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Abstract
We present System F◦, an extension of System F that uses kinds to
distinguish between linear and unrestricted types, simplifying the
use of linearity for general-purpose programming. We demonstrate
through examples how System F◦ can elegantly express many use-
ful protocols, and we prove that any protocol representable as a
DFA can be encoded as an F◦ type. We supply mechanized proofs
of System F◦’s soundness and parametricity properties, along with
a nonstandard operational semantics that formalizes common intu-
itions about linearity and aids in reasoning about protocols.

We compare System F◦ to other linear systems, noting that the
simplicity of our kind-based approach leads to a more explicit ac-
count of what linearity is meant to capture, allowing otherwise-
conflicting interpretations of linearity (in particular, restrictions on
aliasing versus restrictions on resource usage) to coexist peace-
fully. We also discuss extensions to System F◦ aimed at making
the core language more practical, including the additive fragment
of linear logic, algebraic datatypes, and recursion.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Linear logic, Polymorphism, Type systems

1. Introduction
Linear logic [15, 16] models resource usage by restricting the prop-
erties of contraction (the ability to duplicate a resource) and weak-
ening (the ability to discard a resource). In the context of program-
ming languages, ideas from linear logic were quickly adopted, at
first to eliminate garbage collection [21] and shortly thereafter to
handle mutable state [29].

Since their introduction, variants, refinements, and improve-
ments on linear type systems have been proposed for many ap-
plications, including explicit memory management and control of
aliasing [2, 13, 17, 28, 36], capabilities [9, 10], and tracking state
changes for program analysis [11, 32]. Of particular interest is work
on typestates, which ensure that a sequence of API calls is well-
behaved [13, 12], and on session types, which check that the end-
points of a channel agree on the next message to be sent or re-
ceived [18, 25, 27]. Walker has a more comprehensive survey [33].
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Given these success stories, it is perhaps surprising that we have
yet to see general linear types seriously considered for inclusion in
a mainstream functional programming language.1 But alas, linear
types can easily lead to awkward programming models and poten-
tially complicated language designs that are difficult both to imple-
ment and to program with. This paper seeks to address these issues
by introducing System F◦—pronounced “F-pop”—a language that
is intended to be a simple foundation for practical linear program-
ming. Rather than aiming at one particular problem, System F◦ lets
programmers enforce their own protocol abstractions through the
power of linearity and polymorphism, yet its typing discipline is
lightweight enough to expose in a surface language.

System F◦ is simply the Girard–Reynolds polymorphic λ-
calculus [14, 23] extended with two base kinds: ?, classifying
ordinary, unrestricted types, and ◦, classifying linear types. A sub-
kinding relation ? ≤ ◦ makes explicit the observation that values
of unrestricted types may safely be treated linearly; i.e., since vari-
ables of unrestricted type may be used any number of times and
linear variables must be used exactly once, it is always safe to use
unrestricted variables as though they were linear. Any System F◦

expression with kinds erased is a well-typed System F expression.
In introducing System F◦, this paper contributes the following:

• The design of System F◦, and in particular its use of kinds and
kind subsumption, which is lightweight and structured so as to
integrate well with existing functional languages. (Section 2)
• Mechanized proofs of standard soundness and parametricity re-

sults for System F◦, which ensure that the properties functional
programmers rely on continue to hold. (Section 2.1)
• A second, linearity-aware semantics for System F◦, which for-

malizes common intuitions about linearity and shows that these
intuitions do indeed hold. (Section 4)
• Several examples—including all regular languages—along

with extensions and proposals for compiler support, remark-
able primarily for their simplicity, which showcase System F◦’s
potential usefulness. (Sections 3 and 5)

In the rest of this section we discuss the design of System F◦ in
the context of prior work, and we showcase System F◦’s ability to
enforce programmer-defined protocols with a familiar example.

1.1 Prior work: Linear type system design considerations
There are many variants on linear type systems in the litera-
ture [33], but the crucial design decision from our perspective is
how linear and unrestricted variables are differentiated and how
that mechanism interacts with polymorphism. Our use of kinds
and kind subsumption is intended to capture the essence of linear-
ity simply and generally while remaining faithful to the standard

1 Clean is often seen as the exception to this, but there are subtle differences
between its uniqueness types, which concern aliasing, and standard linear
types (see Section 3.1).



semantics and programming model of System F. This division be-
tween linear and unrestricted types is inspired by that proposed for
monomorphic systems by Wadler [29] and Benton [5]. Here we
contrast our approach with some alternatives from the literature.

Broadly speaking, there are two other approaches to distinguish-
ing linear from unrestricted variables. The first approach, which
closely follows linear logic, is to treat all types as linear and in-
troduce the modal constructor ! to account for unrestricted terms,
which must be closed with respect to linear variables. This inter-
acts easily enough with polymorphism, since all types are treated
uniformly—any type can be substituted for any type variable.

Unfortunately, assuming linearity by default requires very ex-
plicit handling of unrestricted terms; the standard approach uses a
let ! construct to introduce unrestricted variables from suspended
computations !e [6, 30]. Because unrestricted values are common in
practice, this can prove quite cumbersome, and the burden extends
even to base types—the constant 3 would be of type Int, not !Int.
Further, full inference of !s has been shown to be impossible [22].

A second approach distinguishes linear from unrestricted types
by means of qualifiers lin (for “linear”) and un (for “unrestricted”)
applied to a collection of pre-types [1, 33]. These qualifiers (which
do not nest) constrain usage (or aliasing), while the pre-types de-
termine the introduction and elimination forms of values. This sep-
aration facilitates implicit copying and discarding for unrestricted
types, yielding a less burdensome programming model.

Type qualifiers, however, have more complex interactions with
polymorphism. To retain both soundness and expressivity, one is
led to introduce quantification over qualifiers, pre-types, and types
independently. This quickly leads to large and complex types; for
instance, the type of plus has five qualifiers:

plus : (q1 Int)
q4→ (q2 Int)

q5→ (q3 Int)

The relationships among such qualifiers are often nontrivial (e.g.
q5 should be lin if q1 is), which can be captured (at the expense of
additional complexity) by qualifier-level bounded quantification.2

Qualifiers thus ease the use of unrestricted types but are too un-
wieldy for a polymorphic source language—indeed, others have
argued against qualifiers even for intermediate languages [34].

Our use of kinds in lieu of ! or type qualifiers strikes a good
balance on these issues. As with qualifiers, programming with un-
restricted types is natural; as with !, polymorphism remains simple.
Subkinding also plays well with base types: 3 has type Int, which
has kind ? (and, by subsumption, ◦), while the type of plus is the
simple Int ?→ Int ?→ Int. We thus have flexible polymorphic types
without the need for bounded quantification or other complexities
of subtyping in a higher-order setting.

Closest in design to System F◦ is probably Ahmed, Fluet, and
Morrisett’s language for substructural state [1], though they use
qualifiers as described above. Due to their focus on aliasing in mu-
table state, their language does not admit subtyping, which would
be the analog in their setting of our subkinds. Our subkind relation
? ≤ ◦ agrees with the interpretation of linearity as related to usage;
it does not reflect linearity as alias-freedom, in which linear types
are analogous to uniqueness types [17, 28]. Nevertheless, we show
in Section 3.1 that matters of aliasing can indeed be addressed in
System F◦ given an appropriate representation of references.

Ahmed et al. also admit affine types, for which only weak-
ening is permitted, and relevant types, which allow only contrac-
tion. Such concepts would fit well with our subkinding relation,
but would increase the complexity of typing context management.
Other systems have considered notions of usage much more fine-
grained than ours [19], but the types in such systems can quickly

2 Making Int a proper type rather than a pre-type simplifies the type of plus
but prohibits certain polymorphic functions from accepting integers.

become overwhelming if exposed to the programmer. As we are
incorporating the full power of System F, exposing at least some
types is unavoidable; we also believe that System F◦ convincingly
demonstrates that just the simple distinction between linear and un-
restricted types has much to offer.

