A Language-based Approach to Unifying Events and Threads

Peng Li Steve Zdancewic
University of Pennsylvania University of Pennsylvania
Abstract argued that “threads are a bad idea (for most purposes),”

. . citing the difficulties of ensuring proper synchronization
This paper presents a language-based technique to unlﬁ/nd debugging with thread-based approaches. A counter
two seemingly opposite programming models for build-

. Vel ¢ network ices: th targument, by von Behren, Condit, and Brewer [23], ar-
NG MassIVely concurrent Network services. e evenly, o that “events are a bad idea (for high-concurrency

driven model and the multithreaded model. The resu“gervers),” essentially because reasoning about control

|sbatun|;‘.|ed con(;:urren(t:y tr)n?dqjtfowdmlgj t_)othtrt]hreadd low in event-based systems is difficult and the appar-
abstractions and event abstractions. 1’sing thisS modei, ,; performance wins of the event-driven approach can

each component in an application can be implemente | : :
. X . S . tel db ful 22].
using the appropriate abstraction, simplifying the design © completely recouped by caretu gnglneerlng [22]
From the programmer’s perspective, both models are

of complex, multithreaded systems software. . ; s) X
This paper shows how to implement the unified con-attractive. Sometimes it is desirable to think about the
currency model in Haskell, a pure, lazy, functional pro_system in terms of threads (for example, to describe the
gequence of events that occur when processing a client’s

gramming language. It also demonstrates how to us i - , :
these techniques to build application-levelthread i- requests), and sometimes it is desirable to think about the

brary with support for multiprocessing and asynchronousYStem in terms of events and event handlers (for exam-
/O mechanisms in Linux. The thread library is type- Pl€: to simplify reasoning about asynchronous commu-

safe, is relatively simple to implement, and has goodlications and resource scheduling).
performance. Application-level threads are extremelyp nified concurrency model: This paper shows that

lightweight (scaling to ten million threads) and our gyents and threads can be unified in a single concur-
sche_duler, Whlch_ is implemented as a modular a_nd &fency model, allowing the programmer to design parts
tensible event-driven system, outperforms NPTL in I/O 4t the application as if she were using threads, where
benchmarks. threads are the appropriate abstraction, and parts of the
) system using events, where they are more suitable. Sec-
1 Introduction tion 2 gives some additional background about the multi-

Modern network services present software engineergwreaded and event-driven models and motivates the de-
with a number of design challenges. Web servers, mulsign of our unified concurrency model.

tiplayer games, and Internet-scale data storage appli- In our model, for higher-level application code, the
cations must accommodate thousands of simultaneoysrogrammer can use use a multithreaded programming
client connections. Such massively-concurrent programstyle similar to C and Java, with familiar control-flow el-
are difficult to implement, especially when other require-ements such as sequencing, functions calls, conditionals
ments, such as high performance and strong securitgnd exceptions, and with user-defined system calls for
must also be met. I/0 and thread control. Figure 1 shows two sample func-

Events vs. threads: Two implementation strategies tions written in the multithreaded style.

for building such inherently concurrent systems have For lower-level /O code, the programmer can conve-
been successful. Both the multithreaded and eventniently use asynchronous OS interfaces suckpas |
driven approaches have their proponents and detractorand AlO in Linux. The thread scheduler has an ex-
The debate over which model is “better” has waged fortensible, modular event-driven architecture in which the
many years, with little resolution. Ousterhout [17] hasapplication-level threads can be seen as event handlers.

A language-based approach: Languages like C and (—_ .. 42 file over a socket
C++ have historically been used to implement hight-send_file sock filenane =

do { fd <- file_open filenang;
performance, concurrent software. However, they suf- buf < alloc_aligned menory buffer size:

fer from well known security and reliability problems sys_catch (

that have prompted a move toward type-safe languages) ¥ Z%ggf ; §nf ¢ 533"{ bur- 0

like Java and C#. Their general-purpose threads pack- fileclose fd;
ages are typically quite heavyweight though, and none of L e e et again
these languages provide appropriate abstractions to sim- file_close fd;

plify event-driving programming. Implementing scal- — copy data from a file descriptor to a socket until EOF
able thread or event systems is feasible using these lgmepy_data fd sock buf offset =
guages, but the results can be cumbersome to use. Tegh<® { fimread = [i1eread T orisel ouf
nigues such as compiler transformations can address do { sock_send sock buf num read;
these problems to some extent [22], but even then the €n- copy_data fd sock buf (offset+numread);
gineering challenges typically force the programmer t }
choose between threads or events—they don’t get both. Figyre 1: Example of multithreaded code in Haskell

Our case-study implementation of the unified concur-
rency model, described in detail in Section 3, is writ- Section 5 gives the results of our performance ex-
ten in the programming language Haskell [12]. Haskellperiments and describes a simple web server we imple-
is a pure, lazy, strongly-typed, functional languagemented as a case study. Our experience shows that the
with many advanced language features, suchtype Haskell is a reasonable language for building scalable
classes that make it very convenient to implement systems software: it is expressive, succinct, efficient and
the unified concurrency model. Our implementation istype-safe; it also interacts well with C libraries and APlIs.
based on techniques developed some time ago by Koeﬁummary of contributions:

Claessen [8] in the programming languages researc . . .
[8] i prog s guag 1. Aunified programming model that combines event-

O

comrnur.nty.)) driven and multithreaded programming. This model
Application-level threads: Using this language sup- is suitable for building highly scalable, concurrent
port, we have built ampplication-levethread library, in systems software.

which the threaded code and thread scheduler are writ- . . :

- S . : 2. A Haskell implementation of the interfaces for the
teninsidethe application. Section 4 describes the thread unified concurrency model. based on techniaues
library, which uses both event-driven and multithreaded y ' onnig

. . : from the programming languages community.
programming models, and shows how it can flexibly sup- T i
port several synchronization mechanisms for interthread 3 AN application-level thread library and accompany-
communication and shared state. ing experiments that demonstrate the feasibility and
Compared to traditional approaches (both multi- ~ Penefits of this approach.
threaded and event-driven), our application-level thread .
library has many advantages for building scalable net2 Unifying events and threads

work services: This section gives some background on the multi-

e Flexibility: The programmer can choose to use thethreaded and event-driven approaches and motivates the
appropriate programming models for different partsdesign of the unified concurrency model.
of the system.]

e Scalability: The implementation of application- 2.1 The thread—event duality]
level threads are extremely lightweight: it scales up!n 1978, Lauer and Needham [15] argued that the multi-
to 10,000,000 threads on a modest test system. threaded and event-driven models are dual to each other.

_ o They describe a one-to-one mapping between the con-

e Parallelism: The application-level threads can exe- iy cts of each paradigm and suggest that the two ap-
cute on multiple processors concurrently. proaches should be equivalent in the sense that either

e Performance:The thread scheduler behaves like amodel can be made as efficient as the other. The dual-
high-performance event-driven system. It outper-ity they presented looks like this:
forms equivalent C programs using NPTL in our I/O

benchmarks. Threads . Events
thread continuation ~ event handler
e Safety: The implementation of the thread library scheduler ~ event loop
and the application programming interface are both exported function ~ event
type-safe. procedurecall ~ send event/await reply

The Lauer-Needham duality suggests that despite their
large conceptual differences and the way people think
about programming in them, the multithreaded and
event-driven models are really the “same” underneath.
Most existing approaches trade off threads for events or
vice versa, choosing one model over the other. We pro-

Multithread programming

Event-driven programming

Threads
(Easy to program)

Event handlers
(Difficult to program)

Thread abstraction

Scheduler

Event loop
(Easy to customize)

(Hidden, difficult to customize)

pose a different route: rather than using the duality to
justify choosing threads over events or vice versa (since
either choice can be made as efficient and scalable as the

other), we see the duality as a strong indication that thg gntext switching costs. Furthermore, by grouping sim-

programmer should be able to usethmodels of con- jjar events together, they can be batch-processed to im-
currency in the same system. The duality thus suggestsyove code and data locality [14].

that we should look for natural ways to support switching
between the views as appropriate to the task at hand.

