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We present a full-spectrum dependently typed core language which includes both nontermination and
computational irrelevance (a.k.a. erasure), a combination which has not been studied before. The two
features interact: to protect type safety we must be careful to only erase terminating expressions. Our
language design is strongly influenced by the choice of CBV evaluation, and by our novel treatment
of propositional equality which has a heterogeneous, completely erased elimination form.

1 Introduction

The Trellys project is a collaborative effort to design a new dependently typed programming language.
Our goal is to bridge the gap between ordinary functional programming and program verification with
dependent types. Programmers should be able to port their existing functional programs to Trellys with
minor modifications, and then gradually add more expressive types as appropriate.

This goal has implications for our design. First, and most importantly, we must consider nonter-
mination and other effects. Unlike Coq and Agda, functional programming languages like OCaml and
Haskell allow general recursive functions, so to accept functional programs ‘as-is’ we must be able to
turn off the termination checker. We also want to use dependent types even with programs that may
diverge.

Second, the fact that our language includes effects means that order of evaluation matters. We choose
call-by-value order, both because it has a simple cost model (enabling programmers to understand the
running time and space usage of their programs), and also because CBV seems to to work particularly
well for nonterminating dependent languages (as we explain in section 1.1).

Finally, to be able to add precise types to a program without slowing it down, we believe it is essential
to support computational irrelevance—expressions in the program which are only needed for type-
checking should be erased during compilation and require no run-time representation. We also want to
reflect irrelevance in the type system, where it can also help reason about a program.



2 Irrelevance, Heterogeneous Equality, and CBV

These three features interact in nontrivial ways. Nontermination makes irrelevance more compli-
cated, because we must be careful to only erase terminating expressions. On the other hand CBV helps,
since it lets us treat variables in the typing context as terminating.

To study this interaction, we have designed a full-spectrum, dependently-typed core language with a
small-step call-by-value operational semantics. This language is inconsistent as a logic, but very expres-
sive as a programming language: it includes general recursion, datatypes, abort, large eliminations and
“Type-in-Type”.

The subtleties of adding irrelevance to a dependent type system all have to do with equality of ex-
pressions. Therefore many language design decisions are influenced by our novel treatment of propo-
sitional equality. This primitive equality has two unusual features: it is computationally irrelevant
(equality proofs do not need to be examined during computation), and it is “very heterogenous” (we can
state and use equations between terms of different types).

This paper discusses some of the key insights that we have gained in the process of this design. In
particular, the contributions of this paper include:

1. The presence of nontermination means that the application rule must be restricted. This paper
presents the most generous application rule to date (section 2.1).

2. Our language includes a primitive equality type, which may be eliminated in an irrelevant manner
(section 2.2).

3. The equality type is also “very heterogenous” (section 2.4), and we design a new variation of the
elimination rule, “n-ary conv”, to better exploit this feature (section 2.5). We also discuss how to
add type annotations to this rule (section 2.6).

4. We support irrelevant arguments and data structure components. We show by example that in
the presence of nontermination/abort the usual rule for irrelevant function application must be
restricted, and propose a new rule with a value restriction (section 2.3).

5. We prove that our language is type safe (section 3).

The design choices for each language feature affects the others. By combining concrete proposals
for evaluation-order, erasure, and equality in a single language, we have found interactions that are not
apparent in isolation.

1.1 CBV, nontermination, and “partial correctness”

There is a particularly nice fit between nonterminating dependent languages and CBV evaluation, be-
cause the strictness of evaluation partially compensates for the fact that all types are inhabited.

For example, consider integer division. Suppose the standard library provides a function

div : Nat → Nat → Nat

which performs truncating division and throws an error if the divisor is zero. If we are concerned about
runtime errors, we might want to be more careful. One way to proceed is to define a wrapper around div,
which requires a proof of div’s precondition that the denominator be non-zero:

safediv : Nat → (y:Nat) → (p: isZero y = false) → Nat

safediv = λx:Nat.λy:Nat.λp:(isZero y = false).div x y

Programs written using safediv are guaranteed to not divide by zero, even though our language is
inconsistent as a logic. This works because λ -abstractions are strict in their arguments, so if we provide
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an infinite loop as the proof in safediv 1 0 loop the entire expression diverges and never reaches the
division. In the safediv example, strictness was a matter of expressivity, since it allowed us to maintain
a strong invariant. But when type conversion is involved, strictness is required for type safety. For
example, if a purported proof of Bool = Nat were not evaluated strictly, we could use an infinite loop as
a proof and try to add two booleans. This is recognized by, e.g. GHC Core, which does most evaluation
lazily but is strict when computing type-equality proofs [28].

While strict λ -abstractions give preconditions, strict data constructors can be used to express post-
conditions. For example, we might define a datatype characterizing what it means for a string (repre-
sented as a list of characters) to match a regular expression

data Match : String → Regexp → ? where

MChar : (x:Char) → Match (x::nil) (RCh x)

MStar0 : (r:Regexp) → Match (nil) (RStar r)

MStar1 : (r:Regexp) → (s s’:String) →
Match s r → Match s’ (RStar r) → Match (s ++s’) (RStar r)

...

and then define a regexp matching function to return a proof of the match

match : (s:String) → (r:Regexp) → Maybe (Matches s r)

Such a type can be read as a partial correctness assertion: we have no guarantee that the function will
terminate, but if it does and says that there was a match, then there really was. Even though we are
working in an inconsistent logic, if the function returns at all we know that the constructors of Match

were not given bogus looping terms.
Compared to normalizing languages, the properties our types can express are limited in two ways.

First, of course, there is no way to state total correctness. Second, we are limited to predicates that can
be witnessed by a first-order type like Match. In Coq or Agda we could give match the more informative
type

match : (s:String) → (r:Regexp) → Either (Matches s r) (Matches s r → False)

which says that it is a decision-procedure. But in our language a value of type Matches s r → False is
not necessarily a valid proof, since it could be a function that always diverges when called.

2 Language Design

We now go on to describe the syntax and type system of our language, focusing on its novel contributions.
The syntax of the language is shown in figure 1. Terms, types, and sorts are collapsed into one

syntactic category as in the presentation of the lambda cube [6], but by convention we use uppercase
metavariables A,B for expressions that are types. Some of the expressions are standard: the type of types
? [9], variables, recursive definitions, error, the usual dependent function type, function definition, and
function application. The language also includes expressions dealing with irrelevance, datatypes, and
propositional equality; these will be explained in detail in the following subsections.

The typing judgment is written Γ ` a : A. The full definition can be found in appendix A.5. In the rest
of the paper we will highlight the interesting rules when we describe the corresponding language features.
The typing contexts Γ are lists containing variable declarations and datatype declarations (discussed in
section 2.3):

Γ ::= · | Γ,x : A | Γ,dataD∆
+ where{di : ∆i→ D ∆+ i∈1..j }
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x,y, f , p ∈ variables
D ∈ data types, including Nat
d ∈ constructors, including 0 and S

i, j ∈ natural numbers

expressions a,b,A,B ::= ? | x | rec f : A.a | abortA

| (x :A)→ B | λx : A.a | a b
| [x :A]→ B | λ [x : A].a | a [b]
| D Ai | d [Ai] ai | caseaas [y]of {dj ∆j⇒ bj

j∈1..k }
| a = b | joina=b i j | injdoma | injrng ab | injtconi a
| conv aat [∼P1/x1] ... [∼Pi/xi]A

telescopes ∆ ::= · | (x : A)∆ | [x : A]∆
expression lists ai ::= · | a ai | [a] ai

conv proofs P ::= v | [a = b]

values v ::= ? | x | rec f : A.v
| (x :A)→ B | λx : A.a
| [x :A]→ B | λ [x : A].a
| D Ai | d [Ai] vi

| a = b | joina=b i j | injdoma | injrng ab | injtconi a
| conv vat [∼P1/x1] ... [∼Pi/xi]A

Figure 1: Syntax of the annotated language
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expressions m,n,M,N ::= ? | x | rec f .u | abort
| (x :M)→ N | λx.m | m n
| [x :M]→ N | λ [].m | m[]

| DMi | d mi | casenof {dj xij⇒ mj
j∈1..k }

| m = n | join
telescopes Ξ ::= · | (x : M)Ξ | [x : M]Ξ
expression lists mi ::= · | m mi | [] mi

values u ::= ? | x | rec f .u
| (x :M)→ N | λx.m
| [x :M]→ N | λ [].m
| DMi | d ui

| m = n | join
evaluation contexts E ::= • | •m | u• | • [] | d ui •mi | case • of {dj xij⇒ mj}

m cbv m′

(λx.m) u cbv [u/x]m
SC APPBETA

(rec f .u) u2 cbv ([rec f .u/f ]u1) u2
SC APPREC

(λ [].m)[] cbv m
SC IAPPBETA

(rec f .u)[] cbv ([rec f .u/f ]u1)[]
SC IAPPREC

case(dl ui)of {dj xij⇒ mj
j∈1..k } cbv [ui/xil]ml

SC CASEBETA

m cbv n
E [m] cbv E [n]

SC CTX
E [abort] cbv abort

SC ABORT

Figure 2: Syntax and operational semantics of the unannotated language
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In order to study computational irrelevance and erasure, we define a separate language of unan-
notated expressions ranged over by metavariables m,M. The unannotated language captures runtime
behavior; its definition is similar to the annotated language but with computationally irrelevant subex-
pressions (e.g. type annotations) removed. This is the language for which we define the operational
semantics (the step relation cbv in figure 2). The annotated and unannotated languages are related by
an erasure operation | · |, which takes an expression a and produces an unannotated expression |a| by
deleting all the computationally irrelevant parts (figure 4). To show type safety we define an unannotated
typing relation H ` m : M and prove preservation and progress theorems for unannotated terms.

The relation cbv models runtime evaluation. However, in the specification of the type system we use
a more liberal notion of parallel reduction, denoted p. The difference is that p allows reducing under
binders, e.g. (λx.1+1) p (λx.2) even though (λx.1+1) is already a CBV value. The main reason for
introducing p in addition to cbv is for the metatheory: in order to characterize when two expressions
are provably equal (lemma 13) we need a notion of reduction that satisfies the substitution properties in
section 3.2, and we defined p accordingly. But because p allows strictly more reductions than cbv,
defining the type system in terms of p lets the programmer write more programs. Since the type safety
proof does not become harder, we pick the more expressive type system.

In summary, we use the following judgments:

Γ ` a : A Typing of annotated expressions
H ` m : M Typing of unannotated expressions
m cbv m′ (Runtime, deterministic CBV) evaluation
m p m′ (Typechecking-time, nondeterministic) parallel reduction

Nontermination and Error Before moving on to the more novel parts of the language we mention how
recursive definitions and error terms are formalized. Recursive definitions are made using the rec f : A.a
form, with the typing rule

Γ, f : A ` v : A Γ ` A : ?
A is (x :A1)→ A2 or [x :A1]→ A2

Γ ` rec f : A.v : A
T REC

With this rule the body of a well-typed rec-expression is always a value, but we leave it a general expres-
sion a in the syntax so that substitution [a/x]b is always defined. For simplicity the rule restricts A so that
a rec can only have a function type, disallowing (for example) recursive types or pairs of mutually recur-
sive functions. A typical use of the form will look like rec f : (x :A)→ B.λx : A.b. Rec-expressions are
values, and a rec-expression in an evaluation context steps by the rule (rec f .u) u2 cbv ([rec f .u/f ]u1) u2.
This maintains the invariant that CBV evaluation only substitutes values for variables.

In addition to nonterminating expressions, we include explicit error terms abortA, which can be given
any well-formed type.

Γ ` A : ?
Γ ` abortA : A

T ABORT

An abort expression propagates past any evaluation context by the rule E [abort] cbv abort. This is a
standard treatment of errors. General recursion already lets us give a looping expression any type in any
context, so it is not surprising that this is type safe. However, note that the stepping rule for abort could
be considered an extremely simple control effect. We will see that this is already enough to influence the
language design.
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m p m
SP REFL

m p m′

λx.m p λx.m′
SP ABS

m p m′

n p n′

m n p m′ n′
SP APP

m p m′

u p u′

(λx.m) u p [u′/x]m′
SP APPBETA

u1 p u′1
u2 p u′2

(rec f .u) u2 p ([rec f .u/f ]u′1) u′2
SP APPREC

Figure 3: Parallel reduction p (Excerpt).

2.1 CBV Program Equivalence meets the Application rule

Adding more effects to a dependently typed language requires being more restrictive about what expres-
sions the type system equates. Pure, strongly normalizing languages can allow arbitrary β -reductions
when comparing types, for example reducing (λx.m) n either to [n/x]m or by reducing n. This works
because any order of evaluation gives the same answer. In our language that is not the case, e.g.
(λx.3) abort evaluates to abort under CBV but to 3 under CBN. We can not have both equations
((λx.3) abort) = abort and ((λx.3) abort) = 3 at the same time, since by transitivity all terms would be
equal. Our type system must commit to a particular order of evaluation.

Therefore, as in previous work [13], our type system uses a notion of equality that respects CBV
contextual equivalence. Two terms can by proven equal if they have a common reduct under CBV
parallel reduction p. This relation is similar to cbv, except that it permits evaluation under binders
and subexpressions can be evaluated in parallel. The rules for λ -abstractions and applications are shown
in figure 3 (the remaining rules are in the appendix, section A.4). In particular, the typechecker can only
carry out a β -reduction of an application or case expression if the argument or scrutinee is a value. Note,
however, that values include variables. Treating variables as values is safe due to the CBV semantics,
and it is crucial when reasoning about open terms. For example, to typecheck the usual append function
we want Vec Nat (0+ x) and Vec Nat x to be equal types.

The possibility that expressions may have effects restricts the application rule of a dependent type
system. The typical rule for typing applications in pure languages is

Γ ` a : (x :A)→ B
Γ ` b : A

Γ ` a b : [b/x]B

However, this rule does not work if b may have effects, because then the type [b/x]B may not be well-
formed. Although we know by regularity (lemma 2) that (x : A)→ B is well-formed, the derivation of
Γ ` (x :A)→ B : ? may involve reductions, and substituting a non-value b for x may block a β -reduction
that used to have x as an argument. Intuitively this makes sense: under CBV-semantics, a is really called
on the value of b, so the type B should be able to assume that x is an (effect-free) value. Our fix is to add
a premise that the result type is well-formed. This additional premise is exactly what is required to prove
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type safety.
Γ ` a : (x :A)→ B
Γ ` b : A
Γ ` [b/x]B : ?