1.2 System F◦ by example: Types for filehandles
Linearity lets us specify a filesystem interface that requires a file-
handle to be closed exactly once and forbids its use thereafter. A
first approximation3 for an idealized linear filesystem might be

FileHandle : ◦

open : String ?→ FileHandle
read : FileHandle ?→ (Char,FileHandle)
write : Char ?→ FileHandle ?→ FileHandle
close : FileHandle ?→ Unit

readLine : FileHandle ?→ (String,FileHandle)

Here open, read, write, and close are intended to be primitive op-
erations over the linear (note the kind ascription) type FileHandle,
while readLine is one of many library functions defined to make
file access more convenient. The ? decorating the arrow in a type
like open : String ?→ FileHandle indicates that open is an unre-
stricted function, which may be used more than once; each time
open is invoked, it will return a new FileHandle value that must be
used linearly. Unrestricted functions are also free to take arguments
of linear type, as can be seen in the other operations. Similarly, a
linear function of type τ1 ◦→ τ2 should be invoked exactly once, but
this has no bearing on the kind of either τ1 or τ2.

Because operations like read and write consume a FileHandle
as input and return a linear FileHandle as output, and because such
values cannot be duplicated, client programs are forced to sequence
the calls to these functions, fixing their order of evaluation. Since
FileHandle values cannot be discarded, the program—unless its
overall type indicates that it contains a filehandle—must eventually
use close to dispose of any FileHandles it has created. Linearity en-
sures that no aliased or duplicated FileHandles representing closed
files remain to be improperly accessed. Clients of this interface are
thus constrained, after opening a file, to access that file according
to the regular protocol (read|write)∗close.

Unfortunately, today’s operating systems do not understand lin-
earity and instead provide unrestricted interfaces, which make no
guarantees about correct filehandle usage:

UnsafeFH : ?

unsafeOpen : String ?→ UnsafeFH
unsafeRead : UnsafeFH ?→ Char
unsafeWrite : Char ?→ UnsafeFH ?→ Unit
unsafeClose : UnsafeFH ?→ Unit

System F◦ makes it easy to create a safe interface protecting the
above from misuse. First, for α of kind ◦—our abstract representa-
tion of an actual filehandle—we define a record of safe file opera-
tions:

File(α) = { read : α ?→ (Char, α),
write : Char ?→ α ?→ α,
close : α ?→ Unit }

3 This example uses roughly the same interface given by DeLine and
Fähndrich to motivate Vault [11] and discussed by Kiselyov and Shan [20]
as an alternative to their filehandle regions.



κ ::= ?
˛̨
◦ kinds

τ ::= α
˛̨
τ κ→ τ

˛̨
∀α:κ. τ types

e ::= x
˛̨
λκx:τ. e

˛̨
e e

˛̨
Λα:κ. v

˛̨
e [τ ] expressions

v ::= λκx:τ. e
˛̨

Λα:κ. v values

Γ ::= ·
˛̨

Γ, α:κ
˛̨

Γ, x:τ unrestricted typing contexts
∆ ::= ·

˛̨
∆, x:τ linear typing contexts

Figure 1. System F◦

Now we can define open to return both the hidden filehandle and
its associated operations:

open : String ?→∃α:◦. (α,File(α))
open = λ?f :String. let handle = unsafeOpenf in

pack α = UnsafeFH in
( handle,
{ read = λ?h:UnsafeFH. (unsafeRead h, h),

write = λ?c:Char. λ?h:UnsafeFH.
unsafeWrite c h;h,

close = unsafeClose
} ) : (α,File(α))

Note that, while the type UnsafeFH is unrestricted within the scope
of open, the outside world sees its occurrences at the existentially
bound linear type variable α. If open treats filehandles correctly,
then any use of an existential package created by open must treat
them correctly as well.

We no longer read, write, and close as separate functions, but li-
brary functions like readLine, are still useful to have. We could sim-
ply replace the FileHandles in the first type proposed for readLine
with open’s return type, ∃α:◦. (File(α), α), but a smarter choice is

readLine : ∀α:◦. File(α) ?→ α ?→ (String, α)

This makes clear that File(α) contains only the (unrestricted) file
operations, not the filehandle itself, and by separating out unpacks
and packs from calls to both primitive operations and library func-
tions, our types can reflect the fact that the filehandle returned by
readLine is the same one that it was given. Writing our functions
this way allows for useful type coercions; for example, suppose we
are also able to open files in read-only mode, resulting in restricted
existential packages of the form

ROFile(α) = { read : α ?→ (Char, α),
close : α ?→ Unit }

Many functions, including readLine, may be defined over this
weaker interface, and we can always construct a record of type
ROFile(α) out of a record of type File(α) to allow a read-write
filehandle to be treated as though it were read-only.

Of course, such a filesystem interface is of little use if it is too
cumbersome for everyday programming. In Section 5.2 we discuss
modest compiler support that ensures that this is not the case.

2. System F◦ Defined
The syntax of System F◦ is given in Figure 1; Figure 2 shows its
call-by-value (and kind-agnostic) operational semantics, which is
completely standard. Type variables are annotated with their kinds
when bound (by Λ in expressions or by ∀ in types); kinds also
appear in functions (λκx:τ. e) and function types (τ1 κ→ τ2). F◦

adopts the value restriction [35], permitting type abstraction only
over values, for reasons that will become clear later.

Typing and kinding rules for System F◦, along with auxiliary
judgments, are given in Figure 3. Our typing rules take a linear

[E-APPLAM] (λκx:τ. e) v −→ {x 7→ v}e

[E-TAPPLAM] (Λα:κ. v) [τ ] −→ {α 7→ τ}v

[E-APP1]
e1 −→ e′1

e1 e2 −→ e′1 e2
[E-APP2]

e −→ e′

v e −→ v e′

[E-TAPP]
e −→ e′

e [τ ] −→ e′ [τ ]

Figure 2. Evaluation rules for System F◦

typing context ∆, binding only term variables, in addition to the
standard unrestricted context Γ, which binds both type and term
variables; following Barber’s DILL [3], this greatly simplifies the
mechanization of our soundness proofs. At the kind level, note
that the rule K-ARROW gives τ1 κ→ τ2 the kind κ regardless of
the kinds of τ1 and τ2. As described in Section 1.2, this decouples
the notion of a linear function (i.e., of type τ1 ◦→ τ2), which must
be used exactly once, from a function that takes a linear argument
(i.e., where τ1 has kind ◦), which must use its argument exactly
once. Rule K-ALL, by contrast, simply gives ∀α:κ.τ the same kind
as τ—this is a design choice made in the interests of keeping F◦

simple, as little seems to be gained by allowing these kinds to differ;
this choice is also compatible with a type-erasure interpretation.

Type application must check that the kind of the supplied type
argument is compatible with the kind of the variable for which it
will be substituted. As mentioned in Section 1, we see linearity as
constraining the permitted usage of a variable, which means that
it should always be safe to replace a linear type variable with an
unrestricted type; we thus allow subkinding via the rule K-SUB.
Subsumption turns out to be key in many useful examples: for
instance, it is what allowed the unrestricted type UnsafeFH to be
protected by a linear interface.

Weakening—neglecting to use a variable—and contraction—
using a variable more than once—should only be possible with
variables of unrestricted type. Rather than add explicit contraction
and weakening rules, we have built these properties into the rules
that require them. The separation of linear and unrestricted typing
contexts makes this fairly straightforward; rules T-LVAR and T-
UVAR permit weakening by allowing an arbitrary Γ at the leaves
of typing derivations, while rule T-APP duplicates Γ but splits ∆
via the d relation. We can thus prove:4

Lemma 1 (Weakening). If Γ1,Γ2; ∆ ` e : τ ′ and Γ1 ` τ : ?,
then Γ1, x:τ,Γ2; ∆ ` e : τ ′.

Lemma 2 (Contraction). If Γ1, x:τ, y:τ,Γ2; ∆ ` e : τ ′ and
Γ1 ` τ : ?, then Γ1, x:τ,Γ2; ∆ ` {y 7→ x}e : τ ′.

Linear variables must not inadvertently be captured by unre-
stricted function closures. To this end, rule T-LAM constrains its
linear context ∆ according to the λ’s kind annotation κ: ∆ must be
empty if κ is ?. We thus ensure that an unrestricted function cannot
capture linear variables in its closure, even though it may well take
an argument of linear type.

Only unrestricted function arguments should be placed in Γ, but
subkinding allows any type to be considered as linear and hence
any expression variable to be bound in ∆—a fact which proves
crucial in the proof of preservation. We write this potentially non-
deterministic context extension as [Γ; ∆], x:τ c Γ′; ∆′.

4 The lemmas in this section of the paper have all been proved in Coq; the
source scripts of our proofs are available from the last author’s web pages.



[K-SUB]
Γ ` τ : ?