Figure 2: Threads vs. events

Flexibility and customizability: Most thread sys-
tems provide an abstract yet rigid, synchronous program-
ming interface and the implementation of the scheduler is
mostly hidden from the programming interface. Hiding

Programming: The primary advantage of the thread the s_cheduler makes it inconvenient \(vhen the program
requires the use of asynchronous I/O interfaces not sup-

model is that the programmer can reason about the series :) .
of actions taken Fb)y agthread in the familiar way, just asported by the thread library, especially those affectireg th

: . cheduling behavior. For example, if the I/O multiplex-
for a sequential program. This approach leads to a nat- : O ;
: . . ing of a user-level thread library is implemented using
ural programming style in which the control flow for a

single thread is made apparent by the program text, usingge portablesel ect interface, it is difficult to use an al-

X . - rnative high-performance interface likpol | without
ordinary language constructs like conditional statements .
. . modifying the scheduler.
loops, exceptions, and function calls. . .
. S . Event-driven systems are usually more flexible and
Event-driven programming, in contrast, is hard. Most

general-purpose programming languages do not provid(éustomaable because the programmer has direct con-

. ; ; . trol of resource management and direct access to asyn-
appropriate abstractions for programming with events'chronous 0S interfaces. Manv hiah-berformance 1/O
The control flow graph of an event-driven program hasinterfaces (such as as ﬁchrongus ?&bpl | and ker-
to be decomposed to multiple event handlers and rep- Y o

resented as some form of state machines with epriciP8| event queues) prO.V'dEd by popular_OSes are asyn-
hronous or event-driven, because this programming

message passing or in continuation-passing style (CPS). .
gep g P gstyle (odel corresponds more closely to the hardware inter-

Both representations are difficult to program with and . .
P prog rupts. An event-driven system can directly take ad-

reason about, as indicated by the name of Python’s popu-anta e of such asvnchronous. non-blocking interfaces
lar, event-driven networking framework, “Twisted” [21]. v 9 u Y us, ng ! '

while using thread pools to perform synchronous, block-
Performance: The multithreaded programming style jq operations.
does not come for free: In most operating systems, a Another concern is that most user-level cooperative
thread uses a reserved segment of stack address spaggead systems do not take advantages of multiple pro-
and the virtual memory space exhausts quickly on 32gessors, and adding such supportis often difficult. Event-
bit systems. Thread scheduling and context switchinGyriven systems can easily utilize multiple processors by
also have significant performance overheads. Howevebrocessing independent events concurrently [26].
such performance problems can be reduced by well engi-
neer.ed thread libraries and/or careful_use Qf (.:oopera}tiv?s The unified concurrency model
multitasking—a recent example in this vein is Capric-
cio [22], a user-level threads package specifically for usédne important reason that the user-level threads in sys-
in building highly scalable network services. tems like Capriccio achieve good performance is that
The event-driven approach exposes the schedulinthe thread scheduler is essentially an event-driven ap-
of interleaved computations explicitly to the program- plication that uses asynchronous 1/O interfaces to make
mer, thereby permitting application-specific optimiza- scheduling decisions. Although the performance of user-
tions that significantly improve performance. The eventlevel threads packages can rival their event-driven coun-
handlers typically perform only small amounts of work terparts, they are less flexible than event-driven systems,
and usually need only small amounts of local storagebecause the scheduler is mostly hidden from the pro-
Compared to thread-based systems, event-driven systergsammer and new event-based interfaces sources cannot
can have the minimal per-thread memory overheads ande easily added. An event-driven application such as the

2.2 A comparison of events vs. threads

3 Implementing the unified model

Threads (Easy to program)

< system calls 7> In the duality of threads and events, an atomic block of
instructions in a thread continuation (also calledefim-
ited continuatiof) corresponds to an event handler, and
the thread scheduler corresponds to the main event loop.
The relationship between threads and events can be made
< Direct access > explicit using acontinuation-passing styl@CPS) trans-
lation [3]. However, CPS translation is painful to deal
with in practice—programming purely in an event-driven
(or message passing) style essentially amounts to doing
CPS translation manually. The goal of the unified pro-
gramming model is to hide the details of CPS translation

Flash web server [18], on the other hand, has flexibilityf'om the programmer. As shown in Figure 3, in order
when Choosing 110 interfaces’ but there is no appropri_to hide the |mp|ementat|0n details of the middle box in

ate abstraction for generic multithreaded programming@ software library, the language mechanism should pro-
This situation is illustrated in Figure 2. vide adequate abstraction for both ttheead viewand

Thread abstraction

Intermediate representation (Hidden)

Event abstraction

Event-driven scheduler (Easy to customize)

Figure 3: The unified concurrency model

Ideally, we would like to use ampplication-level theeventviewnterfaces.
thread system, where the thread abstraction is proThread view: Code for each thread is written in a
videdinsidethe application and the scheduler is a pro-natural, sequential style with support for most common
grammable part of the application. We use the termcontrol-flow primitives: branches, function calls, loops,
application-levekhreads in contrast with the more gen- exception handling, as shown in Figure 1. Thread con-
eral concept ofuser-levelthreads, which are typically trol and I/O can be implemented using a set of system
implemented in a library that hides the thread schedulercalls configurable for each application. The key point of
The problem is how to provide approprigbstraction this abstraction is that the internal representation of the
when the scheduler is part of the application: the schedthreads should be completely hidden at this level and the
uler is a complex piece of code, it heavily uses low-level,programmer does not need to manage the details such as
unsafe operations and internal data structures. Withoutontinuation passing.

appropriate abstraction, writing S.UCh an application ®Eventview: Theinternal representation of threads can
FU|r?shalmé>st ssdmluc? work as ||r”]nplement|ng an userpe conveniently accessed from the scheduler. The event
evelt read schedulerirom s_cratc ' loop (scheduler) can (1) examine a system call request
_ The key idea of this paper is to separate the low-level g ,cp, a5 1/0) submitted from a thread, and (2) execute a
internal representation of threads from the scheduler imgqjimited continuation of a thread in the same way as in-
plementatlon. As |I.Iustrated in F|gure_ 3, the goal is to voking an event handler function, passing appropriate ar-
design a software library (as the box in the center) thalyments as responses to the system call requests. This al-
provides two different abstractions for application-leve lows the main scheduler to play the “active” role and the

threads: thehread view which allows per-thread code 654 to play the “passive” role: the scheduler actively
be written in the natural, imperative, multithreaded Style“pushes” the thread continuations to make progress. This

as shown previously in Figure 1, and teeent view .4iye programming model makes it easy to use control-
which allows the threads be passively manipulated by the,,,., primitives provided by the programming language
underlying scheduler in an abstract, type-safe way. to express the scheduling algorithms

The spheduler is part of the application as in most pere we use the techniques developed by Koen
event—dnven_ systems. Th(_a programmer needs to 'mpleCIaessen [8] to present an simple, elegant and
ment only high-level algorithms and data structures forjighyeight abstraction mechanism that uses the follow-

dispatching events and scheduling threads. Figure 1ifq |anguage features (which will be further explained
(described later) shows three example event loops prof)elow):

grammed in this style; such code is concise and easily

customizable for a given application. Reusable libraries e Monadsprovide thethread abstractiorby defining
wrap the low-level operating system calls, which helps an imperative sub-language of Haskell with system
keep the scheduler code clean. calls and thread control primitives.

