
Lazy Query Evaluation for Active XML∗

Serge Abiteboul
INRIA Futurs & Xyleme Corp.

Serge.Abiteboul@inria.fr

Omar Benjelloun
INRIA Futurs

Omar.Benjelloun@inria.fr

Bogdan Cautis
INRIA Futurs

Bogdan.Cautis@inria.fr

Ioana Manolescu
INRIA Futurs

Ioana.Manolescu@inria.fr

Tova Milo
INRIA Futurs & Tel-Aviv U.

Tova.Milo@inria.fr

Nicoleta Preda
INRIA Futurs

Nicoleta.Preda@inria.fr

ABSTRACT
In this paper, we study query evaluation on Active XML
documents (AXML for short), a new generation of XML
documents that has recently gained popularity. AXML doc-
uments are XML documents whose content is given partly
extensionally, by explicit data elements, and partly inten-
sionally, by embedded calls to Web services, which can be
invoked to generate data.

A major challenge in the efficient evaluation of queries
over such documents is to detect which calls may bring data
that is relevant for the query execution, and to avoid the
materialization of irrelevant information. The problem is
intricate, as service calls may be embedded anywhere in the
document, and service invocations possibly return data con-
taining calls to new services. Hence, the detection of relevant
calls becomes a continuous process. Also, a good analysis
must take the service signatures into consideration.

We formalize the problem, and provide algorithms to solve
it. We also present an implementation that is compliant
with XML and Web services standards, and is used as part of
the ActiveXML system. Finally, we experimentally measure
the performance gains obtained by a careful filtering of the
service calls to be triggered.

1. INTRODUCTION
The increasing popularity of XML and Web services [28]

has recently promoted XML documents with embedded calls
to Web services as a useful paradigm for distributed data
management on the Web [1, 25, 17, 18]. In the line of [1], we
refer to them as Active XML (AXML) documents. More pre-
cisely, AXML documents are XML documents where some
of the data is given explicitly, while other parts are given
only intensionally, using special XML elements that are in-
terpreted as calls to Web services. When the calls are in-
voked, their results are inserted in the document. To answer
a query on an AXML document, one would like to be “lazy”,
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in the sense of avoiding the invocation of service calls that
bring data not relevant for the query. The main contribu-
tion of this paper is an algorithm for the lazy evaluation of
queries on AXML documents.

The original AXML system [1] supports many features
to control the activation of service calls embedded in docu-
ments. For example, a particular service call may be invoked
at regular time intervals or only upon explicit user inter-
vention. We are concerned here with a special kind of call
activation: lazy service calls. A service call specified as lazy
is invoked only when its result may participate in the an-
swer to a pending query. To illustrate this notion, consider
a Web site about your city’s night-life 1, which is described
by an AXML document, containing information about, say,
movies and restaurants. Now, suppose someone asks the
query /goingOut/movies//show[title="The Hours"]/schedule.
Then, there is no point in invoking any calls found below
the path /goingOut/restaurants, since the data they return
would be set in a place where they cannot contribute to the
result. One would also like to avoid invoking calls found
under /goingOut/movies whose signature indicates that the
returned data is irrelevant to the query, e.g., service calls
returning movie reviews.

The previous observation rules out a naive approach that
consists in invoking all the calls in the document recursively,
until a fixpoint is reached, and finally running the query
over the resulting document. The query processing needs
to be more sophisticate and in particular to call services
selectively. A less naive approach is to build a query proces-
sor that traverses the document top-down, and invokes the
calls encountered while evaluating the query. This material-
izes only part of the document – the subtree traversed by the
top-down evaluation. However, the mixing of query process-
ing and service invocation would result in bad performances,
since the query processor would either have to be blocked
waiting for call responses, or would have to be restarted sev-
eral times to account for the document growth. Moreover,
forcing a particular query processing strategy eliminates the
opportunities for query optimization. Instead, the technique
we propose consists in identifying a tight superset of the ser-
vice calls that should actually be invoked to answer a query.
The idea is to first invoke these calls and then move to a
classical query processing as a second stage.

Observe that while the problem we address is close to the
mediation paradigm, where data sources are called to an-
swer queries on a mediated schema, things are substantially
different in AXML. Service calls may appear (i) anywhere

1In the style of http://www.timeout.com



in the data, and (ii) dynamically in results of previously in-
voked calls. Moreover, the relevance of one call may depend
on the result of another one, and the service calls return
types should be taken into consideration. A first contribu-
tion of the paper is a better understanding of the possible
relationships among the service calls embedded in a docu-
ment, and their influence on the relevance of calls to queries.
Based on that, our central contribution is an efficient algo-
rithm for lazy query evaluation, whose key facets are:

• Computing the set of relevant service calls. The
algorithm generates a set of queries that retrieve all
service calls relevant because of there position.

• Service calls sequencing. Relationships among the
calls are analyzed, to derive a sequence of call invoca-
tions appropriate to answer a query.

• Pruning via typing. Return types of services are
used to rule out more service calls.

• Service calls guide. A specialized access structure
is used to speed up the detection of relevant calls.

• Pushing queries. Precise knowledge of the interac-
tion between the query and each service call enables
pushing queries to capable Web services, like media-
tors do with data sources.

The algorithm we propose is dynamic, in the sense that it
adapts to the state of the document, as this state is modi-
fied by service invocations, and decides at each point which
services should be invoked next. It has been implemented
in the ActiveXML system [1], which supports the AXML
model. Our experimental results, presented in Section 8,
show that, compared to the naive approach, the pruning of
irrelevant service calls may reduce the overall query evalu-
ation time by orders of magnitude. They also demonstrate
the gain obtained from pushing queries to service providers.

A recent work [21] addressed the issue of call invocations
for exchanging AXML documents. There, the goal was to
identify the calls that need to be invoked for making a doc-
ument match an XML schema, and the solution relied on
schema analysis via automata-based algorithms. By con-
trast, our goal here is to find the sequence of call invocations
needed to evaluate a query over AXML data, and the solu-
tion is based on query analysis and rewriting. Indeed the
two techniques are complementary: The techniques of [21]
can be used to ensure that the parameters of calls invoked
in our query processing match the type required by the ser-
vice signature, and can also be applied to query results if
they need to be exchanged. Conversely, our technique can
be used to evaluate queries on exchanged AXML data.

The paper is organized as follows: Section 2 describes the
AXML data model and query language, and formalizes the
general problem. Section 3 explains how to find, for a given
state of a document, the service calls currently relevant for
a query. Then, using a delicate analysis of the relationship
among the calls, we provide in Section 4 an efficient algo-
rithm to derive the sequence of call invocations needed to
answer a query. A refinement, based on the analysis of ser-
vice signatures is described in Section 5. Two techniques to
further speed up the computation, via query relaxation and
a special access structure, are described in Section 6. The
pushing of queries is considered in Section 7. The implemen-
tation and experimental results are described in Section 8.
The last section studies related works and concludes.

