
Advanced Control Flow in Java Card Programming

Peng Li Steve Zdancewic

University of Pennsylvania

{lipeng,stevez}@cis.upenn.edu

ABSTRACT
Java Card technology simplifies the development of smart
card applications by providing a high-level programming
language similar to Java. However, the master-slave pro-
gramming model used in current Java Card platform cre-
ates control flow difficulties when writing complex card pro-
grams, making it inconvenient, tedious, and error-prone to
implement Java Card applications. This paper examines
these drawbacks of the master-slave model and proposes a
concurrent thread model for developing future Java Card
programs, which is much closer to conventional Java network
programming. This paper also presents a code translation
algorithm and a corresponding tool that makes it possible to
write card programs in the concurrent thread model without
losing compatibility with the existing Java Card API.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Languages Constructs
and Features—Control Structures; D.2.3 [Software Engi-

neering]: Coding Tools and Techniques—Structured Pro-
gramming

General Terms
Languages

Keywords
Java Card, Continuation, CPS, Control Flow, Smart Card,
Trampolined Style

1. INTRODUCTION
Java Card technology provides a subset of the Java pro-

gramming language as well as the runtime environment for
smart card programming, making it possible for developers
to program the smart card using a modern high-level lan-
guage.

The design of Java Card is restricted by the time and
space constraints of the smart card, but it also lacks support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’04, June 11–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-806-7/04/0006 ...$5.00.

for some basic software engineering principles. As others
have pointed out, the current Java Card implementation
is unsatisfactory in a sense that it encourages a low level
programming style [6].

In this paper, we focus on the control flow issues in Java
Card programming. To avoid confusion, it is necessary to
make a distinction between communication models and pro-
gramming models. In the existing design of Java Card, the
command-response communication model between the card
and the host naively led to the master-slave programming
model, in which the host application always actively calls the
services on the card. This programming model suffices for
simple applications such as maintaining a counter or storing
a secret piece of data, but the complexity of control flow
increases when the card program requires more interaction
between the host and the card. The control flow on the card
is usually modeled as a state machine and it has to be hand-
coded in ad hoc ways by the programmer, which is usually
tedious and error prone.

We argue that the design of the high-level programming
interface should not be restricted by the underlying commu-
nication model. We propose the concurrent thread model as
a better design choice for the Java Card programming inter-
face. In this model, the host program and the card program
run in separate threads and communicate with each other
via symmetrical interfaces. The concurrent thread model
enables the programmer to use language-based control-flow
primitives over the whole session, relieving the program-
mer’s burden of coding up state machines for managing con-
trol flow.

It is challenging to use the concurrent thread model in
existing Java Card environments due to the lack of thread
support in the Java Card virtual machine. Instead, we pro-
pose code translation as a way to support this programming
model without losing compatibility with the existing Java
Card environment. Card applications can be written in the
concurrent thread model and automatically translated to
master-slave style Java Card programs, while behaving the
same with regard to the host application.

This code translation approach can be used as a tempo-
rary solution in transition to the concurrent thread model.
We call for the support of thread management in the Java
Card environment. As the smart card technology advances,
it will be practical to have multi-threading on the smart card
so that the concurrent programming model will prevail.



2. THE MASTER-SLAVE PROGRAMMING
MODEL

In existing industry standards, smart cards communicate
with host computers by using special data packets called
APDUs (application protocol data units). The APDU-level
communication between the card and the host computer is
half-duplex, which means the APDU packets can be sent in
both directions but not at the same time. The command-
response communication model is used: the host sends a
command APDU to the card and the card sends a response
APDU back to the host. The command APDUs and the
request APDUs alternate with each other on the communi-
cation channel.

Similar to the communication model, the existing Java
Card platform uses the master-slave programming model
between the host and the card, as illustrated in Figure 1.
The host computer plays the active (master) role, repeti-
tively performing the dialog of sending a command to the
card and waiting for a response from the card, as if calling
a method on the card. Applications running on Java smart
cards are called applets. Once an applet is installed and
selected on the card, it waits for commands from the host
computer. The applet plays a passive (slave) role in the
programming model. Upon arrival of a command APDU,
the Java Card virtual machine delivers the APDU to the
applet by invoking the process method of the applet. The
applet then starts execution as if being called by the host
computer, processes the command and creates a response
APDU. When the applet returns the control to the VM, the
response APDU is sent to the host computer.

Host Application Card Applet

send() APDU Command

APDU Response

process()

Figure 1: The master-slave model

The master-slave programming model naturally led to the
implementation of RPC or RMI. In Java Card 2.2, unidirec-
tional RMI is implemented so that the host can call the
methods on the card. This is convenient for the program-
mers because it relieves the burden of marshaling and un-
marshaling the data to and from the APDU.

3. STATE MACHINES FOR CONTROL FLOW
In this section we present the control flow problems in

the master-slave programming model. We start by showing
some situations where the control flow of a Java Card pro-
grams must be modeled as state machines and hand-coded
in ad hoc ways by the programmer.

3.1 Card calling host methods
As the card programs become more complex, it becomes

desirable to invoke method calls from the card to the termi-
nal. Without bidirectional RMI, the programmers usually
have to use a trick to invert the master-slave relationship as
in Figure 2.