This dualized model gives the best of two worlds:
the expressiveness of threads and the customizability of
events. The next section shows how this design is imple-
mented in Haskell. e Lazy data structureprovide theevent abstraction

e Higher-order functiongprovide the internal repre-
sentation of threads in continuation-passing style.

which is a lazy tree that represents the trace of systhe execution of a thread: whenever a node in the trace is

tem calls generated by threads.

3.1 Traces
Traces and system calls: A central conceptin the uni-
fied concurrency model istaace, which is a tree struc-

ture describing the sequence of system calls made b%
a thread. A trace may have branches because the cor-

responding thread can uger k to spawn new threads.
For example, executing the (recursig&y ver function
shown on the left in Figure 5 generates the infinite trac
of system calls on the right.

accessed, the thread runs to the system call that generate
the corresponding node, and the execution of that thread
is suspended until the next node in the trace is accessed.
In other words, the execution of threads can be controlled
by traversing their traces.

Figure 4 shows how traces are used to control the
read execution. It shows a run-time snapshot of the
system: the scheduler decides to resume the execu-
tion of a thread, which is blocked on a system call
sys_epol | .wai t in thesock_send function. The fol-

eiowing happens in a sequence:

1. The scheduler decides to run the thread until it
reaches the next system call. It simply forces the
current node in the trace to be evaluated, by using
thecase expression to examine its value.

. Because of lazy evaluation, the current node of the
trace has not been created yet, so the continuation of
the thread is launched in order to compute the value

server = do { SYS CALL_1
sys_cal | _1; |
fork client; SYS_FORK
server; / \
} SYS_CALL_2 SYS CALL_1 2
/
client = do { SYS_FORK
sys_call _2; / \
} SYS CALL_ 2 SYS CALL 1

Figure 5: Some threaded code (left) and its trace (right) 3.

Arun-time representation of a trace can be definedasa 4,
tree using algebraic data types in Haskell. The definition
of the trace is essentially a set of system calls, as shown
in Figure 6. Each system call in the multithreaded pro-

of the node.

The thread runs until it performs the next system
call, sys_nbi o.

The thread is suspended again, because it has per-
formed the necessary computation to create the new
node in the trace.

gramming interface corresponds to exactly one type of ~*

tree node. For example, tls¥S_FORK node has two sub-

traces, one for the continuation of the parent thread and

one for the continuation of the child. Note that Haskell's

The value of the new nod8YS_NBI Ois available

in the scheduler. The scheduler then handles this
system call by performing the non-blocking I/0 op-
eration and running the continuation of the thread.

type system distinguishes code that may perform side ef- Therefore, the lazy trace provides theent abstrac-

fects as shown in the type of @S NBI O node, which
contains an Ocomputation that returns a trace.

— Allist of system calls used in the multithreaded programrsigte:
sys_nbio ¢ — Perform a nonblocking 10 function c
sys_fork c — Create a new thread running function ¢
sys_yield — Switch to another thread

sys_ret — Terminate the current thread
sys_epol |l _wait fd event — Block and wait for an epoll eventon a
...... — file descriptor

data Trace =

SYS_NBI O (10O Trace)
| SYS_FORK Trace Trace
| SYS_YIELD Trace
|
|

— Haskell data type for traces

SYS_RET
SYS_EPOLL_WAI T FD EPOLL_EVENT Trace

Figure 6: System calls and their corresponding traces

Lazy traces and thread control: We can think of the

tion we need: it is an abstract interface that allows the

main scheduler to play the “active” role and the threads

to play the “passive” role: the scheduler can use traces to
actively “push” the thread continuations to execute. Each
node in a trace is essentially a delimited continuation that
represents part of the thread execution.

The remaining problem is how to provide a mecha-
nism that transforms multithreaded code into traces—
how do we design a software module that provides both
thethread abstractiorand theevent abstractiomn Fig-
ure 4? The answer is the CPS monad. The next two sec-
tions introduces the concept ofonadsand shows how
the CPS monad solves these problems.

3.2 Background: monads

Haskell has support for a mechanism caltlednadq24,
11] that provide an abstract type of computations with

trace as an output of the thread execution: as the threaslde effects.Monad is a standard interface for program-
runs, the nodes in the trace are generated. What makesing with functional combinators, which can be used as

the trace interesting is that the computatiodazy. a

a domain-specific language. By designing thread con-

computation is not performed until its result is used. Us-trol primitives as monadic combinators, the monad in-
ing lazy evaluation, the consumer of a trace can controterface can be used as an abstractions for multithreaded

Internal
Multithreaded code Representation Trace Scheduler code

frerver_toon o = a0 | N e N

sock <- sock_accept s;
fork (client sock);

server_loop; SYS EPOLL WAIT(s)
) S g

client_loop sock = do {
sock_send sock data;
sock_close sock;

}

sock_send sock data = do {

scheduler = do {

trace <- fetch_thread;
execute trace;

SYS_NBIO (accept)

SYS_FORK execute trace =

)

CPS

Monad case trace of

n<-sys_nbio (write nb ...); SYS NBIO c ->

UoT}ORIISAY PeSIYL
Event Abstraction

;}‘{-;';epoll_wait sock EPOLL_READ; J/ ‘ ‘ SYS_NBIOi[ritE_nb) 1 do ::re‘zu:; :c’;nt;

oo }

foo; 2 ‘ | [sys_epoLy_warT(sos, 5 SYS_FORK t1 t2 ->
LI

n<-sys_nbio (write_nb ...); — o
o !
}\ SYS_NBIO(write_nb) /

Figure 4: Thread execution through lazy evaluation (thpsstee described in the text)

programming, because it provide a way of hiding the “in- elsewhere we use Haskell's syntax >e for an anony-
ternal plumbing” needed to write programs in CPS style.mous function with argumemtand bodye):

The basic idea behind monads can be explained by
looking at Haskell’sl O monad, which is provided as

double :: Handle -> 10 () double h =

part of its standard libraries. A value of typ® « is doubl e h = do { x <- hGetChar h;
: ; hGet Char h >>= (\x -> hPut Char x;

an effectful computation _that_ may perform some actions | =% 0 277 (Vs hPut Char x.

as side-effects before yielding a value of type 1 O hPut Char x)) }

side effects include input and output, reading and writ-
ing shared memory references and accessing many sys-
tem utilities. For example, the functidrGet Char takes The | 0 monad is but one example of a wide variety
ahandle to an I/O stream and returns an action that, whepge .-\ 0 win monads, most of which are useful for en-
gxecuted, reatjs a clharactelr from the stream. The fun%'apsulating side effects. Haskell has a mechanism called
tionhPut Char is similar, but it takes a handle and a char-

tert tout and prod It (Haskell’ type classes that allows theld” notation to be over-
acterto output and produces no resu (Haskell's type loaded for programmer-defined monads, and we exploit
is similar tovoi d in C). These functions have the fol-

) this feature to give natural syntax to the threads imple-
lowing types:

mented on top of continuation-passing mechanisms we
hGet Char :: Handle -> | O Char H
hPut Char :: Handle -> Char -> 10 () describe next.

