
A Language-based Approach to Unifying Events and Threads

Peng Li
University of Pennsylvania

Steve Zdancewic
University of Pennsylvania

Abstract

This paper presents a language-based technique to unify
two seemingly opposite programming models for build-
ing massively concurrent network services: the event-
driven model and the multithreaded model. The result
is a unified concurrency modelproviding both thread
abstractions and event abstractions. Using this model,
each component in an application can be implemented
using the appropriate abstraction, simplifying the design
of complex, multithreaded systems software.

This paper shows how to implement the unified con-
currency model in Haskell, a pure, lazy, functional pro-
gramming language. It also demonstrates how to use
these techniques to build anapplication-levelthread li-
brary with support for multiprocessing and asynchronous
I/O mechanisms in Linux. The thread library is type-
safe, is relatively simple to implement, and has good
performance. Application-level threads are extremely
lightweight (scaling to ten million threads) and our
scheduler, which is implemented as a modular and ex-
tensible event-driven system, outperforms NPTL in I/O
benchmarks.

1 Introduction

Modern network services present software engineers
with a number of design challenges. Web servers, mul-
tiplayer games, and Internet-scale data storage appli-
cations must accommodate thousands of simultaneous
client connections. Such massively-concurrent programs
are difficult to implement, especially when other require-
ments, such as high performance and strong security,
must also be met.

Events vs. threads: Two implementation strategies
for building such inherently concurrent systems have
been successful. Both the multithreaded and event-
driven approaches have their proponents and detractors.
The debate over which model is “better” has waged for
many years, with little resolution. Ousterhout [17] has

argued that “threads are a bad idea (for most purposes),”
citing the difficulties of ensuring proper synchronization
and debugging with thread-based approaches. A counter
argument, by von Behren, Condit, and Brewer [23], ar-
gues that “events are a bad idea (for high-concurrency
servers),” essentially because reasoning about control
flow in event-based systems is difficult and the appar-
ent performance wins of the event-driven approach can
be completely recouped by careful engineering [22].

From the programmer’s perspective, both models are
attractive. Sometimes it is desirable to think about the
system in terms of threads (for example, to describe the
sequence of events that occur when processing a client’s
requests), and sometimes it is desirable to think about the
system in terms of events and event handlers (for exam-
ple, to simplify reasoning about asynchronous commu-
nications and resource scheduling).

A unified concurrency model: This paper shows that
events and threads can be unified in a single concur-
rency model, allowing the programmer to design parts
of the application as if she were using threads, where
threads are the appropriate abstraction, and parts of the
system using events, where they are more suitable. Sec-
tion 2 gives some additional background about the multi-
threaded and event-driven models and motivates the de-
sign of our unified concurrency model.

In our model, for higher-level application code, the
programmer can use use a multithreaded programming
style similar to C and Java, with familiar control-flow el-
ements such as sequencing, functions calls, conditionals
and exceptions, and with user-defined system calls for
I/O and thread control. Figure 1 shows two sample func-
tions written in the multithreaded style.

For lower-level I/O code, the programmer can conve-
niently use asynchronous OS interfaces such asepoll

and AIO in Linux. The thread scheduler has an ex-
tensible, modular event-driven architecture in which the
application-level threads can be seen as event handlers.

A language-based approach: Languages like C and
C++ have historically been used to implement high-
performance, concurrent software. However, they suf-
fer from well known security and reliability problems
that have prompted a move toward type-safe languages
like Java and C#. Their general-purpose threads pack-
ages are typically quite heavyweight though, and none of
these languages provide appropriate abstractions to sim-
plify event-driving programming. Implementing scal-
able thread or event systems is feasible using these lan-
guages, but the results can be cumbersome to use. Tech-
niques such as compiler transformations can address
these problems to some extent [22], but even then the en-
gineering challenges typically force the programmer to
choose between threads or events—they don’t get both.

Our case-study implementation of the unified concur-
rency model, described in detail in Section 3, is writ-
ten in the programming language Haskell [12]. Haskell
is a pure, lazy, strongly-typed, functional language
with many advanced language features, such astype
classes, that make it very convenient to implement
the unified concurrency model. Our implementation is
based on techniques developed some time ago by Koen
Claessen [8] in the programming languages research
community.

Application-level threads: Using this language sup-
port, we have built anapplication-levelthread library, in
which the threaded code and thread scheduler are writ-
ten insidethe application. Section 4 describes the thread
library, which uses both event-driven and multithreaded
programming models, and shows how it can flexibly sup-
port several synchronization mechanisms for interthread
communication and shared state.

Compared to traditional approaches (both multi-
threaded and event-driven), our application-level thread
library has many advantages for building scalable net-
work services:

• Flexibility: The programmer can choose to use the
appropriate programming models for different parts
of the system.

• Scalability: The implementation of application-
level threads are extremely lightweight: it scales up
to 10,000,000 threads on a modest test system.

• Parallelism: The application-level threads can exe-
cute on multiple processors concurrently.

• Performance:The thread scheduler behaves like a
high-performance event-driven system. It outper-
forms equivalent C programs using NPTL in our I/O
benchmarks.

• Safety: The implementation of the thread library
and the application programming interface are both
type-safe.

� �
−−send a file over a socket
send_file sock filename =

do { fd <- file_open filename;
buf <- alloc_aligned_memory buffer_size;
sys_catch (

copy_data fd sock buf 0
) \exception -> do {

file_close fd;
sys_throw exception;

} −−so the caller can catch it again
file_close fd;

}
−−copy data from a file descriptor to a socket until EOF
copy_data fd sock buf offset =

do { num_read <- file_read fd offset buf;
if num_read==0 then return () else

do { sock_send sock buf num_read;
copy_data fd sock buf (offset+num_read);

}
}

� �
Figure 1: Example of multithreaded code in Haskell

Section 5 gives the results of our performance ex-
periments and describes a simple web server we imple-
mented as a case study. Our experience shows that the
Haskell is a reasonable language for building scalable
systems software: it is expressive, succinct, efficient and
type-safe; it also interacts well with C libraries and APIs.

Summary of contributions:
1. A unified programming model that combines event-

driven and multithreaded programming. This model
is suitable for building highly scalable, concurrent
systems software.

2. A Haskell implementation of the interfaces for the
unified concurrency model, based on techniques
from the programming languages community.

3. An application-level thread library and accompany-
ing experiments that demonstrate the feasibility and
benefits of this approach.

2 Unifying events and threads

This section gives some background on the multi-
threaded and event-driven approaches and motivates the
design of the unified concurrency model.

2.1 The thread–event duality
In 1978, Lauer and Needham [15] argued that the multi-
threaded and event-driven models are dual to each other.
They describe a one-to-one mapping between the con-
structs of each paradigm and suggest that the two ap-
proaches should be equivalent in the sense that either
model can be made as efficient as the other. The dual-
ity they presented looks like this:

Threads Events
thread continuation ∼ event handler

scheduler ∼ event loop
exported function ∼ event

procedure call ∼ send event / await reply

2

The Lauer-Needham duality suggests that despite their
large conceptual differences and the way people think
about programming in them, the multithreaded and
event-driven models are really the “same” underneath.
Most existing approaches trade off threads for events or
vice versa, choosing one model over the other. We pro-
pose a different route: rather than using the duality to
justify choosing threads over events or vice versa (since
either choice can be made as efficient and scalable as the
other), we see the duality as a strong indication that the
programmer should be able to useboth models of con-
currency in the same system. The duality thus suggests
that we should look for natural ways to support switching
between the views as appropriate to the task at hand.