For example, the card wants to store a piece of tempo-
rary data on the host computer. The card calls the host
by sending a special response APDU. The host API recog-
nizes the special response. Instead of returning the response
to the host application, it treats the APDU as a command
from the card, process it by calling an event listener in the
application, then send the response from the host in the for-
mat of a command APDU to the card. The card wakes up,
examines its own state and resumes execution.

APDU CMD

dispatch

APDU RSP

send()

Listener.

process()

Terminal Side Card Side

process()

APDU
Call host

Ret from host
APDU

Host Listener Card AppletHost APIHost App

hello()

Figure 2: Card calling the host

From the host point of view, there is no technical diffi-
culty of implementing bidirectional RMI. However, there is
a challenge for the card programmer: in the current card
programming model, a server side method “hello()” can-
not be called by a single statement “host.hello();” on the
card, because each time the card receives an APDU packet,
it starts executing from a single entry point, the process

method! The card program has to examine which state it
was in, and jump to the continuation of its previous state.
The card programmer must carefully manipulate the states
to thread together different fragments of the code in order
to complete a call to the host. In our experience, such a job
is usually tedious and error-prone.

In such a program, the control flow can be modeled as a
finite state machine. When the card processes an incoming
APDU, it performs some computation and makes a transi-
tion to the next state.

3.2 Interaction with host in loops and method
calls

As another example of problematic control flow, consider
the following scenario. Suppose that during an authenti-
cation process, the card applet wants to verify the PIN
number of the user. The user can make at most N at-
tempts. As a standard Java programmer, one might nat-
urally want to encapsulate the authentication process in a



method authenticate(), and use the following code in the
program:

if (authenticate()) .... else ....

And, inside the implementation of authenticate, it is
natural to use a loop to control the number of attempts:

public boolean authenticate() {

for ( int i = 0; i < N; i++ )
if (verify(host.promptPIN()))

return true;
return false;

}

Unfortunately, since the card cannot call the host method
directly, the Java Card applet cannot be written like the
above code. The control flow must be implemented by a
state machine, as mentioned in the previous subsection. In
doing so, we lose the following control flow features provided
by the Java language:

• Method abstraction: All the interaction with the host
must be controlled at the top-most level, because it is
impossible to interact with the host inside a method
call. The state machine has a flat structure: all the
states are parallel to each other, without ordering and
nested structures. This severely limits the application
of some fundamental software engineering techniques
like encapsulation and abstraction.

• Loop control: the loop control variable i in the above
code is a local variable invisible to the outside of the
loop. As we implement the loop in the state machine,
it becomes part of the global state. The state of the
machine will be a vector consisting of all the loop vari-
ables, which is difficult to maintain by the program-
mer.

3.3 Error handling
Let us consider error handling in the state machine. For

each state q, the card is usually expecting a small number
of inputs i1, · · · , in as defined by the protocol. However, the
programmer must be responsible for handling all the unex-
pected inputs. One should also note that the state machine
is nondeterministic: for each combination of state q and in-
put i, the program may have branches and exceptions — it
may jump to several different states and produce different
outputs. Take the following branch as an example:

if (state==S_MSG_REQ && input==MSG_REQ) {

if (bad_apdu_format()) {
state = S_APDU_ERR;

output = MSG_APDU_ERR;
.....

} else {
// some computation
.....

if (success) {
state = S_MSG_REP;

output = MSG_REP;
....

} else {

state = S_MSG_FAIL;
output = MSG_FAIL;

....

The above code handles a request from the host computer
and it succeeds or fails depending on the result of some com-
putation. Besides these possibilities, it has to check for in-
valid data formats and handle such errors gracefully. The

problem is that such error handling must be done every-
where in the state machine and there is a lot of duplication
in the code.

In the Java programming language, there already exists
a good solution for error handling: exceptions. Instead of
handling the errors everywhere, the Java programmer can
put an exception handler for a block of code. In the state
machine, in order to share an exception handler for different
states, the programmer can group some states together in
the scope of exception handlers for them. This approach
avoids rewriting some of the error handling code, but it also
complicates the analysis of the state machine, making the
control flow of the state machine hard to reason about.

3.4 Complexity of the state machine
The size of the state machine compounds the difficulty

of programming the smart cards by hand using the master-
slave model. Because of poor support for encapsulation and
abstraction, developing and maintaining the card code is
difficult. Suppose the state machine has t states, i input
messages, each state is expecting j input messages on av-
erage, and there are e common errors that the programmer
has to handle. The code size will be on the order of tje.
The maintenance of the code has a high cost: the analysis
of the control flow in the state machine has a complexity
of tie because for each state, the programmer has to con-
sider the behavior of the system under all possible inputs.
When the card program scales up, the code will be difficult
to maintain and the programmer may have to rely on the
aid of automated tools.

