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Abstract
In this paper we study the problem of interoperability—combining
constructs from two separate programming languages within one
program—in the case where one of the two languages is depen-
dently typed and the other is simply typed. We present a core calcu-
lus called SD, which combines dependently- and simply-typed sub-
languages and supports user-defined (dependent) datatypes, among
other standard features. SD has “boundary terms” that mediate the
interaction between the two sub-languages. The operational seman-
tics of SD demonstrates how the necessary dynamic checks, which
must be done when passing a value from the simply-typed world
to the dependently typed world, can be extracted from the depen-
dent type constructors themselves, modulo user-defined functions
for marshaling values across the boundary. We establish type-safety
and other meta-theoretic properties of SD, and contrast this ap-
proach to others in the literature.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory — Semantics; D.2.12
[Interoperability]: Data mapping

General Terms Languages, Theory

Keywords Dependent types, language interoperability, contracts

1. Introduction
Dependently-typed languages allow programmers to specify a rich
set of properties about their programs that are verifiable during
type-checking. This comes at the price of complexity — it is at
best extremely time-consuming and at worse infeasible to use
dependently-typed languages in large software developments. A
natural way to mitigate this weakness is to use a dependently-typed
language to provide specifications for critical components while
the rest of the system is written in a mainstream programming
language. However, care must be taken to ensure that the specifica-
tions of the dependently-typed language are respected by “weaker”
programming language. In this paper, we study the problem of
interoperability between a language with dependent types and a
language with simple types, focusing on the key meta-theoretic
issues that arise in this setting.

Prior work on interoperability initially focused on the imple-
mentation of such interoperability systems. Many languages pro-
vide an escape hatch into C, such as Java’s JNI [15], or OCaml’s
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[13] and Haskell’s [17] FFI. Other work considers how to achieve
interoperability by developing a lingua franca for languages to talk
to each other. Proposals include C [2], the Java virtual machine
[16], COM [26], or the .NET framework [30]. More recently, the
focus has shifted to understanding the relationship between dy-
namic and typed languages with contracts [7], blame [33], and the
integration of scripting and typed languages [34].

In these systems, dynamic checks ensure that the static guar-
antees of the typed language are respected by the untyped lan-
guage. The dynamic check amounts to a simple type tag check,
e.g., verifying that typeof (λx:S .s) is indeed a function. However,
the same concerns arise if we consider languages with richer type
systems, namely those with dependent types. A simply-typed lan-
guage will be able to enforce only some of a dependently-typed lan-
guage’s static guarantees during type-checking; the difference must
again be made up with dynamic checks. However these dynamic
checks must now perform non-trivial computation rather than sim-
ply checking type tags.

For example, suppose that your dependently-typed language
provides a certified library that you would like to use in your
application. For simplicity’s sake, let’s consider a List datatype that
contains Ints.

List : Int⇒ ∗
Nil : (y :Unit)→ List y
Cons : (y1 : Int)→ (y2 : Int)→ List y1 → List y1 + 1

List is indexed by an integer than represents its length, and that
invariant is maintained by its two constructors Nil and Cons.
Suppose that our library also has a dependently-typed function
PrettyPrintList5 : List 5→ Unit that prints out lists of length five
in a special way, but instead of giving it a dependently-typed List,
we’d like to provide it our standard simply-typed List instead. Our
interoperability layer must not only marshal the List value between
languages, but also ensure that the simply-typed List has length
five.

1.1 Contributions and Outline
How do we craft an interoperability layer that can generate such
dynamic checks? How does such an interoperability layer affect
the meta-theoretic properties of the languages involved? In order
to answer these questions, we propose a calculus in the style of
Matthews and Findler [19] that combines two languages together
— in our case, a simply-typed and dependently-typed language —
via boundary terms.

Our work on dependent interoperability contributes the follow-
ing:

1. A core calculus called SD that combines a simply-typed and
dependently-typed lambda calculus extended with user-defined
datatypes. While we are aware of previous efforts to com-
bine simply-typed and dependently-typed programming, to our
knowledge, this is the first work that looks at the problem
from the perspective of language interoperability with the cor-



responding aim of modifying the languages as little as possible
when integrating them.

2. Analysis of the meta-theoretic properties of SD, in particular, a
proof of type safety for the language.

3. Exploration of the design space of dependent interoperability,
including changes to the design to guarantee termination in
the presence of recursive functions and alternatives to directly
translating data.

4. A comparison of our system to real world systems such as Coq
and Agda that provide limited forms of language interoperabil-
ity. Such comparisons strengthen our claim that our model faith-
fully captures dependent interoperability, but also suggests how
these real world systems can improve in this area.

We open in Section 2 by expanding on the benefits of dependent
interoperability. In Section 3, we describe the syntax and semantics
of SD. We discuss the metatheory of SD in Section 4. Next we
describe additional interesting properties of SD in Section 5. In
Section 6 we compare SD to real world dependently-typed systems
that offer interoperability facilities. Finally we discuss related and
future work in Section 7 and close in Section 8.

2. Motivation
Before we discuss SD proper, we first motivate further why depen-
dent interoperability is a useful idea by discussing three use cases
in more detail. Along the way we will foreshadow the potential dif-
ficulties in creating an interoperability layer that we will solve in
Section 3.

1. Using a simply-typed library in a dependently-typed con-
text. While our dependently-typed language may be safer to
use, it will typically not have all the functionality we would like.
For example, we may wish to use a simply-typed library that
provides network access, e.g., a function sendData : Packet→
Unit, from our dependently-typed program. It is a good bet
(although not always true) that our dependent type system is
strictly more powerful than the simple type system, so intu-
ition tells us that we shouldn’t need any dynamic checks here.
Therefore, our interop boundary needs only to marshal the data
from the dependently-typed language into the Packet that the
simply-typed function expects to use.

2. Using a dependently-typed library in a simply-typed con-
text. The dual of the previous use case is the desire to use
dependently-typed code in a simply-typed context. In the in-
troduction, we used the toy example of a List n. However, you
can imagine wanting to use a verified library for a particular
data structure or protocol from a simply-typed context and be
assured that the simply-typed data you feed it does not break
the properties the verified library enforces. Discovering and en-
forcing these properties is the primary challenge our interoper-
ability boundary faces.

3. Verifying properties of simply-typed code. Finally, because
we are working with a dependently-typed language, an inter-
esting question arises. In addition to verifying properties of
dependently-typed terms, can we do the same with simply-
typed terms? That is, rather than implement a verified library
in the dependently-typed language and translating simply-typed
data into that library, we would like to verify properties of
a simply-typed library directly. Ideally the dependently-typed
language would be able to do this all during typechecking,
but realistically, complete checking of a term across an interop
boundary is impossible. We expect that the result is similar to
a hybrid type system [8] where some properties are verified

λ→ λ
∼=

Kinds K
Types S T
Terms s t

Variables x y
Datatypes A B

Figure 1. Metavariable Conventions for λ→ and λ∼=

Judgment Description
Γ ` s : S λ→ Typing
Γ ` K λ

∼= Well-formed Kinds
Γ ` T : K λ

∼= Kinding
Γ ` t : T λ

∼= Typing
` Ψ Well-formed Signature
` Γ Well-formed Context
FO (T ) First-order Type
S ⇔ T Type Translation
Γ ` K ≡ K ′ λ

∼= Kind Equivalence
Γ ` T ≡ T ′ λ

∼= Type Equivalence
Γ ` t ∼= t ′ λ

∼= Term Equivalence
s −→ s ′ λ→ Evaluation
t −→ t ′ λ

∼= Evaluation

Figure 2. SD Judgments

during compilation and the rest are “made up” with dynamic
checks.