2. PRELIMINARIES
To define the problem formally, we start by briefly pre-

senting a simplified view of the AXML data model, bor-
rowed from [21]. We describe the query language we use,
which captures the core tree-pattern matching fragment of
XQuery. Then, we introduce the new notion of relevance
of service calls for queries, which will be central to the lazy
query evaluation considered in further sections.

Documents and services. AXML documents are modeled
as ordered labeled trees with data and function nodes. The
data nodes represent the regular XML parts of a document,
and are labeled with element names or data values (for
leaves). The function nodes represent calls to Web services,
and are labeled by function names 2. The children subtrees
of a function node are the parameters of the call. When the
function is called, these subtrees are passed to it. The re-
turn value then replaces the function node in the document.
A sample AXML document is shown in Figure 1. Function
nodes have bold labels, and are numbered so that they can
be referred to in later discussions. Data values are quoted.

This document contains a list of hotels, some of which
are given explicitly and some only intensionally, through
an embedded call to the getHotels function. The docu-
ment details (extensionally or intensionally) for each hotel
its name, address, rating, and some nearby restaurants or
museums. When the first getNearbyRestos call is invoked
with the address of the hotel as a parameter, it returns
a list of restaurant elements, which replaces the function
node, as shown in Figure 3 (ignore for now the gray mark-
ing). Note that the parameter subtrees and the return values
may themselves be AXML documents.

Signatures of Web services, namely the expected type of
their parameters and results, are typically given in their
WSDL description [28]. For services with AXML input or
output, these types also entail information about the inten-
sional parts of the data, and detail which service calls may
appear where [21]. For simplicity, we use here the same
DTD-like syntax as in [21]. Signatures are described by a
schema τ that associates (1) a pair of regular expressions
with each function name f , which respectively describe the
input and output type of the function, and (2) a regular ex-
pression with each element name, which describes the struc-
ture of the element. The keyword data is used for data
values. A sample schema τ can be seen in Figure 2.

Consider a particular function node. Its input must be
properly typed, i.e. the labels of its children must match
the corresponding in regular expression. Its result is guar-
anteed to match the out regular expression. Like in DTDs,
for a data node occurring in an input/output subtree, the
regular expression associated with its label must be matched
by the labels of its children. It is easy to see that the output
of getNearbyRestos in Figure 3 matches the corresponding
output type in τ .

Queries. Queries are modeled by tree patterns. A tree pat-
tern query is a labeled tree whose nodes are labeled by vari-
able names, constants (element names and data values), or
the special symbol ∗. The nodes labeled by variable names

2In practice, the function name corresponds to the param-
eters that identify the Web service: its URL, namespace,
etc.
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Figure 1: A sample Active XML document

functions:
getHotels = [in: data,out: hotel∗]
getRating = [in: data,out: data]
getNearbyRestos = [in: data,out: restaurant∗]
getNearbyMuseums = [in: data,out: museum∗]

data:
hotel = name.address.rating.nearby
nearby = restaurant∗.getNearbyRestos∗

.museum∗.getNearbyMuseums∗

restaurant = name.address.rating
museum = name.address
name = data
address = data
rating = (data | getRating)

Figure 2: A schema τ for function signatures.
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Figure 3: After invoking getNearbyRestos

are called variable nodes and those labeled by element names
and data values are called constant nodes. The tree also has
a distinguished set of edges called descendant edges and a
distinguished set of nodes called the result nodes.

Figure 4 shows a tree pattern query. Descendant edges are
represented by double lines and output nodes are pointed by
little arrows.

"*****"

hotel

rating nearby

nyHotels

name

‘‘Best Western"

name address

restaurant

X Y

rating

"*****"

Figure 4: A tree pattern query

To define the semantics of queries, we use the notion of
query embedding.

Definition 1. Given a tree pattern query q and an AXML
document d, an embedding of q into d is a tree homomor-
phism ρ from the nodes of q to the data nodes of d, mapping
the root of q to that of d, preserving the parent-child and
ancestor-descendant relationships (for regular and descen-
dant edges, resp.), mapping each constant node of q to a
data node of d with the same label, and such that all the
variable nodes of q with the same variable name are mapped
to data nodes having identical labels.

The restriction of ρ to the result nodes of the pattern q
is called the result of the embedding. The set of results of
all possible embeddings is called the snapshot result of the
query, and denoted q(d).

Note that the data nodes of d that contribute to a given
embedding are the images of the pattern nodes, plus the
nodes in d residing on the paths between those images (i.e. d
nodes that correspond to descendants edges in the pattern).
Consequently, we say that a data node in d contributes to
q(d) if it contributes to some embedding of q in d.



For instance, the query of Figure 4 has no embedding
in the document of Figure 1 and the snapshot result on
this document is thus empty. On the other hand, once the
getNearbyRestos function is invoked, the query has one em-
bedding in the document of Figure 3. The marked grey area
contains the nodes that contribute to the embedding, and
the snapshot result on this document consists of the name
and address of the marked restaurant.

Observe that, while AXML documents are ordered, our
tree pattern queries are not sensitive to document order.
This is because the former represent XML data (which is
ordered), while the latter are intended to capture the core
of XPath/XQuery, focusing on vertical axes like child and
descendant, where the order of elements is irrelevant.

It is also important to note that queries only match the
data nodes of the document. This is because function nodes
are only means to get the data they represent. Consequently,
we distinguish between two possible semantics for a query:
The snapshot result, defined above, is the result of the
query when evaluated on the document in its current state,
without invoking the function calls it contains. By contrast,
the full result of a query represents (possibly intensionally)
its snapshot result when evaluated on the document in its
“full” state. Intuitively, by full state we mean the state in
which all possible calls in the document have been evaluated,
i.e., the document is fully materialized. The notions of full
state and result are formalized in [2]. In a nutshell, this
paper focuses on efficiently computing the full result of a
query, while intelligently invoking as few function calls as
possible.

Relevant calls. When functions calls are invoked, their an-
swers, inserted in the document, may contribute new em-
beddings to the query. As the document evolves, the snap-
shot result of the query may grow. We would like to (i) in-
voke only function calls that may indeed contribute to this
growth, and (ii) detect when no more function invocations
can add significant data, and the full query result can be
computed by simply evaluating the query on the document.
These notions are formalized next.

Definition 2. For an AXML document d1, we say that
d1

v
→ d2 if d2 is obtained from d1 by selecting a function node

v in d1 with some label f and replacing it by an arbitrary

output instance of f 3. If d1

v1→ d2

v2→ d3 . . .
v

n−1

→ dn we say

that d1 rewrites into dn, denoted d1

∗
→ dn.