4. THE CONCURRENT THREAD MODEL

4.1 Motivation
We have seen the various control flow problems in the

master-slave programming model. All these problems are
caused by the inherent limitations of the master-slave pro-
gramming model, which is designed according to the under-
lying command-response communication model. We argue
that, the programming interface of the smart card should
not necessarily be modeled in the same way as its underly-
ing communication, for several reasons:

• The programming interface should provide a better ab-
straction over low-level operations, for the same rea-
sons we need high level programming languages. RMI
can solve marshaling/typing issues, but it doesn’t solve
the control flow issues. Take the control flow in most
high level programming languages as an example; the
underlying machine language usually provides control
flow primitives like jmp, push and pop, but higher level
programming languages hide these details and provide
advanced control flow mechanisms as loops, method
calls and exception handling, discouraging the use of
goto [2] which simulates the execution model of the
underlying machine. These high-level control struc-
tures relieve the programmer’s burden of managing
control flow and better support software engineering
techniques such as encapsulation, abstraction and code
reuse.

• The communication model will evolve over time. The
technical trend is that the smart cards will be more like



general-purpose computers. In the future, the smart
card operating systems will probably have IP network-
ing and multi-threading support built-in. Instead of
using a specific programming interface for each com-
munication model, it will be nice to use a general pro-
gramming model that can adapt the changes of the
underlying communication model.

4.2 The symmetric programming interface
We propose a symmetric programming model for both

the host application and the card applet: the concurrent
thread model. When the host interacts with the card ap-
plet, both sides have a running thread. The programming
model is symmetric, in the sense that the card program is
written in the same style as the host program just as if it
were a stand alone application running on a general pur-
pose computer. When the host starts a session with a card
applet, the card launches a thread for the applet. In com-
parison to the master-slave model where the card applet is
reactive and is always called by the host program, the ap-
plet thread is active. The programmer can assume that the
applet thread keeps running during the whole session with-
out yielding control to the host program. The card thread
and the host program are two concurrent threads, and they
communicate with each other through some communication
mechanism provided by the platform API.

Host Application Card Applet

APDU Message

APDU Message

APDU Message

APDU Message

sendAndRecv()

sendAndRecv()

sendAndRecv()

sendAndRecv()

Figure 3: The Concurrent Thread Model

This programming model is independent of the underlying
communication model. In the concurrent thread model, the
programmer can write card applications in the same way as
for conventional Java network programming, without learn-
ing much special knowledge about the card. To make it work
with the existing half-duplex APDU protocol, the API only
needs to provide a small number of communication primi-
tives, such as sendAndReceive(), a method that sends an
APDU to the other thread, waits for the reply, and returns
the received APDU. Based on the APDU level communica-
tion functionality, we can easily build higher level commu-
nication interfaces in the API. As the smart cards become
more powerful it will be possible to implement advanced
networking protocols such as IPV6 on the card OS.

The benefit of using such a programming model on the
Java Card platform is obvious. The scope of language-based
control flow can now span across communication operations,
eliminating the need of manually coding up control flow

state machines. Although the Java Card language has var-
ious limitations inherent to smart card programming, the
language-based control-flow features make little difference
with the full Java language. Therefore, the symmetry of the
concurrent thread model reduces the gap between general
Java programming and Java Card programming. The devel-
oper can use the same programming interfaces and design
patterns for both the host program and the card program.

4.3 Implementation challenges
To apply the concurrent thread programming model on

Java Card, there are several challenges:

• The current Java Card framework is designed with the
master-slave model. There is no threading support in
the current Java Card. An overhaul is needed for the
whole Java Card architecture.

• A number of existing API libraries need to be mod-
ified or rewritten, but backward compatibility is also
needed for old applications.

We expect to have multi-threading functionalities in fu-
ture Java Card operating system in order to perfectly sup-
port the concurrent thread model. But it may take a long
time for the OS to evolve. The other possibility is to seek for
solutions based on existing hardware and software environ-
ments. In the next section we will present code translation
as a solution to apply the concurrent thread programming
model without modifying the Java Card OS.

5. CODE TRANSLATION
The concurrent thread model greatly simplifies the con-

trol flow in smart card programming, but the existing Java
Card environment does not support threads, limiting the
application of this programming model.

In this section we present code translation as a way of
supporting programming in the concurrent thread model on
existing Java Card environments. Code translation works
in the following way. First, the programmer writes a card
applet in the concurrent thread model, using a source lan-
guage similar to Java Card. Then, a code translator takes
the source code as input, runs a translation algorithm and
produces a state-machine-like program compatible with ex-
isting Java Card. Finally, the program generated by the
code translator is compiled by existing Java Card tools and
runs on the smart cards.

In other words, the code translator compiles card pro-
grams written in the concurrent thread model to programs
in the master-slave model. It takes the source code as a
specification of the control flow and simulates the process of
hand coding the control flow state machines as mentioned
in section 3.

5.1 The source program
Syntactically, the source language is the same as the Java

Card language. The only difference is the programming
model. From the programmer’s point of view, a card ap-
plet is simply a runnable thread. The thread is launched by
the card API when the communication session begins (i.e.
the card applet is selected) and keeps running during the
APDU communications.



The card applet thread communicates with the thread on
the host computer by sending and receiving APDU pack-
ets. The communication is performed by calling a special
method: sendAndReceive(apdu), which sends the APDU
to the other thread, waits for the responding APDU, and
returns the new APDU object. When this method returns,
the card thread continues running.

Other than the programming model and APDU commu-
nications, the source language has few differences from the
Java Card language. The programmer can directly use the
Java Card API in the same way as writing Java Card pro-
grams.