2.2 A comparison of events vs. threads

Programming: The primary advantage of the thread
model is that the programmer can reason about the series
of actions taken by a thread in the familiar way, just as
for a sequential program. This approach leads to a nat-
ural programming style in which the control flow for a
single thread is made apparent by the program text, using
ordinary language constructs like conditional statements,
loops, exceptions, and function calls.

Event-driven programming, in contrast, is hard. Most
general-purpose programming languages do not provide
appropriate abstractions for programming with events.
The control flow graph of an event-driven program has
to be decomposed to multiple event handlers and rep-
resented as some form of state machines with explicit
message passing or in continuation-passing style (CPS).
Both representations are difficult to program with and
reason about, as indicated by the name of Python’s popu-
lar, event-driven networking framework, “Twisted” [21].

Performance: The multithreaded programming style
does not come for free: In most operating systems, a
thread uses a reserved segment of stack address space,
and the virtual memory space exhausts quickly on 32-
bit systems. Thread scheduling and context switching
also have significant performance overheads. However,
such performance problems can be reduced by well engi-
neered thread libraries and/or careful use of cooperative
multitasking—a recent example in this vein is Capric-
cio [22], a user-level threads package specifically for use
in building highly scalable network services.

The event-driven approach exposes the scheduling
of interleaved computations explicitly to the program-
mer, thereby permitting application-specific optimiza-
tions that significantly improve performance. The event
handlers typically perform only small amounts of work
and usually need only small amounts of local storage.
Compared to thread-based systems, event-driven systems
can have the minimal per-thread memory overheads and

Figure 2: Threads vs. events

context switching costs. Furthermore, by grouping sim-
ilar events together, they can be batch-processed to im-
prove code and data locality [14].

Flexibility and customizability: Most thread sys-
tems provide an abstract yet rigid, synchronous program-
ming interface and the implementation of the scheduler is
mostly hidden from the programming interface. Hiding
the scheduler makes it inconvenient when the program
requires the use of asynchronous I/O interfaces not sup-
ported by the thread library, especially those affecting the
scheduling behavior. For example, if the I/O multiplex-
ing of a user-level thread library is implemented using
the portableselect interface, it is difficult to use an al-
ternative high-performance interface likeepoll without
modifying the scheduler.

Event-driven systems are usually more flexible and
customizable because the programmer has direct con-
trol of resource management and direct access to asyn-
chronous OS interfaces. Many high-performance I/O
interfaces (such as asynchronous I/O,epoll and ker-
nel event queues) provided by popular OSes are asyn-
chronous or event-driven, because this programming
model corresponds more closely to the hardware inter-
rupts. An event-driven system can directly take ad-
vantage of such asynchronous, non-blocking interfaces,
while using thread pools to perform synchronous, block-
ing operations.

Another concern is that most user-level cooperative
thread systems do not take advantages of multiple pro-
cessors, and adding such support is often difficult. Event-
driven systems can easily utilize multiple processors by
processing independent events concurrently [26].

2.3 The unified concurrency model

One important reason that the user-level threads in sys-
tems like Capriccio achieve good performance is that
the thread scheduler is essentially an event-driven ap-
plication that uses asynchronous I/O interfaces to make
scheduling decisions. Although the performance of user-
level threads packages can rival their event-driven coun-
terparts, they are less flexible than event-driven systems,
because the scheduler is mostly hidden from the pro-
grammer and new event-based interfaces sources cannot
be easily added. An event-driven application such as the

3

Figure 3: The unified concurrency model

Flash web server [18], on the other hand, has flexibility
when choosing I/O interfaces, but there is no appropri-
ate abstraction for generic multithreaded programming.
This situation is illustrated in Figure 2.

Ideally, we would like to use anapplication-level
thread system, where the thread abstraction is pro-
vided inside the application and the scheduler is a pro-
grammable part of the application. We use the term
application-levelthreads in contrast with the more gen-
eral concept ofuser-levelthreads, which are typically
implemented in a library that hides the thread scheduler.
The problem is how to provide appropriateabstraction
when the scheduler is part of the application: the sched-
uler is a complex piece of code, it heavily uses low-level,
unsafe operations and internal data structures. Without
appropriate abstraction, writing such an application re-
quires almost as much work as implementing an user-
level thread scheduler from scratch.

The key idea of this paper is to separate the low-level,
internal representation of threads from the scheduler im-
plementation. As illustrated in Figure 3, the goal is to
design a software library (as the box in the center) that
provides two different abstractions for application-level
threads: thethread view, which allows per-thread code
be written in the natural, imperative, multithreaded style
as shown previously in Figure 1, and theevent view,
which allows the threads be passively manipulated by the
underlying scheduler in an abstract, type-safe way.

The scheduler is part of the application as in most
event-driven systems. The programmer needs to imple-
ment only high-level algorithms and data structures for
dispatching events and scheduling threads. Figure 17
(described later) shows three example event loops pro-
grammed in this style; such code is concise and easily
customizable for a given application. Reusable libraries
wrap the low-level operating system calls, which helps
keep the scheduler code clean.

This dualized model gives the best of two worlds:
the expressiveness of threads and the customizability of
events. The next section shows how this design is imple-
mented in Haskell.

3 Implementing the unified model

In the duality of threads and events, an atomic block of
instructions in a thread continuation (also called adelim-
ited continuation) corresponds to an event handler, and
the thread scheduler corresponds to the main event loop.
The relationship between threads and events can be made
explicit using acontinuation-passing style(CPS) trans-
lation [3]. However, CPS translation is painful to deal
with in practice—programmingpurely in an event-driven
(or message passing) style essentially amounts to doing
CPS translation manually. The goal of the unified pro-
gramming model is to hide the details of CPS translation
from the programmer. As shown in Figure 3, in order
to hide the implementation details of the middle box in
a software library, the language mechanism should pro-
vide adequate abstraction for both thethread viewand
theevent viewinterfaces.

Thread view: Code for each thread is written in a
natural, sequential style with support for most common
control-flow primitives: branches, function calls, loops,
exception handling, as shown in Figure 1. Thread con-
trol and I/O can be implemented using a set of system
calls configurable for each application. The key point of
this abstraction is that the internal representation of the
threads should be completely hidden at this level and the
programmer does not need to manage the details such as
continuation passing.

Event view: The internal representation of threads can
be conveniently accessed from the scheduler. The event
loop (scheduler) can (1) examine a system call request
(such as I/O) submitted from a thread, and (2) execute a
delimited continuation of a thread in the same way as in-
voking an event handler function, passing appropriate ar-
guments as responses to the system call requests. This al-
lows the main scheduler to play the “active” role and the
threads to play the “passive” role: the scheduler actively
“pushes” the thread continuations to make progress. This
active programming model makes it easy to use control-
flow primitives provided by the programming language
to express the scheduling algorithms.