We say that a node v ∈ dn was produced by a function
node vi if v 6∈ di and v ∈ di+1. v is transitively produced
by vi if it is either produced by vi or is produced by some
function node vj transitively produced by vi.

Note that in the rewriting process, the replacement of a
function node v by an output instance is independent of
any function semantics. In particular, we may replace calls
to the same function by different output instances. This
captures the behavior of real life Web services, like a tem-
perature or stock exchange service, for which two calls may
yield different results.

3By replacing the node by an output instance we mean that
the node v and the subtree rooted at it are deleted from d1,
and the forest trees d′

1, . . . , d
′
j of some output instance of f

are plugged in place of v.

Definition 3. Given a document d, we say that a func-
tion node v ∈ d is relevant for a query q if there exists

some rewriting d
v
→ d1

∗
→ dn where some of the data nodes

transitively produced by v contribute to q(dn).
If the document contains no relevant calls, it is said to be

complete for the query.

Observe that the notion of function relevance has an opti-
mistic nature: a function is considered relevant if it is possi-
ble that it returns a “good” result which, possibly together
with additional “good” data produced by the invocation of
other functions (in its own output or in other places in the
document) will contribute to the query evaluation.

To illustrate, consider the document of Figure 1 and the
query of Figure 4. The relevant functions here are 1, 3, 4
and 10. Function 1 is relevant, as it may produce restaurant
elements with a high rating, or a getRating function call that
may produce such a rating, and hence make the hotel qual-
ify for the query. Function 4 is relevant, as it may similarly
produce highly rated restaurants, which, together with a po-
tential high rating for the hotel, returned by function 3, may
also make this hotel qualify. Function 3 is thus relevant for
symmetric reasons. Function 10 may return qualifying ho-
tels. Other function calls are irrelevant, either because their
output is of a type that cannot contribute to the query (e.g.
7) or because, regardless of their answer, the corresponding
hotel cannot satisfy the query criteria (e.g. 6 and 8).

Relevant rewritings. Our goal is to invoke relevant calls in
the document, until it is complete for the query, and then
evaluate the query on it. An immediate issue that arises
is termination: since function invocations may return new
data and new function calls, a rewriting may never termi-
nate. This behavior is inherent in the AXML model, and is
carefully studied in [2], which provides sufficient conditions
for termination. We will not consider this issue here, and
assume that either these conditions hold or that the com-
putation halts if a full state is not reached after some time
limit. We focus here on the selective invocation of functions
and completeness detection.

Note that once a function is invoked and returns a spe-
cific answer (one among all the possible instances of the
function’s output type), other functions that were consid-
ered relevant before may cease to be so. For instance, if
function 3 is invoked and returns a low rating, function 4 is
no longer relevant. This motivates the following definition.

Definition 4. For a document d1 and a query q, we say

that a rewriting d1

v1→ d2

v2→ d3 . . .
v

n−1

→ dn is relevant if
∀i ∈ 1 . . . , n−1, the function node vi is relevant for di and
q. The rewriting is complete if dn is complete for q.

In a relevant rewriting, only functions that may contribute
to the query result are invoked. This is in contrast to the
naive approach where all functions are invoked. Note how-
ever that there is a tradeoff between accuracy and efficiency:
if it is expensive to exactly detect which calls are relevant
and which are not, one may prefer a more lenient rewrit-
ing, where all relevant calls are indeed invoked but perhaps
also some additional, non relevant ones. Note that such a
rewriting is “safe”, in the sense that it does not change the
query result. The challenge is thus to find the right balance
between the efforts spent on ruling out irrelevant calls and
the actual time saved by avoiding their invocation.



Pushing queries. Even when a call is relevant, its entire
result may not be needed to evaluate the query. For in-
stance, getNearbyRestos may return many restaurants. As
we are only interested in five-star ones, and more precisely,
only in their names and addresses, we may want to push to
the function call a precise subquery, specifying that it has
to apply the five-star rating selection, and only return the
relevant names and addresses.

The results. We can now state more formally the contribu-
tions of this paper.

1. We present an algorithm that, given a query q and a
document d, finds all the function calls in d that are
relevant for q.

2. The above algorithm induces a simple mechanism to
find a relevant rewriting, that iteratively invokes rele-
vant calls, and applies the previous algorithm at each
step on the changed document. We improve on this,
by analyzing dependencies among relevant functions,
and minimizing the needed efforts to find, at each step
of the rewriting, the next function to be invoked.

3. We analyze the complexity of our algorithms, and pro-
pose two complementary methods to improve perfor-
mance. The first uses a lenient variant of the algo-
rithms, with a less refined but more efficient call rel-
evance detection component. The second is based on
an access structure to speed up processing.

4. We provide an algorithm that determines the subqueries
to be pushed to the function calls that we decide to
trigger, and a simple execution model for controlling
this distributed computation.

5. Finally, we describe our implementation and provide
an experimental assessment of the performances of the
above techniques.

Some useful machinery. Before presenting our results, we
need to introduce two extensions to the query language, that
will be useful in the sequel. We will use two new types of
nodes in our tree pattern queries:

The first are OR nodes, that represent a choice between
their children subtrees. A query q with OR-nodes can be
viewed as the union of all queries qi without OR-nodes that
can be obtained from q by some choice of a single child
subtree for each OR-node in q.

The second are function nodes. The queries that we saw
so far were concerned only with data nodes. For queries with
function nodes, the snapshot result is defined as for regular
queries, except that the pattern embeddings map the func-
tion nodes in the query to function calls in the document.

We refer to tree patterns having OR and function nodes as
extended queries. Examples are given in Figure 6. OR-nodes
are labeled by ⊕ and function nodes have a gray background.
In the following sections, we will use such extended queries
to retrieve relevant function calls.

For compactness, rather than drawing tree patterns, we
will sometimes use an XPath-like syntax for queries. In
this syntactic representation, to distinguish data nodes from
function nodes, we will add parentheses to the latter, as in
nyHotels/hotel/rating/getRating().

3. FINDING RELEVANT CALLS
Given a document d and a query q, our goal is to find a

complete relevant rewriting, that is, a sequence of function
invocations that makes d complete for q, and such that, at
each step, the invoked function call is relevant w.r.t. the
current state of the document. For simplicity, we will first
ignore the functions signatures and assume that functions
can return arbitrary answers, i.e. that their output type is
any. We will see in Section 5 how to use function signatures.

We start by explaining how to find, for a given state of the
document, the function nodes currently relevant to q. We
present two algorithms, starting with the simpler one, and
compare their respective properties. Based on that, we then
provide algorithms to find a complete relevant rewriting.