5.2 The target program
The code translator reads the source programs and pro-

duces standard Java Card programs that behave the same
with regard to the host application. As we have discussed,
the control flow of existing Java Card programs is reac-
tive: every time the card receives an APDU packet, the
card applet starts execution from a single entry point, i.e.
process(), and yields control before sending the response
APDU. Therefore, we have to break up the execution of
the source program written in the concurrent thread model
at the point it calls the sendAndReceive() communication
primitive, and resume the execution when the card applet
gains control again.

Without support of thread suspension and recovery, it
would still be easy to implement the code translation if
we were working with a language that supports continu-
ations [1], such as SML/NJ [9] and Scheme [8]. We could
simply save the current continuation at the place where com-
munication is needed, and call the saved continuation when
the card applet gains control again. Although Java does not
support continuations, an ad hoc control mechanism can be
used to manage the continuations of the card program:

• The source program is divided into basic blocks. The
entry of each basic block in the source program cor-
responds to a control flow state. Each basic block is
translated into a method definition, which includes all
the statements in that basic block. The method re-
turns the name of the next control state, i.e. the next
basic block to be executed.

• The control stack and the local variables are managed
by a user level mechanism. We need a helper class in
the target program that simulates the control stack op-
erations of the source program. Method calls, returns
and exceptions are translated into explicit operations
on the control stack.

There should also be a mechanism for storing the lo-
cal variables. All the statements should be translated
so that the references to the local variables are redi-
rected to custom-built mechanism. A simple solution
is to translate local variables to fields in the class, forc-
ing the resource allocation to be static. The trade-off
is that we cannot translate recursive methods in this
way. For recursive methods, local variables must be
translated to operations on the control stack, which
has an additional performance overhead.

• The engine of the control state machine is simply a
loop. In each round of the loop, the engine examines
its current state and calls the method corresponding

T ::= c | boolean Type
C ::= class c extends c {F M} Class decl.
F ::= T f ; Field decl.
M ::= T m(T x) s Method decl.
e ::= Expressions

x Variable
| e.f Field access
| this This
| true | false Basic values
| e op e Binary operation

s ::= Statements
e.f = e; Field update
| T x; Local var. decl.
| x = e; Local var. update
| x = new c(); Object creation
| x = e.m(e); Method invocation
| if (e) s else s Conditional
| while (e) s Loop
| return e; Return
| {s} Block
| throw e; Raise an exception
| try s catch(T x) s Exception handling

Figure 4: The source language

to that state (a basic block). The method will execute
all the statements in the corresponding basic block and
return the name of the next state, which becomes the
current state in the next round of the loop. Therefore,
control is transferred from one block to another at the
top-level loop by passing around the name of the con-
trol flow states. This kind of program organization is
called the trampolined style [3].

• With all the mechanisms above, it is easy to save and
restore the continuations of the source program: the
continuation is simply the control state plus all the
contents in the control stack. We only need to mod-
ify one branch of the state machine so that the card
yields control when the communication primitive is
called. When the card applet receives the next com-
mand APDU and regains control, it jumps into the
main loop of the control state machine and the thread
execution is resumed.

5.3 The code translation algorithm
This section presents a simplified version of our code trans-

lation algorithm. We restrict the source language to be sim-
ilar to Feather Weight Java [7], with most of the control flow
primitives: loops, method calls, and exceptions. The syntax
of the source language is shown in Figure 4.

The translation algorithm is presented in Figure 5.
�

exp,�
stmt and

�
method refer to the translation function for expres-

sions, statements and methods, respectively. For statements
and methods, the output of the translation is a list of dec-
larations in the target language. � (T x) means a field dec-
laration and � means a method declaration which contains
a basic block. Different kinds of basic blocks are defined in
Figure 6.

For simplicity, we assume that the method calls are not
recursive, which is usually practical for smart card program-
ming. Therefore, the local variables can be directly trans-
lated to fields in the target class and the control stack only



Rules for translating expressions:

�
exp � x � = � (x)�

exp � e.f � =
�

exp � e � .f�
exp � this | true | false � = this | true | false�

exp � e1 op e2 � =
�

exp � e1 � op
�

exp � e2 �

Rules for translating statements:

�
stmt � e1.f = e2 �

η
= � seq (

�
exp � e1 � .f =

�
exp � e2 � )η�

stmt � T x �
η

= � (T x)�
stmt � x = e �

η
= � seq ( � (x) =

�
exp � e � )η�

stmt � x = new C() �
η

= � seq ( � (x) = new C())η�
stmt � x = return e �

η
= � ret (

�
exp � e � )η�

stmt � x = throw e �
η

= � throw (
�

exp � e � )η

�
stmt � {s1, . . . , sm} �

η
η = (b, n, x)

=
�

stmt � s1 �
η1

η1 = (b, t1, x)�
stmt � s2 �

η2
η2 = (t1, t2, x)

. . . . . . where . . .�
stmt � sm �

ηm

ηm = (tm−1, n, x)

�
stmt � if(e) s1 else s2 �

η

= � branch (
�

exp � e � , t1, t2)η η = (b, n, x)�
stmt � s1 � η1

where η1 = (t1, n, x)�
stmt � s2 �

η2
η2 = (t2, n, x)