Γ ` τ : ◦ [K-ARR]
Γ ` τ1 : κ1 Γ ` τ2 : κ2

Γ ` τ1 κ→ τ2 : κ
[K-TVAR]

α:κ ∈ Γ

Γ ` α : κ
[K-ALL]

Γ, α:κ ` τ : κ′ α /∈ Γ

Γ ` ∀α:κ. τ : κ′

[U-EMPTY] · d · = · [U-LEFT]
∆1 d ∆2 = ∆ x /∈ ∆

∆1, x:τ d ∆2 = ∆, x:τ
[U-RIGHT]

∆1 d ∆2 = ∆ x /∈ ∆

∆1 d ∆2, x:τ = ∆, x:τ

[B-LIN]
Γ ` τ : ◦ x /∈ Γ,∆

[Γ; ∆], x:τ c Γ; (∆, x:τ)
[B-UN]

Γ ` τ : ? x /∈ Γ,∆

[Γ; ∆], x:τ c (Γ, x:τ); ∆
[T-LVAR] Γ;x:τ ` x : τ [T-UVAR]

x:τ ∈ Γ

Γ; · ` x : τ

[T-LAM]
[Γ; ∆], x:τ1 c Γ′; ∆′ Γ′; ∆′ ` e : τ2 ∆ = · ∨ κ = ◦

Γ; ∆ ` λκx:τ1. e : τ1
κ→ τ2

[T-TLAM]
Γ, α:κ; ∆ ` v : τ α /∈ Γ

Γ; ∆ ` Λα:κ. v : ∀α:κ. τ

[T-APP]
Γ; ∆1 ` e1 : τ1

κ→ τ2 Γ; ∆2 ` e2 : τ1 ∆1 d ∆2 = ∆

Γ; ∆ ` e1 e2 : τ2
[T-TAPP]

Γ; ∆ ` e : ∀α:κ. τ ′ Γ ` τ : κ

Γ; ∆ ` e [τ ] : {α 7→ τ}τ ′

Figure 3. Kinding and typing rules for System F◦

let x = e in e′ , (λ◦x:τ. e′) e
where e has type τ

Unit , ∀α:◦. α ?→ α

unit , Λα:◦. λ?x:α. x

e1; e2 , let = e1 in e2

(τ1, τ2) , ∀α:◦. (τ1 ◦→ τ2
◦→ α) ◦→ α

(, ) , Λα:◦. Λβ:◦. λ?x:α. λ◦y:β.
Λγ:◦. λ◦f :α ◦→ β ◦→ γ. f x y

let (x, y) = e in e′ , e [τ ′] (λ◦x:τ1. λ
◦y:τ2. e

′)
where e′ has type τ ′

∃α:κ. τ ′ , ∀β:◦. (∀α:κ. τ ′ ◦→ β) κ′→ β

pack α:κ = τ in e : τ ′ , let x = e in
Λβ:◦. λκ

′
f :(∀α:κ. τ ′ ◦→ β). f [τ ] x

unpack α, x = e in e′ , e [τ ′] (Λα:κ. λ◦x:τ. e′)
where e′ has type τ ′

Figure 4. System F encodings in F◦

It is easy to see that, modulo the value restriction, System F◦ is
an extension of System F. With this in mind, Figure 4 gives several
well-known System F encodings that we make use of5. Aside from
kind annotations, these are all standard; the linear annotations on
type variables are for generality—the pairs so encoded are linear,
for instance—while those that are on arrows account for captured
linear variables in the arguments.

2.1 Metatheory of System F◦

Type Soundness We have verified in Coq that System F◦ enjoys
type safety—a crucial but unsurprising result, given its similarity
to System F. As is standard, we define soundness in terms of two
properties: progress and preservation. Progress, which states that a
closed, well-typed non-value can always take an evaluation step, is
no different than in ordinary System F:

5 We also make use of records of unrestricted type; their encodings would
generalize that of pairs, but with more ? annotations.

Lemma 3 (Progress). If ·; · ` e : τ , then either e is a value or
there exists some e′ such that e −→ e′.

Proof. Induction on typing derivations, completely standard.

Preservation, on the other hand, requires a bit of care. As usual,
it depends on various substitution lemmas, and we must keep lin-
earity in mind when formulating them.

Lemma 4 (Substitution).

1. If Γ1, α:κ′,Γ2 ` τ : κ and Γ1 ` τ ′ : κ′ then
Γ1, {α 7→ τ ′}Γ2 ` {α 7→ τ ′}τ : κ.

2. If Γ1, α:κ′,Γ2; ∆ ` e : τ and Γ1 ` τ ′ : κ′ then
Γ1, {α 7→ τ ′}Γ2; {α 7→ τ ′}∆ ` {α 7→ τ ′}e : {α 7→ τ ′}τ .

3. If Γ1, x:τ ′,Γ2; ∆ ` e : τ and Γ1; · ` e′ : τ ′ then
Γ1,Γ2; ∆ ` {x 7→ e′}e : τ .

4. If Γ; ∆1, x : τ ′,∆2 ` e : τ and Γ; ∆′ ` e′ : τ ′ then
Γ; ∆1,∆

′,∆2 ` {x 7→ e′}e : τ .

Proof. Each case by induction on the first derivation. The result re-
lies heavily on various strengthening, weakening, and permutation
lemmas (with respect to typing, context well-formedness, and the
d relation) regarding the handling of typing contexts.

Note that Substitution (3) does not hold if e′ is permitted to
contain free linear variables. Call-by-value reduction allows us to
consider only values, however, and—because we have adopted the
value restriction—we can prove that unrestricted values contain no
free linear variables:

Lemma 5. If Γ; ∆ ` v : τ and Γ ` τ : ? then ∆ = ·.

Lemma 6 (Preservation). If Γ; ∆ ` e : τ and e −→ e′, then
Γ; ∆ ` e′ : τ .

From preservation and progress, soundness follows naturally:

Theorem 7 (Type soundness). If ·; · ` e:τ , then it is never the case
that e −→∗ e′ where e′ is not a value but cannot step further.

Strong normalization and parametricity System F also has other
properties of interest: it is strongly normalizing—evaluation always
eventually reaches a value—and it enjoys relational parametric-
ity [24]. We are able to cheat somewhat in proving the former for
F◦ by observing that a well-typed System F◦ expression becomes a
well-typed System F expression upon erasure of kind annotations.



As the two systems have identical operational behavior, strong nor-
malization follows immediately.

Parametricity for F◦ cannot be proved by such an erasure, but,
as one might hope from the similarity to System F, it is possible to
directly adapt the standard logical relations proof with only minor
syntactic differences due to our separation of unrestricted and linear
contexts. We have thus proved (in Coq), for the standard relation
between type substitutions ρ1 ≈ ρ2 : Γ, relation between term
substitutions ρ ` γ1 ≈ γ2 : Γ; ∆, and computation closure C[[τ ]]ρ
of relations induced by a type τ , where ρ maps type variables to
term relations and pairs of types and Γ and ∆ bind the variables in
the domain of the various substitutions:

Lemma 8 (Parametricity). If Γ; ∆ ` e : τ , ρ1 ≈ ρ2 : Γ, and
ρ ` γ1 ≈ γ2 : Γ; ∆, then (ρ1(γ1(e)), (ρ2(γ2(e))) ∈ C[[τ ]]ρ.

Succinctly, this means that an expression e with type τ , under
appropriate closing substitutions, is related to itself by (the compu-
tation closure of) the relation induced logically by τ .

Of course, this is only the simplest parametricity result we could
provide; it does not take into account the extensions we propose
in Section 5, nor does it take advantage of linearity in any way.
The interactions between linearity and relational parametricity have
been explored by Birkedal et al. [8] and Bierman et al. [7, 6]
have explored program equivalences in the presence of !, both of
which suggest avenues for future investigation in the context of
System F◦. Our appeals to parametricity in Section 3.2, however,
require nothing beyond what we have proved.

We view the ease with which we can adapt standard results from
System F to System F◦ as a significant benefit of this design. A di-
rect correspondence between these metatheoretic properties and in-
tuitions about what linearity provides is not immediately obvious,
however. In Section 4 we will show, by means of elaborated oper-
ational semantics, that the restrictions required for our soundness
proofs are exactly those needed to satisfy our intuitions.