3.1 Linear path queries (LPQ)
The portion of a document that can be modified by the ac-

tivation of a function is clearly determined, since the result
is placed at the exact position of the function node. There-
fore, a function node may be relevant for a query q only if it
is on a path traversed by q. Based on this observation, we
build a family of extended queries to retrieve relevant calls
as follows: First, construct the linear path queries (LPQs)
“embedded in q”, i.e. the linear sub-queries of q. Then, re-
place their last node with a star-labeled function node, and
mark this node as the output node of the query.

For instance, using the XPath-like syntax introduced in
Section 2, the LPQs derived for the query of Figure 4 are:

/*()
/nyHotels/*()
/nyHotels/hotel/*()
/nyHotels/hotel/name/*()
/nyHotels/hotel/rating/*()
/nyHotels/hotel/nearby/*()
/nyHotels/hotel/nearby//*()
/nyHotels/hotel/nearby//restaurant/*()
/nyHotels/hotel/nearby//restaurant/name/*()
/nyHotels/hotel/nearby//restaurant/address/*()
/nyHotels/hotel/nearby//restaurant/rating/*()

The star-labeled function nodes (denoted ∗()) at the end
of each query retrieve the function nodes residing at the end
of a matching path in the document. It is fairly straight-
forward to see that, for any document d, any call in d that
is relevant for q is necessarily returned by one of these lin-
ear path queries, when evaluated on d. However, what the
LPQs actually compute is a superset of the relevant func-
tion calls. To see that, notice that on the sample document
of Figure 1, the LPQs above select, among others, the calls
to getRating and getNearbyRestos for the "Pennsylvania" ho-
tel. These calls are in fact irrelevant, since the query is only
interested in hotels named "Best Western".

3.2 Node-focused queries (NFQ)
We need to use more sophisticated queries to get bet-

ter accuracy. For that, we introduce node-focused queries
(NFQs): Instead of constructing one linear path query per
node in the query, we derive a (potentially more precise)
NFQ, that includes the filtering conditions from the original
query. Notice that the latter can either be satisfied by data
present in the document, or by data produced by the invo-
cation of function calls. Thus, the NFQ for a given query
node v will ask for all function calls found on the same path
as v, such that all the filtering conditions could be satisfied
either by some data, or by some (future) function call result.



NFQ(query q)
1 let q⊕ by a copy of q
2 for each node u in q
3 let u′ be its counterpart in q⊕
4 replace u′ in q⊕ by an OR between u′ and fu,
5 where fu is a function node labeled ∗
6 end for

7 let Q = ∅
8 for each node v in q⊕
9 compute qv as q⊕ − {v and its subtree},
10 with fv as output node
11 simplify qv by removing redundant ORs,
12 add qv to Q
13 end for

14 return Q

Figure 5: Building NFQs for a query q.

The algorithm building all NFQs for a given query q is
depicted in Figure 5. It starts by constructing a “modified
query” q⊕, in which all nodes u are replaced by a choice
between u and a star-labeled function node. Then, for each
node v of q, the NFQ of v, denoted qv, is obtained from q⊕
by erasing v and its subtree, and by marking the function
call sibling of v as a return node.

Figure 6 shows three of the NFQs for the query of Figure 4:
(a), (b), and (c) retrieve the function calls that might return
relevant hotels, restaurants, and hotel ratings respectively.

Notice that, in these NFQs, OR nodes appearing in q⊕
on the path from the query root to the output node were
removed, together with their *() branch. This is because
these branches cannot contribute bindings to the query re-
sult (and being under an OR, are not existentially required).
Therefore, we can omit these nodes (in step 11 of the algo-
rithm) without changing the semantics of NFQs.
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Figure 6: Three node-focused queries

The next property follows from the above discussion.

Proposition 1. Assuming that functions can return data
of arbitrary type, the function nodes in a document d that
are relevant for a query q are precisely those retrieved by the
NFQs of q, when evaluated on d.

4. SEQUENCING RELEVANT CALLS
We next explain how to derive a relevant rewriting, that

is, a sequence of invocations in which only relevant calls are
invoked. This is often an essential criterion, e.g., if we have
to pay for calls. We will consider later some relaxations
that simplify the analysis, at the cost of firing more calls
than necessary.

4.1 The NFQA algorithm
NFQs induce a simple iterative algorithm for deriving a

relevant rewriting: Given a document d0, run the NFQs on
d0, pick one relevant function call f0 among the returned

calls, and invoke it, i.e. d0

f0→ d1. The next iteration will
then run the NFQs on the changed document d1, pick a rel-
evant call f1 among the results and invoke it, and so on
recursively. We stop when no more calls are relevant, i.e. if
for some step n, all NFQs return an empty answer on doc-
ument dn. We call this simple algorithm NFQA (for NFQ
Algorithm). The next property follows:

Proposition 2. The NFQA algorithm computes a (pos-
sibly infinite) relevant rewriting. If it terminates, the ob-
tained document is complete for the query q.

Note that the potential non-termination is not due to the
NFQA algorithm, but to the semantics of AXML docu-
ments/queries, that can indeed be infinite (see Section 2).

Clearly, through the execution of the NFQA algorithm,
the NFQs stay the same, as they only depend on the query
q. However, the result of the NFQs may change as the doc-
ument evolves, thus they have to be re-evaluated at each
iteration. The NFQs result may change in two ways:

1. The invocation of a call may bring new relevant calls,
hence enrich the result of the NFQs.

2. Also, the invocation of a call may affect the document
in such a way that formerly relevant calls are not rel-
evant anymore, and this is what makes reevaluating
the NFQs essential. For instance, if the getRating call
of the "Best Western" hotel in Figure 1 is invoked and
returns a low rating, the getNearbyRestos call, which
was relevant before, becomes irrelevant.

To avoid the costly reevaluation of NFQs after each call,
we analyze their mutual relationships. We present two op-
timizations, corresponding to items 1 and 2 above.

First, we characterize (in Section 4.2) the cases where the
invocation of relevant calls, found by one NFQ, may return
new relevant calls, enriching the result of another NFQ. This
will enable us to apply a layering strategy, that splits the
set of NFQs into smaller groups, on which NFQA is applied
separately. Running NFQA on smaller groups may yield
much less NFQ evaluations than doing so on the initial set.

Second, we detect some useful cases where a given call,
once known to be relevant, is guaranteed to stay so (in Sec-
tion 4.4). Assuming this property holds for two calls f1 and
f2, we can invoke f1 and f2 in parallel, since we are sure
that triggering one will not affect the relevance of the other.