�
stmt � while(e) s �

η

= � branch (
�

exp � e � , t1, n)η where η = (b, n, x)�
stmt � s � η1

η1 = (t1, n, x)

�
stmt � x = e.m(e) �

η
η = (b, n, x)

= � call (
�

exp � e � , � (m),
�

exp � e � , t1)η

� callfinish ( � (x))η1
η1 = (t1, n, x)�

(m) is the tag for method m

�
stmt � try s1 catch(T x) s2 � η η = (b, n, x)
= � (T x)�

stmt � s1 �
η1

η1 = (b, n, t2)

� catch (T, � (x), t3)η2
where η2 = (t2, n, x)�

stmt � s2 �
η3

η3 = (t3, n, x)

Rule for translating a method declaration:

�
method � Tm m(T x)s �
= � (Tm mret)

� (T x)�
stmt � s �

η1 where η1 = (t1, t2, t2)

� ret (
�

exp � e � )η2
η2 = (t2, t

′, t′)

Figure 5: The Translation Algorithm

� seq (e)(b,n,x) =

public void block b() {

try { e;

Scheduler.goto(n);

} catch (Exception ex) {

Scheduler.setException(ex);

Scheduler.goto(this, x);

}

}

� branch (e, t1, t2)(b,n,x) =

public void block b() {

try { if (e) Scheduler.goto(t1);

else Scheduler.goto(this, t2);

} catch (Exception ex) {

............

� ret (e)(b,n,x) =

public void block b() {

try { mret = e;

Scheduler.leaveFrame();

} catch (Exception ex) {

............

� call (em, tm, e, tret)(b,n,x) =

public void block b() {

try { � (x) = e;

Scheduler.enterFrame(this, tret);

Scheduler.goto(em, tm);

} catch (Exception ex) {

............

� callfinish (f)(b,n,x) =

public void block b() {

if (Scheduler.hasException())

Scheduler.goto(this, x);

else { f = mret;

Scheduler.goto(this, n); }

}

� throw (e)(b,n,x) =

public void block b() {

Scheduler.setException(ex);

Scheduler.goto(x);

}

� catch (T, f, tcatch)(b,n,x) =

public void block b() {

if (Scheduler.getException() instanceof T) {

x = (T) Scheduler.getException();

Scheduler.clearException();

Scheduler.goto(this, tcatch);

} else {

Scheduler.goto(this, x);

}

}

Figure 6: Code generation for each basic block



needs to handle method calls and returns. Method argu-
ments and return values are also handled in this way. In the
definition of the source language we do not have method calls
at the expression level, so the translation for expressions is
straightforward. Access to a local variable x is renamed to
its corresponding field � (x), as in the

�
exp rules.

Statements are translated by the
�

stmt rules. For simplic-
ity, we treat each statement as a basic block in the demon-
strated algorithm. Each translation step has a parameter
η = (b, n, x), a tuple of three control states. b is the state
assigned to the current basic block, n is the state of the
next basic block if the code is executed sequentially, and x

is the state assigned to the current exception handler. The
translation algorithm recursively translates the statements
in nested structures and new states are created on the fly.

5.4 Optimization
The translation algorithm presented in this section can be

optimized in a number of ways. In particular, the following
optimizations can be used to reduce the code size of the
output.

First, note that we treated every single statement as a
basic block in the above algorithm, we can improve it by
grouping several statements together in the same block, thus
reducing the number of basic blocks.

Second, we do not have to translate every control struc-
ture in the source code. A method declaration or a state-
ment needs to be translated into basic blocks only if it calls
the communication primitive, or if it calls other methods
that needs to be translated. The number of basic blocks can
be greatly reduced if we leave most method declarations and
statements untouched but only translate those where com-
munication may happen.

Other optimizations can also be used to reduce the size of
the generated code. For example, in the code generation in
Figure 6, all the statements are guarded by exception han-
dlers. In practice, most of these statements will not generate
exceptions, so we can perform an analysis to eliminated un-
necessary exception handlers. Dead code elimination can
also be used to eliminate useless blocks.

6. EVALUATION

6.1 A small example
We have implemented a prototype of the code translator

that translates a subset of the Java Card language using a
similar algorithm. Some optimizations mentioned in the last
section are also implemented.

The following is an example program written in the con-
current thread model. The method verifyPIN() sends a
request to the host to read the PIN number, and waits for
the reply from the host computer. Once the PIN number
is read, it performs some checking on the PIN number, and
returns the result of the verification. To focus on the control-
flow translation, we are hiding the code of marshaling and
unmarshaling the APDUs.

public boolean verifyPIN() throws Exception {
........ // marshall APDU to be sent
sendAndReceive(); // send and wait for the reply
........ // unmarshall APDU from the host
........ // verify the PIN
return true;

}

As an example we used in section 3, the authenticate(N)
method prompts the user to input the PIN number at most
N times. It uses a loop to call the verifyPIN() method
defined above. This method also has an exception handler
that deals with various exceptions that might happen during
the communication.

1 public boolean authenticate(byte N) {
2 byte i = 0;
3 boolean success=false;
4 try {
5 while (i<N && !success) {
6 success = verifyPIN();
7 i = i+1;
8 }
9 return success;
10 } catch (Exception e) {
11 return false;
12 }
13 }

We are interested in the translation of the authenticate

method because it contains a lot of control-flow primitives:
method abstractions, loops, and exception handling. The
following code is the expected output when we translate the
authenticate method.