3. Language
Our language SD consists of a simply-typed and a dependently-
typed lambda calculus joined together by boundary terms in the
style of Matthews and Findler [19]. Throughout this paper, we use
a meta-variable convention to distinguish terms of the simply-typed
fragment (λ→) and the dependently-typed fragment (λ∼=) outlined
in Figure 1. In addition, there are several judgments that make
up SD. In the interest of the brevity, we only present the salient
features of each of these judgments. The extended version of our
paper [23] contains the complete definitions of our system along
with proofs.

3.1 Syntax
λ→ is a standard lambda calculus with simple types as defined
in Figure 3. We augment the calculus with pairs <s1, s2>, unit,
an error term that will be raised if a boundary check fails, and
user-defined data constructors C with corresponding datatypes A.
Constructors are modeled as taking only a single argument but this
is not a limitation since multiple arguments can be combined using
pairs. For example, the constructor Cons→ has type

Cons→ : (List ∗ Int)→ List.

In SD we presuppose a signature Ψ0 containing the definitions of
these constructors.

The notable addition to λ→ is the addition of the typed bound-
ary term SDS

T t which can be read as an interoperability boundary
that translates the inner λ∼= term t of type T to a λ→ term of type S .
Such boundaries are responsible for marshaling data from one side
of the boundary to the other and checking that this marshaled data
is appropriate for the context it will be used in. Our formulation
focuses on understanding the latter responsibility: what checks are
necessary to ensure type-safety when moving across boundaries?



λ
∼= is a standard dependently-typed lambda calculus inspired

Jia et al’s system “Lambda-eek” [12]. The syntax of λ∼= as given in
Figure 3 mirrors the syntactic forms found in λ→: it has dependent
functions and pairs along with unit and error. The types of depen-
dent functions and pairs are written (y :T1)→ T2 and (y :T1)∗T2

reflecting the fact that T2 in both cases may contain the bound term
variable y . A datatype B is now a type-level function that, given a
term t , produces a type B t . Consequently, we introduce kinds to
classify such type-level functions T ⇒ ∗, versus proper kinds ∗.

Constructors in λ∼= also take single arguments. Combining mul-
tiple arguments using pairs is trickier because of dependent types,
but still manageable. For example, the type of dependent Cons

∼= is

Cons
∼= : (y1 : (y2 : Int) ∗ (List y2 ∗ Int))→ List (y .1) + 1

In effect, we use dependent pairs to introduce additional arguments
and then project out the arguments when needed to compute the
index of the datatype.

In the interest of simplifying the syntax, the introduction forms
for the different constructs are shared between λ→ and λ∼=. This is
not problematic as we can look at a term’s sub-terms to determine
which syntactic category it belongs to. In particular, the names of
constructors C are shared between the two calculi, with the im-
plicit assumption that each constructor has λ→ and λ∼= counter-
parts. This simplifies our reasoning when dealing with translating
constructors, as we only need to worry about translating the argu-
ments of the constructor.

We introduce a guard term t1 ∼= t2 B t3 that is the result of re-
ducing a boundary term DST

S s . This guard term makes explicit the
equivalence check that must occur before we create the marshaled
term t from s . In our presentation of SD, the only check we need
is an equivalence check t1 ∼= t2 that determines whether two λ∼=
terms are indeed equivalent at runtime.

The attentive reader may notice that guards appear only on the
λ
∼= side of the boundary. Intuitively this is because the types of λ∼=

make strictly stronger guarantees than λ→. When going from λ
∼=

to λ→, no checks are necessary because the λ∼= type system can
verify all the properties that the λ→ type system tries to enforce.
Conversely, λ→ cannot make such guarantees, so we make up the
difference on the λ∼= side with dynamic checks in the form of our
guards.

In both λ→ and λ
∼= we introduce let forms as the standard

syntactic sugar over abstraction binding.

let x = s1 in s2 , (λx:S1.s2) s1

let y = t1 in t2 , (λy:T1.t2) t1

However, in λ→ we also add the special let binding letd y = t in s
that crosses from λ→ to λ∼= to bind a λ∼= term and then returns to
evaluate s . This form is used in order to avoid duplication of side-
effects during evaluation. We discuss letd in more detail when we
talk about the evaluation rules of SD.

3.2 Typing and well-formedness
The typing rules for the λ→ fragment are entirely standard, so we
do not reproduce them in their entirety here. The only interesting
addition is WF STM SD, which gives a type to our boundaries
SDS

T t . A boundary is well-typed if the contained λ∼= term meets the
type annotation on the boundary, and if the types on the boundary
are compatible, written S ⇔ T . Figure 4 gives these rules.

Our type compatibility relation ensures that we can translate be-
tween data of the given types. For compound types such as arrows
and pairs, we can translate between them if we can translate be-
tween their component types. Translating between Unit types is
trivial. And since datatypes A and B are user-defined, we appeal
to user-defined translations between them represented by the meta-
function corr (A,B). As a concrete example, it is reasonable to ex-

pect that the List datatypes between the λ→ and λ∼= fragments are
convertible so that we have corr (List→, List

∼=). Note that S ⇔ T
strips away the term-components of a dependent type—it compares
types only up to the simply-typed “skeleton”. However, compatibil-
ity does require that the types of the indices of dependent data are
first order, written FO (T ). Intuitively, FO (T ) means that the type
T does not contain any arrows. If we did allow arrows here, then
when translating such datatypes we would be forced to compare
equality of function values, which is a hard problem. This will be-
come clear in Section 3.3 where we discuss the evaluation rules of
SD. Note that the data that we are translating is allowed to contain
functions, but the index of that datatype is not.

For λ∼= we present several of the kinding and typing rules in
Figure 5 to remind the reader of the intricacies of dependent type
systems and foreshadow the technical challenges of translating
terms into these types during evaluation.

All programs are typed with respect to some fixed signature Ψ0,
which assigns types to constructors C and kinds to datatypes A and
B . We assume that all the types and kinds in Ψ0 are well-formed in
the empty context. Because datatypes are type-level functions, we
assign them kinds of the form T1 ⇒ ∗, as shown in WF DTY DATA,
while the remaining types have kind ∗, e.g., WF DTY ARR.