Here we use the techniques developed by Koen
Claessen [8] to present an simple, elegant and
lightweight abstraction mechanism that uses the follow-
ing language features (which will be further explained
below):

• Monadsprovide thethread abstractionby defining
an imperative sub-language of Haskell with system
calls and thread control primitives.

• Higher-order functionsprovide the internal repre-
sentation of threads in continuation-passing style.

• Lazy data structuresprovide theevent abstraction,

4

which is a lazy tree that represents the trace of sys-
tem calls generated by threads.

3.1 Traces
Traces and system calls: A central concept in the uni-
fied concurrency model is atrace, which is a tree struc-
ture describing the sequence of system calls made by
a thread. A trace may have branches because the cor-
responding thread can usefork to spawn new threads.
For example, executing the (recursive)server function
shown on the left in Figure 5 generates the infinite trace
of system calls on the right.

� �
server = do {

sys_call_1;
fork client;
server;

}

client = do {
sys_call_2;

}

� �

� �
SYS_CALL_1

|
SYS_FORK

/ \
SYS_CALL_2 SYS_CALL_1

/
SYS_FORK

/ \
SYS_CALL_2 SYS_CALL_1

... ...
� �

Figure 5: Some threaded code (left) and its trace (right)

A run-time representation of a trace can be defined as a
tree using algebraic data types in Haskell. The definition
of the trace is essentially a set of system calls, as shown
in Figure 6. Each system call in the multithreaded pro-
gramming interface corresponds to exactly one type of
tree node. For example, theSYS FORK node has two sub-
traces, one for the continuation of the parent thread and
one for the continuation of the child. Note that Haskell’s
type system distinguishes code that may perform side ef-
fects as shown in the type of aSYS NBIO node, which
contains anIO computation that returns a trace.

� �
−−A list of system calls used in the multithreaded programmingstyle:
sys_nbio c −−Perform a nonblocking IO function c
sys_fork c −−Create a new thread running function c
sys_yield −−Switch to another thread
sys_ret −−Terminate the current thread
sys_epoll_wait fd event −−Block and wait for an epoll event on a
... ... −−file descriptor

� �
� �
data Trace = −−Haskell data type for traces

SYS_NBIO (IO Trace)
| SYS_FORK Trace Trace
| SYS_YIELD Trace
| SYS_RET
| SYS_EPOLL_WAIT FD EPOLL_EVENT Trace
|

� �

Figure 6: System calls and their corresponding traces

Lazy traces and thread control: We can think of the
trace as an output of the thread execution: as the thread
runs, the nodes in the trace are generated. What makes
the trace interesting is that the computation islazy: a
computation is not performed until its result is used. Us-
ing lazy evaluation, the consumer of a trace can control

the execution of a thread: whenever a node in the trace is
accessed, the thread runs to the system call that generate
the corresponding node, and the execution of that thread
is suspended until the next node in the trace is accessed.
In other words, the execution of threads can be controlled
by traversing their traces.

Figure 4 shows how traces are used to control the
thread execution. It shows a run-time snapshot of the
system: the scheduler decides to resume the execu-
tion of a thread, which is blocked on a system call
sys epoll wait in thesock send function. The fol-
lowing happens in a sequence:

1. The scheduler decides to run the thread until it
reaches the next system call. It simply forces the
current node in the trace to be evaluated, by using
thecase expression to examine its value.

2. Because of lazy evaluation, the current node of the
trace has not been created yet, so the continuation of
the thread is launched in order to compute the value
of the node.

3. The thread runs until it performs the next system
call,sys nbio.

4. The thread is suspended again, because it has per-
formed the necessary computation to create the new
node in the trace.

5. The value of the new node,SYS NBIO is available
in the scheduler. The scheduler then handles this
system call by performing the non-blocking I/O op-
eration and running the continuation of the thread.

Therefore, the lazy trace provides theevent abstrac-
tion we need: it is an abstract interface that allows the
main scheduler to play the “active” role and the threads
to play the “passive” role: the scheduler can use traces to
actively “push” the thread continuations to execute. Each
node in a trace is essentially a delimited continuation that
represents part of the thread execution.

The remaining problem is how to provide a mecha-
nism that transforms multithreaded code into traces—
how do we design a software module that provides both
the thread abstractionand theevent abstractionin Fig-
ure 4? The answer is the CPS monad. The next two sec-
tions introduces the concept ofmonadsand shows how
the CPS monad solves these problems.

3.2 Background: monads
Haskell has support for a mechanism calledmonads[24,
11] that provide an abstract type of computations with
side effects.Monad is a standard interface for program-
ming with functional combinators, which can be used as
a domain-specific language. By designing thread con-
trol primitives as monadic combinators, the monad in-
terface can be used as an abstractions for multithreaded

5

Figure 4: Thread execution through lazy evaluation (the steps are described in the text)

programming, because it provide a way of hiding the “in-
ternal plumbing” needed to write programs in CPS style.

The basic idea behind monads can be explained by
looking at Haskell’sIO monad, which is provided as
part of its standard libraries. A value of typeIO α is
an effectful computation that may perform some actions
as side-effects before yielding a value of typeα. IO

side effects include input and output, reading and writ-
ing shared memory references and accessing many sys-
tem utilities. For example, the functionhGetChar takes
a handle to an I/O stream and returns an action that, when
executed, reads a character from the stream. The func-
tionhPutChar is similar, but it takes a handle and a char-
acter to output and produces no result (Haskell’s type()

is similar tovoid in C). These functions have the fol-
lowing types:

hGetChar :: Handle -> IO Char
hPutChar :: Handle -> Char -> IO ()

There are also two standard operations calledreturn

andbind that all monads must implement. For theIO
monad, these operations have types:

return :: α -> IO α

(>>=) :: IO α -> (α -> IO β) -> IO β

Thereturn combinator “lifts” an ordinary expression
of typeα into theIO monad by returning the trivial ac-
tion that performs no side effects and yields the input as
the final answer. The infix combinator>>=, pronounced
“bind”, sequences the actions in its arguments:e >>= f

returns a new action that first performs the I/O operations
in e and passes the result computed bye to the func-
tion f, which may then produce subsequent actions. In
Haskell there is support for the so called “do” notation,
which provides more familiar looking syntactic sugar for
binding multiple actions in series. For example, the two
implementations ofdouble in Figure 7 are equivalent—
both read in a character and output it twice (here and

elsewhere we use Haskell’s syntax\x->e for an anony-
mous function with argumentx and bodye):

� �
double :: Handle -> IO ()
double h =
hGetChar h >>= (\x ->
hPutChar x >>= (_ ->
hPutChar x))

� �

� �
double h =
do { x <- hGetChar h;

hPutChar x;
hPutChar x;

}
� �

Figure 7: The “do” syntax of Haskell

The IO monad is but one example of a wide variety
of well-known monads, most of which are useful for en-
capsulating side effects. Haskell has a mechanism called
type classes that allows the “do” notation to be over-
loaded for programmer-defined monads, and we exploit
this feature to give natural syntax to the threads imple-
mented on top of continuation-passing mechanisms we
describe next.