• public boolean authenticate_ret;
public byte N_1;
byte i_2;

boolean success_3;
Exception e_10;

These are the fields generated by the translation algo-
rithm. All of the fields are automatically renamed by
the translator. The field “authenticate ret” is used
to store the returned value of the method, and “N 10”
is used to pass the argument to this method. Others
fields are translated from local variables.

• public void authenticate_entry() {

i_2 = 0;
success_3 = false;

Scheduler.goto(this, STATE_5);
}

This block corresponds to line 2 and line 3 in the
authenticate method. It uses � seq case in Figure
6. Compared to the translation algorithm presented
above, two optimization steps are used: the two ad-
jacent statements on line 2 and 3 are merged in the
same block, and exception handlers are removed be-
cause these statements will not generate exceptions.

• public void line_5() {

if (i_2 < N_1 && !success_3)
Scheduler.goto(this, STATE_6A);

else

Scheduler.goto(this, STATE_9);
}

This block corresponds to the branch on line 5. It uses
the � branch case in Figure 6, with an optimization step
that removes the exception handler.

• public void line_6A() {
Scheduler.enterFrame(this, STATE_6B);

Scheduler.goto(this, STATE_verifyPIN_entry);
}
public void line_6B() {

if (Scheduler.hasException()) {
Scheduler.goto(this, STATE_10);

} else {
success_3 = verifyPIN_ret;

Scheduler.goto(this, STATE_7);



}

}

These two blocks correspond to the method call on
line 6. They are similar to the � call and � callfinish cases
in Figure 6.

• public void line_7() {
i_2 = i_2 + 1;
Scheduler.goto(this, STATE_5);

}

This block corresponds to line 7 and the � seq case.

• public void line_9() {

authenticate_ret = success_3;
Scheduler.leaveFrame();

}

This block corresponds to line 9 and the � ret case.

• public void line_10() {

if (Scheduler.getException() instanceof Exception) {
e_10 = (Exception) Scheduler.getException();
Scheduler.clearException();

Scheduler.goto(this, STATE_11);
} else {

Scheduler.goto(this, STATE_authenticate_exp);
}

}

This block corresponds to line 10 and the � catch case.

• public void line_11() {
authenticate_ret = false;

Scheduler.leaveFrame();
}

This block corresponds to line 9 and the � ret case.

• public void authenticate_exp() {
Scheduler.leaveFrame();

}

This block serves as the exception handler of the whole
method. It does nothing but simply returns so that the
caller can handle the exception.

The above trampolined style code is executed by the main
loop of the scheduler. Each time a basic block calls the
goto method of the scheduler, the scheduler updates its cur-
rent state. The main loop has a dispatch table so that the
method corresponding to the current state can be located in
each step.

class Scheduler {

Object obj;
short s;

... ...
public static void goto(Object o, short s ) {

obj = o; state = s;
}
... ...

public static void mainloop() {
... ...

while (true) {
switch (state) {

STATE_sendAndRecv: return;
........
STATE_authenticate_entry: (MyApp)obj.authenticate_entry();

STATE_5: (MyApp)obj.line_5();
STATE_6A: (MyApp)obj.line_6A()

STATE_6B: (MyApp)obj.line_6B();
STATE_7: (MyApp)obj.line_7();
STATE_9: (MyApp)obj.line_9();

STATE_10: (MyApp)obj.line_10();
STATE_11: (MyApp)obj.line_11();

STATE_authenticate_exp: (MyApp)obj.authenticate_exp();
........

The underlying control-flow state machine is shown in the
following figure:

10

7

9

entry 5 6A 6B

11exp

6.2 Code quality and performance
We are interested in comparing machine-translated code

with state-machine like Java Card programs written by hand,
because they are supposed to behave identically on the card.
The following is a quantitative estimation of the machine-
generated code in comparison to the hand-written code.
First, we define some variables that we are going to use
in the comparison.

• Let d be the maximum depth, in terms of control-
flow structures, of the communication primitives in the
source code (in the concurrent-thread model). For ex-
ample, the communication primitive sendAndReceive()
in the verifyPIN() method has a depth of 5, because
it is called in the following stack trace:

1. The method verifyPIN()

2. The while loop in authenticate()

3. The exception handler in authenticate()

4. The method authenticate()

5. The top-level method that calls authenticate()

• Suppose the communication protocol has t different
messages and the communication primitive appears
t times in the source code (in the concurrent thread
model). We can compare the number of control-flow
states:

– Hand-written code: as we have discussed in sec-
tion 2, each time the card communicates with
the host, the card program must yield control.
Since there are t different messages in the commu-
nication protocol, the corresponding control-flow
state machine in the hand-written code is likely
to have at least t states.

– Machine-generated code: the number of control
states in the target code is the approximately the
number of all the control structures in the source
code that get translated to trampolined-style ba-
sic blocks. To be fair in the comparison, we as-
sume that methods are used only once, because
in the hand-written code, it is inconvenient to en-
capsulated the states into method calls and reuse
them, as we have seen in section 3. Since we only
translate those structures that have communica-
tions inside them, each communication primitive
corresponds to at most d control-flow states, and
there are t of them. Therefore, the total number
of states should be no more than dt.