Γ ` a b : [b/x]B
T APP

This rule is simple, yet expressive. Previous work [29, 12, 27] uses a more restrictive typing for applica-
tions, splitting it into two rules: one which permits only value dependency, and requires the argument to
be a value, and one which allows an application to an arbitrary argument when there is no dependency.

Because our annotated type system satisfies substitution of values, both of these rules are special
cases of our rule above (proofs are in appendix B.7):

Lemma 1 (Substitution for the annotated language). If Γ1,x1 : A1,Γ2 ` a : A, then Γ1, [v1/x1]Γ2 `
[v1/x1]a : [v1/x1]A.

Lemma 2 (Regularity for the annotated language). If Γ ` a : A, then Γ ` A : ?.

Lemma 3. The following rules are admissible.

Γ ` a : (x :A)→ B
Γ ` v : A

Γ ` a v : [v/x]B
APP VAL

Γ ` a : A→ B
Γ ` b : A

Γ ` a b : B
APP NONDEP

2.2 Equality and irrelevant type conversions

One crucial point in the design of a dependently typed language is the elimination form for propositional
equality, conversion. 1 Given an expression Γ ` a : A and a proof Γ ` b : (A = A′), we should be able to
convert the type of a to A′. We write this operation as conv aat∼b.

In most languages, the proof b in such a conversion affects the operational semantics of the expres-
sion; we say that it is computationally relevant. For example, in Coq the operational behavior of conv
is to first evaluate b until it reaches refl eq, the only constructor of the equality type, and then step by
conv aat∼refl eq a.

However, relevance can get in the way of reasoning about programs. Equations involving conv

such as (conv aat∼b) = a are not easily provable in Coq unless b is refl eq. Indeed, because Coq’s
built-in equality is homogeneous, such equalities are often difficult even to state. This issue can be a
practical problem when reasoning about programs operating on indexed data. One workaround is to
assert additional axioms about equality and conversion, such as Streicher’s Axiom K [24]. The situation
is frustrating because the computationally relevant behavior of conversion does not actually correspond
to the compiled code. Coq’s extraction mechanism will erase b and turn conv aat∼b into just a. But the
Coq typechecker does not know about extraction.

Our language integrates extraction into the type-system, similarly to ICC* [7]. Specifically, we define
an erasure function | · | which takes an annotated expression a and produces an unannotated expression
m ≡ |a|. The definition of | · | is given in Figure 4. In most cases it just traverses a, but it erases type
annotations from abstractions, it deletes irrelevant arguments (see section 2.3), and it completely deletes
conversions leaving just the subject of the cast.

1Some authors reserve the word “conversion” for definitional equality. Our type system does not have a definitional equality
judgment, so we hope our use of the word does not cause confusion.
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|? |= ? |x|= x |rec f : A.v|= rec f .u
|abortA|= abort
|(x :A)→ B|= (x : |A|)→ |B| |λx : A.a|= λx.|a| |a b|= |a| |b|
|[x :A]→ B|= [x : |A|]→ |B| |λ [x : A].a|= λ [].|a| |a [b]|= |a|[]
|D Ai|= D |Ai| |d [Ai] ai|= d |ai|
|caseaas [y]of {dj ∆j⇒ bj

j∈1..k }| = case |a|of {dj xij⇒ |bj|
j∈1..k }

where xij are the relevant variables of ∆j

|a = b|= (|a|= |b|) |joina=b i j|= |injdoma|= |injrng ab|= |injtconi a|= join
|conv aat [∼P1/x1] ... [∼Pi/xi]A|= |a|

| · |= · |a ai|= |a| |ai| |[a] ai|= [] |ai|

Figure 4: The erasure function | · |

The unannotated system is used to determine when expressions are equal.

|a| ∗p n |b| ∗p n
Γ ` a = b : ?

Γ ` join : a = b
JOIN NO ANNOT

The rule says that the term join is a proof of an equality a = b if the erasures of the expressions a and
b parallel-reduce to a common reduct. Therefore, when reasoning about a program we can completely
ignore the parts of it that will not remain at runtime. (The rule presented above is somewhat simplified
from our actual system—it is type safe, but as we discuss in section 2.6 it needs additional annotations
to make type checking algorithmic.)

Erasing conversions requires a corresponding restriction on the conv typing rule. As we noted before,
conversion must evaluate equality proofs strictly in order to not be fooled by infinite loops, but if the
proofs are erased there is nothing left at runtime to evaluate. The fix is to restrict the proof term to be a
syntactic value:

Γ ` a : A Γ ` v : A = B
Γ ` B : ?

Γ ` conv aat∼v : B
VCONV

(We will discuss the third premise Γ ` B : ? in section 2.4). In the case where the proof is a variable
(for instance, the equalities that come out of a dependent pattern match), the value restriction is already
satisfied. Otherwise (for example, when the proof is the application of a lemma) we can satisfy the
requirement by rewriting (conv aat∼b) to (letx = b inconv aat∼x), making explicit the sequencing that
Coq integrates into the evaluation rule.

Most languages make conversion computationally relevant in order to ensure strong normalization for
open terms. If conversion is irrelevant, then in a context containing the assumption Nat = (Nat→ Nat)
it is possible to type the unannotated looping term (λx.x x) (λx.x x) since evaluation does not get stuck
on the assumption. Of course, in our language expressions are not normalizing in the first place.

Making conversions completely erased blurs the usual distinction between definitional and proposi-
tional equality. Typically, definitional equality is a decidable comparison which is automatically applied
everywhere, while propositional equality uses arbitrary proofs but has to be marked with an explicit
elimination form.
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There are two main reasons languages use a distinguished definitional equality in addition to the
propositional one, but neither of them applies to our language. First, if there exists a straightforward
algorithm for testing definitional equality (e.g., just reduce both sides to normal form, as in PTSs [6]),
then it is convenient for the programmer to have it applied automatically. However, our language has
non-terminating expressions, and we don’t want the type checker to loop trying to normalize them.

Second, languages where the use of propositional equalities is computationally relevant and marked
need automatic conversion for a technical reason in the preservation proof. As an application steps,
m n cbv m n′, its type changes from [n/x]N to [n′/x]N and has to be converted back to [n/x]N. Because
the operational semantics does not introduce any explicit conversion into the term, this conversion needs
to be automatic. However, in our unannotated language uses of propositional equations are never marked,
so we can use the propositional equality at this point in the proof.

2.3 Irrelevant arguments, and reasoning about indexed data

Above, we discussed how conversions get erased. Our language also includes a more general feature
where arguments to functions and data constructors can be marked as irrelevant so that they are erased
as well.

To motivate this feature, we consider vectors (i.e. length-indexed lists). Suppose we have defined the
usual vector data type and append function, with types

Vec (a:?) : Nat → ? where

nil : Vec a 0

cons : (n:Nat) → Vec a n → Vec a (S n)

app : (n1 n2 : Nat) → (a : ?) → Vec a n1 → Vec a n2 → Vec a (n1+n2)
app n1 n2 a xs ys =
case xs of

nil ⇒ ys

(cons n x xs) ⇒cons a (n+n2) x (app n n2 a xs ys)

Having defined this operation, we might wish to prove that the append operation is associative. This
amounts to defining a recursive function of type

app-assoc : (n1 n2 n3:Nat) →
(v1 : Vec a n1) → (v2 : Vec a n2) → (v3 : Vec a n3) →
(app a n1 (n2+n3) v1 (app a n2 n3 v2 v3))

= (app a (n1+n2) n3 (app a n1 n2 v1 v2) v3)

If we proceed by pattern-matching on v1, then when v1 = cons n x v we have to show, after reducing
the RHS, that

(cons a (n +(n2 +n3)) x (app a n (n2 +n3) v (app a n2 n3 v2 v3)))

= (cons a ((n +n2) +n3) x (app a (n +n2) n3 (app a n n2 v v2) v3))

By a recursive call/induction hypothesis, we have that the tails of the vectors are equal, so we are almost
done. . . except we also need to show

n +(n2 +n3) = (n +n2) +n3

which requires a separate lemma about associativity of addition. In other words, when reasoning about
indexed data, we are also forced to reason about their indices. In this case it is particularly frustrating
because these indices are completely determined by the shape of the data—a Sufficiently Smart Compiler
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would not even need to keep them around at runtime [8]. Unfortunately, nobody told our typechecker
that.

The solution is to make the length argument to cons an irrelevant argument. We change the defini-
tion of Vec to syntactically indicate that n is irrelevant by surrounding it with square brackets.

data Vec’ (a:?) : Nat → ? where

nil’ : Vec’ a 0

cons’ : [n:Nat] → a → Vec’ a n → Vec’ a (S n)

Irrelevant constructor arguments are not represented in memory at run-time, and equations between ir-
relevant arguments are trivially true since our T JOIN rule is stated using erasure.

The basic building block of irrelevance is irrelevant function types [x :M]→ N, which are inhabited
by irrelevant λ -abstractions λ [x : A].b and eliminated by irrelevant applications a [b]. The introduction
rule for irrelevant λ s is similar to the rule for normal λ s, with one restriction:

Γ,x : A ` b : B
x /∈ FV (|b|)

Γ ` λ [x : A].b : [x :A]→ B
T IABS

The free variable condition ensures that the argument x is not used at runtime, since it does not remain in
the erasure of the body b. So x can only appear in irrelevant positions in b, such as type annotations and
proofs for conversions. On the other hand, x is available at type-checking time, so it can occur freely in
the type B.

Since the bound variable is not used at runtime, we can erase it, leaving only a placeholder for the
abstraction or application: |λ [x : A].a| goes to λ [].|a| and |a [b]| goes to |a|[]. As a result, the term b is
not present in memory and does not get in the way of equational reasoning.

The reason we leave placeholders is to ensure that syntactic values get erased to syntactic values.
Since we make conversion irrelevant this invariant is needed for type-safety [23]. For example, using a
hypothetical equality we can type the term

λ [p : Bool = Nat].1+ conv trueat∼p : [p :Bool = Nat]→ Nat.

In our language this term erases to the value λ [].1+ true. On the other hand, if it erased to the stuck
expression 1+ true then progress would fail.

Irrelevant arguments are very useful in dependently typed programming. In addition to datatype
indices, they can be used for type arguments of polymorphic functions (we could make the argument a
of the app function irrelevant), and for proofs of preconditions (we could make the argument p of the
safediv function in section 1.1 irrelevant).

Value restriction The treatment of erasure as discussed so far is closely inspired by ICC* [7] and
EPTS [17], while a related system is described by Abel [1] and implemented in recent versions of Agda.

However, the presence of nontermination adds a twist because normal and irrelevant arguments have
different evaluation behavior. In a CBV language, normal arguments are evaluated to values, but irrel-
evant arguments just get erased. So similarly to erased conversions we need to be careful—while we
argued earlier that (λx : (Bool = Nat).a) (loop) will not lead to type error thanks to our CBV semantics,
the same reasoning clearly does not work for (λ [x : Bool = Nat].a) [loop]. To maintain the invariant that
variables always stand for values, we restrict the irrelevant application rule to only allow values in the
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argument position:
Γ ` a : [x :A]→ B
Γ ` v : A
Γ ` a [v] : [v/x]B

T IAPP

This restriction is necessary because allowing nonterminating expressions to be erased would break
type safety for our language. The problem is not only infinite loops directly inhabiting bogus equalities
like Bool = Nat (as above). The following counter-example shows that we can get in trouble even by
erasing an abort of type Nat. First, note that since the reduction relation treats variables as values,
(λx.Bool) x p Bool. So we have join : ((λx : Nat.Bool) x = (λx : Nat.Nat) x) = (Bool = Nat). Then
the following term typechecks:

λ [x : Nat].λp : ((λx : Nat.Bool) x) = ((λx : Nat.Nat) x).conv pat∼join
: [x :Nat]→ (p :(λx : Nat.Bool) x = (λx : Nat.Nat) x)→ (Bool = Nat)

On the other hand, by our reduction rule for error terms, (λx.Bool) abort p abort, so

join : ((λx : Nat.Bool) abortNat) = ((λx : Nat.Nat) abortNat).

So if we allowed abortNat to be given as an irrelevant argument, then we could write a terminating proof
of Bool = Nat. Note that all the equality proofs involved are just join, so this example does not depend
on conversions being computationally irrelevant. This illustrates a general issue when combining effects
and irrelevance.

The need for termination checking The value restriction is a severe limitation on the practical use of
irrelevant arguments. For example, even if we make the length argument to cons’ irrelevant, we cannot
make the length arguments to app irrelevant. The problem is that in the recursive case we would want to
return

cons’ a [n+n2] x’ (app a [n] xs’ [n2] ys)

but n+n2 is not a value. To make the function typecheck we must work around the restriction by com-
puting the value of the sum at runtime. A first attempt would look like

app : (n1 n2 : Nat) → (a : ?) → Vec’ n1 a → Vec’ n2 a → Vec’ (n1+n2) a

app n1 n2 a xs ys =
case xs of

nil’ ⇒ys

(cons’ [n] x xs) ⇒let m = n1-1+n2 in

cons’ a [m] x (app (n1-1) n2 a xs ys)

This carries out the addition at runtime, so the application of cons’ is accepted. But the program still
does not typecheck, due to the mismatch between m+1 and n1 +n2. To make it check, we need to insert
type conversions. Even worse, the conversions rely on the fact that n1−1+n2 +1 = n1 +n2. The proof
of this uses induction on n2, i.e. a call to a recursive function, so the proof also can not be erased and
has to be evaluated at runtime. The rewritten app function is more complicated, and because of the proof
even asymptotically slower, which is quite unsatisfying.

However, to ensure type safety we believe it is enough to ensure that erased expressions have normal
forms. In this paper we use a syntactic value check as the very simplest example of a termination analysis.
For a full language, we would mark certain expressions as belonging to a terminating sublanguage (with,
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perhaps, the full power of Type Theory available for termination proofs). To allow the desired definition
of app the termination analysis only has to prove that addition terminates, which is not hard.