3.3 The CPS monad
The goal is to design a monad that provides athread
abstraction, so the programmer can write multithreaded
code using the overloaded “do”-syntax with a set of sys-
tem calls. The implementation of this monad is tricky,
but the details are hidden from the programmer (in the
box between the thread abstraction and the event abstrac-
tion in Figure 3).

The monad encapsulates the side effect of a multi-
threaded computation, that is, generating a trace. The
tricky part is that, if we simply represent a computation
with a data type that carries its result value and its trace,
such a data type cannot be used as a monad, because the
monads require that computations be sequentially com-
posable in a meaningful way. Given two complete (pos-
sibly infinite) traces, there is no meaningful way to com-
pose them sequentially.

The solution is to represent computations in

6

continuation-passing style(CPS), where the final
result of the computation is the trace. A computation
of type a is thus represented as a function of type
(a->Trace)->Trace that expects a continuation, itself
a function of type(a->Trace), and produces aTrace.
This representation can be used to construct a monadM.
The standard monadic operations (lifting and sequential
composition) are defined in Figure 8.

� �
newtype M a = M ((a->Trace)->Trace)
instance Monad M where

return x = M (\c -> c x)
(M g)>>=f = M (\c -> g (\a -> let M h = f a in h c))

� �
Figure 8: The CPS monadM

Given a computationM a wrapped in the above CPS
monad, we can access its trace by adding a “final contin-
uation” to it, that is, adding a leaf nodeSYS RET to the
trace. The functionbuild trace in Figure 9 converts a
monadic computation into a trace:

� �
build_trace :: M a -> Trace
build_trace (M f) = f (\c-> SYS_RET)

� �
Figure 9: Converting monadic computation to a trace

In Figure 10, each system call is implemented as a
monadic operation that creates a new node in the trace.
The arguments of system calls are filled in to correspond-
ing fields in the trace node. Since the code is internally
organized in continuation-passing style, we are able to
fill the trace pointers (fields of type “Trace”) with the
continuation of the current computation (bound to the
variablec in the code).

� �
sys_nbio f = M(\c->SYS_NBIO (do x<-f;return (c x)))
sys_fork f = M(\c->SYS_FORK (build_trace mx) (c ())
sys_yield = M(\c->SYS_YIELD (c ()))
sys_ret = M(\c->SYS_RET)
sys_epoll_wait fd event =

M (\c -> SYS_EPOLL_WAIT fd event (c ()))
� �

Figure 10: Implementing system calls

For readers unfamiliar with monads in Haskell, it may
be difficult to follow the above code. Fortunately, these
bits of code encapsulateall of the “twisted” parts of the
internal plumbing in the CPS. The implementation of the
monad can be put in a library, and the programmer needs
to use only its interface. To write multithreaded code, the
programmer simply uses the “do”-syntax and the system
calls in Figure 10; to access the trace of a thread in the
event loop, one just applies the functionbuild trace

to it to get the lazy trace.

3.4 Programming with threads
Using the monad abstraction and the system calls, the
programmer can write code for each thread in a natu-
ral, multithreaded programming style. The system calls
provide the basic non-blocking I/O primitives. The

sys nbio system call works with any non-blocking I/O
function. The threaded programming style makes it easy
to hide the non-blocking semantics and provide higher
level abstractions by using nested function calls. For ex-
ample, a blockingsock accept can be implemented us-
ing non-blockingaccept as shown in Figure 11.

� �
sock_accept server_fd = do {

new_fd <- sys_nbio (accept server_fd);
if new_fd > 0

then return new_fd
else do { sys_epoll_wait fd EPOLL_READ;

sock_accept server_fd;
}

}
� �

Figure 11: Wrapping non-blocking operations

Thesock accept function tries to accept a connec-
tion by calling the non-blockingaccept function. If it
succeeds, the accepted connection is returned, otherwise
it waits for anEPOLL READ event on the server socket, in-
dicating that more connections can be accepted. Figure 1
also shows similar examples of multithreaded code.

3.5 Programming with events

A simple scheduler: Traces provide an abstract inter-
face for writing thread schedulers: a scheduler is just a
tree traversal function. To make the technical presenta-
tion simpler, suppose there are only three system calls:
SYS NBIO, SYS FORK and SYS RET. Figure 13 shows
code that implements a naive round-robin scheduler; it
uses a task queue calledready queue and an event loop
calledworker main. The scheduler does the following
in each loop:

1. Fetch a trace from the queue.

2. Examine the current node of the trace. This step
causes the corresponding user thread to execute un-
til a system call is generated.

� �
worker_main ready_queue = do {
−− fetch a trace from the queue
trace <- readChan ready_queue;
case trace of
−−Nonblocking I/O operation: c has typeIO Trace
SYS_NBIO c ->

do { −−Perform the I/O operation in c
−−The result is cont, which has typeTrace
cont <- c;
−−Add the continuation to the end of the ready queue
writeChan ready_queue cont;

}
−−Fork: write both continuations to the end of the ready queue
SYS_FORK c1 c2 ->

do { writeChan ready_queue c1;
writeChan ready_queue c2;

}
SYS_RET -> return (); −− thread terminated, forget it

worker_main ready_queue; −− recursion
}

� �
Figure 13: A round-robin scheduler for three sys. calls

7

Figure 12: The event-driven thread scheduler: event loops and task queues

� �
sys_throw e −− raise an exception e
sys_catch f g −−execute computationf using the exception handlerg

data Trace =
... −−The corresponding nodes in the trace:
| SYS_THROW Exception
| SYS_CATCH Trace (Exception->Trace) Trace

� �
Figure 14: System calls for exceptions

3. Perform the requested system call

4. Write the child nodes (the continuations) of the
trace to the queue.

This scheduler can already run some simple user
threads, but it only executes one operation at a time and
it does not support any I/O or synchronization primitives.

Advanced control flow: Because the threaded code
is internally structured in CPS, it is easy to implement
control-flow operations. For example, a scheduler can
support exceptions by adding two new system calls as
shown in Figure 14. The code in Figure 1 illustrates how
exceptions are used by an application-level thread.

The tree traversal algorithm inworker main must be
modified so that when it sees aSYS CATCH node it pushes
the node onto a stack of exception handlers maintained
for each thread. The scheduler then continues execution
until it reaches either aSYS RET node, indicating nor-
mal termination, or aSYS THROW node, indicating excep-
tional termination. The scheduler then pops back to the
SYS CATCH node and continues with either the normal
trace or exception handler, as appropriate.

Note that if an application does not need exceptions,
the programmer can remove them to simplify the sched-
uler code. Conversely, if more complex per-thread state
or fancier scheduling algorithms are required, this model
accommodates them too. It is easy to customize the
scheduler to the needs of the application.