There are also two standard operations callecurn 3.3 The CPS monad
andbi nd that all monads must implement. Forth® The goal is to design a monad that providetheead

Figure 7: The tlo” syntax of Haskell

monad, these operations have types: abstraction so the programmer can write multithreaded
return :: a ->10a code using the overloadedd”-syntax with a set of sys-
(>>=) 1 10a->(a->10p48) ->103

tem calls. The implementation of this monad is tricky,
Ther et ur n combinator “lifts” an ordinary expression but the details are hidden from the programmer (in the
of type « into thel Omonad by returning the trivial ac- box between the thread abstraction and the event abstrac-
tion that performs no side effects and yields the input agion in Figure 3).
the final answer. The infix combinater=, pronounced The monad encapsulates the side effect of a multi-
“bind”, sequences the actions in its arguments:>= f threaded computation, that is, generating a trace. The
returns a new action that first performs the 1/0O operationgricky part is that, if we simply represent a computation
in e and passes the result computedébyo the func- with a data type that carries its result value and its trace,
tion f, which may then produce subsequent actions. Irsuch a data type cannot be used as a monad, because the
Haskell there is support for the so calledb™ notation, = monads require that computations be sequentially com-
which provides more familiar looking syntactic sugar for posable in a meaningful way. Given two complete (pos-
binding multiple actions in series. For example, the twosibly infinite) traces, there is no meaningful way to com-
implementations ofloubl e in Figure 7 are equivalent— pose them sequentially.
both read in a character and output it twice (here and The solution is to represent computations in

continuation-passing style(CPS), where the final sys_nbi o system call works with any non-blocking I/O
result of the computation is the trace. A computationfunction. The threaded programming style makes it easy
of type a is thus represented as a function of typeto hide the non-blocking semantics and provide higher
(a->Trace) - >Tr ace that expects a continuation, itself level abstractions by using nested function calls. For ex-
a function of typg a- >Tr ace) , and produces @r ace. ample, ablockingock.accept can be implemented us-
This representation can be used to construct a mdhad ing non-blockingaccept as shown in Figure 11.

The standard monadic operations (lifting and sequential

composition) are defined in Figure 8.

sock_accept server_fd = do {
new fd <- sys_nbio (accept server_fd);
if newfd >0

newtype Ma = M ((a->Trace)->Trace)

; then return new_ fd
nstance Monad M where — ’
i feturn X e MO s ¢ x) el se do { sys_epoll_wait fd EPOLL_READ,

(Mg)>>=f = M(\c ->g (\a->let Mh=f ainh c)) sock_accept server_fd;

}
Figure 8: The CPS monad }

Given a computatiom a wrapped in the above CPS Figure 11: Wrapping non-blocking operations

monad, we can access its trace by adding a “final contin-
uation” to it, that is, adding a leaf no&¥YS_RET to the
trace. The functiomui | d_t r ace in Figure 9 converts a
monadic computation into a trace:

The sock_accept function tries to accept a connec-

tion by calling the non-blockingccept function. If it

succeeds, the accepted connection is returned, otherwise

it waits for anEPOLL _READ event on the server socket, in-

bui ~ dicating that more connections can be accepted. Figure 1
uild_trace :: Ma -> Trace o A

Lbui Id_trace (Mf) =f (\c-> SYS RET) also shows similar examples of multithreaded code.

Figure 9: Converting monadic computationto atrace 3.5 Programming with events

In Figure 10, each system call is implemented as aA simple scheduler: Traces provide an abstract inter-
monadic operation that creates a new node in the tracdace for writing thread schedulers: a scheduler is just a
The arguments of system calls are filled in to correspondtree traversal function. To make the technical presenta-
ing fields in the trace node. Since the code is internallytion simpler, suppose there are only three system calls:
organized in continuation-passing style, we are able t@YS_NBI O, SYS_FORK and SYS_RET. Figure 13 shows
fill the trace pointers (fields of typeTt ace”) with the code that implements a naive round-robin scheduler; it
continuation of the current computation (bound to theuses a task queue calledady_queue and an event loop

variablec in the code). calledwor ker _mai n. The scheduler does the following
in each loop:
sys_nbio f = M\c->SYS_NBIO (do x<-f;return (c x)))
sys_fork f = M\c->SYS_FORK (build_trace nx) (c ())
sysyield = M\c->SYSYIELD (¢ ())) 1. Fetch a trace from the queue.
sys_ret = M\ c->SYS_RET) . .
sys epol | wait fd event = 2. Examine the current n_ode of the trace. This step
M (\c -> SYS_EPOLL_WAIT fd event (c ())) causes the corresponding user thread to execute un-

Figure 10: Implementing system calls til a system call is generated.

For readers unfamiliar with monads in Haskell, it may ” . y o
e wor ker _mai n ready_queue = do

b_e difficult to follow the above code_. Fortunately, these ™"t i 2 trace from the queue
bits of code encapsula#dl of the “twisted” parts of the trace <- reagChan ready_queue;
internal plumbing in the CPS. The implementation of the case ,\t‘gnabﬁfck?ng O operation: ¢ has typed Tr ace
monad can be putin a library, and the programmer needs SYeNBIOC -~ o o
to use only its interface. To write multithreaded code, the 0 { — Perform the cont which has tyfe ace
programmer simply uses thdd”-syntax and the system corj’-{dd<_h ¢ e end of the read
calls in Figure 10; to access the trace of a thread in the —— Addthe continuation to the end of the ready queue

- - . wri teChan ready_queue cont;
event loop, one just applies the functibai | d_trace
— Fork: write both continuations to the end of the ready queue

to it to get the lazy trace. SYS FORK ol c2 ->
. . do { writeChan ready_queue cl;
3.4 Programming with threads writeChan ready_queue c2;

Using the monad abstraction and the system calls, the sys_R}ET -> return (); — thread terminated, forget it
programmer can write code for each thread in a nat(i- werker_nein ready_gueue; — recursion

ral, multithreaded programming style. The system call
provide the basic non-blocking 1/O primitives. The Figure 13: A round-robin scheduler for three sys. calls

(h_~

ready_ queue

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ K System call completion, thread ready to run

Execute threads in parallel ‘
Context switch file open_ queue

worker_main) ‘ /fork)4 ‘ ‘ ‘—‘ ‘_‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ worker_ fopen

_—

Fetch threads

v/ SYS FILE OPEN T TIC T v/
‘ worker_main) ‘ ___— i ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ worker_mutex»
v SYS MUTEX v v
‘ worker_main 3 ‘ Yo Epoll - “““““"““““‘\{ worker_epoll)
*_/ v/

worker_aio

L

A

‘ worker main

{
(

Figure 12: The event-driven thread scheduler: event longsask queues

sys_throw e — raise an exception e takes advantage of asynchronous I/O interfaces in Linux.
sys_catch f g — execute computatich using the exception handler The development version of the Glasgow Haskell Com-
data Trace = piler (GHC) [9] already supports efficient, lightweight
... — The corresponding nodes in the trace: user-level threads, but the default GHC run-time library
| SYS_THROW Excepti on uses the portable (yet less scalabde) ect interface
| SYS_CATCH Trace (Exception->Trace) Trace p Yy

to multiplex I/O and it does not directly support non-
blocking disk 1/0. Our application-level thread library
3. Perform the requested system call implements its own /O primitives using the Foreign
Function Interface (FFI); our thread scheduler uses only
several native GHC threads internally, each mapped to a
seperate OS thread by the GHC run-time library.