2.2 Comparison to traditional formulations
In contrast to our approach, linear type systems are more tradition-
ally presented without kinds, assuming linearity by default and us-
ing the modality ! to allow unrestricted variables (see, for exam-
ple [3, 6]). For the polymorphic λ-calculus, this gives us

σ ::= α
˛̨
σ ( σ

˛̨
∀α. σ

˛̨
!σ

t ::= a
˛̨
x

˛̨
λa:σ. t

˛̨
t t

˛̨
Λα. t

˛̨
t [σ]˛̨

!t
˛̨

let !x = t in t

Φ ::= ·
˛̨

Φ, α
˛̨

Φ, x:σ
Ψ ::= ·

˛̨
Ψ, a:σ

For clarity, we distinguish between linear variables a, bound by λ
terms, and non-linear variables x, bound by let !. The interesting
typing rules concern the ! modality:

Φ; · ` t : σ

Φ; · ` !t : !σ

Φ; Ψ1 ` t1 : !σ1 Φ, x:σ1; Ψ2 ` t2 : σ2 Ψ1 d Ψ2 = Ψ

Φ; Ψ ` let !x = t1 in t2 : σ2

In other words, the type !σ indicates a term of type σ which uses
no linear variables—the same constraint we place on unrestricted
functions—and such a term can be captured by the let ! operation
and subsequently used in an unrestricted fashion. Note, however,
that the type !σ itself is still linear, even though terms of that type
allow for the introduction of unrestricted assumptions; while it is
possible to formulate systems where terms of ! types can be dupli-

cated or discarded directly, naive attempts to do so are unsound—
for precisely the same reasons that, as discussed in Section 2.1 and
Section 4, we require call-by-value reduction and the value restric-
tion in System F◦—and sound formulations end up being heavier
than those that make this distinction [31, 4].

We can encode the above system in ours easily enough; we first
define a translation on types [[σ]] as

[[α]] = α
[[σ1 ( σ2]] = [[σ1]] ◦→ [[σ2]]

[[∀α. σ]] = ∀α:◦. [[σ]]
[[!σ]] = Unit ?→ [[σ]]

The corresponding translation on terms is straightforward. The only
interesting cases involve unrestricted variables and the ! modality:

[[x]] = x unit
[[!t]] = λ? :Unit. [[t]]

[[let !x = t1 in t2]] = (λ◦x:Unit ?→ [[σ1]]. [[t2]]) [[t1]]
where t1 has type !σ1

Here we treat terms !t as suspended computations which may be
evaluated more than once—or not at all—which is standard.

Translating in the other direction is much less straightforward
and space constraints preclude us from including the translation
here. The translation on types is kind-directed and, at the term
level, the insertion of ! and let ! operations is not trivial: a function
that takes an unrestricted type must now take a ! type and bind it
so that the variable need not appear linearly, but such arguments
must be repackaged under ! in order to be passed to any subsequent
functions. Polymorphic types and expressions also need care—for
example, there are four cases needed to translate type instantiation,
one for each combination of linear/unrestricted for the polymorphic
term and its type argument.

We see this asymmetry in the translations as evidence of Sys-
tem F◦’s expressive power and its ability to handle unrestricted
terms (the bulk of any most programs) in a concise way, justify-
ing our claim that it provides linearity in a lightweight fashion.

3. Examples
To demonstrate System F◦’s applicability, we now turn to two cat-
egories of examples. First, we demonstrate that, while System F◦

does not build in notions of references and aliasing, protocols defin-
ing correct memory management can indeed be enforced by Sys-
tem F◦ types. Second, we prove that any protocol expressible as
a finite automaton has a corresponding F◦ type; in addition to es-
tablishing that a rather large class of protocols can be encoded in
our type system, this proof also highlights intuitions about linearity
that still need formalization, which we will tackle in Section 4. (It
is easy to see, however, that the regular languages are not an upper
limit on System F◦’s expressivity; the classic non-regular parenthe-
sis matching example has an obvious protocol type.)

3.1 Reference cells
The filesystem interface in Section 1.2 can, under an appropriate
renaming and abstraction over the contents type, also be seen as an
interface for linear reference cells:6

Ref[τ ](α) = { set : τ ?→ α ?→ α,
get : α ?→ (τ, α),
free : α ?→ Unit }

mkRef : ∀β:?. β ?→∃α:◦. (α,Ref[β](α))

6 Here and elsewhere, we separate the “type parameters” like τ from the
linear “state parameters” like α using the notation [τ ](α).



On its own this is not particularly interesting, as a linear reference
cell simply encodes the practice of threading a value through a pro-
gram. Indeed, as with Haskell’s State monad, we could instantiate
mkRef such that α is τ . Instead, however, let us consider varia-
tions on Ref that make more sense as safe interfaces wrapping true,
potentially unsafe reference cells, much as File in Section 1.2 pro-
tected the primitive, unchecked filehandle calls.

While the above Ref could be such a safe interface, a more ob-
vious one—which itself requires no linearity—is the type GCRef:

GCRef[τ ](α) = { set : τ ?→ α ?→ α,
get : α ?→ (τ, α) }

mkGCRef : ∀β:?. β ?→∃α:?. (α,GCRef[β](α))

The operations given by GCRef[τ ](α) are, of course, those of a
garbage-collected reference cell of type τ . By hiding the reference
type behind α we ensure that such garbage-collected references
cannot be freed, and, in this case, α can be unrestricted.

In System F◦, however, we can also define references that be-
gin their lives as linear (and manually managed) but later are put
under the garbage collector’s control. Ref[τ ](α) simply needs an
additional function to serve as the appropriate coercion:

gc : α ?→∃β:?. (β,GCRef[τ ](β))

By consuming and not returning α, gc prevents free from being
called on the now garbage-collected (but unrestricted) reference.
We thus have a coercion from alias-free to potentially aliased point-
ers, a fact that, had we conflated linearity with alias-freedom, would
run counter to our subkinding relation of ? 6 ◦. (Whether gc needs
to do any work at run time depends on the implementation of the
memory management system.)

We can take other approaches to memory management as well.
For instance, an intermediate point between a strictly linear and a
garbage collected reference is a reference that must be explicitly
aliased, and where aliases must be explicitly discarded. We can
define this easily enough:

RCRef[τ ](α) = { set : τ ?→ α ?→ α,
get : α ?→ (τ, α),
alias : α ?→ (α, α),
drop : α ?→ Unit }

mkRCRef : ∀β:?. β ?→∃α:◦. (α,RCRef[β](α))

A straightforward implementation of mkRCRef could return a
pair of the desired reference cell and an additional cell to act as
a counter, along with alias and drop operations that adjust this
counter. Both the primary cell and this counter could safely be
freed when the count reaches zero.

However, while our access capability is still linear with RCRef,
we can never be certain that we possess the only reference to cell in
question. To remedy this, as is often done in capability calculi [2,
9], we can give our cells both an exclusive capability α and a shared
capability β, with possession of the exclusive capability implying
that no outstanding copies of the shared capability remain. If, for
example, the cell contents should not be altered if any aliases exist,
we can use

ShareRef[τ ](α, β) = { set : τ ?→ α ?→ α,
getE : α ?→ (τ, α), getS : β ?→ (τ, β),
share : α ?→ β, claim : β ?→ α⊕ β,
alias : β ?→ (β, β), drop : β ?→ Unit,
free : α ?→ Unit }

mkShareRef : ∀γ:?. γ ?→∃α:◦. ∃β:◦. (α,ShareRef[γ](α, β))

Here α ⊕ β is a standard sum type; as mentioned in Section 2,
these are not encodable in System F◦ as presented so far, but
they are an easy extension and are discussed in Section 5.1. The
claim function exchanges a shared β for an exclusive α when the
underlying counter indicates that only one alias exists; in all other
cases it simply returns the supplied shared capability.

We can do still more if we extend System F◦ with quantifica-
tion over higher kinds, an extension which meshes well with Sec-
tion 5.1’s datatypes. For instance, we can define linear references
that support strong updates—that is, updates that change the type
contained in the reference cell—by abstracting the type of the ac-
cess capability over the type of the contents, giving it kind ?⇒ ◦:

SURef[τ ](α) = { set : ∀β:?. ∀γ:?. γ ?→ α β ?→ α γ,
get : ∀β:?. α β ?→ (β, α β),
free : ∀β:?. α β ?→ Unit }

mkSURef : ∀β:?. β ?→∃α:?⇒ ◦. (α β, SURef[β](α))

Operation records of type SURef[τ ](α) can easily be coerced to
type Ref[τ ](α τ) by partial application of member functions. Aug-
menting SURef along the lines of ShareRef could further allow for
sharable reference cells that support strong updates only when they
are not shared, a fairly sophisticated feature.