4 An application-level thread library

This section shows how to scale up the event-driven de-
sign described above to build a real thread library that

takes advantage of asynchronous I/O interfaces in Linux.
The development version of the Glasgow Haskell Com-
piler (GHC) [9] already supports efficient, lightweight
user-level threads, but the default GHC run-time library
uses the portable (yet less scalable)select interface
to multiplex I/O and it does not directly support non-
blocking disk I/O. Our application-level thread library
implements its own I/O primitives using the Foreign
Function Interface (FFI); our thread scheduler uses only
several native GHC threads internally, each mapped to a
seperate OS thread by the GHC run-time library.

The rest of this section shows the detailed design.
First we discuss how to accommodate multiple kernel-
level threads to make better use of OS-level resources.
Next, we consider asynchronous I/O and low-level event-
driven interfaces. We then describe several synchroniza-
tion mechanisms that can be used to provide interthread
communication and shared state.

4.1 Using multiple event loops
Figure 12 shows the architecture of the event-driven
scheduler in our full implementation. It consists of sev-
eral event loops (likeworker file open) that process
events generated by aworker main loop. Each such
loop runs in its own kernel thread, repeatedly fetching a
task from an input queue or waiting for an OS event and
then processing the task/event before putting the contin-
uation of the task in the appropriate output queue. The
queues are implemented using standard thread synchro-
nization primitives supported by GHC.

To boost performance on multiprocessor machines,
the scheduler runs multipleworker main event loops
in parallel so that multiple application-level threads can
make progress simultaneously. This setup is based on the
assumption that all the non-blocking I/O operations sub-
mitted bySYS NBIO are thread safe. Thread unsafe I/O
operations are handled in this framework either by using
a separate queue and event loop to serialize such opera-
tions, or by using mutexes in the application-level thread
(such synchronization primitives are described below).

8

� �
−−Block and wait for an epoll event on a file descriptor
sys_epoll_wait fd event
−−Submit AIO read requests, returning the number of bytes read
sys_aio_read fd offset buffer
−−Open a file, returning the file descriptor
sys_file_open filename mode

data Trace =
... −−The corresponding nodes in the trace:
| SYS_EPOLL_WAIT FD EPOLL_EVENT Trace
| SYS_AIO_READ FD Integer Buffer (Int -> Trace)
| SYS_FILE_OPEN String OPEN_MODE (FD -> Trace)

� �
Figure 15: System calls forepoll and AIO

This event-driven architecture is similar to that in
SEDA [25], but our events are finer-grained: instead of
requiring the programmermanuallydecompose a com-
putation into stages and specify what stages can be
performed in parallel, this event-driven schedulerauto-
maticallydecomposes a threaded computation into fine-
grained segments separated by system calls. Haskell’s
type system ensures that each segment is a purely func-
tional computation without I/O, so such segments can be
safely executed in parallel.

Most user-level thread libraries do not take advantage
of multiple processors, primarily because synchroniza-
tion is difficult due to shared state in their implementa-
tions. Our event abstraction makes this task easier, be-
cause it uses a strongly typed interface in which pure
computations and I/O operations are completely sepa-
rated. In Figure 4, the five steps of lazy thread execu-
tion are purely functional: they process an “effect-free”
segment of the user thread execution. All I/O operations
(including updates to shared memory) are submitted via
system calls and are explicitly performed in the sched-
uler; the programmer has complete control on what I/O
operations to run in parallel.

4.2 Epoll and Asynchronous IO (AIO)
The trace representation of threads makes it easy to take
advantage of event-driven I/O interfaces. To support
epoll and AIO in Linux, the thread library provides a
set of system calls and trace nodes shown in Figure 15.

A special system call for opening files is needed be-
cause it is a blocking operation. Our scheduler uses a
separate OS thread to perform such operations. Here, we
omit AIO writing to save space as it is similar to read-
ing. To execute these system calls in the scheduler, the
worker main event loop in Figure 13 is extended with a
few branches in Figure 16.

For anepoll request, the scheduler calls a library
functionepoll add to register an event handler with the
systemepoll device. The registered event contains a
reference toc, the child node that is the continuation
of the application thread, so theepoll event loop can
send it toready queue when the event arrives. AIO

� �
case trace of
...
SYS_EPOLL_WAIT fd event c -> epoll_add fd event c
SYS_AIO_READ fd off buf f -> aio_read fd off buf f
SYS_FILE_OPEN filename mode f ->

writeChan (file_open_queue sched) trace
� �

Figure 16: Handling system calls forepoll and AIO

� �
worker_epoll sched =

do { −−wait for some epoll events
results <- epoll_wait;
−− for each thread object in the results,
−−write it to the ready queue of the scheduler
mapM (writeChan (ready_queue sched)) results;
worker_epoll sched;

} −− recursively calls itself and loop
worker_aio sched =

do { −−wait for some AIO events
results <- aio_wait;
mapM (writeChan (ready_queue sched) results;
worker_aio sched;

}
worker_file_opener sched =

do { −− fetch a task from corresponding scheduler queue
−−each task has type (String, FD→ Trace)
(SYS_FILE_OPEN filename mode c) <-

readChan (file_open_queue sched);
−−perform a blocking call
fd <- native_file_open filename mode;
−−apply c to fd, and write it to the ready queue
writeChan (ready_queue sched) (c fd);
worker_file_opener sched;

}
� �
Figure 17: Event loops forepoll, AIO and file opening

requests are handled similarly. For a file-open request,
the scheduler moves the entire trace to a queue called
file open queue, which is used to synchronize with
another event loop.

Under the hood, the library functions such as
epoll add are just wrappers for their corresponding C
library functions implemented through the Haskell For-
eign Function Interface (FFI).

Finally, three event loops process these events, as
shown in Figure 17. Each event loop runs in a sepa-
rate OS thread. They work in the same way: the loop
waits for some events from its event source, processes
the events and then puts the resulting traces (correspond-
ing to application threads) back into theready queue.

An application programmer can easily add other event
sources to the thread library using the same procedure:

1. Add definitions for system calls and trace nodes.

2. Interpret the system calls inworker main and reg-
ister the event handlers.

3. Add event loops to process the events.

4.3 Thread synchronization
Of course, application-level threads must be able to com-
municate with each other. The thread library implemen-
tation provides several synchronization options.

9

To begin, application-level threads use cooperative
multitasking: context switches may happen only at the
system calls defined by the thread library interface. A
standard callsys yield allows a thread to explicitly
yield control. Also recall that thereturn operation
causes the scheduler to treat a pure (side-effect free)
block of code as an atomic operation. For single proces-
sor machines, this means that the programmer has com-
plete control over the atomicity of blocks of code.

On multiprocessor machines, it is necessary to pre-
vent conflicts due to multiple kernel threads. For non-
blocking operations, the programmer can use software
transactional memory (STM) [10], which is supported
directly by GHC. Application threads useSYS NBIO to
submit STM transactions as non-blockingIO operations.
This approach supports communication via shared mem-
ory data structures with thread-safety provided by the
transaction semantics.