Rules WF DTM APP and WF DTM PAIR illustrate the dependent
nature of abstraction and pairs in λ∼=. The second component T2

of the types may contain free occurrences of y of type T1, so
we must close T2 by substituting for y . WF DTM CONV is the
standard conversion rule that allows us to take advantage of indexed
types by establishing equivalences between them (via the type-
equivalence judgment Γ ` T ≡ T ′ as discussed in the next
section). With WF DTM CTOR, we type a constructor C at some
datatype B [t/y ]t ′ where we substitute into the term the argument
given to C . Note that the type of the argument to C does not need
to coincide with the type of the index of B . Finally when we type
cases with WF DTM CASE in each branch we remember the refined
type B t ′i of the branch’s associated constructor.

Checking DS via WF DTM DS is analogous to SD boundaries:
the inner term must typecheck and the type annotations must coin-
cide. WF DTM GUARD typechecks guards by checking to see if the
types involved in the equivalence check are well-typed. In addition,
t must be well-typed under the assumption that the check holds. Fi-
nally, we require that the types of the guard are first-order with the
judgment FO (T ). The first-order judgment ensures that the types
of guards are never arrows so that we do not have to determine the
equivalence of functions.

The judgment FO (T ) ensures that the inhabitants of T do not
contain function values. In the case of FO DATA we check that all
constructors of B take first-order arguments. We do not need to
check that the type of B ’s index term ti is first-order, since the
index is not part of the values inhabiting B .

3.3 Evaluation
The evaluation rules of SD are of most interest to us because this
is where we do the actual work of checking values and marshaling
them across boundaries. Figure 6 gives the syntax of our one-step
evaluation contexts which define the standard call-by-value order
for our language. In addition, Figure 6 also lists the interesting
evaluation rules for both languages.

The evaluation of the usual syntactic forms — abstractions,
pairs, and constructors — are standard. The interesting rules arise
from evaluation of boundary terms. In both languages, the evalua-
tion of boundaries is directed by their type annotations, so there is
one rule for each value that might be sent across a boundary.

When we translate lambdas, e.g., a λ→ lambda to a λ∼= lambda
as in EVAL STM DS ABS, the output must be a λ∼= lambda. Our
translation is similar to Matthews’ and Findler’s. This new λ

∼=



λ→ Types S : : = S1 → S2 | S1 ∗ S2 | Unit | A
λ→ Terms s : : = x | λx:S .s | s1 s2

| <s1, s2> | s.1 | s.2
| C s | case s of Ci xi → si

i

| unit | error | letd y = t in s | SDS
T t

λ
∼= Kinds K : : = ∗ | T ⇒ ∗
λ
∼= Types T : : = (y :T1)→ T2 | T t

| (y :T1) ∗ T2 | Unit | B
λ
∼= Terms t : : = y | λy:T .t | t1 t2

| <t1, t2> | t .1 | t .2
| C t | case t of Ci yi → ti

i

| unit | error
| DST

S s | t1 ∼= t2 B t3

Figure 3. SD Syntax

Γ ` s : S

Γ ` t : T
S ⇔ T

Γ ` SDS
T t : S

WF STM SD

S ⇔ T

S1 ⇔ T1

S2 ⇔ T2

S1 → S2 ⇔ (y :T1)→ T2
COMPAT ARR

S1 ⇔ T1

S2 ⇔ T2

S1 ∗ S2 ⇔ (y :T1) ∗ T2
COMPAT PAIR

Unit⇔ Unit
COMPAT UNIT

B:T0 ⇒ ∗ ∈ Ψ0

FO (T0)
corr (A,B)

A⇔ B t
COMPAT DATA

FO (T )

FO (T )

FO (T t)
FO APP

FO (Unit)
FO UNIT

FO (T1)
FO (T2)

FO ((y :T1) ∗ T2)
FO PAIR

constrsB = Ci
i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

FO (Ti)
i

FO (B t)
FO DATA

Figure 4. Abridged λ→ Typing Rules, Type Compatibility, and First-order Types

lambda translates its argument y to λ→, supplies that translated
argument to the λ→ lambda, and translates the λ→ result of the
application back to λ∼=.

In the DS case this is straightforward. However, if we look at the
SD case as presented in EVAL DTM SD ABS, we note that T2 may
contain free occurrences of y in the boundary. To fix this problem,
we close T2 with the λ→ lambda’s translated argument. Thus,
boundary type annotations are not simple annotations that can be
erased at compile time. They are entities that affect evaluation, so
they must have a concrete representation at runtime. Note that the
DS case does not need a substitution due to our choice of creating
a λ∼= lambda that implicitly captures the free variable found in T2.

This observation that the second type component T2 needs to be
closed via a substitution is also applicable when translating pairs. In
the EVAL STM SD PAIR case the sub-components are already λ∼=
terms, so we simply close T2 with v1. In the EVAL DTM DS PAIR
case, u1 is a λ→ term, so we need to translate it before substituting
into T2. So as a first attempt, we might make the term step to

< DST1
S1

u1,DS
[DS

T1
S1

u1/y]T2

S2
u2 >. However, that proposal has a

different problem: DST1
S1

u1 is not a value! In particular, while u1

itself is a value, T1 may contain non-value terms. By duplicating
this expression, we potentially duplicate any of its side-effects.

To avoid this, in EVAL DTM DS PAIR we let-bind the first
component of the translated pair. This sequences the evalua-
tion at runtime and avoids duplicating side-effects. Similarly, in
EVAL STM SD ABS we let-bind the translated argument x . How-
ever, an interesting technicality arises. The point at which we need
to let-bind the argument — which is a λ∼= term — lies in λ→!
To fix this issue, we use the letd construct that allows us to bind
a value in λ∼= and then evaluate a λ→ term. In this context, letd
has a natural interpretation: letd goes into λ∼= to bind a term in the
environment, returns back to λ→, and evaluates as normal.

The translation of datatypes is more involved because, in ad-
dition to variable capture, we must also check that the translation
“respects” the property represented by the datatype’s index. For ex-
ample, in the case of List, a reasonable translation from a List→ to
λ
∼= should produce a List

∼= t where t is the length of the list. In gen-
eral, what the translation should do is dependent on the datatypes
we are translating.