This scheduler can already run some simple user The rest of this section shows the detailed design.

threads, but it only executes one operation at a time anfirst we discuss how to accommodate multiple kernel-

it does not support any I/O or synchronization primitives. level threads to make better use of OS-level resources.
Next, we consider asynchronous I/O and low-level event-
Advanced control flow: Because the threaded code | . . . :
. . e . driven interfaces. We then describe several synchroniza-
is internally structured in CPS, it is easy to implement.. . o
. tion mechanisms that can be used to provide interthread

control-flow operations. For example, a scheduler can L

) : communication and shared state.
support exceptions by adding two new system calls as
shown in Figure 14. The code in Figure 1 illustrates how4,1 Using multiple event loops
exceptions are used by an application-level thread.

The tree traversal algorithm ior ker _mai n must be
modified so that when it seeS#S_CATCHnode it pushes
the node onto a stack of exception handlers maintaine
for each thread. The scheduler then continues executioI
until it reaches either 8YS_RET node, indicating nor-
mal termination, or 8YS_THROWnode, indicating excep-
tional termination. The scheduler then pops back to th
SYS_CATCH node and continues with either the normal
trace or exception handler, as appropriate.

Note that if an application does not need exceptions
the programmer can remove them to simplify the sched
uler code. Conversely, if more complex per-thread stat
or fancier scheduling algorithms are required, this mode
accommodates them too. It is easy to customize th%
scheduler to the needs of the application.

Figure 14: System calls for exceptions

4. Write the child nodes (the continuations) of the
trace to the queue.

Figure 12 shows the architecture of the event-driven
scheduler in our full implementation. It consists of sev-
ral event loops (likewr ker _fi | e_open) that process
vents generated bywor ker _mai n loop. Each such
IEBop runs in its own kernel thread, repeatedly fetching a
task from an input queue or waiting for an OS event and
then processing the task/event before putting the contin-
Cation of the task in the appropriate output queue. The
queues are implemented using standard thread synchro-
nization primitives supported by GHC.
' To boost performance on multiprocessor machines,
the scheduler runs multipleor ker _mai n event loops
n parallel so that multiple application-level threads can
ake progress simultaneously. This setup is based on the
ssumption that all the non-blocking 1/0 operations sub-
mitted by SYS_NBI O are thread safe. Thread unsafe 1/0
operations are handled in this framework either by using
a separate queue and event loop to serialize such opera-
This section shows how to scale up the event-driven detions, or by using mutexes in the application-level thread
sign described above to build a real thread library thafsuch synchronization primitives are described below).

4 An application-level thread library

— Block and wait for an epoll event on a file descriptor case trace of
sys_epol |l _wait fd event

— Submit AIO read requests, returning the number of bytes read SYS_EPOLL_WAIT fd event ¢ -> epoll_add fd event c
sys_aio_read fd of fset buffer SYS AIO READ fd off buf f -> aio_read fd off buf f
— Open afile, returning the file descriptor SYS_FI LE_OPEN fil enanme node f ->
sys_file_open fil ename node writeChan (fil e_open_queue sched) trace
data Trace = Figure 16: Handling system calls fepol | and AlIO
... — The corresponding nodes in the trace:
| SYS_EPOLL_WAI T FD EPOLL_EVENT Trace
| SYS_AIO READ FD Integer Buffer (Int -> Trace) _
| SYS_FILE_OPEN String OPEN MODE (FD -> Trace) wor ker _epol | sched =
do { — wait for some epoll events
: . results <- epoll _wait;
Flgure 15: SyStem calls fCH‘pO| | and AIO — for each thread object in the results,

— write it to the ready queue of the scheduler

mapM (writeChan (ready_queue sched)) results;
. wor ker _epol | sched;

This event-driven architecture is similar to that in } 7recurgi\,2|yca"3 itself and loop

SEDA [25], but our events are finer-grained: instead qgfwor ker_ai o sched =
.. do { — wait for some AIO events
requiring the programmenanuallydecompose a com- results <- aio wait:
putation into stages and specify what stages can be mepM (writeChan (ready_queue sched) results;
. . . wor ker _ai o sched;
performed in parallel, this event-driven schedwdeto-

}
matically decomposes a threaded computation into fingworker _file_opener sched =
do { — fetch a task from corresponding scheduler queue

grained segments separated by system calls. Haske|l's — each task has type (String, FB- Trace)
type system ensures that each segment is a purely func- (SYS_FILE_GPEN fldlcﬁnam(sf _n;)de c) <- hed)
. . . rea an Il e_open_queue sched),
tional computation without I/O, so such segments can be — perform a blocking call —open-d
safe|y executed in para||e|_ fd <- native_file_open fil enane node;
. . — apply c to fd, and write it to the ready queue
Most user-level thread libraries do not take advantage writeChan (ready queue sched) (c fd);

of multiple processors, primarily because synchroniza) worker _file_opener sched;
tion is difficult due to shared state in their implementak

tions. Our event abstraction makes this task easier, be=igure 17: Event loops fagpol I, AlO and file opening
cause it uses a strongly typed interface in which pure

computations and I/O operations are completely sepa- _ ,
rated. In Figure 4, the five steps of lazy thread execu_requests are handled S|m|larl_y. For a file-open request,
tion are purely functional: they process an “effect-free”ﬂ_]e scheduler moves the entire trace to a queue called
segment of the user thread execution. All /O operationgI | eopen_queue, which is used to synchronize with
(including updates to shared memory) are submitted Vignother event oop. . .

system calls and are explicitly performed in the sched- Under the hood, the library functions such as

uler; the programmer has complete control on what I/OeIOOI | -add are just wrappers for their corresponding C
ope,rationsto run in parallel library functions implemented through the Haskell For-

eign Function Interface (FFI).

4.2 Epoll and Asynchronous IO (AIO) FinaII_y, three event loops process these _events, as
shown in Figure 17. Each event loop runs in a sepa-

The trace representation of threads makes it easy to tak@te OS thread. They work in the same way: the loop
advantage of event-driven /O interfaces. To supporiyaits for some events from its event source, processes
epol I and AIO in Linux, the thread library provides & the events and then puts the resulting traces (correspond-
set of system calls and trace nodes shown in Figure 15.jn4 to application threads) back into theady queue.

A special system call for opening files is needed be- An application programmer can easily add other event

cause it is a blocking operation. Our scheduler uses 8ources to the thread library using the same procedure:
separate OS thread to perform such operations. Here, we

omit AIO writing to save space as it is similar to read- 1. Add definitions for system calls and trace nodes.
ing. To execute these system calls in the scheduler, the 5
wor ker _mai n event loop in Figure 13 is extended with a
few branches in Figure 16.

For anepol | request, the scheduler calls a library
functionepol | _add to register an event handler with the L
systemepol | device. The registered event contains a4-3 Thread synchronization
reference tac, the child node that is the continuation Of course, application-level threads must be able to com-
of the application thread, so thepol | event loop can municate with each other. The thread library implemen-
send it tor eady_queue when the event arrives. AlO tation provides several synchronization options.

Interpret the system calls iwor ker _nai n and reg-
ister the event handlers.