Value-restricted irrelevance already has uses: for example, except for type-level computation all
types are values, so we could compile ML into our language erasing all types. But to support precisely-
typed programs without a performance penalty it is essential to also be able to erase proofs, and as
we demonstrated above this is not possible without some form of termination analysis. Therefore, we
consider this language as only a step towards a practical design.

Datatypes In addition to irrelevant λ -abstractions we also allow irrelevant arguments in data types,
like Vec’. Datatype declarations have the form

dataD∆
+ where{di : ∆i→ D ∆+ i∈1..j }

The rules for datatypes in dependently-typed languages often look intimidating. We tried to make ours
as simple as we could. First, to reduce clutter we write the rules using telescope notation. Metavariables
∆ range over lists of relevance-annotated variable declarations like (x : A)[y : B](z : C)·, also known as
telescopes, while overlined metavariables ai range over lists of terms. Metavariables ∆+ range over tele-
scopes that have only relevant declarations. Depending on where in an expression they occur, telescope
metavariables stand in for either declarations or lists of variables, according to the following scheme: if
∆ is (x : A) [y : B] (z : C) and ai is a [b] c, then. . .

. . . this: is shorthand for this:
a1 ∆ a1 x [y] z
∆→ A1 (x :A)→ [y :B]→ (z :C)→ A1
[ai/∆]a1 [a/x][b/y][c/z]a1
Γ,∆ Γ,x : A,y : B,z : C
Γ ` ai : ∆ Γ ` a : A∧Γ ` b : [a/x]B∧Γ ` c : [b/y][a/x]C

We also simplify the rules by having parameters but not indices. Each datatype has a list of param-
eters ∆, and these are instantiated uniformly (i.e. the type of each data constructor di ends with D∆+,
the type constructor D applied to a list of variables). This restriction does not limit expressivity, because
we can elaborate non-uniform indexes into a combination of parameters and equality proofs (this is how
Haskell GADTs are elaborated into GHC Core [26]). For example, the declaration of Vec’ above can be
reformulated without indices as

data Vec’ (a:?) (n:Nat) where

nil’ : [p:n= 0] → Vec’ a n

cons’ : [m:Nat] → [p:n= S m] → a → Vec’ a m → Vec’ a n

To make the statement of the canonical forms lemma simpler (see lemma 14 below) we require
constructors to be fully applied, so they do not pollute the function space. In other words, d by itself is
not a well-formed expression, it must be applied to a list of parameters and a list of arguments d [Ai] ai.

In the corresponding elimination form (the case expression casebas [y]of {di ∆i⇒ ai
i∈1..l }) the pro-

grammer must write one branch di ∆i ⇒ ai for each constructor of the datatype D. The branch only
introduces pattern variables for the constructor arguments, as the parameters are fixed throughout the
case. However, the parameters are used to refine the context that the match is checked in: if Γ ` b : D Bi,
then for each case we check

Γ, [Bi/∆
+]∆i,y : b = di ∆i ` ai : A

The context also introduces an equality proof y which can by used (in irrelevant positions) to exploit the
new information about which constructor matched.
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So far, this is a fairly standard treatment of datatypes. However, we want to point out how irrelevant
parameters and constructor arguments work.

First, parameters to data constructors are always irrelevant, since they are completely fixed by the
types. The erasure operation simply deletes them: |d [Ai] ai| is d |ai|. On the other hand, it never makes
sense for parameters to datatype constructors to be irrelevant. For example, if the parameters to Vec were
made irrelevant, the join rule would validate Γ ` join : (Vec [Nat] [1]) = (Vec [Bool] [2]), which would
defeat the point of having the parameters in the first place. This is reflected in our syntax for datatypes,
which requires that the list of parameters is a ∆+ (i.e. contains no irrelevant declarations). In order to
typecheck a datatype constructor, we look up the corresponding datatype declaration in the context and
check that the provided parameters have the right type.

dataD∆+ where{di : ∆i→ D ∆+ i∈1..j } ∈ Γ

Γ ` Ai : ∆+

Γ ` D Ai : ?
T TCON

Finally, arguments to data constructors di can be marked as relevant or not in the telescope ∆i, and
this is automatically reflected in the typing rule for constructor application and erasure. For example,
given the above declaration of Vec’, the annotated expression

cons’ [Bool] [1] [0] [join] true (nil’ [Bool] [0] [join])

is well-typed and erases to cons’ [] [] true (nil’ []). However, making a constructor argument
erased carries a corresponding restriction in the case statement: since the argument has no run-time
representation it may only be used in irrelevant positions. For example, in a case branch

cons’ [m:Nat] [p:n= S m] (x:a) (xs:Vec’ a m) ⇒...body...

the code in the body can use x without restrictions but can only use m in irrelevant positions such as type
annotations and conversions. With the original Vec type we could write a constant-time length function
by projecting out m, but that is not possible with Vec’.

2.4 Very heterogenous equality

The app-assoc example also illustrates a different problem with indexed data: the two sides of the equa-
tion have different types (namely Vec a (n1+(n2+n3)) versus Vec a ((n1+n2)+n3))—so, e.g., the
usual equality in Coq does not even allow writing down the equation! We need some form of heteroge-
nous equality. The most popular choice for this is JMeq [15], which allows you to state any equality,
but only use them if both sides have (definitionally) the same type. Massaging goals into a form where
the equalities are usable often requires certain tricks and idioms (see e.g. [10], chapter 10).

For this language, we wanted something simpler. Like JMeq, we allow stating any equation as long
as the two sides are well-typed. Our formation rule for the equality type is

Γ ` a : A Γ ` b : B
Γ ` a = b : ?

T EQ

Unlike JMeq, however, conversion can use an equality even if the two sides have different types. This is
similar to the way equality is handled in Guru [25], although the details differ.

We showed a simplified version (VCONV) of our conversion rule on page 9; we present the full rule
(T CONV) in section 2.6. We now build-up the full rule from the simplified rule, step-by-step, motivating
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each addition along the way. First, in order to be able to change only parts of a type, we phrase the rule
in terms of substituting into a template A.

Γ ` a : [B1/x]A Γ ` v : B1 = B2
Γ ` [B2/x]A : ?
Γ ` conv aat [∼v/x]A : [B2/x]A

CONV SUBST

For example, given a proof Γ ` v : y = 0, we can convert the type Vec Nat (y+ y) to Vec Nat (y+ 0)
using the template substitution VecNat(y+∼v).

We need the premise Γ ` [B2/x]A : ? for two reasons. First, since our equality is heterogenous, we do
not know that B2 is a type even if B1 is. It is possible to write a function that takes a proof of Nat = 3 as
an argument (although it will never be possible to actually call it). But even if equality were homogenous
we would still need the wellformedness premise for the same reason we need it in the application rule.
If B1 is a value and B2 is not, then [B2/x]A is not guaranteed to be well-formed.

2.5 Multiple simultaneous conversions

Next, to achieve the full potential of our flexible elimination rule we find it is not sufficient to eliminate
one equality at a time. For a simple example, consider trying to prove f x = f ′ x′ in the context

f : A→ B, f ′ : A′→ B,x : A,x′ : A′,p : f = f ′,q : x = x′

Note that there is no equation relating A and A′. Using one equality at a time, the only way to make
progress is by transitivity, that is by trying to prove f x = f x′ and f x′ = f ′ x′. However, the intermediate
expression f x′ is not well-typed so the attempt fails. To make propositional equality a congruence with
respect to application, we are led to a conversion rule that allows eliminating several equations at once.

Γ ` v1 : A1 = B1 ... Γ ` vi : Ai = Bi

Γ ` a : [A1/x1] ... [Ai/xi]A
Γ ` [B1/x1] ... [Bi/xi]A : ?

Γ ` conv aat [∼v1/x1] ... [∼vi/xi]A : [B1/x1] ... [Bi/xi]A
CONV MULTISUBST

Of course, the above example is artificial: we don’t really expect that a programmer would often want
to prove equations between terms of unrelated types. A more practical motivation comes from proofs
about indexed data like vectors, where A might be Vec a (n+(n2+n3)) and A′ be Vec a ((n+n2)+n3).
In such an example, A and A′ are indeed provably equal, but our n-ary conversion rule obviates the need
to provide that proof.

The fact that our conversion can use heterogenous equations also has a downside: we are unable
to support certain type-directed equality rules. In particular, adding functional extensionality would be
unsound. Extensionality implies (λx : (1 = 0).1) = (λx : (1 = 0).0) since the two functions agree on all
arguments (vacuously). But our annotation-ignoring equality shows (λx : (1 = 0).1) = (λx : Nat.1), so
by transitivity we would get (λx : Nat.1) = (λx : Nat.0), and from there to 1 = 0.

2.6 Annotating equality and conversion

Ultimately, the unannotated language is the most interesting artifact, since that is what actually gets
executed. The point of defining an annotated language is to make it convenient to write down typings of
unannotated terms. (We could consider the annotated terms as reified typing derivations). We designed
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the annotated language by starting with the unannotated language and adding just enough annotations that
a typechecker traversing an annotated term will always know what to do. For most language constructs
this was straightforward, e.g. adding a type annotation to λ -abstractions. The annotated programs get
quite verbose, so for a full language more sophisticated methods like bidirectional type checking, local
type inference, or unification-based inference would be helpful, but these techniques are beyond the
scope of this paper.

The last step is to understand how nontermination and irrelevance affect the final annotated conv and
join rules, T CONV and T JOIN below. The conv rule in the erased language, including n-ary substitution,
looks like

H ` u1 : M1 = N1 ... H ` ui : Mi = Ni

H ` m : [M1/x1] ... [Mi/xi]M
H ` [N1/x1] ... [Ni/xi]M : ?

H ` m : [N1/x1] ... [Ni/xi]M
ET CONV

To guide the typechecker, in addition to the annotated version of m we need to supply the (annotated ver-
sions of) the proof values ui and the (annotated version of) the “template” type M that we are substituting
into. A first attempt at a corresponding annotated rule would look like the CONV MULTISUBST rule we
showed above.

However, CONV MULTISUBST needs one more modification. In order to correspond exactly to the
unannotated conv rule it should ignore expressions in irrelevant positions. For example, consider proving
the equation f [A] a = f [B] b, which erases to f [] |a| = f [] |b|. The unannotated conv rule only requires
a proof of |a|= |b|, so in the annotated language we should not have to provide a proof involving A and
B. Therefore, in the annotated rule we allow two kinds of evidence P: either a value v which is a proof
of an equation, or just an annotation [a = b] stating how an irrelevant subexpression should be changed.
We also need to specify the template that the substitution is applied to. As a matter of concrete syntax,
we prefer writing the evidence Pj interleaved with the template, marking it with a tilde. So our final
annotated rule looks like this:

P ::= v | [a = b]

∀j. ((Pj is vj and Γ ` vj : Aj = Bj) or (Pj is [Aj = Bj] and xj /∈ FV (|A|) ))
Γ ` a : [A1/x1] ... [Ai/xi]A
Γ ` [B1/x1] ... [Bi/xi]A : ?

Γ ` conv aat [∼P1/x1] ... [∼Pi/xi]A : [B1/x1] ... [Bi/xi]A
T CONV

For example, if a : Vec A x and y : x = 3, then conv a at Vec A ~y has type Vec A 3.
Next, consider the equality introduction rule. In the unannotated language it is simply

m1 ∗p n m2 ∗p n
H ` m1 = m2 : ?
H ` join : m1 = m2

ET JOIN

This is very similar to what other dependent languages, such as PTSs, offer. In those languages, this
rule may be implemented by evaluating both sides to normal forms and comparing. Unfortunately, in
the presence of nontermination there is no similarly simple algorithm—the parallel reduction relation is
nondeterministic, and since we are not guaranteed to hit a normal form we would have to search through
all possible evaluation orders.
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One possibility would be to write down the expression to be reduced, and tag sub-expressions of it
with how many steps to take, perhaps marked with tildes. In our experiments with a prototype type-
checker for our language, we have adopted a simpler scheme. The join rule only does deterministic CBV
evaluation for at most a specified number of steps. So, our final annotated join rule looks like

|a| i
cbv n |b| j

cbv n
Γ ` a = b : ?
Γ ` joina=b i j : a = b

T JOIN

where i and j are integer literals. In the common case when both a and b quickly reach normal forms, the
programmer can simply pick high numbers for the step counts, and in the concrete syntax we treat join
as an abbreviation for join 100 100. When we want to prove equations between terms that are already
values, we can use conv to change subterms of them. For example, to prove the equality Vec A (1+1) =
Vec A 2 we write

conv (join : Vec A 2 = Vec A 2) at (Vec A 2 = Vec A ~(join : 1+1 = 2))

Not every parallel reduction step can be reached this way, since substitution is capture-avoiding. For
instance, with this choice of annotations we cannot show an equation like (λx.(λy.y) x) = (λx.x). So
far, we have not found this restriction limiting.

3 Metatheory

The main technical contribution of this paper is a proof of type safety for our language via standard
preservation and progress theorems. The full proof can be found in the appendix. In this section, we
highlight the most interesting parts of it.

3.1 Annotated and unannotated type systems

While the description so far has been in terms of a type system for annotated terms, we have also devel-
oped a type system for the unannotated language, and it is the unannotated system that is important for
the metatheoretical development.

The unannotated typing judgment is of the form H ` m : M, where the metavariable H ranges over
unannotated typing environments (i.e., environments of assumptions x : M). Below we give an outline of
the rules. The complete definition can be found in the appendix (section A.6). The two type systems were
designed so that there are enough annotations to make typechecking the annotated language decidable,
and to make erasure into the unannotated system preserve well-typedness:

Lemma 4 (Decidability of type checking). There is an algorithm which given Γ and a computes the
unique A such that Γ ` a : A, or reports that there is no such A.

Lemma 5 (Annotation soundness). If Γ ` a : A then |Γ| ` |a| : |A| .

In practice, the unannotated rules simply mirror the annotated rules, except that all the terms in them
have gone through erasure. As an example, compare the annotated and unannotated versions of the IABS

rule:
Γ,x : A ` b : B
x /∈ FV (|b|)

Γ ` λ [x : A].b : [x :A]→ B
T IABS

H,x : M ` n : N
x /∈ FV (n)

H ` λ [].n : [x :M]→ N
ET IABS
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Since our operational semantics is defined for unannotated terms, the preservation and progress the-
orems will be also stated in terms of unannotated terms. One could ask whether it would be possible
to define an operational semantics for the annotated terms and then prove preservation for the annotated
language. The main complication of doing that is that as terms steps extra type conversions must be
added, which would complicate the step relation.