Thus, in addition to presupposing user-defined constructors C
of datatypes A and B t , we also presuppose user-defined conver-



Γ ` K

Γ ` ∗WF DKN PROPER
Γ ` T : ∗

Γ ` T ⇒ ∗ WF DKN ARR

Γ ` T : K

Γ ` T1 : ∗
Γ, y:T1 ` T2 : ∗

Γ ` (y :T1)→ T2 : ∗WF DTY ARR
B:T ⇒ ∗ ∈ Ψ0

Γ ` B : T ⇒ ∗ WF DTY DATA

Γ ` t : T

Γ ` t1 : (y :T1)→ T2

Γ ` t2 : T1

Γ ` [t2/y ]T2 : ∗
Γ ` t1 t2 : [t2/y ]T2

WF DTM APP

Γ ` t1 : T1

Γ ` t2 : [t1/y ]T2

Γ ` (y :T1) ∗ T2 : ∗
Γ `<t1, t2>: (y :T1) ∗ T2

WF DTM PAIR

Γ ` t : (y :T1) ∗ T2

Γ ` t .1 : T1
WF DTM PROJ1

Γ ` t : (y :T1) ∗ T2

Γ ` [t .1/y ]T2 : ∗
Γ ` t .2 : [t .1/y ]T2

WF DTM PROJ2

C :(y :T1)→ B t ′ ∈ Ψ0

B:T2 ⇒ ∗ ∈ Ψ0

Γ ` t : T1

Γ ` B [t/y ]t ′ : ∗
Γ ` C t : B [t/y ]t ′

WF DTM CTOR

Γ ` t : B t ′

Γ ` T : ∗
constrsB = Ci

i

Ci:(yi :Ti)→ B t ′i ∈ Ψ0
i

Γ, yi:Ti , t ′ ∼= t ′i , t
∼= Ci yi ` ti : T

i

Γ ` case t of Ci yi → ti
i

: T
WF DTM CASE

Γ ` s : S
Γ ` T : ∗
S ⇔ T

Γ ` DST
S s : T

WF DTM DS

Γ ` t0 : T0

Γ ` t1 : T0

FO (T0)
Γ, t1 ∼= t0 ` t : T

Γ ` t1 ∼= t0 B t : T
WF DTM GUARD

Γ ` t : T
Γ ` T ≡ T ′

Γ ` T ′ : ∗
Γ ` t : T ′

WF DTM CONV

Figure 5. Abridged λ∼= Typing Rules

sions between arguments of constructors, with the intent that these
conversions preserve the dependent datatype’s properties. These
conversions come as a pair of functions

argToSC v = u
argToDCu = v

responsible for converting constructor arguments from one lan-
guage to the other. At type-checking time, the arguments v and
u could contain free variables making it unclear how to translate
them, so we allow argToS and argToD to be partial functions.
When they are undefined the corresponding boundary term is stuck.
To ensure Progress, we require that they are always defined for
closed well-typed values. We also require some additional condi-
tions expressing that they are defined “naturally” in the argument
that we discuss further in Section 4.3.

argToS and argToD can be viewed constructor-indexed user-
level functions which, if C :S → A ∈ Ψ0, C :(y : T1) → B t ∈

Ψ0, and B:T2 ⇒ ∗ ∈ Ψ0, have the types

argToS : T1 → S
argToD : S → T1.

We distinguish them from user-level functions because as we have
defined the calculus there is no way to form such mixed types. Also,
in addition to their types, we intend that the functions are inverses.
That is, the following equations should hold

1. (argToS ◦ argToD)(u) = u with u : S
2. (argToD ◦ argToS)(v) = v with v : T1.

This makes argToS and argToD an isomorphism over the construc-
tor C .

In EVAL STM SD CONSTR, we use argToS to convert the λ∼=
argument v . Intuitively, since we are going from λ

∼= to λ→, no
checks are necessary because the type system of λ∼= enforces all
the properties that λ→ does and more.

Conversely, in EVAL DTM DS CONSTR, we must verify that the
argument converted from λ→ meets the specification demanded by



λ→ Values u : : = x | λx:S .x | <u1, u2> | C u
λ→ Contexts Es : : = � | � s | u � | < � , s > | < u, � >

| � .1 | � .2 | C � | letd y = � in s

| case� of Ci xi → si
i | SDS

T�
λ
∼= Values v : : = y | λy:T .t | <v1, v2> | C v
λ
∼= Contexts Et : : = � | � t | v � | < � , t > | < v , � >

| � .1 | � .2
| C � | case� of Ci yi → ti

i

| DST
S � | � ∼= t2 B t | v ∼= � B t

s −→ s ′

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToSC v = u

SDA
(B t)C v −→ C u

EVAL STM SD CONSTR

SD
(S1→S2)

((y:T1)→T2)
λy:T ′1.t −→ λx:S1.letd y ′ = DST1

S1
x in SDS2

([y′/y]T2)
((λy:T ′1.t) y

′)
EVAL STM SD ABS

SD
(S1∗S2)

((y:T1)∗T2)
<v1, v2>−→<SDS1

T1
v1, SDS2

([v1/y]T2)
v2>

EVAL STM SD PAIR

t −→ t ′

C :S → A ∈ Ψ0

C :(y :T1)→ B t1 ∈ Ψ0

argToDCu = v

DS
(B t)
A (C u) −→ t ∼= [v/y ]t1 B (C v)

EVAL DTM DS CONSTR

DS
((y:T1)→T2)

(S1→S2)
λx:S ′1.s −→ λy:T1.DST2

S2
((λx:S ′1.s) (SDS1

T1
y))

EVAL DTM DS ABS

DS
((y:T1)∗T2)

(S1∗S2)
<u1, u2>−→ let y ′ = DST1

S1
u1 in <y ′,DS

[y′/y]T2
S2

u2>
EVAL DTM DS PAIR

v ∼= v B t −→ t
EVAL DTM GUARD REFL

v 6= v ′

v ∼= v ′ B t −→ error
EVAL DTM GUARD ERROR

Figure 6. SD Evaluation: Contexts and Rules



the λ∼= datatype. To generate this check, we note that the type of
the new constructor C v by WF DTM CTOR is B [v/y ]t1 where
B : T1 ⇒ ∗ ∈ Ψ0. The type demanded by the boundary is
B t and so we must check t ∼= [v/y ]t1. Note that because of
our restriction that FO (T1), the equality check will never need to
compare lambdas, only data of first-order type.

3.4 Equivalence
Equivalence checks are the core of a dependently-typed system.
Figure 7 outlines the most important of these, equivalence over λ∼=
terms. We elide λ∼= kind equivalence (Γ ` K ≡ K ′) and λ∼= type
equivalence (Γ ` T ≡ T ′) as they are standard.

Our term-level equivalence is reflexive, transitive, and sym-
metric by the EQ DTM REFL, EQ DTM SYM, and EQ DTM TRANS
rules. The most interesting of these rules is EQ DTM STEP which
allows us to use reduction of t in our equivalence relation. This rule
is good because we do not need an explicit notion of λ→ equiva-
lence, which would be unnatural. That is, in a real system, the λ∼=
will only have available to it the ability to evaluate λ→ terms rather
than have access to the internals of the entire λ→ program.

One subtlety that sets us apart from dependent languages like
Coq and Agda is that our EQ STM STEP rule is restricted to call-
by-value reduction. Pure, strongly normalizing languages have the
luxury of allowing arbitrary β-reductions when comparing types
because any order of evaluation gives the same answer. In our
language that is not the case because of run-time errors, e.g. (λy :
Unit.unit) error evaluates to error under CBV but to unit under
CBN. This problem would get even worse if the language included
more interesting side-effects.

For this reason, the type equivalence judgment is defined in
terms of the evaluation relation −→ which is explicitly CBV. Even
so, we do want to allow reduction of open terms. For example to
typecheck the usual append function we want List (0+y) ≡ List y .
Therefore, our definition of values includes variables. To make that
choice work, we are careful to only substitute values for variables.
In particular, we need an extra premise in WF DTM APP to check
that the type [t2/y ]T2 is well-kinded. It might not be, since the
well-kindedness of (y :T1)→ T2 may depend on y being a value.