3.2 Regular protocols
Apart from memory cells and file operations, what other protocols
can System F◦ enforce? Rather than present more individual ex-
amples, we will show how any protocol expressible as a regular
language can be written in F◦.

We take the standard definition of a DFA as a tuple M =
(Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite set of
alphabet symbols (in our context, protocol actions), δ is a subset of
Σ×Q×Q (that is, a ternary relation among actions, current states,
and next states), q0 is a distinguished initial state, and F is a set of
final states. The file access protocol from Section 1.2, for instance,
can be thought of as a very simple automaton with states Open and
Closed and an alphabet consisting of read, write, and close, with
open as the creator of such an automaton.

For ease of notation, we extend our metavariable conventions to
allow q and r as type variables. Taking Q = {q0, . . . , qn}, we can
now define the automaton type for the DFA M as

τM = ∃q0:◦, . . . , qn:◦. ( q0,
{ a takes q to q′ : q ?→ q′

for every (a, q, q′) ∈ δ
...
done at q : q ?→ Unit

for every q ∈ F } )

Such type is trivially inhabited: one can supply an existential pack-
age of this type where all type variables are bound to Unit.

We say that the evaluation to a value of an expression e contain-
ing a subexpression of type τM reflects a word w = a0 . . . ak if the
sequence of record fields used is exactly

a0 takes q0 to r0, . . . ak takes rk−1 to rk

for some states r0 through rk. To prove that τM is an accurate rep-
resentation of M , we need to show, first, that each w = a0 . . . ak
accepted by M corresponds to an expression of type τM ?→ Unit
that reflects w and, second, that each f of type τM ?→ Unit reflects
some w accepted by M . The former is fairly straightforward:

Lemma 9. For any w = a0 . . . ak accepted by M , there exists f
such that · ` f : τM

?→ Unit and for any n : τM , f n reflects w.



Proof. Recall that, if w = a0 . . . ak is accepted by M , we have
a trace of M on w of the form q0a0r0 . . . rk−1akrk, where
(a0, q0, r0) ∈ δ, (ai, ri−1, ri) ∈ δ, and rk ∈ F . Knowing this
and the definition of τM , we can construct

f = λ?n:τM . unpack (q0, . . . , qn, p) = n in
let (start, ops) = p in
let s0 = ops.a0 takes q0 to r0 start in
...
let sk = ops.ak takes rk−1 to rk sk−1 in
x.done at rk sk

This clearly reflects w, and, if w is indeed accepted by M , it will
typecheck successfully.

The other direction depends on arguments from parametricity
(which we have already proved) and the nature of linearity (which
we will formalize and prove in Section 4).

Lemma 10. If · ` f : τM
?→ Unit, then there exists some w such

that M accepts w and f n reflects w for any n where · ` n : τM .

Proof. Because τM is linear, f must eliminate n before it can
return anything of type Unit. This will require first unpacking the
existential and then pattern-matching against the pair, leaving the
linear start and unrestricted ops.

If q0 ∈ F , then f might immediately apply ops.done at q0.
This reflects the empty word ε, and, indeed, if q0 ∈ F , then
M accepts ε. Alternatively, regardless of whether q0 ∈ F , start
can become some other state type (or even q0 again) by repeated
applications of the ops.a takes q to q′ functions. If, after such
applications, the result can be eliminated by some ops.done at qj ,
then it must be that qj ∈ F . Moreover, because of the construction
of τM , each ops.a takes q to q′ application must represent a valid
transition of δ. Thus we are reflecting some w accepted by M .

In the above proof, familiar intuitions about parametricity jus-
tify the arguments that f behaves the same way for any argument of
type τM and that expressions whose types are variables can only be
used in certain ways. The assurance what w is properly reflected,
however, also depends on the connection between the static prop-
erty of linear typing and the behavior of expressions at runtime. We
would like type soundness to guarantee that our intuitions about
the behavior of linear expressions are valid; in the next section we
prove that this is indeed the case.

4. Linear Semantics
The preceding section makes clear that we have yet to formalize all
of our intuitions about what linearity means for run-time behavior.
This is not as straightforward as it might appear, because some of
our intuitions about linearity turn out to be misleading. In essence,
this is because linearity restricts variables of linear type, while we
want to reason, at runtime, about the behavior of expressions.

For instance, linearity does not guarantee that subexpressions—
or even values—of linear type will be used exactly once. Nor would
we want it to: recall that the encoding of let expressions in Figure 4
involves a linear function, and we certainly want to allow for let
expressions of unrestricted type.

However, there are examples which, in a call-by-name or call-
by-need setting, do behave in ways we’d like to prevent. For ex-
ample, if we have unpacked a reference cell from Section 3.1 as
(r, ops), we can dispose of it and continue with the expression e
via

(λ? :Unit. e) (ops.free r)
But this call to free will only be evaluated in call-by-value—since
its result is not used, other evaluation strategies would simply

[L-APPLAM] (λκx:τ. e) v (v:τ)
ε−→ {x 7→ (v:τ)}e

[L-TAPPLAM] Λα:κ. v [τ ] εε−→ {α 7→ (τ :κ)}v

[L-TAG] (v:τ) ε
(v:τ)−→ v [L-TAPP]

e C
D−→ e′

e [τ ] CD−→ e′ [τ ]

[L-APP1]
e1

C
D−→ e′1

e1 e2
C
D−→ e′1 e2

[L-APP2]
e C
D−→ e′

v e C
D−→ v e′

[K-TTAG]
Γ ` τ : κ

Γ ` (τ :κ) : κ
[T-TAG]

Γ; ∆ ` v : τ

Γ; ∆ ` (v:τ) : τ

[T-TTAG1]

Γ; ∆ ` e : τ
Γ ` τ : κ

Γ; ∆ ` e : (τ :κ)
[T-TTAG2]

Γ; ∆ ` e : (τ :κ)

Γ; ∆ ` e : τ

Figure 5. Linearity-aware semantics for linear System F

discard the subexpression, leaking memory, even though this is
precisely the sort of error we hoped to rule out. Similar concerns
for uniqueness types are known in the Clean community [28].

Call-by-value, with its assurance that function arguments are
evaluated exactly once, seems well-suited to avoiding these prob-
lems, and indeed, in a call-by-value setting—with the addition of
the value restriction—we are not able to construct such problem-
atic examples. In other words, the restrictions already in place to
ensure soundness in Section 2.1 are everything we need to support
our intuitions about linearity. To prove that this is so, the remain-
der of this section provides an extended operational semantics with
which we can reason about linearity at runtime.

4.1 Annotated F◦

What does it mean to “use” a subexpression? We might mean by
this that an expression is evaluated to a value, that it is passed to a
function, or that it is applied to an argument. In order to understand
the run-time effects of linearity, however, we focus on the use of a
value, which we divide into two phases:

1. A value is conscripted when it is substituted into a function
body in place of a variable.

2. A previously conscripted value is discharged when it is used
as a value to allow evaluation to continue—in a context where,
were it replaced by a free variable, evaluation would be stuck. 7

From this linearity’s contribution is clear: in the course of evalua-
tion every conscripted linear value not contained within the final re-
sult will be discharged exactly once. To formalize this, we define a
linearity-aware operational semantics on expressions extended with
tagged values (representing the arguments passed to functions) and
tagged types (representing type arguments):

τ ::= . . .
˛̨

(τ :κ)
e ::= . . .

˛̨
(v:τ)

C,D ::= ε
˛̨

(v:τ)
˛̨
C,C

Our new semantics is given in Figure 5: we write e C
D−→ e′ if

e steps to e′ while conscripting the sequence of tagged values C

7 As variables are not values, a free variable on either side of an application
results in a stuck expression by the semantics in Figure 2.



and discharging the sequence D. Values are conscripted in rule
L-APPLAM, and, in a slight but critical departure from the usual
operational semantics, it is the argument value tagged with the type
expected by the function that is substituted into the function body.
Similarly, while L-TAPPLAM does not conscript, it does tag its
type argument with its expected kind, thus keeping a record of the
kind at which said argument will be considered within its body.

Since a tagged value (v:τ) is not itself a value, we have the
rule L-TAG, which both discharges the value and removes its tag.
Intuitively this means that the argument to a previous function
application is either about to be used again—regardless of which
side of an application it is on—or that it is being returned as
the final result of the computation. Of course, discharging may
be delayed for some time, as tagged values may linger beneath
function closures. As with the presentation in Section 2, evaluation
does not depend on typing—types and kinds are simply recorded—
and, in particular, our new operational semantics does not treat
expressions of non-linear type differently from those of linear type.