We are interested in the following comparisons: code qual-
ity and complexity, the space overhead due to the increased
code size, and the performance overhead due to maintaining
the trampolined-style dispatch table in the scheduler of the
machine-generated code.



• Code quality and control-flow complexity:

Quality of code is hard to measure, but subjectively,
developing and maintaining high-level code should be
easier. We claim that the machine-translated code
has much better quality than the hand-written code,
by comparing the complexity in the maintenance of
control-flow state machine.

In the hand-written code, the control-flow state ma-
chine has t states. The programmer has to be respon-
sible for maintaining these states. As we discussed in
section 3.4, the complexity of code maintenance is on
the order of t2e. As the number of states increases, the
task of code maintenance becomes extremely difficult.

On the other hand, the code translation algorithm au-
tomatically threads the control-flow states together.
Despite the fact that the result of the translation has
dt states, the complexity of the state machine is com-
pletely hidden under a high-level programming inter-
face. Code maintenance is easy because the program-
mer only needs to modify the high-level code and the
state machines can always be correctly regenerated by
code translation.

• Space overhead:

In smart card programming, code size is important be-
cause the space on the card is limited. The machine-
generated code is usually longer than the hand-written
code, because there are more control states in them.
The difference in the number of the states is dt − t

= (d − 1)t. Suppose in the machine-generated code,
each control state corresponds to k lines of additional
code, as in Figure 6. With optimizations, the machine-
generated code is similar to the example in section
6.1, where k is between 3 and 5 on average. There-
fore, compared to the hand-written code, the machine-
generated code has an estimated increase of:

LOC Increase < (d − 1)tk, where k = 3 . . . 5.

• Performance overhead:

Again, to be fair in comparison, we assume that the
methods containing communication operations are not
reused in the source code. Because each communica-
tion primitive is called in a stack frame of at most d

control structures, the amortized cost on the operation
of the dispatch table is no more than d. Usually, we
have d < 10. For existing smart cards, the communi-
cation speed between the host computer and card is
much slower than the processing speed of the smart
card. Therefore, d operations on the dispatch table
and method calls are almost trivial compared to the
cost of the communication. We thus conjecture that
such overhead is not noticeable on the smart card, but
we still need future work to quantitatively verify our
estimations on real cards.

6.3 BattleShip: a larger example
We were motivated to develop this code translation tech-

nique because of our experiences with creating interesting
examples of smart card software. One case study was im-
plementing the game of BattleShip in which part of the game
state was stored on a Java Card. In BattleShip, two play-
ers each control an N × N board that contains some ship

tokens. The initial location of a player’s ships is secret to
that player. Players take turns guessing a location for their
opponent’s ships, and after each guess that square of the op-
ponent’s board is revealed. A player who guesses correctly
gets another chance, and the player whose ships are all hit
first loses.

Our goal was to implement the BattleShip game so that
one board is controlled by the smart card and the other
is controlled by the terminal. The adversarial and confiden-
tiality constraints make the game interesting from a security
perspective [11]. To prevent cheating by one of the players
it is necessary to use a commitment protocol when setting
up the initial board state so that a cheater cannot surrepti-
tiously move the location of one of their hidden ships after
the opponent has made his guess.

We implemented the BattleShip game for the Java Card
platform by hand. The code was quite complex due to the
need for card–terminal communication inside of nested for-
loops, for instance when the card and terminal exchange
commitments for their initial board configurations. The re-
sulting program contained approximately 550 lines of (quite
ugly) Java code. In addition, that code does not implement
complete error handling, partly because it requires very te-
dious and specific code to be written for each of the 16 states
of the underlying state machine of the system.

With the help of our translation tool, a much cleaner,
well-structured, high-level implementation of the BattleShip
game can be rewritten in roughly the same amount of source
code. The control-flow complexity is greatly reduced and the
code quality is significantly improved. Using the analysis
from the previous section, we estimate that d = 5, t = 16,
k = 4, and the increase of code size is within (d−1)tk = 256
lines. Therefore, we can expect that the translated code
could have approximately 800 lines. Out prototype does not
yet implemented all the optimizations mentioned in Section
5.4, so the translated code looks quite redundant: it has
more than 1000 lines of code and the expansion coefficient
k is between 7 and 8.

6.4 Limitations
Our code translator is still under development. In the cur-

rent stage, there are some limitations that the programmer
must be aware of.

First, the local variables are translated to class fields so
that recursive methods cannot be correctly translated. How-
ever, a recursive method need not to be translated as long as
it does not perform any communication operations. So we
are only limiting the methods that contain communications
to be non-recursive. In comparison, when the programmer
write the control-flow state machine by hand, the variables
shared among different states have to be stored in the class
fields anyway. In some sense, the translation is just simu-
lating how a programmer implements the control-flow state
machine. This limitation can be overcome by moving the
local variables of recursive methods into the control stack.
The translator only needs to know whether a method is re-
cursive before choosing the right resource allocation strat-
egy. The trade-off is that such control stack accesses may
severely hurt performance.