Other optimizations are possible, since relevant rewrit-
ings are found by issuing NFQ queries. Their evaluation is
delegated to a query processor, which can apply standard
query optimization techniques [10], or eliminate redundant
queries using containment checking as in [20]. The benefits



of such techniques naturally apply in our setting. In particu-
lar, techniques for multi-query optimization [7] are essential
to avoid performance penalties. In this section, we focus on
techniques that are specific to our context.

4.2 Influence of NFQs
For a tree pattern query q and a node v ∈ q, we denote by

qv the NFQ of node v. For two nodes v, v′ ∈ q, we say that
qv may influence qv′ if the invocation of some call retrieved
by qv may bring new calls, detected by q′

v. More formally,

Definition 5. For two nodes v, v′ ∈ q, the NFQ qv may
influence qv′ if there exist a document d, a function node

u ∈ qv(d), and a rewriting d
u
→ d1

∗
→ dn, such that qv′(dn)

contains some function node transitively produced by u.

For instance, the NFQ of Figure 6(a) may influence the
ones of Figures 6(b) and (c), as the getHotels it retrieves may
return, a hotel element with getRating or getNearbyMuseum

calls in the right positions in its subtree.
We now explain how to detect whether an NFQ may in-

fluence another one. Recall that the result of a function call
is placed in the document at the exact position of the call.
Consequently, for an NFQ qv to be able to influence another
NFQ qv′ , the function calls selected by qv should be higher
in the tree than those selected by qv′ , so that the output of
the former can actually be traversed by qv′ .

To state this formally, we use the auxiliary notion of lin-
ear part of an NFQ qv, denoted qlin

v , which is the linear
path expression present in q, going from the root to v (not
included). For example, qlin

v for the NFQ of Figure 6(c) is
/nyHotels/hotel/rating. Our algorithm for testing potential
influence among NFQs is based on the following observation:

Proposition 3. For a query q and two nodes v, v′ ∈ q,
the NFQ qv may influence the NFQ qv′ iff some word in the
regular language of qlin

v is a prefix of some word in qlin
v′ .

This proposition gives an immediate PTIME algorithm
to check the influence relationship between NFQs: (1) build
two regular automata, one accepting the words in qlin

v and
one accepting the prefixes of words in qlin

v′ , (2) build their
cartesian product automaton, which accepts the intersection
of the two languages [16], and (3) test if the latter is empty.

4.3 NFQ layers
We use the may influence relation among NFQs to split

them into smaller groups, called layers.
Let ≤ denote the transitive closure of the may influence

relation, and let ≡ be the equivalence relation defined by
qv ≡ qv′ if qv ≤ qv′ and qv′ ≤ qv. Let NFQ layers be the
equivalence classes of ≡. ≤ induces a partial order between
layers. To find a relevant rewriting, the interactions between
NFQs can be analyzed based on their respective layers.

• By construction, NFQs inside one layer may influence
each other, therefore, we need to run NFQA, as de-
scribed in Section 4.1, inside each layer.

• For two comparable layers L1,L2, where L1 ≤ L2
4,

we know that the processing of L1 may augment the
result of the queries in L2, but the reverse is not true.
Thus, we process L1 first, and then we can process L2.

4By abuse of notation, ≤ is also used for layers.

This entails the following evaluation strategy: The partial
order among layers is completed into some compatible to-
tal order. Layers are processed in increasing order. Within
each layer, we apply NFQA. Note that when the process-
ing of a given layer is over, we can simplify the remaining
NFQs by removing the OR/*() branches corresponding to
the layer we just finished. This is because the correspond-
ing functions have already been invoked and cannot appear
in the document anymore. This simplification makes the
NFQs much less complex, hence faster to evaluate, without
changing their results.

In our running example, the NFQ of Figure 6(a) may influ-
ence those of Figures 6(b) and 6(c), which are incomparable.
Consequently, each layer consists of a single NFQ, with the
one of Figure 6(a) being the first.

In general, layers may contain several NFQs. For instance,
two NFQs qv, qv′ with linear paths qlin

v = //a and qlin
v′ = //b

would belong to the same layer, as paths that end with a b

may have a prefix that end with an a and vice versa.

4.4 Parallelizing calls
The layering process described above decomposed the com-

putation into smaller independent chunks. Let us now see
how to further optimize this processing, by parallelizing the
computation, inside one layer. More precisely, we want to
know, given an NFQ qv, under which condition relevant
function calls returned by qv are guaranteed to stay relevant,
independently of calling the other relevant function calls re-
turned by qv. In this case we can invoke all the returned
calls in parallel and spare the re-evaluations of qv that the
naive NFQA algorithm needed after triggering each call.

This is the case, for example, for NFQs qv satisfying con-
dition (∗) below, which we call the independence condition.
As before, qlin

v here denotes the linear path expression going
from the root of q to v, not included.

(*) For each NFQ qv′ in the same layer as qv, qlin
v ∩qlin

v′ = ∅.

We omit the proof for space constraints and only note that
this condition can be easily checked by constructing the reg-
ular automata of the two path expressions, and checking
that their cartesian product is empty [16].

Going back to our running example, as each of the layers
here contains a single NFQ, the NFQ is trivially independent
and all the calls it retrieves can be invoked in parallel. The
NFQA algorithm will then reevaluate the NFQ, to check if
new calls were added by the previous invocations, and if so,
will invoke the new calls in parallel, an so on. As another
example, we saw a layer with two NFQs at the end of the
previous subsection. As the intersection of their linear paths
qlin

v = //a and qlin
v′ = //b is empty, both NFQs are indepen-

dent. For this layer the NFQA algorithm will, repeatedly,
pick one of them, evaluate it and invoke all the retrieved
functions, until no more functions are found.

We focused here on the maximum parallelism that can be
achieved without performing unnecessary calls. Note that
one may be able to reduce the time it takes to produce
the answer by calling functions in parallel just in case, and
thereby introduce more parallelism. This is an interesting
research direction that requires the use of a cost model, and
will not be considered here for space reasons.



5. USING TYPES
So far, our analysis ignored function signatures. Let us

now see how to use them to rule out more irrelevant calls.
The key idea guiding the construction of NFQs in the pre-

vious section was that, for each subtree of the query q, doc-
uments may either contain the subtree explicitly, or contain
a function call that may return it. In practice, the possible
shape of the data returned by a function is determined by
its output type, and the output types of the functions that
may appear in its output, recursively. To verify that the
returned data may indeed be of the shape required by the
query, the functions signature needs to be analyzed.

Definition 6. Given a schema τ , a function f defined in
τ satisfies a query q if q(d) 6= ∅ for some derived instance
d of f ’s output type, where the derived instances of a
type are all the documents that instances of the type can be
rewritten into.

We will explain below how, given a function f and a query
q, one can test if f satisfies q. For now, let us simply assume
that such a satisfiability detection algorithm is given, and
see how it can be used to refine the NFQs of Section 3.