3.2 Properties of parallel reduction

The key intuition in our treatment of equality is that, in an empty context, propositional equality coincides
with joinability under parallel reduction. As a result, we will need some basic lemmas about parallel
reduction throughout the proof. These are familiar from, e.g., the metatheory of PTSs, with the slight
difference that the usual substitution lemma is replaced with two special cases because we work with
CBV reduction.

Lemma 6 (Substitution of p). If N p N′, then [N/x]M p [N′/x]M.

Lemma 7 (Substitution into p). If u p u′ and m p m′, then [u/x]m p [u′/x]m′.

Lemma 8 (Confluence of p). If m ∗p m1 and m ∗p m2, then there exists some m′ such that m1 ∗p m′

and m2 ∗p m′.

Definition 9 (Joinability). We write m1 . m2 if there exists some n such that m1 ∗p n and m2 ∗p n.

Using the above lemmas it is easy to see that . is an equivalence relation, and that m1 . m2 implies
[m1/x]M . [m2/x]M.

3.3 Preservation

For the preservation proof we need the usual structural properties: weakening and substitution. Weak-
ening is standard, but somewhat unusually substitution is restricted to substituting values u into the
judgment, not arbitrary terms. This is because our equality is CBV, so substituting a non-value could
block reductions and cause types to no longer be equal.

Lemma 10 (Substitution). If H1,x1 : M1,H2 ` m : M and H1 ` u1 : M1, then H1, [u1/x1]H2 ` [u1/x1]m :
[u1/x1]M.

Preservation also needs an inversion lemmas for λ s, irrelevant λ s, rec, and data constructors. They
are similar, and we show the one for λ -abstractions as an example.

Lemma 11 (Inversion for λ s). If H ` λx.n : M, then there exists m1, M1, N1, such that H `m1 : M = (x :
M1)→ N1 and H,x : M1 ` n : N1.

Notice that this is weaker statement than in a language with computationally relevant conversion. For
example, in a PTS we would have that M is β -convertible to the type (x : M1)→ N1, not just provably
equal to it. But in our language, if the context contained the equality (Nat→ Nat) = Nat, then we
could show H ` λx.x : Nat using a (completely erased) conversion. As we will see, we need to add extra
injectivity rules to the type system to compensate.

Now we are ready to prove the preservation theorem. For type safety we are only interested in
preservation for cbv, but it is convenient to generalize the theorem to p.

Theorem 12 (Preservation).
If H ` m : M and m p m′, then H ` m′ : M.



Sjöberg et al. 19

H ` u1 : Dni = Dni
′

H ` join : nk = n′k
ET INJTCON

H ` u1 : (x :M1)→ N1 = (x :M2)→ N2

H ` join : M1 = M2
ET INJDOM

H ` u1 : (x :M)→ N1 = (x :M)→ N2
H ` u : M

H ` join : [u/x]N1 = [u/x]N2
ET INJRNG

Figure 5: Injectivity rules (the two rules for [x :M1]→ N1 are similar and not shown)

The proof is mostly straightforward by an induction on the typing derivation. There are some wrin-
kles, all of which can be seen by considering some cases for applications. The typing rule looks like

H ` m : (x :M)→ N
H ` n : M
H ` [n/x]N : ?

H ` m n : [n/x]N
ET APP

First consider the case when m n steps by congruence, m n p m n′. Directly by IH we get that
H ` n′ : M, but because of our CBV-style application rule we also need to establish H ` [n′/x]N : ?.
But by substitution of p we know that [n/x]N  p [n′/x]N, so this also follows by IH (this is why we
generalize the theorem to p).

This showed H ` m n′ : [n′/x]N, but we needed H ` m n′ : [n/x]N. Since [n/x]N p [n′/x]N we have
H ` join : [n′/x]N = [n/x]N, and we can conclude using the conv rule. This illustrates how fully erased
conversions generalize the β -equivalence rule familiar from PTSs.

Second, consider the case when an application steps by β -reduction, (λx.m0) u p [u/x]m0, and we
need to show H ` [u/x]m0 : [u/x]N. The inversion lemma for λx.m0 gives H,x : M1 ` m0 : N1 for some
H ` join : (x:M)→ N = (x:M1)→ N1. Now we need to convert the type of u to H ` u : M1, so that we can
apply substitution and get H ` [u/x]m0 : [u/x]N1, and finally convert back to [u/x]N. To do this we need
to decompose the equality proof from the inversion lemma into proofs of M = M1 and [u/x]N1 = [u/x]N.
We run into the same issue in the cases for irrelevant application and pattern matching on datatypes. So
we add a set of injectivity rules to our type system to make these cases go through (figure 5).

3.4 Progress

As is common in languages with dependent pattern matching, when proving progress we have to worry
about “bad” equations. Specifically, this shows up in the canonical forms lemma. We want to say that
if a closed value has a function type, then it is actually a function. However, what if we had a proof of
Nat = (Nat→Nat)? To rule that out, we start by proving a lemma characterizing when two expressions
can be propositionally equal. From now on, HD denotes a context which is empty except that it may
contain datatype declarations.

Lemma 13 (Soundness of equality). If HD ` u : M and M . (m1 = n1), then m1 . n1.

The proof is by induction on HD ` u : M. It is not hard, but it is worth describing briefly. To rule
out rules like λ -abstraction, we need to know that it is never the case that (x : M)→ N . (m1 = n1),
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which follows because p preserves the top-level constructor of a term. To handle the injectivity rules,
we need to know that . is injective in the sense that (x : M1)→ N1 . (x : M2)→ N2 implies M1 . M2;
again this follows by reasoning about p. Finally, consider the conversion rule. The case looks like

HD ` u1 : M1 = N1 ... HD ` ui : Mi = Ni

HD ` u : [M1/x1] ... [Mi/xi]M
HD ` [N1/x1] ... [Ni/xi]M : ?

HD ` u : [N1/x1] ... [Ni/xi]M
ET CONV

We have as an assumption that [N1/x1] .. [Ni/xi]M . (m1 = n1), and the result would follow from the IH
for u if we knew that [M1/x1] ... [Mi/xi]M . (m1 = n1). But by the IHs for ui we know that Ni . Mi, so
this follows by substitution and transitivity of ..

With the soundness lemma in hand, canonical forms and progress follow straightforwardly.

Lemma 14 (Canonical forms). Suppose HD ` u : M.

1. If M . (x :M1)→ M2, then u is either λx.u1 or rec f .u.

2. If M . [x :M1]→ M2, then u is either λ [].u1 or rec f .u.

3. If M . DMi then u is d ui, where dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } ∈HD and d is one of the
di.

Theorem 15 (Progress). If HD ` m : M, then either m is a value, m is abort, or m cbv m′ for some m′.

4 Related Work

Dependent types with nontermination While there are many examples of languages that combine
nontermination with dependent or indexed types, most take care to ensure that nonterminating expres-
sions can not occur inside types. They do this either by making the type language completely separate
from the expression language (e.g. DML [31], ATS [30], Ωmega [22], Haskell with GADTs [19]), or
by restricting dependent application to values or “pure” expressions (e.g. DML [14], F* [27], Aura [12],
and [18]).

In our language, types and expressions are unified and types can even be computed by general re-
cursive functions. In this area of the design space, the most comparable languages are Cayenne [4],
Cardelli’s Type:Type language [9], and ΠΣ [2]. However, none of them have the particular combination
of features that we discuss in this paper, i.e. irrelevance, CBV, and a built-in propositional equality.

λ
∼=[13] is a CBV dependently typed language with nontermination, which used CBV-respecting par-

allel reduction as one possible definitional equivalence. It proposed an application rule which is more
expressive than just value-dependency, but not as simple as the one in this paper. λ

∼= is not as expres-
sive as our language (no polymorphism, propositional equality, or Type-in-Type), and has no notion of
irrelevance.

Irrelevance We already mentioned ICC* [7], EPTS [17], and Abel’s system [1]. One of the key
differences between the systems is whether the variable x in an irrelevant arrow type [x : A] → B is
allowed to occur freely in B (“Miquel[16]-style irrelevance”, our choice) or only in irrelevant positions
in B (“Pfenning[20]-style”, see also [21]). Agda implements the latter because it interacts better with
type-directed equality [1], whereas our equality is not type-directed.
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Equality The usual equality type in Coq and Agda’s standard libraries is homogenous and has a com-
putationally relevant conversion rule. These languages also provide the heterogenous JMeq [15], which
we discussed above.

Extensional Type Theory, e.g. Nuprl [11], is similar to our language in that conversion is compu-
tationally irrelevant and completely erased. ETT terms are similar to our unannotated terms, while our
annotated terms correspond to ETT typing derivations. On the other hand, the equational theory of ETT
is different from our language, e.g. it can prove extensionality while our equality cannot.

Observational Type Theory [3] also proves (conv aat∼b) = a, but in a more sophisticated way than
by erasing the conversion. Instead it provides a set of axioms and ensures that those axioms can never
block reduction. It is inherently type-directed, which means that it validates extensionality but cannot
make use of equations between expressions of genuinely different types.

Guru [25], like our language, can eliminate equalities where the two sides have different types, and
equalities are proved by joinability without any type-directed rules. However, unlike our language the
equality formation rule does not require that the equated expressions are even well-typed. This can be
annoying in practice, because simple programmer errors are not caught by the type system. Guru does
not have our n-ary conv rule.

GHC Core [26, 28] is similar to our language in not having a separate notion of definitional and
propositional equality. Instead, all type equivalences—which are implicit in Haskell source—must be
justified by the typechecker by explicit proof terms. As in our language the presence of nontermination
means that proof terms must by evaluated at runtime, but there is no notion of irrelevance.

5 Conclusions and Future Work

In this paper, we combined computational irrelevance and nontermination in a dependently typed
programming language.

In defining the language, we made concrete choices about evaluation order and treatment of con-
version. Our evaluation order is CBV, and this is reflected in the equations that the language can prove
(including an inherently CBV rule for error expressions). An effectful language needs a restriction on
the application rule, and we propose a particularly simple yet expressive one.

Our conversion rule has a novel combination of features: the equality proof is computationally ir-
relevant, conversion can use equalities where the two sides have different types, and conversion can use
multiple equalities at once. These features are all aimed at making reasoning about programs easier.

We then proposed typing rules for irrelevant function and constructor arguments. We gave examples
showing that in contrast to previous work in pure languages, irrelevant application must be restricted,
and described a value-restricted version.

In future work, we plan to integrate this design with the larger Trellys project. The Trellys lan-
guage will be divided into two fragments: a “programmatic” fragment that will resemble the language
presented here, and a “logical” fragment that will be restricted to ensure consistency. While designing
an expressive and consistent logical fragment will involve substantial additional challenges, the present
work has provided a solid foundation by identifying and solving many problems that arise from Trellys’
previously unseen combination of features.
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A Full Language Specification

A.1 Syntax

tele, ∆ ::= telescope
| · empty telescope
| (x : A)∆ relevant binding
| [x : A]∆ irrelevant binding

teleplus, ∆+ ::= (relevant) telescope
| · empty telescope
| (x : A)∆+ relevant binding

env, Γ ::= typing environment
| · empty
| Γ,decl

decl ::= typing env declaration
| x : A variable
| dataD∆+ where{di : ∆i→ D ∆+ i∈1..j } datatype
| dataD∆+ abstract datatype name

exp, a, b, A, B ::= annotated expressions
| ? type
| x variable
| D Ai datatype
| d [Ai] ai data
| rec f : A.a recursive definition
| λx : A.a λ -abstraction
| λ [x : A].a irrelevant λ -abstraction
| a b application
| a [b] implicit application
| (x :A)→ B function type
| [x :A]→ B irrelevant function type
| caseaas [y]of {dj ∆j⇒ bj

j∈1..k } pattern matching
| a = b equality proposition
| joina=b i j equality proof
| injdoma equality proof
| injrng ab equality proof
| injtconi a equality proof
| conv aat [∼P1/x1] ... [∼Pi/xi]A type conversion
| abortA failure
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P ::= Proofs used in conv rule
| v
| [a = b]

val, v ::= Values
| x
| ?
| (x :A)→ B
| [x :A]→ B
| a = b
| conv vat [∼P1/x1] ... [∼Pi/xi]A
| joina=b i j
| D Ai

| d [Ai] vi

| λx : A.a
| λ [x : A].a
| rec f : A.a

explist, ai, bi, Ai, Bi ::= list of expressions
| · empty
| a ai relevant expression
| [a] ai irrelevant expression

vallist, vi ::= list of values
| ·
| v vi

| [v] vi

etele, Ξ ::= unannotated telescope
| · empty telescope
| (x : M)Ξ relevant binding
| [x : M]Ξ irrelevant binding

eteleplus, Ξ+ ::= unannotated (relevant) telescope
| · empty telescope
| (x : M)Ξ+ relevant binding

eenv, H ::= typing environment
| ·
| H,edecl
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edecl ::= typing env declaration
| x : M variable
| dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } datatype
| dataDΞ+ abstract datatype name

eenvD, HD ::= closed typing environment
| ·
| H,edeclD

edeclD ::=
| dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j }

eexp, m, n, M, N ::= unannotated expressions
| ? type
| x variable
| DMi datatype
| d mi data
| rec f .u recursive definition
| λx.m λ -abstraction
| λ [].m irrelevant λ -abstraction
| m n application
| m[] irrelevant application
| (x :M)→ N function type
| [x :M]→ N irrelevant function type
| casenof {dj xij⇒ mj

j∈1..k } pattern matching
| m = n equality proposition
| join equality proof
| abort failure

eval, u ::= values
| x
| ?
| (x :M)→ N
| [x :M]→ N
| m = n
| join
| DMi

| d ui

| rec f .u
| λx.m
| λ [].m
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eexplist, mi, ni, Mi, Ni ::= list of expressions
| ·
| m mi

| [] mi

evallist, ui ::=
| ·
| u ui

| [] ui

evalctx, E ::= Evaluation contexts
| •
| •m
| u•
| •[]
| case • of {dj xij⇒ mj}
| d ui •mi
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A.2 Erasure function