3.5 Examples
To get a better understanding of how our system works, let’s expand
on the List example we’ve used so far.

The complete set of definitions for our List datatype are

List : Int⇒ ∗
Nil : Unit→ List
Nil : (y :Unit)→ List 0
Cons : (List ∗ Int)→ List
Cons : (y1 : (y2 : Int) ∗ (List y2 ∗ Int))→ List (y1.1) + 1.

So the types of our argument conversion functions are

argToSNil : Unit→ Unit
argToDNil : Unit→ Unit
argToSCons : (y1 : (y2 : Int) ∗ (List y2 ∗ Int))→ (List ∗ Int)
argToDCons : (List ∗ Int)→ (y1 : (y2 : Int) ∗ (List y2 ∗ Int)).

Note that the type of the arguments to Cons→ is a pair whereas
Cons

∼= is a triple. This is because the extra Int carried by Cons
∼= is

required to represent the size of the argument List.
Morally, a List y has length y so our conversions needs to

respect that property. The conversions of the arguments to Nil are
trivial.

argToSNilunit = unit
argToDNilunit = unit

To convert from a Cons
∼= to a Cons→, we can simply drop the index

argument. To convert in the other direction, we must regenerate it

by requesting the List’s length.

argToSCons(k, l, v) = (l, v)
argToDCons(l, v) = (length(l), (l, v))

This is reminiscent of McBride’s work on ornamental types [20]
where he also makes the observation that the difference between
a simply-typed list and a standard dependently-typed list is the
“ornamental” length data.

Matthews and Amhed demonstrate how nested boundaries can
enforce specifications over the behavior of the weakly-typed lan-
guage while being written in a strongly-typed language [18]. In
their system, they are only able to express simple type specifica-
tions, e.g., that a Scheme function performs at type Int → Int.
As expected with our dependently-typed language, we are able to
express more powerful constraints via this method. For example
consider a function pop over simply-typed Lists.

pop : List→ List

Given this function, we can write a safe variant of pop in λ∼= that
simply calls pop to do the heavy lifting:

safePop : (n : Int)→ List n → List (n− 1)
safePop = λn : Int.λy : List n.DSList n−1

List pop(SDList
List ny))

Now, this function will verify via dynamic checks that — provided
the length of the subject list n — pop does the right thing for that
list.

Providing this length argument explicitly is annoying, so we can
write one more wrapper around this method that is callable directly
from λ→ and has the signature we want. The difference between
this and the original pop is that now the function will check to see
if pop produces the correct value:

verifiedPop : List→ List
verifiedPop = λy : List.

let l = length y in
SDList

List DSInt
Int

l−1
(

safePop (DSInt
Intl) (DS

DSIntIntList l

List y))

verifiedPop is a good example of the power of dependent in-
teroperability. We are able to take a simply-typed piece of code
and then inject dynamic checks to verify its behavior against a
dependently-typed specification.

4. Metatheory
Our technical contribution is a proof of type safety for SD: every
well-typed term either goes to a value, diverges, or goes to error.
We state this result in the usual way, via Preservation and Progress
theorems.

The type-safety proof puts some requirements on the user-
defined translation-functions argToD, argToS, and corr (A,B).
These are stated in figure 8, and we will point out where they are
needed. Note that the round-tripping law is not one of the proper-
ties needed for type-safety. The term equivalence judgment does
not axiomatize this property, so violating it does not lead to type
errors. However, we still feel that requiring it rules out bad behav-
ior.

4.1 Structural Lemmas
We begin by showing basic structural properties of the type system:
Weakening, Substitution, and ignoring redundant assumptions.

Since the different syntactic categories of our language (simple
and dependent terms, types and kinds) form a mutually recursive
system, the proofs of these lemmas also need to be by mutual
induction. The typing judgments call out to the type equivalence
judgments, but the equivalence is defined without any reference to



Γ ` t ∼= t ′

t ∼= t ′ ∈ Γ

Γ ` t ∼= t ′
EQ DTM ASSUMPTION

t −→ t ′

Γ ` t ∼= t ′
EQ DTM STEP

Γ ` t ∼= t
EQ DTM REFL

Γ ` t ′ ∼= t

Γ ` t ∼= t ′
EQ DTM SYM

Γ ` t ∼= t ′

Γ ` t ′ ∼= t ′′

Γ ` t ∼= t ′′
EQ DTM TRANS

Γ ` t1 ∼= t ′1
y 6∈ dom (Γ)

Γ ` [t1/y ]t ∼= [t ′1/y ]t
EQ DTM SUBST

Γ ` t ∼= t ′

y 6∈ dom (Γ)

Γ ` [v/y ]t ∼= [v/y ]t ′
EQ DTM SUBST VAL

Γ ` t ∼= t ′

x 6∈ dom (Γ)

Γ ` [u/x ]t ∼= [u/x ]t ′
EQ DTM SSUBST VAL

Figure 7. λ∼= Term Equivalence

Property 1 (Types of argToD/argToS). Suppose C :S → A ∈ Ψ0

and C :(y :T1)→ B t1 ∈ Ψ0.
If Γ ` u : S , then Γ ` argToDCu : T1 (if it is defined).
If Γ ` v : T1, then Γ ` argToSC v : S (if it is defined).

Property 2 (Correctness of corr (A,B)). If corr (A,B), then A
and B have the same constructors Ci .

Property 3 (argToD/argToS respect substitution). If argToDCu
and argToSC v are defined, then
argToDC ([u1/x1]u) = [u1/x1](argToDCu)
argToDC ([v1/y1]u) = [v1/y1](argToDCu)
argToSC ([u1/x1]v) = [u1/x1](argToSC v)
argToSC ([v1/y1]v) = [v1/y1](argToSC v)

Property 4 (argToD/argToS respect −→p).
If u −→p u ′, then argToDCu −→p argToDCu ′.
If v −→p v ′, then argToSC v −→p argToSC v ′.

Property 5. argToD and argToS are defined for closed values.

Figure 8. Requirements on the conversion functions

types, so the proofs about the equivalence judgments can be done
first. For example, Weakening can be proved in two lemmas, each
of which is proved using mutual induction.

Lemma 1 (Weakening for Equivalence).
1. If Γ1,Γ3 ` t ∼= t ′, then Γ1,Γ2,Γ3 ` t ∼= t ′.
2. If Γ1,Γ3 ` T ≡ T ′, then Γ1,Γ2,Γ3 ` T ≡ T ′.
3. If Γ1,Γ3 ` K ≡ K ′, then Γ1,Γ2,Γ3 ` K ≡ K ′

Lemma 2 (Weakening).
1. If Γ1,Γ3 ` t : T then Γ1,Γ2,Γ3 ` t : T .
2. If Γ1,Γ3 ` s : S then Γ1,Γ2,Γ3 ` s : S .
3. If Γ1,Γ3 ` T : ∗ then Γ1,Γ3,Γ3 ` T : ∗.
4. If ` Γ1,Γ2 then ` Γ1

The other lemmas are proved by similar mutual inductions. To
save space we abbreviate sets of statements like this to Γ ` J ,
where the J stands for all the judgment forms in the type system
(equivalence, typing, and kinding).