For blocking operations, the GHC implementation of
STM cannot be used because the it may block the ex-
ecution of worker threads. Nevertheless, the devel-
oper can add application-specific system calls to pro-
vide synchronization primitives. As an example, the
thread library provides mutexes via two system calls:
sys mutex lock andsys mutex unlock. A mutex is
implemented as a memory reference that points to a pair
(locked, queue) where locked indicates whether
the mutex is locked, andqueue is a linked list of thread
traces blocking on this mutex. Just as for other event
sources (likesys file open), an event loop and a task
queue are added1 to process mutex system calls: lock-
ing a locked mutex adds the trace to the waiting queue
inside the mutex; unlocking a mutex with a non-empty
waiting queue dispatches the next available trace to the
ready queue. This setup of queues and event loops
guarantees the thread safety of mutex operations. Other
synchronization primitives such as theMVar in Concur-
rent Haskell [13] can also be similarly implemented.

Finally, because the thread library supports theepoll

interface, threads can also communicate efficiently using
pipes. This mechanism is suitable for writing programs
in message-passing style on either single processor or
multiprocessor machines.

5 Experiments

The main goal of our tests was to determine whether
our Haskell implementation of the unified concurrency
model could achieve acceptable performance for mas-
sively concurrent applications like web servers and mul-
tiplayer games. Such applications are typically bound

1As pointed out by Simon P. Jones, this is an overweighted design.
The mutex can be implemented completely inside the main worker
threads, without using additional queues and event loops.

by network or disk I/O and often have many idle con-
nections. A second goal of our tests was to determine
how our implementation performs on a multiprocessor,
since one of the benefits of our approach is the ease with
which our thread library can take advantage of software
transactional memory. Finally, we wanted to investigate
possible overheads of using Haskell itself: Haskell pro-
grams allocate memory frequently and the runtime heav-
ily depends on garbage collection. Also, our application-
level threads are implemented using higher-order func-
tions and lazy datastructures that we were concerned
would impose too many levels of indirection and lead
to inefficient code.

We implemented a number of benchmarks designed
to assess the performance of our thread library and the
overheads of using Haskell. For I/O benchmarks we
tested against comparable C programs using the Native
POSIX Thread Library (NPTL), which is an efficient im-
plementation of Linux kernel threads. We also built a
simple web server as a case study in using application-
level threads and compared it against Apache.

Software setup: The experiments used Linux (kernel
version 2.6.15) and the development snapshot of GHC
6.5, which supports multiple processors and software
transactional memory. Except for the memory consump-
tion test, we set the suggested size for GHC’s garbage
collected heap to be 100MB. The C versions of our
benchmarks configured NPTL so that the stack size of
each thread is limited to 32KB. This limitation allows
NPTL to scale up to 16K threads in our tests.

Machine setup: We used different machine config-
urations to run different benchmarks: Those involving
disk and networking I/O were run on a single-processor
Celeron 1.2GHz machine with a 32KB L1 cache, a
256KB L2 cache, 512MB RAM and a 7200RPM, 80GB
EIDE disk with 8MB buffer. The multiprocessor exper-
iments (which did not need disk or network I/O) used
an SMP machine with four Pentium-III 550MHz pro-
cessors, a 512KB L2 cache, and 512MB RAM. Finally,
the memory consumption benchmark used a dual Xeon
3.20GHz uniprocessor with 2GB RAM and 1024KB L2
Cache. Each experiment described below is labeled with
IO, MP, or Mem to indicate which of the three machine
configurations was used, respectively.

5.1 Benchmarks

Memory consumption (Mem): To measure the min-
imal run-time state needed for each application-level
thread, we wrote a test program that launches ten mil-
lion threads that just loop callingsys yield. For this
benchmark we set the GHC’s suggested heap size for
garbage collection to be 1GB. Using the profiling infor-
mation from the garbage collector, the live set of mem-

10

1 2 3 4 5
Number of processors

0.5

1

1.5

2

2.5

3

3.5

4
E
x
e
c
u
t
i
o
n

s
p
e
e
d

Figure 18: Speedup using multiple processors

10 100 1000 10000 100000
Number of working threads

0.525

0.55

0.575

0.6

0.625

0.65

0.675

t
h
r
o
u
g
h
p
u
t
H
M
B
�
s
L

1 10 100 1000 10000 100000

C�NPTL

Haskell

Figure 19: Disk head scheduling test

ory objects is as small as 480MB after major garbage
collections—each thread costs only 48 bytes in this test.

Multiprocessor computation (MP): We tested 1024
application-level threads, each performing a CPU-
intensive operation before yielding control. Figure 18
shows the speedup as the number of kernel processors
increases. In this test, each processor runs its own copy
of worker main as a kernel thread and STM is used for
synchronization. A 3.65 times speed up is achieved when
4 CPUs are used.

Disk performance (IO): Our test scheduler uses the
Linux asynchronous I/O library, so it benefits from the
kernel disk head scheduling algorithm just as the kernel
threads and other event-driven systems do. We ran the
benchmark used to assess Capriccio [22]: each thread
randomly reads a 4KB block from a 1GB file opened us-
ing O DIRECT without caching. Each test reads a total of
512MB data and the overall throughput is measured, av-
eraged over 5 runs. Figure 19 compares the performance
of our thread library with NPTL. This test is disk-bound:
the CPU utilization is1% for both programs when 16K
threads are used. Our thread library outperforms NPTL
when more than 100 threads are used. The throughput of
our thread library remains steady up to 64K threads—it
performs just like the ideal event-driven system.

100 1000 10000 100000
Number of inactive threads

20

40

60

80

t
h
r
o
u
g
h
p
u
t
H
M
B
�
s
L

100 1000 10000 100000

C�NPTL

Haskell

Figure 20: FIFO pipe scalability (simulating idle net-
work connections)

FIFO pipe performance—mostly idle threads (IO):
Our event-driven scheduler uses the Linuxepoll inter-
face for network I/O. To test its scalability, we wrote a
multithreaded program to simulate network server appli-
cations where most connections are idle. The program
uses 128 pairs of active threads to send and receive data
over FIFO pipes. In each pair, one thread sends 32KB
data to the other thread, receives 32KB data from the
other thread and repeats this conversation. The buffer
size of each FIFO pipe is 4KB. In addition to these 256
working threads, there are many idle threads in the pro-
gram waiting forepoll events on idle FIFO pipes.

Each run transfers a total amount of 64GB data.
The average throughput of 5 runs are used. Figure 20
shows the overall FIFO pipe throughput as the number
of idle threads changes. This test is bound by CPU
and memory performance. Both NPTL and our Haskell
threads demonstrated good scalability in this test, but the
throughput of Haskell is30% higher than NPTL. To fur-
ther investigate this performance difference, we designed
the next benchmark.

FIFO pipe performance—no idle threads (IO):
This benchmark is like the previous one, except that all
threads are actively sending/receiving data over FIFO
pipes. Figure 21 plots the total throughput as the num-
ber of active threads increases. The overall shape of two
curves appears to be determined by cache performance:
each thread allocates a 32KB buffer, so the memory foot-
print of the program quickly exceeds the CPU cache size
as the number of threads increases.