The erasure function |a| is defined by:

|? | = ?
|x| = x
|D Ai| = D |Ai|
|d [Ai] ai| = d |ai|
|rec f : A.v| = rec f .u
|λx : A.a| = λx.|a|
|λ [x : A].a| = λ [].|a|
|a b| = |a| |b|
|a [b]| = |a|[]
|(x :A)→ B| = (x : |A|)→ |B|
|[x :A]→ B| = [x : |A|]→ |B|
|a = b| = |a|= |b|
|joina=b i j| = join
|injdoma| = join
|injrng ab| = join
|injtconi a| = join

|caseaas [y]of {dj ∆j⇒ bj
j∈1..k }| = case |a|of {dj xij⇒ |bj|

j∈1..k }
where xij are the relevant variables of ∆j

|conv aat [∼P1/x1] ... [∼Pi/xi]A| = |a|
|abortA| = abort

| · | = ·
|a ai| = |a| |ai|
|[a] ai| = [] |ai|

A.3 CBV evaluation

m cbv n

(λx.m) u cbv [u/x]m
SC APPBETA

(rec f .u) u2 cbv ([rec f .u/f ]u1) u2
SC APPREC

(λ [].m)[] cbv m
SC IAPPBETA

(rec f .u)[] cbv ([rec f .u/f ]u1)[]
SC IAPPREC

case(dl ui)of {dj xij⇒ mj
j∈1..k } cbv [ui/xil]ml

SC CASEBETA

E [abort] cbv abort
SC ABORT

m cbv n
E [m] cbv E [n]

SC CTX
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A.4 Parallel reduction

m p n

m p m
SP REFL

u p u′

rec f .u p rec f .u
SP REC

m p m′

λx.m p λx.m′
SP ABS

M p M′

N p N′

(x :M)→ N p (x :M′)→ N′
SP PI

M p M′

N p N′

[x :M]→ N p [x :M′]→ N′
SP IPI

m p m′

n p n′

m = n p m′ = n′
SP EQ

m p m′

n p n′

m n p m′ n′
SP APP

m p m′

u p u′

(λx.m) u p [u′/x]m′
SP APPBETA

u1 p u′1
u2 p u′2

(rec f .u) u2 p ([rec f .u/f ]u′1) u′2
SP APPREC

m p m′

m[] p m′[]
SP IAPP

m p m′

(λ [].m)[] p m′
SP IAPPBETA

u1 p u′1
(rec f .u)[] p ([rec f .u/f ]u′1)[]

SP IAPPREC

∀i. Mi p M′i
DMi p DMi

′ SP TCON

∀i. mi p m′i
d mi p d mi

SP DCON
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m p m′

∀j. mj p m′j

casemof {dj xij⇒ mj
j∈1..k } p casem′ of {dj xij⇒ m′j

j∈1..k }
SP CASE

∀i. ui p u′i
ml p m′l

case(dl ui)of {dj xij⇒ mj
j∈1..k } p [ui

′/xil]m′l
SP CASEBETA

E [abort] p abort
SP ABORT

n . m

m1 ∗p n
m2 ∗p n
m2 . m2

J JOIN

A.5 Annotated type system

Γ ` a : A

` Γ

Γ ` ? : ?
T TYPE

Γ ` b : D Bi

Γ ` A : ?
dataD∆+ where{di : ∆i→ D ∆+ i∈1..l } ∈ Γ

∀i. Γ, [Bi/∆+]∆i,y : b = di ∆i ` ai : A
∀i. {y}∪dom− (∆i) # FV (|ai|)

Γ ` casebas [y]of {di ∆i⇒ ai
i∈1..l } : A

T CASE

x : A ∈ Γ

` Γ

Γ ` x : A
T VAR

Γ ` A : ? Γ,x : A ` B : ?
Γ ` (x :A)→ B : ?

T PI

Γ ` A : ? Γ,x : A ` B : ?
Γ ` [x :A]→ B : ?

T IPI

dataD∆+ where{di : ∆i→ D ∆+ i∈1..j } ∈ Γ

Γ ` Ai : ∆+

Γ ` D Ai : ?
T TCON

dataD∆+ ∈ Γ

Γ ` Ai : ∆+

Γ ` D Ai : ?
T ABSTCON
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dataD∆+ where{di : ∆i→ D ∆+ i∈1..j } ∈ Γ

Γ ` Ai : ∆+

Γ ` ai : [Ai/∆]∆i

Γ ` dk [Ai] ai : D Ai
T DCON

Γ,x : A ` b : B
Γ ` λx : A.b : (x :A)→ B

T ABS

Γ,x : A ` b : B
x /∈ FV (|b|)

Γ ` λ [x : A].b : [x :A]→ B
T IABS

Γ, f : A ` v : A Γ ` A : ?
A is (x :A1)→ A2 or [x :A1]→ A2

Γ ` rec f : A.v : A
T REC

Γ ` a : (x :A)→ B
Γ ` b : A
Γ ` [b/x]B : ?

Γ ` a b : [b/x]B
T APP

Γ ` a : [x :A]→ B
Γ ` v : A
Γ ` a [v] : [v/x]B

T IAPP

Γ ` A : ?
Γ ` abortA : A

T ABORT

Γ ` a : A Γ ` b : B
Γ ` a = b : ?

T EQ

|a| i
cbv n |b| j

cbv n
Γ ` a = b : ?
Γ ` joina=b i j : a = b

T JOIN

∀j. ((Pj is vj and Γ ` vj : Aj = Bj) or (Pj is [Aj = Bj] and xj /∈ FV (|A|) ))
Γ ` a : [A1/x1] ... [Ai/xi]A
Γ ` [B1/x1] ... [Bi/xi]A : ?

Γ ` conv aat [∼P1/x1] ... [∼Pi/xi]A : [B1/x1] ... [Bi/xi]A
T CONV

Γ ` v1 : ((x :A1)→ B1) = ((x :A2)→ B2)

Γ ` injdomv1 : A1 = A2
T INJDOM

Γ ` v1 : ((x :A)→ B1) = ((x :A)→ B2) Γ ` v : A
Γ ` injrng v1 v : [v/x]B1 = [v/x]B2

T INJRNG

Γ ` v1 : ([x :A1]→ B1) = ([x :A2]→ B2)

Γ ` injdomv1 : A1 = A2
T IINJDOM

Γ ` v1 : ([x :A]→ B1) = ([x :A]→ B2) Γ ` v : A
Γ ` injrng v1 v : [v/x]B1 = [v/x]B2

T IINJRNG
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Γ ` v1 : D Ai = D Ai
′

Γ ` injtconk v1 : Ak = A′k
T INJTCON

` Γ Γ is a well-formed environment

` ·
ENV WF EMPTY

` Γ x /∈ dom(Γ)
Γ ` A : ?

` Γ,x : A
ENV WF VAR

` Γ,∆ D /∈ dom(H) Γ,dataD∆+,∆ ` ∆i→ D∆+ : ?
i∈1..j

` Γ,dataD∆+ where{di : ∆i→ D ∆+ i∈1..j }
ENV WF DTYPE

` Γ,∆ D /∈ dom(H)

` Γ,dataD∆+
ENV WF ABSDTYPE

Γ ` ai : ∆

Γ ` · : ·
TL EMPTY

Γ ` a : A
Γ ` A : ?
Γ ` ai : [a/x]∆

Γ ` a ai : (x : A)∆
TL CONS

Γ ` a : A
Γ ` A : ?
Γ ` ai : [a/x]∆

Γ ` [a] ai : [x : A]∆
TL ICONS

A.6 Unannotated type system

H ` m : M

` H
H ` ? : ?

ET TYPE

H ` n : Dni

H `M : ?
dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..l } ∈ H
∀i. H, [ni/Ξ+]Ξi,y : n = di Ξi ` mi : M
∀i. {y}∪dom−(Ξi) # FV (mi)
xii is dom+(Ξi)

H ` casenof {di xii⇒ mi
i∈1..l } : M

ET CASE

x : M ∈ H
` H
H ` x : M

ET VAR
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H `M : ? H,x : M ` N : ?
H ` (x :M)→ N : ?

ET PI

H `M : ? H,x : M ` N : ?
H ` [x :M]→ N : ?

ET IPI

dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } ∈ H
H `Mi : Ξ+

H ` DMi : ?
ET TCON

dataDΞ+ ∈ H
H `Mi : Ξ+

H ` DMi : ?
ET ABSTCON

dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } ∈ H
H `Mi : Ξ+

H ` mi : [Mi/Ξ]Ξi

H ` dk mi : DMi
ET DCON

H,x : M ` n : N
H ` λx.n : (x :M)→ N

ET ABS

H,x : M ` n : N
x /∈ FV (n)

H ` λ [].n : [x :M]→ N
ET IABS

H, f : M ` u : M
H `M : ?
M is (x :M1)→ M2 or [x :M1]→ M2

H ` rec f .u : M
ET REC

H ` m : (x :M)→ N
H ` n : M
H ` [n/x]N : ?

H ` m n : [n/x]N
ET APP

H ` m : [x :M]→ N
H ` u : M

H ` m[] : [u/x]N
ET IAPP

H `M : ?
H ` abort : M

ET ABORT

H ` m : M H ` n : N
H ` m = n : ?

ET EQ

m . n
H ` m = n : ?

H ` join : m = n
ET JOIN
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H ` u1 : M1 = N1 ... H ` ui : Mi = Ni

H ` m : [M1/x1] ... [Mi/xi]M
H ` [N1/x1] ... [Ni/xi]M : ?

H ` m : [N1/x1] ... [Ni/xi]M
ET CONV

H ` u1 : (x :M1)→ N1 = (x :M2)→ N2

H ` join : M1 = M2
ET INJDOM

H ` u1 : (x :M)→ N1 = (x :M)→ N2
H ` u : M

H ` join : [u/x]N1 = [u/x]N2
ET INJRNG

H ` u1 : [x :M1]→ N1 = [x :M2]→ N2

H ` join : M1 = M2
ET IINJDOM

H ` u1 : [x :M]→ N1 = [x :M]→ N2
H ` u : M

H ` join : [u/x]N1 = [u/x]N2
ET IINJRNG

H ` u1 : Dni = Dni
′

H ` join : nk = n′k
ET INJTCON

` H H is a well-formed environment

` ·
EENV WF EMPTY

` H x /∈ dom(H)
H `M : ?

` H,x : M
EENV WF VAR

` H,Ξ
D /∈ dom(H)
∀i. di /∈ dom(H)
∀i. H,dataDΞ+,Ξ ` Ξi→ DΞ+ : ?

` H,dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j }
EENV WF DTYPE

` H,Ξ D /∈ dom(H)

` H,dataDΞ+
EENV WF ABSDTYPE

H ` mi : Ξ

H ` · : ·
ETL EMPTY

H ` m : M
H `M : ?
H ` mi : [m/x]Ξ

H ` m mi : (x : M)Ξ
ETL CONS

H ` u : M
H `M : ?
H ` mi : [u/x]Ξ

H ` [] mi : [x : M]Ξ
ETL ICONS
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B Proofs

B.1 Correctness of annotated system

Lemma 16 (Decidability of type checking). There is an algorithm which given Γ and a computes the
unique A such that Γ ` a : A, or reports that there is no such A.

Proof. The algorithm follows the structure of a—for each syntactic form we see that only one typing
rule could apply, and that the premises of that rule are uniquely determined.

Lemma 17 (Correctness of erasure). If Γ ` a : A, then |Γ| ` |a| : |A|.

Proof. Easy induction—each annotated rule corresponds directly to an unannotated rule where all terms
have gone through erasure.

B.2 Facts about parallel reduction

Definition 18. The head constructor of an expression is defined as follows:

• The head constructor of ? is ?.

• The head constructor of Nat is Nat.

• The head constructor of (x :M)→ N is→.

• The head constructor of [x :M]→ N is []→.

• The head constructor of DMi is D.

• The head constructor of d mi is d.

• The head constructor of a = b is =.

• Other expressions do not have a head constructor.

We write hd(M) for the partial function mapping M to its head constructor.

Lemma 19. If m p m′ and hd(m) is defined, then hd(m) = hd(m′).

Proof. By inspecting the definition of  p we see that it always preserves the head constructor of a
term.

Lemma 20. If m . m′, then m and m′ do not have different head constructors.

Proof. Expanding the definition of . we know that m ∗p n and m′ ∗p n for some n. If m and m′ had
(defined and) different head constructors, then by repeatedly applying Lemma 19 we would get that n
had two different head constructors, which is impossible.

Lemma 21 ( Injectivity of .).

• If m1 = n1 . m2 = n2, then m1 . m2 and n1 . n2.

• If DMi1 . DMi2, then Mi1 . Mi2.

• If (x :M1)→ N1 . (x :M2)→ N2 then M1 . M2 and N1 . N2.

• If [x :M1]→ N1 . [x :M2]→ N2 then M1 . M2 and N1 . N2.
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Proof. The lemma is proven in the same way for all the different types of expressions, so we only show
the proof for (1). Expanding the definition of ., we have that m1 = n1 ∗p N and m2 = n2 p N for some
N.

By lemma 20 we know that N has the shape n = m. So it suffices to prove that, for any n1,m1, if
n1 = m1 ∗p n = m, then n1 ∗p n. This follows by an easy induction on the chain of reduction, since at
each step the only reduction rule that can apply is congruence.

Lemma 22. If u p u′ and m p m′, then [u/x]m p [u′/x]m′.

Proof. By induction on m p m′

Lemma 23. If M . M′, then [u/x]M . [u/x]M′.

Proof. Expanding the definition of . we get M ∗p M1 and M′ p M1 for some M1. Repeatedly applying
Lemma 22 we then get [u/x]M ∗p [u/x]M1 and [u/x]M′ ∗p [u/x]M1 as required.

Lemma 24 (One-step diamond property for p). If m p m1 and m p m2, then there exists some m′

such that m1 p m′ and m2 p m′.

Proof. By induction on the structure of m. We only show the case when m is an application m1 m2, as
this case contains all the ideas of the proof.

Case m is m1 m2 We consider all possible pairs of ways that m1 m2 can reduce.