3. Add event loops to process the events.

To begin, application-level threads use cooperativeby network or disk I/O and often have many idle con-
multitasking: context switches may happen only at thenections. A second goal of our tests was to determine
system calls defined by the thread library interface. Ahow our implementation performs on a multiprocessor,
standard calkys_yi el d allows a thread to explicitly since one of the benefits of our approach is the ease with
yield control. Also recall that the et urn operation which our thread library can take advantage of software
causes the scheduler to treat a pure (side-effect fredjansactional memory. Finally, we wanted to investigate
block of code as an atomic operation. For single procespossible overheads of using Haskell itself: Haskell pro-
sor machines, this means that the programmer has congrams allocate memory frequently and the runtime heav-
plete control over the atomicity of blocks of code. ily depends on garbage collection. Also, our application-

On multiprocessor machines, it is necessary to prelevel threads are implemented using higher-order func-
vent conflicts due to multiple kernel threads. For non-tions and lazy datastructures that we were concerned
blocking operations, the programmer can use softwaravould impose too many levels of indirection and lead
transactional memory (STM) [10], which is supported to inefficient code.
directly by GHC. Application threads usyS_NBI O to We implemented a number of benchmarks designed
submit STM transactions as non-blockingoperations. to assess the performance of our thread library and the
This approach supports communication via shared memeverheads of using Haskell. For I/O benchmarks we
ory data structures with thread-safety provided by thetested against comparable C programs using the Native
transaction semantics. POSIX Thread Library (NPTL), which is an efficientim-

For blocking operations, the GHC implementation of plementation of Linux kernel threads. We also built a
STM cannot be used because the it may block the exsimple web server as a case study in using application-
ecution of worker threads. Nevertheless, the devellevel threads and compared it against Apache.

oper can add application-specific system calls to proSoftware setup: The experiments used Linux (kernel
vide synchronization primitives. As an example, theyersion 2.6.15) and the development snapshot of GHC
thread library provides mutexes via two system calls:g.5, which supports multiple processors and software
sys_mut ex.| ock andsys_nut ex_unl ock. A mutexis transactional memory. Except for the memory consump-
implemented as a memory reference that points to a pation test, we set the suggested size for GHC's garbage
(I ocked, queue) wherel ocked indicates whether collected heap to be 100MB. The C versions of our
the mutex is locked, angueue is a linked list of thread penchmarks configured NPTL so that the stack size of
traces blocking on this mutex. Just as for other evengach thread is limited to 32KB. This limitation allows
sources (likesys_f i | e_open), an event loop and a task NPTL to scale up to 16K threads in our tests.

queue are addédo process mutex system calls: lock- Machine setup: We used different machine config-

!ng.c‘? lct)ﬁ ked r?ut.ex a}ddi. the trac? 0 tht?] waiting quetu%rations to run different benchmarks: Those involving
Insiae the mutex, uniocking a mutex with a non-emply gy 4 networking 1/0O were run on a single-processor
waiting queue dispatches the next available trace to th%eleron 1.2GHz machine with a 32KB L1 cache. a

ready_queue. This setup of queues and event Ioops256KB L2 cache. 512MB RAM and a 7200RPM. 80GB
guarantees the thread safety of mutex operations. Othe&rlDE disk with 8i\/IB buffer. The multiprocessor 'exper—
synchronization primitives such as thiar in Concur- iments (which did not need disk or network 1/0) used
rent Haskell [13] can also be similarly implemented. an SMP machine with four Pentium-Ill 550MHz pro-
Finally, because the thread library supportsedpel | cessors, a 512KB L2 cache, and 512MB RAM. Finally,
interface, threads can also communicate efficiently using;, memory consumption benchmark used a dual Xeon
pipes. This mech_anism is suital_ale for_writing Programss 50GHz uniprocessor with 2GB RAM and 1024KB L2
in message-passing style on either single processor ,che Each experiment described below is labeled with
multiprocessor machines. 10, MP, or Mem to indicate which of the three machine
configurations was used, respectively.
5 Experiments

. . 5.1 Benchmarks
The main goal of our tests was to determine whether

our Haskell implementation of the unified CONCUITeNcY Memory consumption (Mem): To measure the min-
model could achieve acceptable performance for masmga run-time state needed for each application-level
sively concurrent applications like web servers and multhread, we wrote a test program that launches ten mil-
tiplayer games. Such applications are typically boundjg threads that just loop callingys_yi el d. For this

1As pointed out by Simon P. Jones, this is an overweightedydesi benchmark we set the GHC's suggested heap size for

The mutex can be implemented completely inside the main evork garbage collection to be 1GB. Using the_ profiling infor-
threads, without using additional queues and event loops. mation from the garbage collector, the live set of mem-

10

100 1000 10000 100000

80y .,

(2]
=)
"
*
»
»
*
»
*

g
o

—— Haskel |

N
o

Execution speed
=
o N

t hroughput (MB/s)

[N
N
o

-x-- C/NPTL

°©
o

100 1000 10000 100000

1 2 3 4 5 Nurmber of inactive threads

Nunber of processors

Figure 18: Speedup using multiple processors Figure 20: FIFO pipe scalability (simulating idle net-
work connections)

1 10 100 1000 10000 100000

FIFO pipe performance—mostly idle threads (1O):

Our event-driven scheduler uses the Lirapol | inter-

face for network I/O. To test its scalability, we wrote a
multithreaded program to simulate network server appli-
cations where most connections are idle. The program
uses 128 pairs of active threads to send and receive data

—+— Haskel |

t hr oughput (MB/s)

0,55 o over FIFO pipes. In each pair, one thread sends 32KB
, data to the other thread, receives 32KB data from the

0928 s o 600 10506 160000 other thread and repeats this conversation. The buffer
Nunber of working threads size of each FIFO pipe is 4KB. In addition to these 256

Figure 19: Disk head scheduling test working threads, there are many idle threads in the pro-

gram waiting forepol | events on idle FIFO pipes.
Each run transfers a total amount of 64GB data.
ory objects is as small as 480MB after major garbagerhe average throughput of 5 runs are used. Figure 20
collections—each thread costs only 48 bytes in this testshows the overall FIFO pipe throughput as the number

Multiprocessor computation (MP): We tested 1024 of idle threads changes. This test is bound by CPU
application-level threads, each performing a cpPu-and memory performance. Both NPTL and our Haskell
intensive Operation before y|e|d|ng control. Figure 18 threads demonstrated gOOd Scalabi"ty in this test, but the
shows the speedup as the number of kernel processotroughput of Haskell i80% higher than NPTL. To fur-
increases. In this test, each processor runs its own copi€r investigate this performance difference, we designed
of wor ker _mai n as a kernel thread and STM is used for the next benchmark.

synchronization. A 3.65 times speed up is achieved whe g pipe performance—no idle threads (lO):

4 CPUs are used. This benchmark is like the previous one, except that all
Disk performance (I0): Our test scheduler uses the threads are actively sending/receiving data over FIFO
Linux asynchronous 1/O library, so it benefits from the pipes. Figure 21 plots the total throughput as the num-
kernel disk head scheduling algorithm just as the kerneber of active threads increases. The overall shape of two
threads and other event-driven systems do. We ran theurves appears to be determined by cache performance:
benchmark used to assess Capriccio [22]: each threag/ch thread allocates a 32KB buffer, so the memory foot-
randomly reads a 4KB block from a 1GB file opened us-print of the program quickly exceeds the CPU cache size
ing O.DI RECT without caching. Each test reads a total of as the number of threads increases.

