
= (append [a] (Cons [a] x (append [a]l xs’ ys)) zs);
ud [u4_eql = morejoin {zs_term, ys_term, valax x, term_xs’_ys}
append [a] (Cons [a]l x (append [al xs’ ys)) zs
= Cons [a] x (append [a] (append [a] xs’ ys) zs);
u5 [ub_eq] = trans u3 u4 :
append [a] (append [a]l xs ys) zs
= Cons [a] x (append [al]l (append [al xs’ ys) zs)
in conv ul by (sym ub) at hole.
append [a]l xs (append [al]l ys zs) = hole

Figure 14. Associativity of List Append



theorem append_assoc

forall (a:Type) (xs:List a)(ys:List a)(zs:List a).
append [a] xs (append [a] ys zs) = append [a]

proof append_assoc =

\(a:Type) (xs:List a) (ys:List a) (zs:List a) =>

termcase xs {xs_term} of
abort ->
let aleft [al_eql = join 100 100

(append [a]l xs ys) zs

(append [a] (abort (List a)) (append [a] ys zs)) = (abort (List a));

aright [ar_eql = join 100 100

(abort (List a)) = (append [al]l (append [a] (abort (List a)) ys) zs);

ul [ul_eq] = +trans aleft aright
in conv ul by x_term at hole.
append [a] hole (append [a] ys zs) =
append [a] (append [a] hole ys) zs
o=
termcase ys {ys_term} of
abort ->
let aleft [al_eq]l = morejoin {xs_term}

(append [a] xs (append [a]l (abort (List a)) zs)) = abort (List a) ;

aright [al_eq] = morejoin {xs_term}
(append [a]l xs (abort (List a))) zs);

(abort (List a)) = (append [al
ul [ul_eq] = trans aleft aright
in conv ul by ys_term at hole.

append [a]l xs (append [a] hole zs)
append [a] (append [a]l xs hole) zs

[
termcase zs {zs_term} of
abort -> let aleft [al_eq] = morejoin {xs_term,ys_term}
(append [a]l xs (append [al] ys (abort (List a)))) = abort (List a);
a_x_y_term [axy_eql] = append_term a xs xs_term ys ys_term;
aright [ar_eq] = morejoin {xs_term,ys_term,a_x_y_term}
(abort (List a)) = (append [a] (append [a]l xs ys) (abort (List a)));
ul [ul_eq] = trans aleft aright

in conv ul by zs_term at
hole.

append [a] xs (append [a] ys hole) =

append [a] (append [a]l xs ys) hole
! -> append_assoc_term [a] xs xs_term ys ys_term zs zs_term

Figure 15. Generalizing associativity of list append to non-terminating arguments.

8. Conclusion

Trellys is a research project investigating the design of a depen-
dently typed programming language with call-by-value semantics
and general recursion. Sep® is a core language design for Trellys,
and occupies, to the best of our knowledge, a unique position in the
language design space. Sep® supports internal and external verifi-
cation, while not requiring a programmer to resort to indirect en-
codings to implement general recursive functions.

Sep® uses a syntactic distinction between the proof and pro-
gramming languages to isolate non-termination in the program-
ming language from the proof language. Despite the syntactic dis-
tinction proofs can mention programs in a sound way, a capability
dubbed “Freedom of Speech”.

Reasoning about programs with general recursion in a depen-
dently typed language requires a number of modifications to the
logic to ensure soundness while maintaining expressiveness. Vari-
ables can range, depending on context, over values or expressions,
so Sep® includes a value judgment to differentiate the two. Equal-
ity proofs are constructed using partial evaluation of open terms, so
termination casts are added to allow the programming language to
soundly extend call-by-value reduction over non syntactic values.
Many theorems are valid regardless of the termination behavior of
the terms the theorems quantify over, so a termination case expres-
sion allows us to express those theorems, and furthermore allows
us to reason about possibly diverging programs without proving
termination.

Trellys remains a work in progress, and Sep® represents one
attempt at defining a core language to support the desired goal of
combining dependent types and a call-by-value language including
general recursion. While the principal language design includes
the concepts presented here as well as many other features, much
work remains, most importantly the analysis of the meta-theoretical
properties of the language design. Other future work involves the
following topics.

e Sep® depends on a syntactic separation between the proof and
programming fragments of the language. The Trellys team
continues investigation into methods to remove this syntac-
tic distinction, including an internalized type representing the
proof/program classification of a term. This allows terms to
safely be migrated from the proof language to the program-
ming language, and vice-versa.

Sep? is designed as a core language, intended as an internal
source for meta-theoretical study and to ease implementation of
language processing tools. Core language proofs and programs
are verbose, requiring a programmer to add a large number of
explicit annotations. The Trellys project is investigating meth-
ods to automate the insertion of these annotations. We intend to
collect these methods to form the basis of a surface language
more amenable to programmer use.

A prototype implementation of the language design presented in
this paper is available athttp://code.google.com/p/trellys/



lib/sep. A type checker and evaluator for the core language are
in place, and continue to evolve to track minor changes to the lan-
guage design. The tool also contains a number of enhancements to
automate and simplify the use of the language.
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