The comparison between two curves is interesting:
NPTL performs better when there are fewer than 32
threads, but our thread library becomes faster as more
threads are used. We conjecture that this performance
difference is caused because our thread library needs
fewer kernel context switches. Because the FIFO pipe
has a buffer size of 4KB, the C program performs
a context switch after each 4KB data is transfered.

11

1 10 100 1000 4000
Number of communicating threads

25

50

75

100

125

150

175

200
t
h
r
o
u
g
h
p
u
t
H
M
B
�
s
L

1 10 100 1000 4000

C�NPTL

Haskell

Figure 21: FIFO pipe performance (no idle threads)

The worker main event loop in our thread scheduler
groups the data transfers from all application threads and
batches them. When there are plenty of application-
level threads waiting for execution, the kernel thread run-
ningworker main does not yield control until it is pre-
empted by other kernel threads. Therefore, our thread
library causes many fewer kernel context switches when
the concurrency level is high. Intuitively, our scheduler
works like a pipeline: it delivers the best performance
when it is fully loaded.

STM and Haskell overhead (MP): This benchmark
tests the overhead of using STM transactions in Haskell.
In the C program, there is one kernel thread per proces-
sor; each thread is a loop that locks a mutex, increments
a shared integer, and then unlocks the mutex. Program
1 is written in Haskell using one standard kernel thread
per processor. Program 2 is written in Haskell using
our application-level thread library, again with one ker-
nel thread per processor and one application-level thread
for each kernel thread. In Programs 1 and 2, each thread
increments the shared integer within an STM transaction.
Figure 22 compares the throughput of these programs in
millions of increment operations per second.

The results show that when there is no concurrency,
the combination of Haskell and its STM implementation
is significantly slower than C. However, as the amount
of contention for the shared state increases, the differ-
ence diminishes significantly. With four processors, the
C code is less than twice as fast as the Haskell code.
Note that this is a worst-case scenario for software trans-
actional memory: it assumes that, in the common case,
writes from two concurrent transactions won’t conflict
(causing one of the transactions to roll back), but in this
test every write to the shared memory is guaranteed to
conflict. Also note that the difference in performance be-
tween Program 1 and Program 2 in the case of one pro-
cessor is caused by the overhead of using the CPS monad
in our thread library. With multiple processors, the over-
head can be shared among the CPUs and the difference

1 2 3 4
Number of processors

0.2

0.4

0.6

0.8

1

1.2

T
h
r
o
u
g
h
p
u
t

1 2 3 4

Haskell�STMH2L

Haskell�STMH1L

C�Mutex

Figure 22: STM synchronization overheads

becomes negligible.

Memory allocation and garbage collection: The im-
plementation of our CPS monad requires memory alloca-
tion on almost every line of code. Fortunately, GHC im-
plements garbage collection efficiently. In the I/O tests
in Figures 19, 20 and 21, garbage collection takes less
than0.2% of the total program execution time.

5.2 Case study: A simple web server

To test our approach on a more realistic application, we
implemented a simple web server for static web pages
using our thread library. We reused some HTTP parsing
and manipulation modules from the Haskell Web Server
project [16], so the main server consists of only 370 lines
of multithreaded glue code. To take advantage of Linux
AIO, the web server application implements its own
caching. I/O errors are handled gracefully using excep-
tions. Not only is the multithreaded programming style
natural and elegant, but the event-driven architecture also
makes the scheduler clean. The scheduler, including the
CPS monad, system call implementations, event loops
and queues for AIO,epoll, mutexes, file-opening and
exception handling (but not counting the wrapper inter-
faces for C library functions), is only 220 lines of well-
structured code. The scheduler is designed to be cus-
tomized and tuned: the programmer can easily add more
system I/O interfaces or implement application-specific
scheduling algorithms to improve performance. The web
server and the thread scheduler are completely type-safe:
debugging is made much easier because most low-level
programming errors are rejected at compile-time.

Figure 23 compares our simple web server to Apache
2.0.55 for a disk-intensive load. We used the default
Apache configuration on Debian Linux except that we
increased the limit for concurrent connections. Using our
thread library, we implemented a multithreaded client
load generator in which each client thread repeatedly re-
quests a file chosen at random from among 128K pos-

12

1 10 100 1000
Number of concurrent connetions

1.25

1.5

1.75

2

2.25

2.5

2.75
T
h
r
o
u
g
h
p
u
t
H
M
B
�
s
L

1 10 100 1000

Apache

Haskell

Figure 23: Web server under disk-intensive load

sible files available on the server; each file is 16KB in
size. The server ran on the same machine used for the IO
benchmarks, and the client machine communicated with
the server using a 100Mbps Ethernet connection. Our
web server used a fixed cache size of 100MB. Before
each trial run we flushed the Linux kernel disk cache en-
tirely and pre-loaded the directory cache into memory.
The figure plots the overall throughput as a function of
the number of client connections. On both servers, CPU
utilization fluctuates between70% and 85% (which is
mostly system time) when 1,024 concurrent connections
are used. Our simple web server compares favorably to
Apache on this disk-bound workload.

For mostly-cached workloads (not shown in the fig-
ure), the performance of our web server is also compara-
ble to Apache. A future work is to test our web server on
more realistic workloads and implement more advanced
scheduling algorithms, such asresource aware schedul-
ing used in Capriccio [22].

6 Evaluation and discussion

We find the results of our experiments and our experi-
ence with implementing a web server using the unified
concurrency model encouraging. Although our thread
library implementation in Haskell is slower than C in
terms of raw speed, it performs quite well in our tests
and scales well in terms of the number of concurrent
threads it can handle. In this section we discuss some
of the non-quantifiable aspects of programming with this
concurrency model, and describe our experience with us-
ing Haskell.

Programming experience: The primary advantage of
our approach is the simplified programming model it pro-
vides: threads can be written in a natural sequential style,
yet custom, event-driven schedulers can easily be defined
by using the trace abstraction. As one example, our sim-
ple web server uses a file cache whose state is shared
across all threads handling client connections. Imple-
menting the caching code, modifying the server to use

the cache, and debugging the implementation took under
two hours. The cache implantation itself takes only 80
lines of code.

To test the extensibility of the scheduler (and as part
of an ongoing project), we built an application-level
TCP stack in Haskell and plugged it into our thread li-
brary. The TCP stack adds only one more event loop
to Figure 12; this loop is driven by packet I/O events,
timer events, and user thread requests. These scheduler
changes can be made cleanly, without requiring an com-
plete rewrite of the code. Having the TCP stack, the
thread scheduler and web server in the same user level
application, the programmer has complete control of the
networking code.

Using Haskell: Because Haskell is a pure, lazy, func-
tional language, we were initially concerned about per-
formance. However, in our experience Haskell pro-
grams, while slower than C programs, are not orders of
magnitude slower. The Computer Language Shootout
Benchmarks [20] give other anecdotal evidence corrob-
orating this assessment: Haskell (GHC) performs well
on a wide range of tasks, and many Haskell programs
perform better than their corresponding C or C++ pro-
grams. When performance or OS libraries are needed,
GHC provides good interoperability with C code via its
Foreign Function Interface.