Second, we currently require that a call to a translated
method must be made in a single assignment statement like
“x = a.m();” so as to avoid the cases where method calls
are nested inside complicated expressions. This limitation



is merely syntactic and it only applies to method calls that
need to be translated. In the future we can add more com-
pilation rules to decompose the expressions and add vari-
ables for holding intermediate results in order to allow more
method calls to be nested in expressions.

7. RELATED WORK
Interestingly, there is a good analogy between smart cards

and web servers. In the early stage, both were designed to
store static data: the earliest smart cards were just memory
cards, and the earliest web servers were designed to process
static hypertext files. As they evolve, both are becoming ca-
pable of performing some nontrivial computation: the web
servers have server-side scripts and the smart cards have
card applets. Both have a command-response communica-
tion model: the client (host computer) sends a request to
the server (the card) and receives a reply. Similarly, they
experience the same control flow problems such as session
management. There has been much research about web con-
tinuations [4]. The Apache Cocoon project 1 allows web
applications to be written in the Flowscript language that
supports continuations, with a similar programming model
to our concurrent thread model. However, Java Card contin-
uations and web continuations differ in several aspects. The
web continuations can multiply and be invoked simultane-
ously [10], and the resource management for web continua-
tions is much more difficult. The web server simultaneously
handles requests from thousands of different sessions, but
the smart card only needs to deal with one host applica-
tion at a time. Our paper shows that saving and restoring
continuations on the Java Card is simple and practical.

This code translation tool was developed as part of the
PISCES project at the University of Pennsylvania. The
PISCES group studies Protocols and Implementations for
Smart-Card Enabled Software, with the goal of develop-
ing appropriate software engineering techniques for security-
critical systems built using smart cards. Previous work
has focused on designing open APIs for smart card appli-
cations [5]. Our ongoing work is examining the problem of
how to partition a system among the smart card, its ter-
minal, and possibly remote hosts, given the constraints on
resources and the need to protect confidential information.

8. CONCLUSION
We examined the control-flow difficulties in conventional

Java Card programming. The half-duplex APDU communi-
cation protocol induces the master-slave programming model,
which leads to a state-machine-based design pattern for card
applets, because a card program cannot interact with a host
inside method calls or loops. We argued that the underly-
ing communication model should not restrict the design of
high-level programming interface, and we proposed the con-
current thread model for future Java Card programming.
In this model, the card applet has an active thread that
communicates with the host computer via communication
primitives. Language-based control-flow structures can now
be used to control the interaction with the host, relieving
the programmers’ burden of coding up control-flow state
machines.

In existing Java Card environments, the lack of thread
support limits the application of the concurrent thread model.

1http://cocoon.apache.org

We proposed a code translation algorithm based on exist-
ing compilation techniques that converts programs written
in the concurrent thread model to conventional Java Card
programs in the master-slave model. The result is that the
developer can program the smart card using the concurrent
thread model without losing compatibility with the exist-
ing Java Card framework: the existing API can be reused
and the translated code can be installed and run on the card.
The translation tool improves the code quality of smart card
applications, while introducing acceptable space and perfor-
mance overheads.

Acknowledgments: The authors thank the other mem-
bers of the PISCES group, Rajeev Alur, Watee Arjsamat,
Carl Gunter, Andre Scedrov, Raman Sharykin, and Jason
Simas, for their suggestions and input on this work. Wa-
tee provided much help with the Java Card development
platform, and Raman did much of the programming on the
battleship implementation.

9. REFERENCES
[1] A. Appel. Compiling with Continuations. Cambridge

University Press, 1992.

[2] E. W. Dijkstra. Go to statement considered harmful.
Comm. of the ACM, 11(3):147–148, Mar. 1968.

[3] S. E. Ganz, D. P. Friedman, and M. Wand.
Trampolined style. In International Conference on
Functional Programming, pages 18–27, 1999.

[4] P. Graunke, S. Krishnamurthi, S. V. D. Hoeven, and
M. Felleisen. Programming the Web with high-level
programming languages. In European Symposium on
Programming, 2001.

[5] C. A. Gunter. Open APIs for embedded security. In
Proc. of the European Conference on Object-Oriented
Programming (ECOOP), 2003.

[6] P. H. Hartel and E. K. de Jong. A programming and a
modelling perspective on the evaluation of Java card
implementations. In I. Attali and T. Jensen, editors,
1st Java on Smart Cards: Programming and Security
(Java Card Workshop), volume LNCS 2041, pages
52–72, Cannes, France, Sep 2000. Springer-Verlag,
Berlin.

[7] A. Igarashi, B. Pierce, and P. Wadler. Featherweight
java. In Conference of Object-Oriented Programming,
Systems, Languages and Applications, volume 34 of
ACM SIGPLAN Notices. ACM Press, Oct. 1999.

[8] R. Kelsey, W. Clinger, and J. R. (Editors). Revised5

report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 33(9):26–76, 1998.

[9] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
1997.

[10] C. Queinnec. The influence of browsers on evaluators
or, continuations to program Web servers. ACM
SIGPLAN Notices, 35(9):23–33, 2000.

[11] L. Zheng, S. Chong, S. Zdancewic, and A. C. Myers.
Building secure distributed systems using replication
and partitioning. In IEEE 2003 Symposium on
Security and Privacy. IEEE Computer Society Press,
2003.