• One reduction is SC REFL. This case is trivial.
• Both reductions are SC APP. That is to say, m1 m2 p m11 m21 and m1 m2 p m12 m22, where

m1 p m11, m1 p m21, m2 p m21 and m2 p m22.
By the induction hypothesis for m1, there exists m′1, such that m11  p m′1 and m21  p m′2.
Similarly for m2. So by SC APP we have m11 m21  p m′1 m′2 and m12 m22  p m′1 m′2 as
required.
• One reduction is SC APPBETA. So it must be the case that m1 m2 is (λx.m0) u. By considering

cases, we see that only only possibilities for the other reduction is SC APPBETA and SC APP.
In the case when the other reduction is SC APP, we see that the only way that λx.m0 can step
is by congruence when m0 p m02. So we have:

(λx.m0) u p [u1/x]m01 where m0 p m01 and u p u1.

(λx.m0) u p (λx.m02) u2 where m0 p m02 and u p u2.

Now by IH we get m′0 and u′. By substitution (lemma 22) we get [u1/x]m01  p [u′/x]m′0,
while by SC APPBETA we get (λx.m02) u2 p [u′/x]m′0. So the terms are joinable as required.
On the other hand, if both the reductions are by SC APPREC, then we have

(λx.m0) u p [u1/x]m01 where m0 p m01 and u p u1.

(λx.m0) u p [u2/x]m02 where m0 p m02 and u p u2.

Then by IH we again get m′0 and u′, and by substitution (twice), the two terms are again
joinable at [u′/x]m′0.
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• One reduction is SC APPREC. So m1 m2 must be (rec f .u) u2. By considering cases, we see
that the other reduction must be either SC APPREC or SC APP.
If the other rule is SC APP we note that the only way rec f .u can step is by congruence to
rec f .u p rec f .u, so we have

(rec f .u) u2 p ([rec f .u/f ]u11) u21 where u1 p u11 and u2 p u21

(rec f .u) u2 p (rec f .u) u22 where u1 p u12 and u2 p u22

Now, by IH we have u′1 and u′2. By congruence, rec f .u  p rec f .u, so by substitution
(lemma 22) we get [rec f .u/f ]u11 p [rec f .u/f ]u′1, and then by congruence ([rec f .u/f ]u11) u21 p

([rec f .u/f ]u′1) u′2. Meanwhile, by SC APPREC we have (rec f .u) u22 p ([rec f .u/f ]u′1) u′2 as
required.
On the other hand, if both reductions where by SC APPREC, then we proceed in the same
way, but conclude by using the substitution lemma for both expressions.
• One reduction is SC ABORT. So m1 m2 must be abort m2 or u1 abort. Then by considering

possible cases, we see that the other reduction must be SC ABORT or SC APP (the β -rules
cannot match because abort is not a value). If the other rule is SC AVORT we are trivially
done, if it is SC APP then the term steps to u′1 abort, which can step to abort as required.

Lemma 25 (Confluence of p). If m ∗p m1 and m ∗p m2, then there exists some m′ such that m1 ∗p m′

and m2 ∗p m′.

Proof. This is a simple corollary of the 1-step version (lemma 24), by “diagram-chasing to fill in the
rectangle” (see e.g. [5], lemma 3.2.2).

Lemma 26 ( . is an equivalence relation).

1. For any m, m . m.

2. If m . n then n . m.

3. If m1 . m2 and m2 . m3, then m1 . m3.

Proof. (1) and (2) are immediate just by expanding the definition of m . n and m ∗p n.
For (3), by expanding the definition we have some n1 and n2 such that m1 ∗p n1, m2 ∗p n1, m2 ∗p n2

and m3 ∗p n2. So by confluence (lemma 25) applied to the two middle ones, there exists some n such
that n1 ∗p n and n2 ∗p n. Then we have m1 ∗p n and m3 ∗p n as required.

Lemma 27. If N p N′, then [N/x]M p [N′/x]M.

Lemma 28. If N . N′, then [N/x]M . [N′/x]M.

Proof. Expanding the definition of . we have N  ∗p N1 and N′  p N1 for some N1. Now repeatedly
apply Lemma 27, to get [N/x]M ∗p [N1/x]M and [N′/x]M ∗p [N1/x]M.

Lemma 29. If m p m′, then FV (m′)⊆ FV (m).
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B.3 Structural properties

Lemma 30 (Free variables in typing judgments). If H ` m : M, then FV (m) ⊆ dom(H) and FV (M) ⊆
dom(H).

Lemma 31 (Regularity for contexts). If H ` m : M then ` H.

Lemma 32 (Regularity for variable lookup). If H1,x : M,H2 ` n : N, then H1 `M : ?.

Lemma 33 (Context conversion). If H,x : M,H′ ` n : N and H ` join : M = M′ and H ` M′ : ?, then
H,x : M′,H′ ` n : N.

Lemma 34 (Substitution). Suppose H1 ` u1 : M1. Then,

• If H1,x1 : M1,H2 ` m : M, then H1, [u1/x1]H2 ` [u1/x1]m : [u1/x1]M.

• If ` H1,x1 : M1,H2, then ` H1, [u1/x1]H2.

Lemma 35 (Regularity). If H ` m : M, then H `M : ?.

Lemma 36 (Data constructors are unique in the environment). If ` H, and

dataDΞ
+ where{di : Ξi→ D Ξ+ i∈1..j } ∈ H

and
dataD′Ξ+′where{d′i : Ξ′i→ D′ Ξ+′ i∈1..j

} ∈ H,

and dk = dl
′, then D = D′ and Ξ+ = Ξ+′ and Ξk = Ξ′l.

B.4 Inversion Lemmas

We need one inversion lemma for each introduction form that has a computationally irrelevant eliminator.
These proofs are all similar, so we only show the representative case for λ .

We first need some basic facts about equality.

Lemma 37 (Inversion for equality). If H ` m = n : M0 then, H ` m : M and H ` n : N.

Proof. Induction of H ` m = n : M0. The only cases where the subject of the conclusion of the rule
is an equality are ET EQ (where we get the result as a premise to the rule) and ET CONV (direct by
induction).

Lemma 38 (Proof irrelevance for equality proofs). If H ` u : M = N, then H ` join : M = N

Proof. By regularity (lemma 35) we know H `M =N : ?, so by inversion (lemma 37) we have H `M : ?.
So by ET TJOIN, H ` join : M = M.

Now by ET TCONV we get H ` join : M = N by using the assumed proof u to change M to N.

Lemma 39 (Propositional equality is an equivalence relation).

• If H ` m : M, then H ` join : m = m.

• If H ` u : m1 = m2, then H ` join : m2 = m1.

• If H ` u : m1 = m2 and H ` u′ : m2 = m3, then H ` join : m1 = m3.

Proof. (1) is just a special case of ET JOIN.
(2) We have H ` join : m1 = m1, so we can use the assumed proof to change the left m1 to an m2.
(3) Use the assumed proof u to change the type of u′.
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Lemma 40 (Inversion for λ ). If H ` λx.n : M, then H ` join : (x :M1)→ N1 = M for some M1 and N1,
and H,x : M1 ` n : N1.

Proof. By induction on H ` λx.n : M. Only two typing rules can have a λ as the subject of the conclusion.

Case ET ABS The rule looks like

H,x : M ` n : N
H ` λx.n : (x :M)→ N

ET ABS

By ET JOIN we have H ` join : (x : M)→ N = (x : M)→ N, and we have H,x : M ` n : N as a
premise to the rule.

Case ET CONV The rule looks like

H ` u1 : M1 = N1 ... H ` ui : Mi = Ni

H ` m : [M1/x1] ... [Mi/xi]M
H ` [N1/x1] ... [Ni/xi]M : ?

H ` m : [N1/x1] ... [Ni/xi]M
ET CONV

By IH we get that [M1/x1] ... [Mi/xi]M is propositionally equal to an arrow type, with n being
typeable at the “unwrapping” of that type. So if we can show that [N1/x1] ... [Ni/xi]M is proposi-
tionally equal to that same arrow type, then we are done.
But note that by regularity, inversion and reflexivity (lemmas 35, 37, 39) we have H ` join :
[M1/x1] ... [Mi/xi]M = [M1/x1] ... [Mi/xi]M. By applying ET CONV using the proof u1...ui we get
H ` join : [M1/x1] ... [Mi/xi]M = [N1/x1] ... [Ni/xi]M. Then by transitivity (lemma 39) we have that
[N1/x1] ... [Ni/xi]M is propositionally equal to the arrow type as required.

The remaining inversion lemmas follow a similar pattern, so we omit the proofs.

Lemma 41 (Inversion for irrelevant λ ). If H ` λ [].n : M, then H ` join : [x :M1]→ N1 = M for some M1
and N1, and H,x : M1 ` n : N1 where x /∈ FV (n) .

Lemma 42 (Inversion for rec). If H ` rec f .u : M, then H ` join : M = M1 and H, f : M1 ` u : M1 for some
M1 such that H `M1 : ? and M1 is an relevant or irrelevant arrow type.

Lemma 43 (Inversion for dcon). If H ` d mi : M, then H ` join : DNi = M for some Ni such that:

• dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } ∈H and d is dl for one of the constructors in the declara-
tion.

• H ` Ni : Ξ

• H ` mi : [Ni/Ξ]Ξl

B.5 Preservation

Lemma 44 (A conversion rule for value lists). If H ` ui : [Mi/yi]Ξ and ∀i. H ` join : Mi = Ni and
` H, [Ni/yi]Ξ, then H ` ui : [Ni/yi]Ξ.

Proof. We proceed by induction on the structure of Ξ.

Case empty. Trivial.
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Case (x : M)Ξ. By inversion on the assumed judgments, we know

H ` u : [Mi/yi]M
H ` [Mi/yi]M : ?
H ` ui : [u/x][Mi/yi]Ξ

H ` u ui : (x : [Mi/yi]M)[Mi/yi]Ξ
ETL CONS

and
` H,x : [Ni/yi]M, [Ni/yi]Ξ.

By inversion on this, we have H ` [Ni/yi]M : ?.
Now since we know ∀i. H ` join : Mi = Ni and H ` [Ni/yi]M : ?, then by ET CONV we have
H ` u : [Ni/yi]M.
By substitution (lemma 34) we get ` H, [u/x][Ni/yi]Ξ. We know u is well-typed, so by ET JOIN

we have H ` join : u = u. Then by IH, taking the multi-substitution to be [u/x][Mi/yi], we get
H ` ui : [u/x][Ni/yi]Ξ. So re-applying ETL CONS we get

H ` u ui : (x : [Ni/yi]M)[Ni/yi]Ξ

as required.

Case [x : M]Ξ. This case is similar. Inversion on the first assumed judgement now gives

H ` u : [Mi/yi]M
H ` [Mi/yi]M : ?
H ` ui : [u/x][Mi/yi]Ξ

H ` [] ui : (x : [Mi/yi]M)[Mi/yi]Ξ
ETL CONS

By reasoning as in the previous case we get H ` u : [Ni/yi]M and H ` [Ni/yi]M : ? and H ` ui :
[u/x][Ni/yi]Ξ. Then re-apply ETL ICONS.

Theorem 45 (Preservation).
1. If H ` m : M and m p m′, then H ` m′ : M.

2. If H `mi : [n1/y1] ... [nl/yl]Ξ and ∀i. mi p m′i and ∀j. nj p n′j, then H `mi
′ : [n′1/y1] ... [n′l/yl]Ξ.

Proof. By mutual induction on the two judgments. The cases for H ` m : M are:
Cases ET TYPE, ET VAR, ET ABORT, ET JOIN, ET INJDOM, ET INJRNG, ET IINJDOM, ET IINJRNG,

ET INJTCON.
These expressions can not step except by SP REFL, so the result is trivial.

Case ET CASE. The rule looks like

Γ ` b : D Bi

Γ ` A : ?
dataD∆+ where{di : ∆i→ D ∆+ i∈1..l } ∈ Γ

∀i. Γ, [Bi/∆+]∆i,y : b = di ∆i ` ai : A
∀i. {y}∪dom− (∆i) # FV (|ai|)

Γ ` casebas [y]of {di ∆i⇒ ai
i∈1..l } : A

T CASE

We consider the ways the expression casenof {dj xij⇒ mj
j∈1..k } may step:
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• To casen′ of {dj xij⇒ m′j
j∈1..k } by SP CASE when n p n′ and ∀j. mj p m′j.

By IH we get H ` n : Dni. Also by IH, for each j we have

H, [ni/Ξ]Ξj,y : n = dj Ξj ` m′j : M.

Now by regularity (lemma 32) and inversion (lemma 37) we know that dj Ξj is welltyped in
the context H, [ni/Ξ+]Ξj. And we already observed that n and n′ are welltyped. So n = dj Ξj

and n′ = dj Ξj are wellformed equations. Since n = dj Ξj p n′ = dj Ξj, by ET JOIN we have
H, [ni/Ξ+]Ξj ` join : (n = dj Ξj) = (n′ = dj Ξj). So by context conversion (lemma 33) we have

H, [ni/Ξ
+]Ξj,y : n′ = dj Ξj ` m′j : M.

Then we can re-apply ET CASE to get the required

H ` casen′ of {dj xij⇒ m′j
j∈1..k } : M.

• To [ui
′/xil]m′l by SP CASEBETA when n is dl ui, and ∀i. ui p u′i and ml p m′l. Notice that

the step rule in particular requires that dl is one of the branches of the case expression.
By inversion (lemma 43) on the premise H ` d ui : Dni, we know that H ` n : DNi with
H ` join : DNi = Dni, and H ` Ni : Ξ+ and H ` ui : [Ni/Ξ+]Ξi. (We know that the D, Ξ

and Ξi that come out of the lemma are the same as the ones in the typing rule because data
constructors have a unique definition in the context (lemma 36)).
By the rule INJTCON we get H ` join : Ni = ni for each i. So by value-list conversion
(lemma 44) we have H ` ui : [ni/Ξ+]Ξl.
We next claim that H,y : dl ui = dl ui

′ ` [ui
′/Ξl]m′l : M. To show this we prove a more general

claim: for any prefix u′1 . . .u
′
k of ui, and supposing Ξl has the form (x1 : M1) . . .(xk : Mk)Ξ0,

we have

H, [u′1/x1] ... [u′k/xk][ni/Ξ+]Ξ0,y : [u′1/x1] ... [u′k/xk](dl ui = dl Ξl)
` [u′1/x1] ... [u′k/xk]ml : [u′1/x1] ... [u′k/xk]M

This follows by induction on k (by applying substitution, lemma 34, k times). So in particular,
we have

H,y : [ui
′/Ξl](dl ui = dl Ξl) ` [ui

′/Ξl]ml : [ui
′/Ξl]M

But by the premises H `M : ? and H ` dl ui : Dni together with lemma 30 we know that xl
are not free in dl ui or M, so this simplifies to

H,y : dl ui = dl ui
′ ` [ui

′/Ξl]m′l : M

as we claimed.
Next, we know dl ui is well-typed because that is a premise to the rule. By the mutual IH we
have that H ` dl ui

′ : Dni, so dl ui
′ is well-typed too. So by ET JOIN we have H ` join : dl ui =

dl ui
′. Then by substitution (lemma 34) again we have

H ` [join/y][ui
′/Ξl]m′l : [join/y]M.