In exchange for performance, Haskell delivers many
features that simplify program development, including
a very expressive static type system, type inference,
lightweight closures, garbage collection, and convenient
syntax overloading. We heavily use these features in our
thread library implementation; it might be possible to
implement the unified concurrency model in a general-
purpose language lacking some of these features, but the
results would likely be cumbersome to use. Neverthe-
less, it is worth investigating how to apply our approach
in more mainstream languages like Java.

7 Related work

We are not the first to address concurrency problems by
using language-based techniques. There are languages
specifically designed for concurrent programming, such
as Concurrent ML (CML)[19] and Erlang [4], or for
event-driven programming such as Esterel [6]. Java and
C# also provide some support for threads and synchro-
nization. There are also domain-specific languages, such
as Flux [5], intended for building network services out of
existing C libraries. Most of these approaches pick either
the multithreaded or event model. Of the ones mentioned
above, CML is closest to our work because it provides
very lightweight threads and an event primitive for con-
structing new synchronization mechanisms, but its thread
scheduler is still part of the language runtime.

13

The application-level thread library is motivated by
two projects: SEDA [25] and Capriccio [22]. Our
goal is to get the best parts from both projects: the
event-driven architecture of SEDA and the multithreaded
programming style of Capriccio. Capriccio uses com-
piler transformations to implement linked stack frames;
our application-level threads uses first-class closures to
achieve the same effect.

Besides SEDA [25], there are other high-performance,
event-driven web servers, such as Flash [18]. Lau-
rus and Parkes showed that event-driven systems can
benefit from batching similar operations in different re-
quests to improve data and code locality [14]. How-
ever, for complex applications, the problem of repre-
senting control flow with events becomes challenging.
There are libraries and tools designed to make event-
driven programs easier by by structuring code in CPS,
such as Python’s Twisted package [21] and C++’s Adap-
tive Communication Environment (ACE) [1]. Adya et
al. [2] present a hybrid approach to automate stack man-
agement in C and C++ programming.

Multiprocessor support for user-level threads is a chal-
lenging problem. Cilk [7] uses a work-stealing algorithm
to map user-level threads to kernel threads. Event-driven
systems, in contrast, can more readily take advantage
of multiple processors by processing independent events
concurrently [26]. A key challenge is how to determine
whether two pieces of code might interfere: our thread
scheduler benefits from the strong type system of Haskell
and the use of software transactional memory.

Our thread abstraction is inspired by Claessen’s
lightweight concurrency model, which also uses CPS
monads and lazy data structures [8]. This paper extends
Claessen’s work with more practical features such as ex-
ception handling, inter-thread communication and I/O
interfaces.

8 Conclusion

Events and threads should be combined into an unified
programming model in general-purpose programming
languages. With proper language support, application-
level threads can be made extremely lightweight and easy
to use. Our experiments demonstrate that this approach is
practical and our programming experience suggests that
this is a very appealing way of writing scalable, mas-
sively concurrent software.

References

[1] The ADAPTIVE Communication Environment: Object-Oriented
Network Programming Components for Developing Clien-
t/Server Applications. 11th and 12th Sun Users Group Confer-
ence, December 1993 and June 1994.

[2] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and
John R. Douceur. Cooperative Task Management without Manual

Stack Management. InProceedings of the 2002 Usenix Annual
Technical Conference, 2002.

[3] Andrew Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

[4] Joe Armstrong, Robert Virding, Claes Wikström, and Mike
Williams. Concurrent Programming in Erlang, Second Edition.
Prentice-Hall, 1996.

[5] Emery Berger, Brendan Burns, Kevin Grimaldi, Alex Kostadinov,
and Mark Corner. Flux: A Language for Programming High-
Performance Servers. InProceedings of the 2006 Usenix Annual
Technical Conference, 2006.

[6] Gerard Berry and Georges Gonthier. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation.
Science of Computer Programming, 19(2):87–152, 1992.

[7] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:An
efficient multithreaded runtime system.Parallel and Distributed
Computing, 37(1), August 1996.

[8] Koen Claessen. A poor man’s concurrency monad.Journal of
Functional Programming, 9(3):313–323, 1999.

[9] The Glasgow Haskell Compiler. http://www.haskell.org/ghc.

[10] Tim Harris, Maurice Herlihy, Simon Marlow, and Simon Peyton-
Jones. Composable Memory Transactions. InProceedings of the
ACM Symposium on Principles andPractice of Parallel Program-
ming, to appear, Jun 2005.

[11] Simon L. Peyton Jones and Philip Wadler. Imperative Func-
tional Programming. InConference record of the Twentieth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Charleston, South Carolina, pages 71–84,
1993.

[12] Simon Peyton Jones, editor.Haskell 98 Language and Libraries:
the Revised Report. Cambridge University Press, 2003.

[13] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne.Con-
current Haskell. InPOPL ’96: The23

rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pages 295–308, St. Petersburg Beach, Florida, 21–24 1996.

[14] James R. Larus and Michael Parkes. Using cohort-scheduling
to enhance server performance. InUSENIX Annual Technical
Conference, General Track, pages 103–114, 2002.

[15] H.C. Lauer and R.M. Needham. On the Duality of OperatingSys-
tems Structures. InProceedings Second International Symposium
on Operating Systems. IRIA, October 1978.

[16] Simon Marlow. Developing a high-performance web server in
Concurrent Haskell. Journal of Functional Programming, 12,
2002.

[17] J. K. Outsterhout. Why Threads Are A Bad Idea (for most pur-
poses). InPresentation given at the 1996 Usenix Annual Techni-
cal Conference, 1996.

[18] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An
efficient and portable Web server. InProceedings of the USENIX
1999 Annual Technical Conference, 1999.

[19] J. H. Reppy. Concurrent ML: Design, Application and Semantics.
In P. E. Lauer, editor,Functional Programming, Concurrency,
Simulation and Automated Reasoning, pages 165–198. Springer,
Berlin, Heidelberg, 1993.

[20] The Computer Language Shootout Benchmarks.
http://shootout.alioth.debian.org/.

[21] The Twisted Project. http://twistedmatrix.com/.

[22] R. von Behren, J. Condit, F. Zhou, G. Necula, and E. Brewer.
Capriccio: Scalable threads for internet services. InProceed-
ings of the Ninteenth Symposium on Operating System Principles
(SOSP), October 2003.

14

[23] Rob von Behren, Jeremy Condit, and Eric Brewer. Why Events
Are A Bad Idea (for high-concurrency servers). InProceedings of
the 10th Workshop on Hot Topics in Operating Systems (HotOS
IX), May 2003.

[24] P. Wadler. Monads for functional programming. InProceedings
of the Marktoberdorf Summer School on Program Design Cal-
culi, August 1992.

[25] Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet Services. In
Proceedings of the Symposium on Operating System Principles
(SOSP), 2001.

[26] Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robert Morris,
David Mazières, and Frans Kaashoek. Multiprocessor support
for event-driven programs. InProceedings of the 2003 USENIX
Annual Technical Conference (USENIX ’03), San Antonio, Texas,
June 2003.

15