For the Preservation proof we need a substitution lemma. Some-
what unusually, it is restricted to substituting values into the judg-
ments, not arbitrary terms. This is because our term equivalence is

CBV, so substituting a non-value could block reductions and cause
types to no longer be equivalent.

Lemma 3 (Substitution).
1. If Γ, x : S2,Γ

′ ` J and Γ ` u2 : S2 then Γ, [u2/x ]Γ′ `
[u2/x ]J .

2. If Γ, y : T2,Γ
′ ` J and Γ ` v2 : T2 then Γ, [v2/y ]Γ′ `

[v2/y ]J .

Because we present dependent pattern matching using explicit
equality assumptions in the context, we also need a set of structural
lemmas stating that we can omit redundant equations and swap
equivalent ones. These lemmas are used when proving type preser-
vation of case-expressions and guard expressions: when the scru-
tinee steps, the corresponding equation changes to a syntactically
different but β-equivalent one.

Lemma 4 (Cut). If Γ ` t1 ∼= t2 and Γ, t1 ∼= t2,Γ
′ ` J , then

Γ,Γ′ ` J .

Lemma 5 (Context Equivalence). If Γ ` t1 ∼= t ′1 and Γ ` t2 ∼= t ′2
and Γ, t1 ∼= t2,Γ

′ ` J , then Γ, t ′1 ∼= t ′2,Γ
′ ` J .

Cut is proved like a substitution lemma: each use of the equality
assumption is replaced by the explicit derivation of the equation.
The Context Equivalence lemma follows as a corollary of Weaken-
ing and Cut.

4.2 Preservation
We prove preservation by mutual recursion on the simple typing,
dependent typing, and kinding judgment.

Theorem 1 (Preservation).
1. If Γ ` s : S and s −→ s ′ then Γ ` s ′ : S .
2. If Γ ` [t/y ]t0 : T and t −→ t ′ then Γ ` [t ′/y ]t0 : T .
3. If Γ ` [t/y ]T0 : K and t −→ t ′ then Γ ` [t ′/y ]T0 : K .

The statement for simple typing is standard but we have gener-
alized the ones for dependent typing and kinding. The reason for
this twist is again the CBV-style dependent typesystem: we need
to know that the premise Γ ` [t2/y ]T2 : ∗ to the WF DTM APP
rule is preserved when t2 steps. The generalization creates some
extra congruence-like cases to deal with, but essentially this is still
a standard Preservation proof.

The proof of this theorem informs the typing rules for the
interoperability features. We highlight a few interesting cases.



First, the case when a SD-boundary for pairs steps is interesting
because we substitute into the type on the SD boundary:

SDS1∗S2
(y:T1)∗T2

<v1, v2>−→<SDS1
T1

v1, SDS2
[v1/y]T2

v2>

This is different from prior work on non-dependent interoperability.
We might worry that this would interfere with the compatibility
check of the type. However, that is not the case, as we have the
following lemma, which states that compatibility never looks at the
terms embedded inside a type.

Lemma 6. S ⇔ T iff S ⇔ [t/y ]T .

Now, from the derivation of SDS1∗S2
(y:T1)∗T2

< v1, v2 > we get
S1 ∗ S2 ⇔ (y : T1) ∗ T2, so by inversion S2 ⇔ T2 and hence
S2 ⇔ [v1/y ]T2, which is the compatibility condition that we need
for the term SDS2

[v1/y]T2
v2 to be well-typed.

Next, consider the case when a DS-boundary for a data con-
structor steps. This is the case that motivates our handling of dy-
namic checks:

DS
(B t)
A (C u) −→ t ∼= [v/y ]t1 B (C v) where argToDCu = v

when the signature contains declarations C : S → A and C :
(y : T1) → B t1. By our requirements on argToD we know that
Γ ` v : T1, so Γ ` C v : B [v/y ]t1. By the type conversion rules,
that means Γ, t ∼= [v/y ]t1 ` C v : B t . So we wrap the expression
in a guard that enforces that equality assumption.

A final interesting case is when a guarded term steps. This
motivates the structural lemmas Cut and Context Equivalence. The
typing rule looks like

Γ ` t0 : T0

Γ ` t1 : T0

FO (T0)
Γ, t1 ∼= t0 ` t : T

Γ ` t1 ∼= t0 B t : T
WF DTM GUARD

Consider how the term can step. If t1 −→ t ′1, then it suffices to
show Γ, t ′1 ∼= t0 ` t : T . But by the rule EQ DTM STEP, Γ, t ′1 ∼= t0
and Γ, t ′1 ∼= t0 are equivalent contexts. Otherwise, if it steps by
v ∼= v B t −→ t , then by EQ DTM REFL the equation v ∼= v
was redundant, so by Cut we can show Γ ` t : T as required.
Finally, it may step by v ∼= v ′ B error. Since error is always well-
typed, preservation holds. Although the proof doesn’t illustrate it,
the FO (T0) restriction means that we will never go to error unless
it is absolutely necessary, when v and v ′ are unequal first-order
values.

4.3 Progress
As it turns out, the interoperability features do not add much com-
plication to the Progress part of the proof. However, as is common
in languages with dependent pattern matching, we need to do a bit
of work to rule out contradictory equalities.

To prove progress we first need to prove a canonical forms
lemma.

Lemma 7 (Canonical Forms).
1. If · ` v : (y :T1)→ T2 then v is λy:T .t .
2. If · ` v : (y :T1) ∗ T2 then v is <v1, v2>.
3. If · ` v : Unit then v is unit.
4. If · ` v : B t then v is C v ′ and C :(y :T )→ B t ′ ∈ Ψ0.

This does not follow immediately from inspecting the typing
judgment, because of the rule EQ DTY INCON: if we could some-
how in the empty context prove · ` C1 v1 ∼= C2 v2 where C1 6=
C2, then we could assign any term any type. So we need to rule
out such an inconsistent equation. However, the way we define the
term equivalence judgment Γ ` t ∼= t ′ makes that difficult. The

definition is succinct, but because it has an explicit transitivity rule
it doesn’t give any leverage for doing induction on it.

Our solution is to define an auxiliary notion of parallel reduc-
tion, denoted −→p, in the style of Takahashi [31]. This relation
contains the evaluation relation −→, but it also allows reducing
more than one redex, and reducing inside the body of a lambda ex-
pression or other binder. For example, the two parallel reduction
rules for applications are:

t1 −→p t ′1
t2 −→p t ′2

t1 t2 −→p t ′1 t
′
2

t1 −→p t ′1
v2 −→p v ′2

(λy:T .t1) v2 −→p [v ′2/y ]t ′1

As a result, unlike evaluation, parallel reduction is closed under
substitution: if v1 −→p v2 and t1 −→p t2 then [v1/y ]t1 −→p

[v2/y ]t2 and [t1/y ]t −→p [t2/y ]t . We also show that it is conflu-
ent. Together, these properties lets us prove a useful characteriza-
tion of term equivalence.