Refined NFQs. We use the following notation: For a query
q and a node v ∈ q, subq

v denotes the query subtree rooted
at v. We will also use, as previously, qv to denote the NFQ
query of v, and qv(d) to denote the result of qv when evalu-
ated on document d.

Recall that, for each node v, qv looks for the functions
that may contribute to the subtree pattern subq

v rooted at
v. A natural filtering that one can apply to the functions
retrieved by qv(d), is to discard those that do not satisfy
subq

v: since these functions cannot contribute to the part
of the query for which they have been selected, there is no
point in invoking them. We can, for instance, discard all the
getNearbyMuseums retrieved by the NFQ of Figure 6(b), since
they return museum elements, and hence cannot satisfy the
subquery //restaurant[name=X,address=Y,rating=‘‘*****’’].

Note however that, while the above analysis can discard
some irrelevant calls, it may still let irrelevant ones go through.
Consider for instance the getRating call numbered 6 in Fig-
ure 1, which is retrieved by the NFQ in Figure 6(c). The
function has a ”correct” output type, but it is irrelevant,
since the hotel’s nearby element contains a function with
inappropriate output type. To take this kind of typing in-
formation into consideration, the NFQs need to be refined,
and must explicitly detail, for each query node v, which
functions are “eligible”, in the sense that they may actually
produce data matched by the subquery subq

v rooted at v.
More precisely, given the list of all the function names re-

trieved by NFQs, we can test for each function f and each
node v if f satisfies subq

v. Then, refined NFQs can be con-
structed as in the algorithm of Figure 5, except that rather
than OR-ing each node v ∈ q with a starred function node ∗()
matching any function, only the concrete names of the func-
tions satisfying subq

v are listed. These refined NFQs retrieve
precisely the set of functions relevant for q and d.

For instance, the refined version of the NFQ of Figure 6(c)
is depicted in Figure 7. Note that some of the function nodes
have been removed (as there were no functions producing
data of that type) and the ∗() labels have been replaced by
concrete function names.
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nearby
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Figure 7: Refined NFQ

A similar refinement can also be applied to the layering
and parallelism processes of Section 4. Details are omitted.

Note that during the rewriting process, when functions
are invoked, their result bring new function calls into the
document. The refined NFQs are enriched accordingly: the
names of the new functions are added as possible alterna-
tives to the query subtrees that they satisfy.

Testing satisfiability. To conclude the discussion, we need
to explain how, given a function f and a (sub)query q, one
can test if f satisfies q. Due to space limitations we only
sketch the main ideas of our algorithm.

To check satisfiability, one needs to test if q(d) 6= ∅ for
some derived instance of f ’s output type. Observe that a
similar problem has been studied, e.g. in [22], for regular
(non Active) XML documents: given a schema and a tree
pattern query q, Milo and Suciu provide an algorithm for
testing if q(d) 6= ∅ for an instance d of the schema. The
difference here is that we are interested in testing satisfia-
bility for the derived instances of the function output type,
and not for its direct instances. By extending the algorithm
of [22] to deal with derived instances, we obtain an algo-
rithm for testing function satisfiability, that runs in time
exponential in the size of the schema and the query. One
can further show that the problem is NP-hard even for very
simple queries. So it is unlikely that an algorithm with a
lower time complexity exists. While this may seem negative,
observe that the complexity is not w.r.t the data size, but
w.r.t the size of the schema and query, which are likely to be
much smaller. Nevertheless, to further reduce the running
time, an alternative is to use some lenient sufficient condi-
tions, that may qualify more functions than actually needed,
but can be tested more efficiently. We will see such a lenient
algorithm, used in our implementation, in Section 6.1.

6. FASTER RELEVANCE DETECTION
In this section we propose two complementary techniques

to speed up the detection of relevant calls.

6.1 Lenient rewriting
The algorithm presented above guarantees that only rele-

vant functions are invoked. To reduce the analysis time, one
can trade accuracy for efficiency, running somewhat more
lenient (but faster) analysis, that invokes all relevant calls
but possibly some more. In particular one can (a) relax the
queries that find relevant function calls, and (b) relax the
analysis of functions signatures.



Relaxed NFQ. A substantial efficiency gain can be ob-
tained by “approximating” each NFQ by a simpler query
that can be evaluated faster. Two languages are natural
candidates to approximate NFQs. The first one is XPath.
XPath queries can express all variable-free tree patterns.
Approximating an NFQ by an XPath expression thus ignores
the value-based joins. In return, the XPath approximation
has lower time complexity and can be processed faster [12].
The second is linear path queries: the LPQs introduced in
Section 3 can be seen as a relaxed version of NFQs, account-
ing only for their linear part. Note that the NFQ layering
and parallelism techniques presented in Section 4 can be
used without modification for these relaxed queries.

Relaxed schema. A crucial part of the analysis of function
signatures is testing which sub-queries they can satisfy. To
speed up this test, we use in our implementation a lenient
description of the output types of functions, which ignores
the cardinality of elements and their order. The derived
output type of a function is then represented by a simple
graph schema, in the spirit of [8], and checking satisfiability
amounts to checking if the query can be embedded in this
graph. This can be tested in time polynomial in the size of
the schema. We omit the details.

A lenient relevance analysis can also be used as a prepro-
cessing step, doing a first filtering of the irrelevant service
calls before the “exact” analysis is applied. The benefits of
such preprocessing are illustrated next.

6.2 Function call guides
To further speed-up the processing, we use an access struc-

ture that provides information about the function calls that
are present in the document. For efficiency, this informa-
tion should be compact, and available in a way that is easily
exploitable by the query processor.

In the spirit of dataguides [11], we use a tree structure
that summarizes the paths that occur in a given document,
containing a single occurrence of each path. The originality
here is that we limit ourselves to paths leading to function
calls. We call this structure a function call guide (F-guide
for short). The F-guide also holds the path extents: for
each path we keep pointers to the corresponding function
call nodes in the document. Figure 8 shows the F-guide for
the document of figure 1.

rating

nyHotels

hotel

nearby

10

6 8 2 4 51 7 93

Figure 8: Function call guide

Since F-guides are trees, they can naturally be represented
as XML documents, and therefore be serialized and queried
just as the data they summarize. Moreover, this compact
representation can easily be used to “approximate” the set of
relevant function calls for a query. Indeed, it is easy to show
that the linear path queries of Section 3 yield the same result
on a document and on its F-guide. So rather than running
the queries on the data one can get better performance on
its F-guide, which is typically much more compact.

Type-based filtering. The above queries give an over esti-
mate of the relevant calls, which can be refined using types:
We can discard the functions whose output type does not
satisfy the query subtree rooted at the end of the linear path
by which they were retrieved.