But as a side-condition to the rule (plus lemma 29) we know that y /∈ FV (m′l) , and y is a
bound variable which we can pic so that y /∈ FV (M) . So we have in fact show the required

H ` [ui
′/Ξl]m′l : M.
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• To abort by SP ABORT. By regularity (lemma 35) on the original typing derivation we know
that H `M : ?, so by ET ABORT we have H ` abort : M as required.

Case ET PI. The rule looks like

H `M : ? H,x : M ` N : ?
H ` (x :M)→ N : ?

ET PI

The only way (x :M)→ N can step (except trivially by SP REFL) is by SP PI:

(x :M)→ N p (x :M′)→ N′ where M p M′ and N p N′

We must show H ` (x :M′)→ N′ : ?.

By IH we immediately get H `M′ : ? and H,x : M ` N′ : ?. Since M p M′ we also have M . M′,
so applying ET JOIN we get H ` join : M = M′. Then by context conversion (lemma 33) we get
H,x : M′ ` N′ : ?. We conclude by re-applying ET PI.

Case ET IPI Similar to the previous case.

Case ET ABS . The rule looks like

H,x : M ` n : N
H ` λx.n : (x :M)→ N

ET ABS

The only non-trivial way the expression λx.n can step is by SP ABS to λx.n′ when n p n′. By IH
we get H,x : M ` n′ : N. So re-applying ET ABS we get H ` λx.n′ : (x :M)→ N as required.

Cases ET IABS, ET REC.

These are similar to the previous case. For IABS, note that the free variable condition is preserved
by lemma 29.

Case ET TCON. The rule looks like

dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } ∈ H
H `Mi : Ξ+

H ` DMi : ?
ET TCON

The only way the expression can step is by SP TCON, so ∀i. Mi p M′i . By the mutual IH, we get
H `Mi

′ : Ξ+. So by re-applying ET TCON we have H ` DMi : ? as required.

Case ET ABSTCON. Similar to the previous case.

Case ET DCON. The rule looks like

dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } ∈ H
H `Mi : Ξ+

H ` mi : [Mi/Ξ]Ξi

H ` dk mi : DMi
ET DCON

By the mutual induction hypothesis (with an empty substitution) we get H `Mi : Ξ and H ` mi :
[Mi/Ξ]Ξi. Conclude by re-applying ET DCON.
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Case ET APP. The rule looks like
H ` m : (x :M)→ N
H ` n : M
H ` [n/x]N : ?

H ` m n : [n/x]N
ET APP

We consider how the expression m n may step.

• To m′ n′ by SP APP if m p m′ and n p n′.
By IH we have H ` m′ : (x : M)→ N and H ` n′ : M. By lemma 27 we know [n/x]N  p

[n′/x]N, so also by IH we have H ` [n′/x]N : ?. So re-applying ET APP we get H ` m′ n′ :
[n′/x]N.
Finally, by ET JOIN we have H ` join : [n/x]N = [n′/x]N, and hence by ET CONV we get
H ` m′ n′ : [n/x]N as required.
• To [u′/x]m′1 by SP APPBETA if m is λx.m1 and n is u, and m1 p m′1 and u p u′.

By IH we have H ` u′ : M. Also, λx.m1 p λx.m′1 so by IH we have H ` λx.m′1 : (x :M)→
N. By inversion (lemma 40) we know that H,x : M1 ` m1 : N1 for some M1,N1 such that
H ` join : (x : M1)→ N1 = (x : M)→ N. By ET INJDOM we have H ` join : M1 = M, and
byregularity (lemma 32) we have H `M1 : ?, so by ET CONV we get H ` u′ : M1. Now by
substitution (lemma 34) we get

H ` [u′/x]m′1 : [u′/x]N1.

Now, by ET INJRNG we have H ` join : [u′/x]N1 = [u′/x]N. Also, by lemma 27 we know
[u/x]N  p [u′/x]N, and we noted above that H ` [u′/x]N : ?, so by ET JOIN we have H `
join : [u/x]N = [u′/x]N. By symmetry and transitivity (lemma 39) this yields H ` join :
[u′/x]N1 = [u/x]N.
Finally, we had H ` [u/x]N : ? as a premise to the rule. So by ET CONV we get the required

H ` [u′/x]m1 : [u/x]N.

• To ([rec f .u/f ]u′1) u′2 by SP APPREC if m is rec f .u, n is u2, and u1 p u′1 and u2 p u′2.
By IH we have H ` u2 : M. Also, since rec f .u p rec f .u, by IH we have H ` rec f .u : (x :
M)→ N. And since by lemma 27 [u2/x]N p [u′2/x]N, by IH we get H ` [u′2/x]N : ?.
By inversion (lemma 42 we know H, f : M1 ` u′1 : M1 for some M1 such that H ` join : M1 =
(x :M)→ N and H `M1 : ? and such that M1 is an arrow type.
So by the ET REC rule, we get H ` rec f .u : M1. Then by substitution (lemma 34) we have
H ` [rec f .u/f ]u′1 : M1.
By regularity (lemma 35) on the original premise of the rule we know H ` (x : M)→ N : ?,
so by ET CONV we have H ` [rec f .u/f ]u′1 : (x :M)→ N. Then re-apply ET APP to get

H ` ([rec f .u/f ]u′1) u′2 : [u′2/x]N.

As we noted above [u2/x]N p [u′2/x]N, and both expressions are well-kinded, so by ET JOIN

we know H ` join : [u′2/x]N = [u2/x]N. So by finally applying ET CONV we get the required

H ` ([rec f .u/f ]u′1) u′2 : [u2/x]N.



44 Irrelevance, Heterogeneous Equality, and CBV

• To abort by SP ABORT. By regularity (lemma 35) on the original premise we know H `
[n/x]N : ?. So by ET ABORT we have H ` abort : [n/x]N as required.

Case ET IAPP. The typing rule looks like

H ` m : [x :M]→ N
H ` u : M

H ` m[] : [u/x]N
ET IAPP

We consider how the expression m[] may step:

• To m′[] by SP IAPP if m p m′. By IH we know H ` m′ : [x : M]→ N, so by re-applying
ET IAPP we get H ` m′[] : [u/x]N as required.

• To m′1 by SP IAPPBETA if m is λ [].m1 and m1 p m′1.
Note that λ [].m1  p λ [].m′1, so by IH we get H ` λ [].m′ : [x : M]→ N. Then by inversion
(lemma 41) we know H,x : M1 ` n : N1 for some M1 and N1 with H ` join : ([x :M1]→ N1) =
([x :M]→ N), and x /∈ FV (m′1) .
Now, we have H ` u : M as an assumption to the rule. By regularity (lemma 35) on that
assumption we get H ` M : ?, and by ET IINJDOM we have H ` join : M1 = M. So by
ET CONV we get H ` u : M1. Then by substitution (lemma 34) we get

H ` [u/x]n : [u/x]N1.

Since we know x is not free in n this is the same as saying H ` n : [u/x]N1. Furthermore, by
ET IINJDOM we get H ` join : [u/x]N1 = [u/x]N, and by regularity on the original derivation
we have H ` [u/x]N : ?. So by ET CONV we get the required

H ` m′ : [u/x]N.

• To ([rec f .u/f ]u′1)[] by SP IAPPREC if m is rec f .u and u1 p u′1.
Note that rec f .u p rec f .u, so by IH we know H ` rec f .u : [x : M]→ N. By inversion
(lemma 42) we get that H, f : M1 ` u′1 : M1 for some arrow type M1 such that H ` join : M1 =
[x :M]→ N and H `M1 : ?. By ET REC we then have H ` rec f .u : M1, hence by substitution
(lemma 34) we have

H ` [rec f .u/f ]u′1 : M1.

By regularity (lemma 35) applied to the original typing rule we know H ` [x :M]→ N : ?, so
by ET CONV we then have

H ` [rec f .u/f ]u′1 : [x :M]→ N.

So re-applying ET IAPP we get the required

H ` ([rec f .u/f ]u′1)[] : [u/x]N.

• To abort by SP ABORT.
By regularity (lemma 35) applied to the original type rule we know H ` [u/x]N : ?, so by
ET ABORT we have

H ` abort : [u/x]N

as required.
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Case ET EQ. The rule looks like
H ` m : M H ` n : N

H ` m = n : ?
ET EQ

The only non-trivial way the expression m = n can step is by SP EQ to m′ = n′, when m p m′

and n p n′. By IH we immediatly get H ` m : M and H ` n : N, and we conclude by re-applying
SP EQ.

Case ET CONV. The rule looks like
H ` u1 : M1 = N1 ... H ` ui : Mi = Ni

H ` m : [M1/x1] ... [Mi/xi]M
H ` [N1/x1] ... [Ni/xi]M : ?

H ` m : [N1/x1] ... [Ni/xi]M
ET CONV

and we know that m p m′. Directly by IH we get H ` m′ : [M1/x1] ... [Mi/xi]M, and conclude by
re-applying ET CONV.

The cases for H ` mi : Ξ are:
Case ETL EMPTY. Trivial.

Case ETL CONS. After pushing in the substitution, the rule looks like:

H ` m : [n1/y1] ... [ni/yi]M
H ` [n1/y1] ... [ni/yi]M : ?
H ` mi : [m/x][n1/y1] ... [ni/yi]Ξ

H ` m mi : (x : [n1/y1] ... [ni/yi]M)[n1/y1] ... [ni/yi]Ξ
ETL CONS

By mutual IH we have H ` m′ : [n1/y1] ... [ni/yi]M.
By repeatedly applying lemma 27 we know [n1/y1] ... [ni/yi]M p [n′1/y1] ... [n′i/yi]M, so by mutual
IH we get H ` [n′1/y1] ... [n′i/yi]M : ?.
By ET JOIN we then have H ` join : [n1/y1] ... [ni/yi]M = [n′1/y1] ... [n′i/yi]M, so by ET CONV we
get H ` m : [n′1/y1] ... [n′i/yi]M.
Finally, by the IH (using that m p m′) we have H `mi

′ : [m′/x][n′1/y1] ... [n′i/yi]Ξ. So re-applying
ETL CONS we get the required

H ` m′ mi
′ : [n′1/y1] ... [n′i/yi]Ξ.

Case ETL ICONS. After pushing in the substitution, the rule looks like:

H ` u : [n1/y1] ... [ni/yi]M
H ` [n1/y1] ... [ni/yi]M : ?
H ` mi : [u/x][n1/y1] ... [ni/yi]Ξ

H ` [] mi : [x : [n1/y1] ... [ni/yi]M][n1/y1] ... [ni/yi]Ξ
ETL ICONS

By repeatedly applying lemma 27 we know [n1/y1] ... [ni/yi]M p [n′1/y1] ... [n′i/yi]M, so by mutual
IH we get H ` [n′1/y1] ... [n′i/yi]M : ?.
By ET JOIN we then have H ` join : [n1/y1] ... [ni/yi]M = [n′1/y1] ... [n′i/yi]M, so by ET CONV we
get H ` u : [n′1/y1] ... [n′i/yi]M.
Finally, by the IH (using that u p u, reflexively) we have H ` mi

′ : [u/x][n′1/y1] ... [n′i/yi]Ξ. So
re-applying ETL CONS we get the required

H ` [] mi
′ : [n′1/y1] ... [n′i/yi]Ξ.
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B.6 Progress

Lemma 46 (Soundness of equality). If HD ` u : M and M . (m1 = n1), then m1 . n1.

Proof. Cases ET TYPE, ET PI, ET IPI, ET TCON, ET ABSTCON, ET DCON, ET ABS,ET IABS, ET REC,
ET EQ.
The M in the conclusion of these rules have a defined head constructor, which is not =. So by
lemma 20, M cannot be joinable with m1 = n1.

Cases ET CASE, ET APP, ET IAPP, ET ABORT. These expressions are not values.

Case ET VAR. This is impossible in an HD context, since it doesn’t contain any variable declarations.

Case ET JOIN. The rule looks like
m . n
H ` m = n : ?

H ` join : m = n
ET JOIN

By injectivity (lemma 21) we have have m . m1 and n . n1. And by assumption we have m . n.
So by symmetry and transitivity (lemma 26) we have m1 . n1 as required.

Case ET CONV. The rule looks like

H ` u1 : M1 = N1 ... H ` ui : Mi = Ni

H ` m : [M1/x1] ... [Mi/xi]M
H ` [N1/x1] ... [Ni/xi]M : ?

H ` m : [N1/x1] ... [Ni/xi]M
ET CONV

and we are given that that [N1/x1] ... [Ni/xi]M . (m1 = n1). By the IH for m it suffices to show that
[M1/x1] ... [Mi/xi]M . (m1 = n1).
But by the IH for ui we know Mi . Ni, so we get this by repeatedly applying lemma 28.

Case ET INJRNG. The rule looks like

H ` u1 : (x :M)→ N1 = (x :M)→ N2
H ` u : M

H ` join : [u/x]N1 = [u/x]N2
ET INJRNG

and we are given that ([u/x]N1 = [u/x]N2) . (m1 = n1).
By IH we get (x :M)→ N1 . (x :M)→ N2, so by injectivity (lemma 21) we know N1 . N2. Then
by lemma 23 we get [u/x]N1 . [u/x]N2 as required.