Lemma 8 (Parallel reduction contains term equivalence). If · `
t1 ∼= t2, then there exists some t ′ such that t1 −→p∗ t ′ and
t2 −→p∗ t

′.

This lemma rules out the inconsistent equation we were worried
about, since reducing a term can never change its constructor. We
can then straightforwardly show Canonical Forms and Progress.

Theorem 2 (Progress).
1. If · ` t : T then either t −→ t ′, t is a value, or t is error.
2. If · ` s : S then either s −→ s ′, s is a value, or s is error.

However, there is a difficulty. In order to prove substitution and
confluence of parallel reduction, we need to assume these proper-
ties for the argToD and argToS functions, because the reduction
relation is defined in terms of them. This yields properties 3 and 4
in figure 8.

We expect these requirements to be satisfied by any “natural”
definition of argToD and argToS. For example, one definition that
would not respect parallel reduction would be to define

argToSC (λy:Unit.1 + 1) = true
argToSC (λy:Unit.2) = false

But such a function, which examines the body of a λ-abstraction,
could never be written by user code. In practice, we expect the
translation functions to do pattern matching and to construct con-
structor applications and function calls, e.g. argToDCons in sec-
tion 3.5. Such translation functions automatically satisfy these re-
quirements, because they are just built up from λ→ and λ∼= terms.

5. Additional Properties
Two important properties of SD that deserve special mention are
the soundness of the dependently-typed fragment of the language
and decidable typechecking.

5.1 Soundness
Soundness of a dependently-typed language is important because
a sound language can function as a proof system. Unfortunately,
by introducing boundaries that produce errors and defer complete
typechecking until runtime, we’ve removed soundness from λ

∼=.
In the case of error we can simply consider the empty datatype

false that should have no inhabitants. But due to SD WF DTM -
ERROR we can ascribe error that type.

With respect to complete typechecking, consider the term

case DS
(Foo 1)
Foo mkFoo unit of mkFoo y → t

Where Foo : Int ⇒ ∗ and mkFoo : (y : Unit) → Foo 0.
The boundary typechecks giving DS

(Foo 1)
Foo s the type Foo 1, an



s −→ s ′ t −→ t ′

SDS
L(DSL

Su) −→ u
EVAL STM SD LUMP

DST
L (SDL

Tv) −→ v
EVAL DTM DS LUMP

Figure 9. Evaluation Rules for Lumps

uninhabited type. By SD WF DTM CASE, in the only case for Foo
we arrive at the inequality 0 ∼= 1 ∈ Γ and can thus typecheck the
case to false.

Note that this is an unavoidable consequence of boundaries. We
need to signal errors at runtime and our boundaries necessarily
make claims (e.g., above that the boundary expects a Foo 1 even
though it is impossible) that can only be verified at runtime.

However, like Lambda-eek [12], we believe that while an inter-
operating calculus such as SD is not necessarily suitable as a proof
system, it is interesting as a programming language in its own right.

5.2 Decidable Typechecking
A related question to the soundness of λ∼= is whether the typecheck-
ing of SD is decidable in the presence of term evaluation in types.
With our current formulation of λ→ and λ∼=, we believe (but do not
prove) that SD is strongly normalizing and thus typechecking of
SD is decidable. We believe that this is reasonable given that both
λ→ and λ∼= appear to be strongly normalizing and the type-directed
boundaries that we consider in SD themselves do not contribute
any additional computational power to the language.

Irrespective of this, it is clear that we can make SD typecheck-
ing undecidable by giving λ→ recursive functions. This is because
we determine the equivalence of t1 ∼= t2 by β-reduction as per
the EQ DTM STEP rule (Figure 7). With recursive functions in λ→,
evaluation of a DS boundary could end up in an infinite loop.

Because our actual λ→ language will likely be a general-
purpose functional language with recursion, how might we recover
decidable typechecking in this scenario? One such approach is to
introduce a purity check in λ∼= that restricts boundaries from being
embedded in types. This is a clean way to regain decidable type-
checking but at the cost of losing the ability to embed terminating
boundary terms in types.

Finally, we may give up the ambition that the typechecker au-
tomatically decides term equivalence by evaluating terms, and in-
stead require the programmer to add explicit annotations stating
what should be evaluated for how many steps. An example of a
language taking this approach is Guru [29].

5.3 Lumping and Non-termination
One tempting suggestion to alleviate the problem of decidable
typechecking is to limit how we can compute with values across
the boundary. Rather than marshaling values, perhaps we can treat
data on the other side of the boundary as a opaque lump that we can
carry around and give back, but otherwise not inspect its contents.
We give the evaluation rules in Figure 9. While appealing at first
glance, it turns out that this system admits non-termination.

In the lump variant of our rules, we introduce a type L that
represents an opaque lump value contained in a boundary. With
lumps, boundaries no longer marshal values between languages or
otherwise look at their structure. Instead, boundaries are “canceled
out” when they meet each other as per EVAL STM SD LUMP and
EVAL DTM DS LUMP. The problem is that it turns out that you can

write an infinite loop with these boundaries in a similar manner
to type dynamic [1] where you use a pair of functions of type
L → (L → L) and (L → L) → L to encode a term Ω that
loops. The actual terms for these functions and Ω are the same as
Matthews’ and Findler’s versions for their ML-in-ML calculus [19]
but adapted to our boundaries.

Because of this, any interoperability boundary between simply-
and dependently-typed languages using a lump style induces unde-
cidable typechecking if boundaries can appear in dependent types
and reduce.

6. Comparisons
Many real-world dependently-typed languages provide some facil-
ities for interoperability with simply-typed languages. However we
know of no language that provides the flexibility suggested by SD.
Now that we’ve established SD and its properties, it is instructive to
compare the techniques used by these dependently-typed languages
with how SD establishes its interoperability boundaries for two rea-
sons. First, if SD can accurately describe the interoperability fea-
tures of these languages, then it builds confidence that SD is a good
model for dependent interoperability in general. And second, the
differences between the two suggests ways that the dependently-
typed language can improve its interoperability support, or con-
versely, why it may be hard to do so.

6.1 ATS Data Translation
ATS [5] is built with interoperability with C in mind. Since the
two languages share the same data representation, marshaling is
relatively trivial. ATS values are typically exposed to C as wrapped
structs, e.g., a C int has type ats int type in ATS. ATS functions
can be exposed to C via extern declarations and C code can either
be inlined into ATS files or referenced as external values or types.
In this sense, ATS closely mimics the two-way interoperability
boundary of SD.

However, beyond basic type-checking, ATS interoperability
makes no attempt at checking to see if dependent type proper-
ties are preserved when traveling in and out of C. This is because
with arbitrary casts, C code can arbitrarily munge ATS values or
otherwise break the type guarantees made by ATS.