NFQ filtering. One can further filter the function call can-
didates using the NFQs. More precisely, for an NFQ qv

whose linear part is qlin
v , the remaining query to evaluate

checks for the conditions in qv that don’t appear in qlin
v .

This can be expressed as a relative XPath query, starting
from the set of function calls returned by qlin

v . For in-
stance, for the NFQ of Figure 6(b), the remaining query
is .[..[*()⊕rating][*()⊕name[*()⊕"Best Western"]]].

To conclude, note that the F-guide can be built in linear
time in the size of the document, by a single (document-
order) traversal. The F-guide must also be maintained as
the document evolves. This maintenance must be performed
if the document is updated but also during query evaluation,
when functions are invoked. The techniques resemble that
of dataguide maintenance. Details are omitted.

7. PUSHING QUERIES
In general the result of a call may contain more data than

is actually needed for evaluating the query. In such cases,
to reduce data transfer and perhaps computation, it may
be preferable to ask the function provider to send not the
whole function result, but only the part useful for evaluat-
ing q. This amounts to pushing a query to the data source.
For instance, in our running example, rather than invoking
getNearbyRestos and getting all the near by restaurants, we
would like to also ship the subquery
//restaurant[rating="*****",name=X,address=Y]

(with X and Y marked as result nodes) with the call. Thus,
instead of all vicinity restaurants, only the name and address
of five-stars ones are returned.

Pushing queries is a fairly standard technique in mediator
systems [23], and involves issues such as verifying that the
remote source is capable of evaluating them [24]. We focus
here on issues that are particular to our setting, namely how
to determine which subquery needs to be pushed, and how
to use the returned results.

Which subquery to push over a function call. As previ-
ously explained, function calls are invoked when running the
NFQA algorithm on a given layer of NFQs. We obtained f
necessarily as the result of the NFQ qv of some node v in q.
The subquery to push over f is exactly the subtree rooted
at v in the query, which we denoted subq

v in Section 5.

How to evaluate queries with pushed subqueries. When
functions are invoked, the call parameters and the query to
be pushed are sent to the function provider. Rather than
returning the full answer, the latter returns bindings to the
query variables that are result nodes. For instance, when
pushing //restaurant[rating="*****",name=X,address=Y] over
the call to getNearbyRestos, with X and Y marked as result
nodes, the output consists of X,Y binding pairs, e.g.:
<tuple> <x>In Delis</x> <y>2nd Ave.</y> </tuple>

<tuple> <x>The Capital</x> <y>2nd Ave.</y> </tuple>

and not of restaurant elements. Subsequent queries that use



this data (the NFQs to be evaluated in the future, and q)
need to be modified to take these binding into consideration.

There are two basic mechanisms for doing this. A first
method is to actually insert the result in the document (re-
placing as before the function call) and modify the subse-
quent queries as follows. Let v be the query node for which
f was discovered, and let Z1,...,Zk be the return nodes in
subq

v. Then, in each subsequent query, replace subq
v by:

sub
q
v ⊕ tuple[z1=Z1,...zk=Zk]

This approach is very simple and follows naturally from
the AXML model of query invocation. However, it has the
drawback of leaving extraneous content in the document af-
ter evaluating q; <tuple> elements need to be eliminated
afterwards. Alternatively, results from the service calls can
be stored in an intermediary (temporary) storage, with the
subsequent queries (the NFQs and the original query) mod-
ified to access them via join. This latter approach is indeed
the one used in our implementation.

8. IMPLEMENTATION & EXPERIMENTS
All the ideas presented here have been implemented and

tested in the context of the ActiveXML system [1], which
provides persistent storage for AXML documents and allows
users to declaratively specify Web services as queries over
such documents. We used the algorithms described here to
implement a module that decides which services need to be
invoked for query evaluation, and pushes, when possible, the
relevant subqueries to them. The system uses an XQuery-
like query processor. The invoked queries are first approxi-
mated (in the safe sense of Section 6.1) by extracting their
core tree patterns queries, and then fed to the above module.
The signatures of functions are given in their WSDL specifi-
cation, as an (A)XML Schema, which we also approximate,
as explained in Section 6.1 by a graph schema. This model is
employed for processing user queries as well as Web services
defined by queries. Therefore, during the analysis of one
query on one document, the same analysis may be applied,
recursively, for the services invoked during the rewriting.

We ran several experiments to validate our techniques and
briefly describe below a representative subset of them.

8.1 Experimental setting
Hardware and software environment. As a Web service
communication infrastructure, the system uses the SOAP
implementation of the Apache Axis platform. All the im-
plementation (including the XML query processor) is done
in Java. We performed the measures on a Compaq Evo
N410c, with 256 MBytes of RAM and a PIII 1.2 GHz CPU,
running Mandrake Linux 9.2.
Documents and functions used. The documents we
use have a structure very similar to the sample from Fig-
ure 1. They all consist of hotel elements, which may in-
clude calls to the functions: getRating, getNearbyRestos, and
getNearbyMuseums; we also use an extra getNearbyHotels func-
tion whose result is a set of hotels. The latter may contain
similar calls, thus requiring a recursive relevance analysis.

We used the ToXgene [5] XML generator to produce doc-
uments. We fixed the document size to be 1.6MB 5, and
varied the number of function calls in the document by in-
structing ToXgene to set the content of, e.g., rating ele-
ments f% of the time as a call to getRating, and (100-f)%

5The actual sizes of ToXgene documents vary slightly.

of the time as materialized data. The same fraction f con-
trols the probability of a nearby element to contain a call to
getNearbyHotel/Restos/Museums, respectively, instead of plain
data without function calls. The following table summarizes
the parameters of the generated documents:

Value of f (%) 2 20 27 35
Number of function calls 466 757 970 1346

Queries. We report experiments performed with two queries:

hotels//hotel (LIN)

hotels/hotel[rating=‘‘***’’] (TRE)

/nearby/hotel[rating=‘‘***’’]

/nearby/hotel[rating=’’***’’]

We chose these queries to illustrate a variety of scenarios.
The linear query LIN is quite simple, but it searches at any
depth in the document. TRE is a tree query, with branch
tests at all levels, following only precise paths.

8.2 Experimental results
The results of our experiments are shown in Figure 9. In all
of them, on the x axis we vary the number of service calls,
by moving from one document to another. We consider four
different filtering scenarios, using: only an F-guide; the F-
guide and the type analysis; the F-guide and NFQ filtering;
and finally, all three filtering techniques. The results also
apply for a setting without F-guides, as our time measures
here include the F-guide construction time. We used two
approximations: NFQs expressed in XPath, thus with no
value joins; and relaxed schemas as in Section 6. For our
examples, these approximations happen to be precise.
Number of triggered service calls. At the top of Fig-
ure 9, we counted the calls triggered by the evaluations of
LIN (left) and TRE (right). In the case of LIN, F-guide fil-
tering doesn’t eliminate any call, since the query traverses
the whole document: thus, all function calls are triggered.
Type-driven filtering, on the other hand, achieves a signif-
icant reduction, since it avoids the useless invocations of
getNearbyMuseums, getNearbyRstos and getRating. The NFQ
technique does not alter the impact of either F-guide, or
type filtering, since LIN has no branch conditions.