The kinding and typing rules in Figure 5 are straightforward;
the ability to conclude e : τ from e : (τ :κ) regardless of κ makes
kind annotations completely transparent, but the same is not true of
type annotations. The soundness results in Section 2.1 carry over to
the extended system without complication.

As an example, consider an application of the linear polymor-
phic identity function Λα:◦. λ◦x:α. x to the natural number 42 of
type Nat. This expression steps as follows:

(Λα:◦. λ◦x:α. x) [Nat] 42
ε
ε−→ (λ◦x:(Nat:◦). x) 42 L-TAPPLAM

(42:(Nat:◦))
ε−→ (42:(Nat:◦)) L-APPLAM
ε

(42:(Nat:◦))−→ 42 L-TAG

Or, taking the obvious tag-concatenating closure C
D−→∗ :

(Λα:◦. λ◦x:α. x) [Nat] 42 (42:(Nat:◦))
(42:(Nat:◦))−→

∗ 42

In other words, over the course of evaluation, the value 42 was
passed to a function and used (in this case, returned as the final
result) exactly once, and it was considered at type (Nat:◦). Were it
to appear more than once in the lower annotation, we would know
that linearity had failed us—although 42 is of type Nat, here it
is being considered as a linear type because α was declared to be
linear, so after being conscripted at this type it should be discharged
exactly once. Were it to instead appear as (42:Nat) , however, there
should be no such restrictions on its use, as we can indeed write
functions from Nat to Nat which use their arguments more than
once or ignore them altogether.

This semantics is similar in scope to heap semantics for linear
functional languages [26], and indeed we could have taken this ap-
proach by tracking, instead of the traces C andD, a single heapH .
Such a semantics would perform substitution at application only if
the argument type is unrestricted; for linear types, we would sim-
ply associate the variable with its argument in the heap, remov-
ing it when the variable is used. But, while we could still prove
Theorem 12 with such a semantics, we need the ability to track
unrestricted arguments—typically not placed in the heap—and to
reason about the order of function calls in order to support the rea-
soning we used in Section 3, which we will return to in Section 4.3.

4.2 Linearity at run time
Before we can formalize our intuitions about linearity, we need
some auxiliary definitions. We write T(e) for the multiset of tagged
values appearing within e, defined simply as:

T(x) = ∅
T((v:τ)) = {(v:τ)} ] T(v)
T(e1 e2) = T(e1) ] T(e2)

T(λκx:σ1. e) = T(e)
T(Λα:κ. v) = T(v)

T(e [τ ]) = T(e)

We write {C} to denote the treatment of a sequence as a multiset,
and, if S is a multiset of tagged values, we write S\κ for the subset
of S that omits any (v:τ) where · ` τ : κ.

We define proper expressions as those in which no unrestricted
value contains a value as a subexpression tagged with linear type—
that is, a well-typed expression e is proper iff, for every value
subexpression v in e, if v has some type τ and τ can be given kind
?, then T(v)\? = ∅. This property is preserved by evaluation:

Lemma 11 (Proper expressions). If e is proper and e C
D−→ e′,

then e′ is also proper.

Proof. Values can only become tagged in a subexpression by func-
tion application. Because of the value restriction, in order for a
linear value to be substituted into an unrestricted value, a linear
variable bound at an outer scope would need to appear under an
unrestricted λ. Rule T-LAM forbids this.

Thus, as long as we write our source expressions in the language
described in Section 2, we will never evaluate to an improper
result—this is essentially the runtime version of Lemma 5. If we
add new constructs, this property will continue to hold as long as

1. constructs under which evaluation can proceed (like conven-
tional tuples) are given unrestricted types only if all of their
components are also unrestricted, and

2. constructs that suspend computation either contain only values
(like Λ) or only typecheck at an unrestricted type given an
empty linear context (like λ).

(Of course, it also suffices to require that a new construct always be
typed linearly, as we do for additive conjunction in Section 5.1.)

We are now equipped to prove our main result, that linearity
guarantees a correspondence between values conscripted and dis-
charged at linear type:

Theorem 12 (Run time linearity). If e is proper and e C
D−→ e′,

then T(e)\? ] {C}\? = T(e′)\? ] {D}\?.

Proof. By straightforward induction over the annotated evaluation
relation; L-APPLAM is the only interesting case. From T-UVAR
and Lemma 11 we know that, unless the argument occurs exactly
once in the function body, it will be of unrestricted type and contain
no linear tags. We thus preserve our tag balance.

In other words, at runtime, arguments treated linearly are never
duplicated or discarded, exactly as we would hope. We can also im-
mediately prove the following corollary, summarizing everything
we know about expressions with unrestricted type:

Corollary 13 (Unrestricted results). If e is proper, · ` e : τ ,
and · ` τ : ?, then there exists some v such that e C

D−→∗ v,
T(e)\? ] {C}\? = {D}\?, and T(v)\? = ∅.

Proof. Follows directly from soundness, strong normalization,
Lemma 11, and Theorem 12.

4.3 Applications
To demonstrate how the above applies to the DFA encoding given
in Section 3.2, we first examine the simpler encodings of products
and existential types from Section 2.

Products Our traces treat pairs exactly as we would expect. Given
e1

C1
D1
−→∗ v1 and e2 C2

D2
−→∗ v2, where e1 has type τ1 and e2 has

type τ2, recall that

(e1, e2) = (Λα:◦. Λβ:◦. λ?x:α. λ◦y:β. Λγ:◦.
λ◦f :α ◦→ β ◦→ γ. f x y) [τ1] [τ2] e1 e2



e2
C
D−→∗ (λ◦x:{α 7→ τ}τ1. Λβ:◦. λκ1f :(∀α:κ. τ1

◦→ β). f [τ ] x) v1
(v1:{α 7→ τ}τ1)

ε−→ Λβ:◦. λκ1f :(∀α:κ. τ1
◦→ β). f [τ ] (v1:{α 7→ τ}τ1)

e3
ε
ε−→ (λκ1f :(∀α:κ. τ1

◦→ (τ ′:◦)). f [τ ] (v1:{α 7→ τ}τ1)) (Λα:κ. λ◦x:τ1. e
′)

(Λα:κ. λ◦x:τ1. e
′:∀α:κ. τ1

◦→ (τ′:◦))
(Λα:κ. λ◦x:τ1. e

′:∀α:κ. τ1
◦→ (τ′:◦))

−→∗ (Λα:κ. λ◦x:τ1. e
′) [τ ] (v1:{α 7→ τ}τ1)

ε
ε−→ (λ◦x:{α 7→ (τ :κ)}τ1. {α 7→ (τ :κ)}e′) (v1:{α 7→ τ}τ1)
ε

(v1:{α 7→ τ}τ1)−→ (λ◦x:{α 7→ (τ :κ)}τ1. {α 7→ (τ :κ)}e′) v1
(v1:{α 7→ (τ:κ)}τ1)

ε−→ {x 7→ (v1:{α 7→ (τ :κ)}τ1)}e′

Figure 6. Evaluation of annotated existentials

Clearly, then,

(e1, e2) C1, C2, (v1:(τ1:◦)), (v2:(τ2:◦))
D1, D2

−→∗ (v1, v2)

Given our representation of pairs as closures, this is reasonable;
though the conscription trace tags v1 and v2 with linear types, they
will be discharged at these types as soon as (v1, v2) is destructed
and, assuming the provided function f is of declared type τ1 ◦→
τ2
◦→ γ, reconscripted at their original, untagged types τ1 and τ2.

Existentials Existential types are a bit more complicated. Given
e1

C
D−→∗ v1 where e1 has type {α 7→ τ}τ1, τ1 has kind κ1, and

τ has kind κ, let
e2 = pack α:κ = τ in e1 : τ1

= let x = e1 in Λβ:◦. λκ1f :(∀α:κ. τ1
◦→ β). f [τ ] x

= (λ◦x:{α 7→ τ}τ1. Λβ:◦.
λκ1f :(∀α:κ. τ1

◦→ β). f [τ ] x) e1

Letting v2 refer to the result of fully evaluating e2, we have
e2

C, (v1:{α 7→ τ}τ1)
D−→∗ v2; the details of this reduction can be

seen in Figure 6. This seems sensible for the encoding of an ex-
istential package, as it reflects exactly that the result of evaluating
e1 has been captured in a function closure, just as with the capture
that occurs when applying the product constructor.