512MB data and the overall throughput is measured, av- The comparison between two curves is interesting:
eraged over 5 runs. Figure 19 compares the performanddPTL performs better when there are fewer than 32
of our thread library with NPTL. This test is disk-bound: threads, but our thread library becomes faster as more
the CPU utilization isl% for both programs when 16K threads are used. We conjecture that this performance
threads are used. Our thread library outperforms NPTLdifference is caused because our thread library needs
when more than 100 threads are used. The throughput déwer kernel context switches. Because the FIFO pipe
our thread library remains steady up to 64K threads—ithas a buffer size of 4KB, the C program performs
performs just like the ideal event-driven system. a context switch after each 4KB data is transfered.

11

200

10

100

1000

4000

175

150

125

—— Haskel |

--%-- C/NPTL

\ — .- C/Mut ex
Haskel | /STM(1)

& ~ - Haskel | /STM(2)

100

75

t hroughput (MB/s)
Thr oughput

50

25 0.2

1 10 100 1000 4000 1 2 3 4
Nunmber of communi cating threads Nunber of processors

Figure 21: FIFO pipe performance (no idle threads) Figure 22: STM synchronization overheads

The wor ker _mai n event loop in our thread scheduler becomes negligible.

groups the data transfers from all application threads anﬂ/lemory allocation and garbage collection: Theim-
batches them. When there are plenty of applicationpjementation of our CPS monad requires memory alloca-
level threads waiting for execution, the kernel thread run+jon on almost every line of code. Fortunately, GHC im-
ningwor ker _mai n does not yield control until it is pre- plements garbage collection efficiently. In the 1/O tests

empted by other kernel threads. Therefore, our threagh Figures 19, 20 and 21, garbage collection takes less
library causes many fewer kernel context switches whefhan(.2% of the total program execution time.

the concurrency level is high. Intuitively, our scheduler
works like a pipeline: it delivers the best performance
when itis fully loaded.

STM and Haskell overhead (MP): This benchmark To test our approach on a more realistic application, we
tests the overhead of using STM transactions in Haskellimplemented a simple web server for static web pages
In the C program, there is one kernel thread per procesasing our thread library. We reused some HTTP parsing
sor; each thread is a loop that locks a mutex, incrementand manipulation modules from the Haskell Web Server
a shared integer, and then unlocks the mutex. Programroject [16], so the main server consists of only 370 lines
1 is written in Haskell using one standard kernel threadof multithreaded glue code. To take advantage of Linux
per processor. Program 2 is written in Haskell usingAlO, the web server application implements its own
our application-level thread library, again with one ker- caching. 1/0 errors are handled gracefully using excep-
nel thread per processor and one application-level threagions. Not only is the multithreaded programming style
for each kernel thread. In Programs 1 and 2, each threaglatural and elegant, but the event-driven architectuce als
increments the shared integer within an STM transactionmakes the scheduler clean. The scheduler, including the
Figure 22 compares the throughput of these programs iCPS monad, system call implementations, event loops
millions of increment operations per second. and queues for AlOgpol | , mutexes, file-opening and
The results show that when there is no concurrencyexception handling (but not counting the wrapper inter-
the combination of Haskell and its STM implementation faces for C library functions), is only 220 lines of well-
is significantly slower than C. However, as the amountstructured code. The scheduler is designed to be cus-
of contention for the shared state increases, the differtomized and tuned: the programmer can easily add more
ence diminishes significantly. With four processors, thesystem 1/O interfaces or implement application-specific
C code is less than twice as fast as the Haskell codescheduling algorithms to improve performance. The web
Note that this is a worst-case scenario for software transserver and the thread scheduler are completely type-safe:
actional memory: it assumes that, in the common casejebugging is made much easier because most low-level
writes from two concurrent transactions won't conflict programming errors are rejected at compile-time.
(causing one of the transactions to roll back), but in this Figure 23 compares our simple web server to Apache
test every write to the shared memory is guaranteed t@.0.55 for a disk-intensive load. We used the default
conflict. Also note that the difference in performance be-Apache configuration on Debian Linux except that we
tween Program 1 and Program 2 in the case of one prancreased the limit for concurrent connections. Using our
cessor is caused by the overhead of using the CPS mondldread library, we implemented a multithreaded client
in our thread library. With multiple processors, the over-load generator in which each client thread repeatedly re-
head can be shared among the CPUs and the differencpiests a file chosen at random from among 128K pos-

5.2 Case study: A simple web server

12

1 10 100 1000 the cache, and debugging the implementation took under
two hours. The cache implantation itself takes only 80
lines of code.

To test the extensibility of the scheduler (and as part
of an ongoing project), we built an application-level
TCP stack in Haskell and plugged it into our thread li-
brary. The TCP stack adds only one more event loop
to Figure 12; this loop is driven by packet I/O events,
timer events, and user thread requests. These scheduler
changes can be made cleanly, without requiring an com-

1 10 100 1000 plete rewrite of the code. Having the TCP stack, the
Nunber of concurrent connetions .
thread scheduler and web server in the same user level
Figure 23: Web server under disk-intensive load application, the programmer has complete control of the
networking code.

(MB/s)

—+— Haskel |

Thr oughput
N
.
(4]

C ke Apache

sible files available on the server; each file is 16KB inUsing Haskell: Because Haskell is a pure, lazy, func-
size. The server ran on the same machine used for the Iional language, we were initially concerned about per-
benchmarks, and the client machine communicated wittiormance. However, in our experience Haskell pro-
the server using a 100Mbps Ethernet connection. Ougrams, while slower than C programs, are not orders of
web server used a fixed cache size of 100MB. Beforenagnitude slower. The Computer Language Shootout
each trial run we flushed the Linux kernel disk cache enBenchmarks [20] give other anecdotal evidence corrob-
tirely and pre-loaded the directory cache into memory.orating this assessment: Haskell (GHC) performs well
The figure plots the overall throughput as a function ofon a wide range of tasks, and many Haskell programs
the number of client connections. On both servers, CPUperform better than their corresponding C or C++ pro-
utilization fluctuates betweem0% and85% (which is ~ grams. When performance or OS libraries are needed,
mostly system time) when 1,024 concurrent connection§3HC provides good interoperability with C code via its
are used. Our simple web server compares favorably t&oreign Function Interface.