Case ET INJDOM, ET IINJDOM, ET IINJRNG, ET INJTCON. Similar to the previous case.

Lemma 47 (Canonical forms). Suppose HD ` u : M. Then:

1. If M . (x :M1)→ M2, then u is either λx.u1 or rec f .u.

2. If M . [x :M1]→ M2, then u is either λ [].u1 or rec f .u.

3. If M . DMi then u is d ui, where dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..j } ∈HD and d is one of the
di.
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Proof. By induction on HD ` u : M. The cases are:
Cases ET TYPE, ET PI, ET IPI, ET TCON, ET ABSTCON, ET EQ, ET JOIN, ET INJRNG, ET INJDOM,

ET IINJDOM, ET IINJRNG, ET INJTCON.
The M in the conclusion of these rules have a defined head constructor, which is not one of the
interesting ones. So by lemma 20, M cannot be joinable with one of the interesting types.

Cases ET CASE, ET APP, ET IAPP, ET ABORT. These expressions are not values.

Case ET VAR. This is impossible in an HD context, since it doesn’t contain any variable declarations.

Cases ET DCON,ET ABS,ET IABS. The type in these expressions is joinable with one of the interesting
ones, and by lemma 20 it can be joinable with at most one of them. The expression in the rule does
indeed have the required form.

Case ET REC. The rule looks like

H, f : M ` u : M
H `M : ?
M is (x :M1)→ M2 or [x :M1]→ M2

H ` rec f .u : M
ET REC

We know from the side condition to the rule that M is a relevant or irrelevant arrow. Then the
expression does indeed have the required form.

Case ET CONV. The rule looks like

H ` u1 : M1 = N1 ... H ` ui : Mi = Ni

H ` m : [M1/x1] ... [Mi/xi]M
H ` [N1/x1] ... [Ni/xi]M : ?

H ` m : [N1/x1] ... [Ni/xi]M
ET CONV

Suppose, for example, that [N1/x1] ... [Ni/xi]M . (x : M1)→ N1. By the IH for m ut suffices to
show that [M1/x1] ... [Mi/xi]M . (x :M1)→ N1.
But by soundness of equality (lemma 46), for each ui we know Mi . Ni, so we get this by repeat-
edly applying lemma 28.

Theorem 48 (Progress). If HD ` m : M, then either m is a value, m is abort, or m cbv m′ for some m′.

Proof. By induction on HD ` m : M. The cases are:
Cases ET TYPE, ET VAR, ET PI, ET IPI ET TCON ET ABSTCON, ET EQ, ET JOIN, ET INJDOM, ET INJRNG,

ET IINJDOM, ET IINJRNG, ET INJTCON, ET ABS, ET IABS, ET REC.
These rules have a value as a subject.

Case ET CASE. The typing rule looks like

H ` n : Dni

H `M : ?
dataDΞ+ where{di : Ξi→ D Ξ+ i∈1..l } ∈ H
∀i. H, [ni/Ξ+]Ξi,y : n = di Ξi ` mi : M
∀i. {y}∪dom−(Ξi) # FV (mi)
xii is dom+(Ξi)

H ` casenof {di xii⇒ mi
i∈1..l } : M

ET CASE
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By IH, we have that n is either a value, is abort, or steps. If it steps, the entire expression steps by
SC CTX. If it is abort, the entire expression steps to abort by SC ABORT.
Finally, suppose n is a value. By canonical forms (lemma 47) we know that it must be of the form
d ui, and defined by a datatype declaration for D in the context. Since datatype declarations are
unique (lemma 36), it must be the same datatype declaration that is mentioned in the typing rule
above. So the case expression has a branch for d, and can step by SC CASEBETA.

Case ET DCON. The expression is d mi. By IH, each of the mi is a values, is abort, or steps. If they
are all values, the entire expression is a value. Otherwise, if the first non-value is abort the entire
expression steps by SC ABORT, and if it steps the expression steps by SC CTX.

Case ET APP. The rule looks like
H ` m : (x :M)→ N
H ` n : M
H ` [n/x]N : ?

H ` m n : [n/x]N
ET APP

By IH, m and n either, step, are abort is are values. If m steps, the entire expression steps by
SC CTX. If it is abort the entire expression steps by SC ABORT. So in the following we can assume
it is a value.
By similar reasoning, we can assume n is a value.
Now, by canonical forms (lemma 47) we know that m is either λx.m1 or rec f .u. If it is λx.m1 the
entire expression steps to [n/x]m1 by SC APPBETA, while if it is rec f .u the entire expression steps
to ([rec f .u/f ]u1) n by SC APPREC.

Case ET IAPP. The rule looks like

H ` m : [x :M]→ N
H ` u : M

H ` m[] : [u/x]N
ET IAPP

By the IH, m either steps, is abort or is a value. If m steps, then the entire expresions steps by
SC CTX and the context •[]. If it is abort, the entire expression steps to abort by SC ABORT and
the same context.
Finally, m may be a value. In that case, by canonical forms (lemma 47), m is either λ [].m1 or
rec f .u. If it is λ [].m1, the entire expression steps to m1 by SC IAPPBETA. If it is rec f .u, then the
entire expression steps to ([rec f .u/f ]u1)[] by SC IAPPREC.

Case ET ABORT. The subject of the typing rule is abort.

Case ET CONV. Follows directly by IH.

B.7 Regularity and substitution for the annotated language

While not needed for the type safety proof, in this section we supply proofs of regularity and substitution
for the annotated language. This is of interest because it proves that the “value-dependent” application
rule is admissible in our system.

Lemma 49. If Γ ` a : A, then FV (a)⊆ dom(Γ) and FV (A)⊆ dom(Γ).
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Lemma 50 (Weakening for ` Γ.). If ` Γ,Γ′ then ` Γ.

Lemma 51 (Weakening for the annotated language). If Γ ` a : A and ` Γ,Γ′ then Γ,Γ′ ` a : A.

Lemma 52 (Substitution commutes with erasure). We always have |[a/x]b|= [|a|/x]|b|.

Proof. By induction on b.

Lemma 53. If m cbv m′, then [u0/x0]m cbv [u0/x0]m′.

Proof. By induction on m cbv m′. The cases are:

SC APPBETA. The assumed step is (λx.m) u cbv [u/x]m, and we must show [u0/x0]((λx.m) u) cbv

[u0/x0][u/x]m.
Pushing the substitution down we know [u0/x0]((λx.m) u) = (λx.[u0/x0]m) ([u0/x0]u), which
steps to [[u0/x0]u/x][u0/x0]m. Since x is a bound variable we can pick it so that x /∈ FV (u0) .
Then [[u0/x0]u/x][u0/x0]m = [u0/x0][u/x]m as required.

SC CASEBETA. Similar to the previous case.

SC APPREC. The assumed step is (rec f .u) u2 cbv ([rec f .u/f ]u1) u2, and we must show

[u0/x0]((rec f .u) u2) cbv [u0/x0](([rec f .u/f ]u1) u2).

Pushing down the subsitution we know [u0/x0]((rec f .u) u2) = (rec f .u) ([u0/x0]u2), which steps
to ([(rec f .u)/f ][u0/x0]u1) ([u0/x0]u2).
By picking the bound variable f so that f /∈FV (u0) we have [rec f .u/f ][u0/x0]u1 = [u0/x0][rec f .u/f ]u1
as required.

SC IAPPREC. Similar to the previous case.

SC IAPPBETA, SC ABORT, SC CTX. Immediate by just pushing in the substitution.

Lemma 54. If |a| i
cbv n, then |[v/x]a| i

cbv [|v|/x]n.

Proof. By commuting the substitution (lemma 52) we know |[v/x]a|= [|v|/x]|a|. Then apply lemma 53
to each step of the reduction sequence |a| i

cbv n.

Lemma 55 (Substitution for the annotated language). Suppose Γ1 ` v1 : A1. Then,

1. If Γ1,x1 : A1,Γ2 ` a : A, then Γ1, [v1/x1]Γ2 ` [v1/x1]a : [v1/x1]A.

2. If ` Γ1,x1 : A1,Γ2, then ` Γ1, [v1/x1]Γ2.

Proof. By mutual induction on Γ1,x1 : A1,Γ2 ` a : A and ` Γ1,x1 : A1,Γ2. Most cases follow directly by
IH. Two interesting cases are:

Case T VAR. We get ` Γ1, [v1/x1]Γ2 by the mutual IH. Then do a case-split on where in the context x
occurs:

• If x : A ∈ Γ1, then by T VAR we have Γ1, [v1/x1]Γ2 ` x : A.
By ` Γ1,x1 : A1,Γ2 we know Γ0 ` A : ? for some prefix Γ0 of Γ1, so in particular by lemma 49
we know FV (A)⊆ dom(Γ0), so x1 6∈ FV (A).
Also, by ` Γ1,x1 : A1,Γ2 we know x 6= x1. So [v1/x1]x = x and [v1/x1]A = A, so we have
showed Γ, [v1/x1]Γ2 ` [v1/x1]x : [v1/x1]A as required.
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• If x = x1, then [v1/x1]x = v1, so by assumption we have Γ1 ` [v1/x1]x : A1. By the assumption
` Γ1,x1 : A1,Γ2 we know that x1 is not free in A1, so [v1/x1]A = A1 and so we have shown
Γ1 ` [v1/x1]x : [v1/x1]A. Finally by weakening (lemma 51) we have Γ1, [v1/x1]Γ2 ` [v1/x1]x :
[v1/x1]A as required.
• If x : A ∈ Γ2, then x : [v1/x1]A ∈ [v1/x1]Γ2, so we have Γ1, [v1/x1]Γ2 ` x : [v1/x1]A by T VAR.

By the same reasoning as above we know x1 6= x, so this shows Γ1, [v1/x1]Γ2 ` [v1/x1]x :
[v1/x1]A as required.

Case T JOIN. The typing rule looks like

|a| i
cbv n |b| j

cbv n
Γ ` a = b : ?
Γ ` joina=b i j : a = b

T JOIN

By lemma 54 we get |[v1/x1]a| i
cbv n and |[v1/x]b| i

cbv n. By IH we have Γ1, [v1/x1]Γ2 `
[v1/x1](a = b) : ?. Then re-apply T JOIN.

Lemma 56 (Regularity inversion for the annotated language).

1. If Γ ` (x :A)→ B : A0 for some A0, then Γ ` A : ? and Γ,x : A ` B : ?.

2. If Γ ` [x :A]→ B : A0 for some A0, then Γ ` A : ? and Γ,x : A ` B : ?.

3. If Γ ` a = b : A0 for some A0, then Γ ` a : A and Γ ` b : B for some types A and B.

Proof. By induction on the assumed typing derivation. The only rules that can apply are the intro rule,
which has the required statements as assumptions, and conversion, which goes directly by IH.

Lemma 57 (Regularity for the annotated language). If Γ ` a : A, then Γ ` A : ? and ` Γ.

Proof. Induction on Γ ` a : A. The cases are:

Cases T TYPE, T PI, T IPI, T TCON, T ABSTCON, T EQ.
By T TYPE we have Γ ` ? : ? as required. We get ` Γ by IH (or assumption in the TYPE case).

Cases T CASE, T REC, T APP, T ABORT, T JOIN, T CONV.
We have Γ ` A : ? as a premise to the rule, and ` Γ by IH.

Case T VAR. By inversion on ` Γ plus weakening (lemma 51).

Case T DCON. By T TCON, using the premise Γ ` Ai : ∆+.

Case T ABS. By IH we get Γ,x : A ` B : ? and ` Γ,x : A. Inversion on the latter gives Γ ` A : ? so by
T PI we get Γ ` (x :A)→ B : ? as required.
Meanwhile, weakening (lemma 50) on ` Γ,x : A gives ` Γ as required.

Case T IABS. Similar to the previous case.

Case T IAPP. By the IH we have Γ ` [x :A]→ B : ? and ` Γ.
Now by inversion on Γ ` [x : A]→ B : ? (lemma 56) we get Γ,x : A ` B : ?. Then by substitution
(lemma 55) we have Γ ` [v/x]B : ? as required.
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Case T INJDOM. By IH we have ` Γ. Also by IH we have Γ ` ((x :A1)→ B1) = ((x :A2)→ B2) : ?, so
by applying inversion (lemma 56) twice we get Γ ` A1 : ? and Γ ` A2 : ?. Then by T EQ we have
Γ ` A1 = A2 : ? as required.

Case T INJRNG. By similar reasoning to the previous case we get Γ,x : A ` B1 : ? and Γ,x : A ` B1 : ?.
Then by substitution (lemma 55) we have Γ ` [v/x]B1 : ? and Γ ` [v/x]B2 : ?, so by T EQ we have
Γ ` [v/x]B1 = [v/x]B2 : ? as required.

Case T IINJDOM, T IINJRNG. Similar to the previous two cases.

Case T INJTCON. By IH we have Γ ` D Ai = D Ai
′ : ?, so by applying inversion (lemma 56) twice

we have Γ ` Ai : ∆ for some ∆. By inversion on that judgment we get Γ ` Ak : ?, and similarly
Γ ` A′k : ?. So by T EQ we have Γ ` Ak = A′k : ? as required.

Lemma 58 (Strengthening for the annotated language). If Γ1,x1 : A1,Γ2 ` a : A and x1 is not free in Γ2,
a or A, then Γ1,Γ2 ` a : A.

Proof. By induction on Γ1,x1 : A1,Γ2 ` a : A.

Lemma 59 (Value application). The following rule is admissible.

Γ ` a : (x :A)→ B
Γ ` v : A

Γ ` a v : [v/x]B
APP VAL

Proof. By regularity (lemma 57) we have Γ ` (x : A)→ B : ?. So by inversion (lemma 56) we know
Γ,x : A ` B : ?. Then by substitution (lemma 55) we have Γ ` [v/x]B : ?, so we can apply T APP.

Lemma 60 (Nondependent application). The following rule is admissible.

Γ ` a : A→ B
Γ ` b : A

Γ ` a b : B
APP NONDEP

Proof. By regularity (lemma 57) we have Γ ` A→ B : ?, so by inversion (lemma 56) we have Γ,x : A `
B : ?. By strengthening (lemma 58) we have Γ ` B : ?. Since x is not free we know [b/x]B = B, so this
also shows Γ ` [b/x]B : ?, and we can apply T APP.
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