Now, to use v2, take e′ of type τ ′ and let

e3 = unpack α, x = v2 in e′
= v2 [τ ′] (Λα:κ. λ◦x:τ1. e

′)

The evaluation of this expression, also shown in Figure 6, is a
bit lengthier; the interesting thing to note, though, is that, before
the existentially wrapped v1 is passed to the function wrapping
e′, it is discharged at type {α 7→ τ}τ1 and reconscripted at the
type {α 7→ (τ :κ)}τ1. This stricter reconscription stands in direct
contrast to what occurs in the elimination of pairs, and, if κ is ◦, we
know that any component of v1 with type (τ :κ) must be discharged
exactly once in e′ for each time it is conscripted, regardless of
whether or not τ can also be given kind ?.

Subsequently, of course, it could be reconscripted simply at type
τ , but thanks to parametricity we know that e′ cannot do this on its
own—as in the filesystem example, it would need to make use of a
function already present in the existential package.

DFAs Finally, to show how the arguments made in proving of
Lemma 10 are made rigorous by this machinery, consider making
two more minor syntactic changes to System F◦: first, rather than
writing λκx:τ. e for functions, write fnκ name x:τ. e, and second,
rather than the simple L-TAG, add rules for the left and right sides
of applications which further add L and R tags to discharged values,
along with a final result rule which adds no further tag. It doesn’t
matter what names we give to functions, but if we choose to use
our record labels as function names when possible—and require
that all other names are drawn from some set disjoint from said
record labels—then our definition of an evaluation reflecting a

τ ::= . . .
˛̨

(τ, . . . , τ)
e ::= . . .

˛̨
(e, . . . , e)

˛̨
let (x1, . . . , xn) = e in e

v ::= . . .
˛̨

(v, . . . , v)

[K-PROD]
Γ ` τ1 : κ . . . Γ ` τn : κ

Γ ` (τ1, . . . , τn) : κ

[T-PROD]

Γ; ∆1 ` e1 : τ1 . . . Γ; ∆n ` en : τn
∆1 d . . . d ∆n = ∆

Γ; ∆ ` (e1, . . . , en) : (τ1, . . . , τn)

[T-PLET]

Γ; ∆1 ` e1 : (τ1, . . . , τn)
[Γ; ∆2], x1 : τ1, . . . , xn : τn c Γ′,∆′2

Γ′; ∆′2 ` e2 : τ ∆1 d ∆2 = ∆

Γ; ∆ ` let (x1, . . . , xn) = e1 in e2 : τ

Figure 7. Syntax and static rules for multiplicative products

word becomes very simple: the DFA trace must be visible in D
by examining the values tagged with L.

We can now return to the proof given in Section 3 and consider
the problem in terms of value traces. After unpacking the existen-
tial, we will have the linear initial state conscripted but not yet dis-
charged, and because our entire expression has the unrestricted type
Unit, we know from Corollary 13 that it must be discharged before
the final result is returned. Parametricity further restricts states to
being discharged on the right side of applications. Then, as before,
it is simply a matter of following the state as functions are applied
to it, noting the labels that can become attached to the value trace;
in the end, when some done at q is applied, our value trace will
contain a clear accepting DFA trace.

5. Extensions: Towards Practicality
Although System F◦ as presented so far can serve as an expressive
core calculus, to be usable in practice it is necessary to extend it
with features suitable for a surface language. This section shows
how to add a variety of useful constructs familiar from functional
programming. None of these extensions are particularly difficult,
though we point out a few places where linearity must be minded.

5.1 Language additions
Polykinded products System F◦ as it stands can already encode
both unrestricted and linear (multiplicative) products. In practice,
however, it is useful to build in support for n-ary tuples. As shown
in Figure 7, the typing rules are mostly standard; evaluation rules
are completely standard and have been omitted. The kinding rule
K-PROD, in combination with subkinding, allows the same syntax



τ ::= . . .
˛̨
〈τ, . . . , τ〉

e ::= . . .
˛̨
〈e, . . . , e〉

˛̨
e.i

v ::= . . .
˛̨
〈e, . . . , e〉

[E-ADD]
e −→ e′

e.i −→ e′.i

[E-CHOOSE] 〈e1, . . . , ei, . . . , en〉.i −→ ei

[K-ADD]
Γ ` τ1 : ◦ . . . Γ ` τn : ◦

Γ ` 〈τ1, . . . , τn〉 : ◦

[T-ADD]
Γ; ∆ ` e1 : τ1 . . . Γ; ∆ ` en : τn

Γ; ∆ ` 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉

[T-SEL]
Γ; ∆ ` e : 〈τ1, . . . , τi, . . . , τn〉

Γ; ∆ ` e.i : τi

Figure 8. Syntax and rules for the additive products

e ::= . . .
˛̨

fix f. v

[E-FIX] fix f. v −→ {f 7→ (fix f. v)}v

[T-FIX]
Γ, f :τ ; · ` v : τ Γ ` τ : ?

Γ; · ` fix f. v : τ

Figure 9. Syntax and rules for fixpoints.

to be used for both linear and unrestricted tuples; if any component
type of a tuple is linear, so is the tuple itself. T-PLET uses an n-ary
version of the nondeterministic bind operation (recall T-LAM),
allowing unrestricted components of a tuple to be used arbitrarily
but binding linear components in the linear context.

Additive products As mentioned in Section 2, we cannot encode
linear sums in System F◦ as presented so far—we have no means
of sharing the linear context among different subexpressions, all
but one of which will be dropped. Connectives that enable this are
referred to as additive in the terminology of linear logic; tradition-
ally they are written as τ1 ⊕ τ2 for sums, and τ1 & τ2 for addi-
tive products—lazy linear products eliminated by projection rather
than pattern matching. In keeping with our syntactic conventions,
however, we introduce n-ary additive products 〈τ1, . . . , τn〉; sums
could be encoded in terms of these products but are also subsumed
by the algebraic datatypes discussed below.

Figure 8 gives the new syntax, definitions, and static and dy-
namic rules for n-ary additive products. Note that additive products
necessarily denote suspended computations, as further evaluation
progress cannot be made until a branch is chosen. Unlike multi-
plicative products, additive products always have kind ◦ regardless
of the kinds of the component types, as seen in K-ADD.

Fixpoints Adding support for fixpoint computation turns out to
be remarkably straightforward: recursion implies the ability to re-
peatedly invoke a function within its own body, which naturally
puts us in the unrestricted portion of System F◦. Figure 9 shows the
new syntax and rules, where we write fix f. v for the computation
that immediately unwinds itself to a value as shown in E-FIX. Since
these operational semantics might duplicate v, T-FIX requires that
fixpoint expressions be closed with respect to the linear context;
note that this is compatible with Lemma 4 (3).

Algebraic datatypes Figure 10 shows the static rules for general
recursive, polymorphic datatypes—as with multiplicative products,

the dynamic rules are standard. We assume a signature ΣT that
maps a datatype constructor T to its (higher) kind κ, which de-
scribes T’s type parameters; T has arity kT . Term-level constructors
for type T are written ctrT

i , and their types are given by the map
Σc. The type of a term-level constructor is polymorphic over the
parameters of the datatype, but it may also expect additional type
parameters, which act as through they are existentially bound—this
design is similar to that found in Haskell. Importantly, if the result
kind of the type constructor T is ?, then the value parameters to the
term-level constructors must also be of kind ?. This constraint, writ-
ten as part of the signature well formedness checks in Figure 10, is
necessary to ensure that an unrestricted datatype can’t hide a linear
value and thus allow it to be duplicated or discarded.

The additive nature of datatypes is shown in T-CASE, which
uses the same linear context ∆2 when checking each branch.
The branches themselves are polymorphic linear functions—
additionally abstracted over any existential type parameters—one
of which will be applied to create a result of the appropriate type.
As with additive products, each branch will capture the same linear
free variables, but only one of the branches will fire at run time.

5.2 Syntactic support for linearity
In addition to making it possible for types to express safe protocols
over stateful resources, it must also be convenient for programmers
to write client code that interacts with these interfaces. For instance,
a file copy program, using the interface given in Section 1.2, should
look like simple imperative code and not require the programmer
to think explicitly about existentially bound linear type variables
and the threading of linear filehandles. In the rest of this section
we sketch out some possible syntactic support—partly inspired by
but simpler than Haskell’s type classes—for programming with
linearity, which allows us to copy files as follows8:

let copy = fix f.
action ([File] h1, [File] h2).
y � h1.read;
if y = EOF then return ()
else h2.write y;

(h1, h2)..f
in
start [File] h1 = open ”InFile.txt”;
start [File] h2 = open ”OutFile.txt”;
(h1, h2)..copy;
h1.close; h2.close

This program would fail to typecheck if either of the calls to close
were omitted, if one of the file handles were closed within the body
of copy, or if a read or write operation were called after close.
In the rest of this section we will show how to translate from this
syntax into System F◦ as described up to this point.