For TRE, F-guide filtering leads to ignoring the calls found
in regions of the document not traversed by the query; still,
all calls under hotel elements, whether they bring ratings,
hotels, museums, or restaurants are triggered. NFQ exploits
the predicates on rating to avoid triggering such calls for
hotels having the wrong rating. Type filtering eliminates ir-
relevant calls to getNearbyMuseums and getNearbyRestos. The
cumulated effect of the three techniques leads to the biggest
reduction, which is quite impressive: at far right, only 8 out
of 1346 function calls are triggered.
Analysis time. At the bottom left of Figure 9, we mea-
sured the total time spent doing relevance analysis for TRE,
that is, building the F-guide and analyzing it, testing func-
tion signatures, and evaluating NFQs. F-guide construction
and analysis is very fast (the bottom curve); F-guide and
type filtering is slightly more expensive. Running NFQs
takes some time, therefore the curve for all three filtering
techniques is higher. Note however that the three bottom
curves vary very little with the number of service calls. The
slight W-shape of the three-filter curve is due to a data varia-
tion in the XML documents that we were not able to control
– the co-occurrence of three-star hotels at three successive
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Figure 9: The effect of function call filtering: triggered calls (top), analysis and evaluation time (bottom).

levels was higher in some documents than in others. Us-
ing F-guide and NFQ filtering, but without checking the
types (top curve) is a very bad choice: it leads to eval-
uating a large amount of NFQs, for many irrelevant calls
to getNearbyRestos, getNearbyMuseums etc. This curve grows
linearly with the number of services in the document.
Total evaluation time. The graph at the bottom of Fig-
ure 9, at right, tells a different story. Here we measure the
total evaluation time, namely analysis plus service invoca-
tions, to capture the tradeoff between the time spend on
analysis vs. the time saved by avoiding useless invocations.
We set the function call duration to 500ms. This is a very
minimal value, since the times we measured for calling a
no-effect service call (constructing an empty-content outgo-
ing SOAP message, sending it to the same host, sending an
empty answer back, unpacking the message) varied in aver-
age between 500ms and 2500ms. In practice, a service call
is likely to last much longer. In this graph, F-guide anal-
ysis alone becomes extremely expensive, due to the large
number of function calls it triggers. F-guide and NFQ filter-
ing is somehow better, since NFQs are effective in pruning
function calls for TRE; still, in the absence of type checking,
it is very expensive. F-guide and type filtering drastically
reduce the total query evaluation time; adding NFQ to the
mix brings a further slight improvement. The lowest two
curves cross, when the extra time spent by three-techniques
analysis pays off the time saved in function calls.

Similar results for LIN are omitted for space reasons.
To summarize, NFQ filtering is useful for queries having

branch conditions, and does not affect the others. Simple
F-guide analysis, without considering the functions’ return
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types, is a very bad choice, since it triggers many irrelevant
calls. Finally, and most importantly, F-guide, type, and
NFQ filtering, together, are extremely cost-effective: the
analysis pays off very significantly, both in terms of func-
tion calls and total evaluation time. Combining all filtering
techniques, we measured more than a 10-fold reduction in
the total evaluation time of TRE; in a more realistic setting,
where Web service calls often last more than half a second,
the improvement is likely to be even more important.
The effect of pushing queries. We also measured the
effect of pushing subqueries over function calls. Figure 10
depicts the average total query evaluation time for queries
in the style of TRE, with and without pushing. As expected,



data transfers are greatly reduced (up to three times on our
fast LAN). The curves are quadratic due to the fact that the
getNearbyHotels service is implemented by a query over the
hotels document. The more hotels the document contains,
the more nearby hotels there are, and the query will run on
a document of size quadratic in the initial number of hotels.

9. CONCLUSION & RELATED WORK
This work is concerned with XML documents with em-

bedded calls to Web services. Such documents are used in
different systems [25, 17, 18, 1]. In the line of [1], we referred
to them as AXML documents. We presented an algorithm
to efficiently find and invoke the service calls relevant to a
particular query, taking into account the output types of ser-
vices, and pushing queries to them when possible. We also
introduced an auxiliary access structure, F-guide, to speed
up processing and presented results of experimental studies.

The evaluation of queries over AXML documents with
lazy service calls is also the topic of the unpublished work of
[4]. Their focus is on minimizing data materialization at a
global level (using a generalization of Query-Subquery [27])
for systems with many interrelated documents in a peer-to-
peer setting. Also set in the context of AXML, a previous
work [3] considered the problem of distributing and repli-
cating AXML data and services in a peer-to-peer setting.
In contrast to both, we address here the specific problem of
optimizing the evaluation of queries over one local AXML
document. So, our work is clearly complementary to both,
and indispensable for them to obtain good performances.

AXML documents may be seen as a means of integrating
data sources, that combines mediation [23, 19] and ware-
housing [13]. There are indeed analogies between finding
relevant calls and pushing queries to them, as proposed here,
and query rewriting using views [14]. A novelty in our ap-
proach is that mappings between data sources are captured
by service calls embedded in the data, with new relationships
discovered at run-time, in the answers of service calls. This
approach, based on ad-hoc dynamic discovery of mappings,
is in the spirit of peer-to-peer data integration systems [15].
However, in systems like [15] the integration happens at the
schema level, while in AXML it is at the data level. This
strongly suggests combining the two approaches.

Our F-guides are inspired by dataguides [11]. Although
they serve different purposes, they are both based on paths
in the original documents. This is also in the spirit of adap-
tive path indices [9]. Invoking calls only when needed is a
technique classically used in programming languages, under
a variety of names, e.g., lazy reduction for lambda calcu-
lus [6]. The originality of our work comes from the particular
setting, XML with embedded service calls.

We already mentioned various techniques that we believe
are candidates to meet ours towards solving the general
problem of query processing for AXML. It would also be
interesting to consider techniques for minimizing commu-
nication, e.g., semi-join-based techniques. One should also
consider an important classical aspect in mediator systems,
namely source capabilities. This is also an issue in our con-
text, for pushing queries to sources, and descriptions such
as [24] could be used. In the spirit of peer-to-peer, one
should also consider the issue of publication and discovery
of data sources, see [26]. Issues such as quality of service,
unreachability of some peers, substituting one data source
for another should also be considered.
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