Apache on this disk-bound workload. In exchange for performance, Haskell delivers many
For mostly-cached workloads (not shown in the fig- features that simplify program development, including
ure), the performance of our web server is also comparaa very expressive static type system, type inference,
ble to Apache. A future work is to test our web server onlightweight closures, garbage collection, and convenient
more realistic workloads and implement more advancegyntax overloading. We heavily use these features in our

scheduling algorithms, such assource aware schedul- thread library implementation; it might be possible to

ing used in Capriccio [22]. implement the unified concurrency model in a general-
) .) purpose language lacking some of these features, but the
6 Evaluation and discussion results would likely be cumbersome to use. Neverthe-

We find the results of our experiments and our experi-!ess' itis worth investigating how to apply our approach

_ : . . __in more mainstream languages like Java.
ence with implementing a web server using the unified
concurrency model encouraging. Although our threa
library implementation in Haskell is slower than C ind7 Related work

terms of raw speed, it performs quite well in our testS\ye are not the first to address concurrency problems by
and scales well in terms of the number of concurreni,sing janguage-based techniques. There are languages
threads it can handle. In this section we discuss somgpecifically designed for concurrent programming, such
of the non-quantifiable aspects of programming with this;¢ concurrent ML (CML)[19] and Erlang [4], or for

concurrency model, and describe our experience with USsyent-driven programming such as Esterel [6]. Java and
ing Haskell. C# also provide some support for threads and synchro-
Programming experience: The primary advantage of nization. There are also domain-specific languages, such
our approach is the simplified programming model it pro-as Flux [5], intended for building network services out of
vides: threads can be written in a natural sequential stylegxisting C libraries. Most of these approaches pick either
yet custom, event-driven schedulers can easily be definetthe multithreaded or event model. Of the ones mentioned
by using the trace abstraction. As one example, our simabove, CML is closest to our work because it provides
ple web server uses a file cache whose state is sharagry lightweight threads and an event primitive for con-
across all threads handling client connections. Implestructing new synchronization mechanisms, butits thread
menting the caching code, modifying the server to usescheduler is still part of the language runtime.

13

The application-level thread library is motivated by
two projects: SEDA [25] and Capriccio [22]. Our
goal is to get the best parts from both projects: the [3]
event-driven architecture of SEDA and the multithreaded
programming style of Capriccio. Capriccio uses com-
piler transformations to implement linked stack frames;
our application-level threads uses first-class closures tos5,
achieve the same effect.

Besides SEDA [25], there are other high-performance,
event-driven web servers, such as Flash [18]. Lau-
rus and Parkes showed that event-driven systems caff
benefit from batching similar operations in different re-
guests to improve data and code locality [14]. How-
ever, for complex applications, the problem of repre-
senting control flow with events becomes challenging.
There are libraries and tools designed to make event-
driven programs easier by by structuring code in CPS, [€]
such as Python’s Twisted package [21] and C++'s Adap-
tive Communication Environment (ACE) [1]. Adya et (9]
al. [2] present a hybrid approach to automate stack man0l
agement in C and C++ programming.

Multiprocessor support for user-level threads is a chal-
lenging problem. Cilk [7] uses a work-stealing algorithm [11]
to map user-level threads to kernel threads. Event-driven
systems, in contrast, can more readily take advantage
of multiple processors by processing independent events
concurrently [26]. A key challenge is how to determine [12]
whether two pieces of code might interfere: our thread
scheduler benefits from the strong type system of Haskelf3]
and the use of software transactional memory.

Our thread abstraction is inspired by Claessen’s
lightweight concurrency model, which also uses CP814]
monads and lazy data structures [8]. This paper exteno[s
Claessen’s work with more practical features such as ex-
ception handling, inter-thread communication and 1/O[15]
interfaces.

(4]

[7]

8 Conclusion [16]

Events and threads should be combined into an unified
programming model in general-purpose programming17]
languages. With proper language support, application-
level threads can be made extremely lightweight and eas
to use. Our experiments demonstrate that this approach
practical and our programming experience suggests that
this is a very appealing way of writing scalable, mas-|;g
sively concurrent software.

References
[20]

[1] The ADAPTIVE Communication Environment: Object-Orted
Network Programming Components for Developing Clien- [21]
t/Server Applications. 11th and 12th Sun Users Group Cenfer [22]
ence, December 1993 and June 1994.

[2] Atul Adya, Jon Howell, Marvin Theimer, William J. Bologkand
John R. Douceur. Cooperative Task Management without Manua

14

Stack Management. IRroceedings of the 2002 Usenix Annual
Technical Conferen¢002.

Andrew Appel. Compiling with ContinuationsCambridge Uni-
versity Press, 1992.

Joe Armstrong, Robert Virding, Claes Wikstrom, and Blik
Williams. Concurrent Programming in Erlang, Second Edition
Prentice-Hall, 1996.

Emery Berger, Brendan Burns, Kevin Grimaldi, Alex Kaditzov,
and Mark Corner. Flux: A Language for Programming High-
Performance Servers. RProceedings of the 2006 Usenix Annual
Technical Conferenc006.

] Gerard Berry and Georges Gonthier. The Esterel Syndusn

Programming Language: Design, Semantics, Implementation
Science of Computer Programmirip(2):87-152, 1992.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuaxl,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Chin
efficient multithreaded runtime systerRarallel and Distributed
Computing 37(1), August 1996.

Koen Claessen. A poor man’s concurrency monddurnal of
Functional Programming9(3):313—-323, 1999.

The Glasgow Haskell Compiler. http://www.haskell.fyigc.

Tim Harris, Maurice Herlihy, Simon Marlow, and Simonyfken-
Jones. Composable Memory TransactionsPiioceedings of the
ACM Symposium on Principles andPractice of Parallel Pragra
ming, to appearJun 2005.

Simon L. Peyton Jones and Philip Wadler. Imperative d-un
tional Programming. ItConference record of the Twentieth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Charleston, South Carglipages 71-84,
1993.

Simon Peyton Jones, editddaskell 98 Language and Libraries:
the Revised ReporCambridge University Press, 2003.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn FilGan-
current Haskell. InPOPL '96: The23'd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
pages 295-308, St. Petersburg Beach, Florida, 21-24 1996.

James R. Larus and Michael Parkes. Using cohort-sdinedu
to enhance server performance. WSENIX Annual Technical
Conference, General Trackages 103-114, 2002.

H.C. Lauer and R.M. Needham. On the Duality of OperaSyg-
tems Structures. IRroceedings Second International Symposium
on Operating SystemiRIA, October 1978.

Simon Marlow. Developing a high-performance web seine
Concurrent Haskell. Journal of Functional Programmingl2,
2002.

J. K. Outsterhout. Why Threads Are A Bad Idea (for most pu
poses). IrPresentation given at the 1996 Usenix Annual Techni-
cal Conference1996.

] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. sRtaAn

efficient and portable Web server. Pioceedings of the USENIX
1999 Annual Technical Conferenck999.

J. H. Reppy. Concurrent ML: Design, Application and Seics.
In P. E. Lauer, editorFunctional Programming, Concurrency,
Simulation and Automated Reasonipgges 165-198. Springer,
Berlin, Heidelberg, 1993.

The Computer Language Shootout Benchmarks.
http://shootout.alioth.debian.org/.

The Twisted Project. http://twistedmatrix.com/.

R. von Behren, J. Condit, F. Zhou, G. Necula, and E. Brewe
Capriccio: Scalable threads for internet services. Ptaceed-
ings of the Ninteenth Symposium on Operating System Piescip
(SOSP)October 2003.

[23] Rob von Behren, Jeremy Condit, and Eric Brewer. Why Even
Are A Bad Idea (for high-concurrency servers)Aroceedings of
the 10th Workshop on Hot Topics in Operating Systems (HotOS
1X), May 2003.

[24] P. Wadler. Monads for functional programming. Rroceedings
of the Marktoberdorf Summer School on Program Design Cal-
culi, August 1992.

[25] Matt Welsh, David E. Culler, and Eric A. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet\8egs. In
Proceedings of the Symposium on Operating System Prisciple
(SOSP)2001.

[26] Nickolai Zeldovich, Alexander Yip, Frank Dabek, Rob®torris,
David Maziéres, and Frans Kaashoek. Multiprocessor stippo
for event-driven programs. IRroceedings of the 2003 USENIX
Annual Technical Conference (USENIX '0Span Antonio, Texas,
June 2003.

15