First, we make more explicit the pattern common to the protocol
examples we have seen thus far. Let Θ = α1 . . . αn be a list of
type variables representing the states of the protocol.9 The possible
actions of the protocol can be given by a record of operations, each
of which causes a state transition from σin to σout.

Ops(Θ) = { op1 : ∀β1:κ1.τin1
?→ σin1

?→ (τout1 , σout1)
. . .
opm : ∀βm:κm.τinm

?→ σinm
?→ (τoutm , σoutm) }

Here, σinj ∈ Θ is the start state of the operation and σoutj ∈ Θ ∪
{Unit} is either the end state of the operation or Unit, indicating

8 Technically, to match up with what follows, the return type of write must
be (Unit, α) rather than just α; we also assume that EOF is of type Char.
9 In this section, we write ∀Θ:◦.τ as short hand for ∀α1:◦. . . . ∀αn:◦.τ ,
and similarly for existentials.



κ̄ ::= κ
˛̨
κ⇒ κ̄ e ::= . . .

˛̨
ctrT

i τ1 . . . τn e
˛̨

case e of ctrT
1. v1 | . . . | ctrT

n. vn
τ ::= . . .

˛̨
T τ1 . . . τn v ::= . . .

˛̨
ctrT

i τ1 . . . τn v

[K-T]

ΣT ` T : κ1 ⇒ . . . κkT ⇒ κT

Γ ` τ1 : κ1 . . .Γ ` τkT : κkT

Γ ` T τ1 . . . τkT : κT
[T-CTR]

Σc ` ctrT
i : ∀α1:κ1, . . . , αn:κn.τ

?→ T α1 . . . αkT

Γ; ∆ ` e : τ Γ ` τ1 : κ1 . . . Γ ` τn : κn

Γ; ∆ ` ctrT
i τ1 . . . τkT , τkT+1, . . . , τn e : T τ1 . . . τkT

[T-CASE]

∆1 d ∆2 = ∆ Γ; ∆1 ` e : T τ1 . . . τkT α1 . . . αn /∈ Γ, τ„
Σc ` ctrT

i : ∀α1:κ1, . . . , αkT :κkT , αkT+1:κkT+1, . . . αni :κni .τi
?→ T α1 . . . αkT

Γ, α1:κ1, . . . , αkT :κkT ; ∆2 ` vi : ∀αkT+1:κkT+1, . . . αni :κni .τi
◦→ τ

«(i∈1...m)

Γ; ∆ ` case e of ctrT
1. v1 | . . . | ctrT

m. vm : τ
(T has m constructors)

ΣT ` Σc holds if and only if for every T such that ΣT ` T : κ1 ⇒ . . . κkT ⇒ κT and ctrT
i such that

Σc ` ctrT
i : ∀α1:κ1, . . . , αni :κni .τi

?→ T α1 . . . αkT it is the case that α1:κ1, . . . αni :κni ` τi : κT

Figure 10. Syntax and static rules for polymorphic, recursive datatypes. ΣT and Σc are global constructor contexts such that ΣT ` Σc

that the protocol is complete. We assume that each operation might
be polymorphic and, for simplicity, that each takes one input of
type τinj and produces an output of type τoutj , both of which might
contain occurrences of variables in Θ. Almost all of the protocol
examples we have seen can be written in this form.

If αinit ∈ Θ is the start state, then an initial instance e1 of the
protocol is represented by a value of type ∃Θ:◦.(αinit,Ops(Θ)).
Thanks to αinit, this value has linear kind, so it must be unpacked
and the resulting tuple destructed. We suggest a convenient notation
to simplify this process:

start [Ops] h = e1 in e2 , unpack Θh, x = e1 in
let (h, opsh) = x in e2

Here, Θh is a list of fresh type variables, h is bound to the linear
state, and opsh is the record of operations associated with h. The
syntax includes the annotation Ops to help with type checking and
to determine what syntactic sugar applies with respect to h in the
body e2. Note that opsh has type Ops(Θh), which is unrestricted
and hence may be duplicated at will; this invariant will be main-
tained throughout the interpretation of our syntax.

The intuition behind our scheme is simple: we use the sin-
gle name h for the linear handle associated with the thread of a
protocol—this implicit reuse can never be an issue, since the vari-
able is linear. This handle (which must be typed by a variable in
Θh) then determines an appropriate record of operations, opsh, as-
sociated with the protocol. The programmer never mentions opsh
explicitly; rather it is threaded through the computation automati-
cally, much like a typeclass dictionary.

The basic notation treats the protocol operations as “methods”
of the linear handle h with implicit argument opsh, binding the
result to the variable y and conflating the initial and result handles:

y � h.opi [τ ] e1; e2 , let (y, h) = opsh.opi [τ ] e1 h in e2
If the programmer wishes to write a client function that takes one
or more handles, each following its own protocol, the function
must be polymorphic over the appropriate ops records. We call
such functions “actions”; it makes sense to give them a type very
similar to the operations of a protocol, since they must take a vector
of resource handles each in some protocol state and return a new
vector of protocol states.

action ([Ops1] h1, . . . , [Opsn] hn) β:κ (x:τin). e ,
ΛΘh1 :◦. λ?opsh1

:Ops1(Θh1). . . .ΛΘhn :◦. λ?opshn :Ops1(Θhn).

Λβ:κ. λ?x:τin. λ
◦s:(αh1 , . . . , αhn).

let (h1, . . . , hn) = s in e

Here emust have type (τout, (σout1 , . . . , σoutn)), where σoutj ∈ Θhj

and the type of hj must be some αhj in Θhj , representing the state
that handle must be in when this function is called. Our syntactic
sugar requires that type inference be able to determine the αhj ’s
by inspecting e. We expect this to be rather straightforward, since
the type is uniquely determined by the first operation invoked on
the handle; alternatively we could add a type annotation to hj .
Inside the body of such an action, we allow a convenient means
of packaging the state values to be returned to the caller:

return e , (e, (h1, . . . , hn))

Taken together, these constraints ensure that the type of an action is
a polymorphic operation over a vector of states; i.e., it has the type

∀Θh1 :◦. Ops1(Θh1) ?→ . . .∀Θhn :◦. Opsn(Θhn) ?→
∀β:κ. τin

?→ (αh1 , . . . , αhn) ?→ (τout, (σout1 , . . . , σoutn))

Inside the body of an action, the “method call” syntax defined
earlier can be used to invoke protocol operations on the handles
hj . Since an action is just another sort of operation over handles—
albeit a higher level one—we would like similar syntax for invoking
such an operation on a list of handles. Assuming f has the type of
an action as given above, we define:

y � (h1, . . . , hn)..f [τ ] e1; e2 ,
let (y, s) = f [Θh1 ] opsh1

. . . [Θhn ] opshn [τ ] e1 (h1, . . . , hn) in
let (h1, . . . , hn) = s in e2

One can easily define variants of both the above and the earlier
protocol operation notation that omit the argument e1 or the binding
for y in the case that one or both of τin and τout are Unit, or
that do not rebind the handle variable in cases where the handle
is consumed, as with close. Also, if the operation invocation is
last in a sequence, e2 and the corresponding the let binding may
be omitted, since the result of the operation is the result of the
sequence—this is useful, e.g., for making tail calls.

Of course, there are many ways of using linear types, and the
above does not account for all of them. We believe, however, that it
does show the feasibility of making System F◦ protocols palatable
to the programmer, and that this provides further evidence that lin-
earity as implemented in System F◦ deserves to be considered for
inclusion in more mainstream functional programming languages.

6. Conclusion
We have presented System F◦, a simple variant of the linear poly-
morphic λ-calculus that nevertheless can enforce a rich variety of



protocols. System F◦ is sound and enjoys parametricity, and we
have proved that protocol enforcement is faithful—that is, linear
resources are never misused—thanks to these properties. We have
demonstrated the applicability of System F◦ through a variety of
examples and by showing how to extend it with features geared
towards practical programming with linear types.
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