6.2 Extraction in Coq
The theorem prover Coq [32] provides a mechanism, Extraction,
that extracts functional programs written in OCaml (or other func-
tional languages such as Haskell) from proofs of specifications
[14]. Coq distinguishes between computationally relevant types
(Sets) and computationally irrelevant types (Props) and uses that
information to guide Extraction. Datatypes extracted from Coq
are translated into comparable datatypes in ML. Alternatively, Coq
provides a mechanism for the user to map a Coq datatype and its
associated constructors into a ML datatype and its constructors.

For our purposes, Extraction is a form of one-way interoper-
ability where ML code can use verified Coq code . If we imagine
the extracted program as living in λ∼= and the ML code living in
λ→, then this amounts to only allowing the user to call λ∼= code
via a SD boundary.

However, there are several limitations to the one-way interoper-
ability model offered by Extraction:

1. Extracted code does not enforce the properties of datatypes.
By design the extracted code is correct up to the verification
done in Coq. However, because of erasure, the extracted code
cannot verify that ML data passed to it meets the pre-conditions
(if any) to use that code. For example, our List y example
datatype would be erased to a simple List in ML. If the extracted
code depends on receiving a non-empty List then it must trust



the user to give it a non-empty List rather than enforcing that
pre-condition itself.

2. User-defined translation of datatypes is simple macro re-
placement. In SD, the user-defined translation function argToS
is any function from the arguments of the λ∼= constructor to the
λ→ constructor that respects the properties we outlined in the
previous sections. In Coq, the analogous Extract Inductive
command performs a macro-replacement of the occurrences of
the datatype and its constructors with the strings specified with
the commands. The resulting ML code is not even checked for
well-formedness.

6.3 Agda Data Translation
Agda [22] provides a foreign-function interface that allows Agda to
call into Haskell code. As part of the FFI, the user specifies Haskell
functions to call from Agda with the {-# COMPILED #-} pragma.
The user can also specify translations from Agda datatypes to
Haskell datatypes via the {-# COMPILED DATA ... #-} pragma.

Like Coq Extraction, the Agda FFI is a one-way interop-
erability layer. The difference is that the FFI allows Agda, the
dependently-typed language, to invoke Haskell code, the simply-
typed language . Translation occurs when Agda invokes a Haskell
function. The arguments are converted to Haskell and the return
value converted back to Agda according to the FFI’s built in rules
to translate Agda types coupled with the declared COMPILED DATA
pragmas.

Agda’s FFI suffers from problems similar to Coq Extraction
due to the restrictive nature of Agda’s translation function. Agda
erases terms in types down to unit so the translation has no way
of preserving or even checking to see if the properties of depen-
dent types are preserved. Unlike Coq Extraction’s macro-based
datatype compatibility declarations, Agda’s compatibility declara-
tions are type-directed. However, they are still less flexible than SD
as you can only map constructors of the same number of arguments
and types.

6.4 Coq’s Program Tactic
Coq’s Program tactic [28] offers a different flavor of interop-
erability than Extraction. Program allows the user to write
dependently-typed code in the form of predicate subtyping [27]
over terms, but using a simply-typed language instead. This simply-
typed language is a relaxed version of Coq’s term language, but
could very well be OCaml or Haskell instead.

The work flow of Program occurs in two steps:

1. The user writes a program in the simply-typed fragment. This
includes predicates over types written in the refinement style
{x | P}. The user does not need to write any proofs during
this step.

2. Coq elaborates the program into Coq terms and then generates
a series of proof obligations that the user must discharge. The
result is a complete Coq term that is the program that meets the
specifications outlined via the predicates of the program.

Program is an example of a dependently-typed system utilizing
the power of a simply typed system to do interesting work. We can
view the elaboration step from the simply-typed fragment to Coq
as a translation from λ→ to λ∼= where we are interested in using
λ
∼= to prove properties of the λ→ program.

7. Prior Work
We believe our work is the first to directly address the technical
challenges involved with interoperating between a dependently-
typed and simply-typed programming language. However, there
has been considerable effort in related areas that we highlight here.

Interoperability Implementation Since different programming
languages typically operate under different runtime environments,
much of the early work in interoperability research focuses how
to reconcile those environments. Frequently the analysis takes spe-
cific pairs of languages, usually C, with other languages such as
Java [6], ML [3], and Haskell [4], but sometimes also with other
language pairs such as Python to Scheme [25] or SML to Java [21].
Other approaches attempt to develop a lingua franca by which two
languages can communicate such as C [2], the Java virtual machine,
COM [26], or the .NET framework [30].

Interoperability Semantics There has been comparatively less
work in understanding the semantics of interoperating languages.
We extend Matthews’s and Findler’s original work [19] that showed
that even with simple language pairs — untyped and simply-typed
lambda calculi — interoperability leads to some surprising results.
Their latest work in this area focuses on adding polymorphism to a
interoperability setting while preserving parametricity [18].

Mixing Dependency with Dynamic A different thread of re-
lated research comes from analyses of dependently-typed lan-
guages intermixed with type dynamic [1]. Ou et al [24] introduce
simple and dependent constructs in which dynamically-typed
and dependently-typed, respectively, exists. They allow for nesting
of such constructs (e.g., simple{dynamic{...}}) and provide
rules for how simple blocks dynamically enforce constraints im-
posed by dependent blocks. Gronski et al [11] extend this approach
to a pure-type system without explicit, separate constructs for dy-
namic and dependent types. Instead, they include dynamic as a base
type and assume the rest of the world is dependent.

Refinement Types and Contracts The underlying framework for
many of these systems is the theory of refinement types [9] and
higher-order contracts [7]. Recently, the study of contracts has gone
in many directions, for example assigning blame [33]. Directly
relevant to our work is the study of dependent contracts, e.g., the
systems studied by Greenberg et al [10].

8. Future Work and Conclusion
We tackle the problem of making dependently-typed programming
more accessible from the viewpoint of interoperability. Can we
author an interoperability boundary between a dependently-typed
language and a simply-typed language that preserves the properties
enforced by the dependently-typed language? Our solution, the
language SD, is able to meet design goals we set forth for such an
interoperability layer: using code from one language from within
the other language and verifying properties of simply-typed code
with the dependently-typed language.

In the future, we would like to apply the ideas in this paper to
improve the interop support of real-world languages like Coq and
Agda, e.g., adding true “two-way” interoperability. Theoretically,
there is also room for more careful analysis: proofs of strong nor-
malization and a theorem characterizing when boundaries can be
inserted without changing program behavior in harmful ways.

There are also more design variations for SD worth exploring.
In particular, we restrict datatype indices at boundaries to be first-
order. While this is not a serious limitation, it would be interesting
to adapt ideas from the contracts literature and decompose equality
checks of functions into checks at their use sites during type con-
version. Finally, we can move beyond the pairing of dependent and
simple types are explore other combinations such as dependent and
dynamic types and pairings involving linear types.
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