
A Formal C Memory Model
Supporting Integer-Pointer Casts

Jeehoon Kang
Seoul National University, South Korea

jeehoon.kang@sf.snu.ac.kr

Chung-Kil Hur ∗

Seoul National University, South Korea
gil.hur@sf.snu.ac.kr

William Mansky
University of Pennsylvania, USA

wmansky@seas.upenn.edu

Dmitri Garbuzov
University of Pennsylvania, USA

dmitri@seas.upenn.edu

Steve Zdancewic
University of Pennsylvania, USA

stevez@cis.upenn.edu

Viktor Vafeiadis
Max Planck Institute for Software
Systems (MPI-SWS), Germany

viktor@mpi-sws.org

Abstract
The ISO C standard does not specify the semantics of many valid
programs that use non-portable idioms such as integer-pointer
casts. Recent efforts at formal definitions and verified implementa-
tion of the C language inherit this feature. By adopting high-level
abstract memory models, they validate common optimizations. On
the other hand, this prevents reasoning about much low-level code
relying on the behavior of common implementations, where formal
verification has many applications.

We present the first formal memory model that allows many
common optimizations and fully supports operations on the repre-
sentation of pointers. All arithmetic operations are well-defined for
pointers that have been cast to integers. Crucially, our model is also
simple to understand and program with. All our results are fully
formalized in Coq.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords C Memory Model, Integer-Pointer Cast, Compiler, Op-
timization, Verification

1. Introduction
The ISO C standard [5] famously does not give semantics to a sig-
nificant subset of syntactically valid C programs. Instead, many
programs exhibit implementation-defined, unspecified, or unde-
fined behavior, with the latter imposing no requirements on a con-
forming implementation. This has led to the somewhat contro-
versial practice of sophisticated C compilers reasoning backwards
from instances of undefined behavior to conclude that, for example,
certain code paths must be dead. Such transformations can lead to

∗ corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2738005

surprising non-local changes in program behavior and difficult-to-
find bugs [13, 14].

Accordingly, there have been numerous efforts to capture the
subtleties of the C standard formally, either by giving an alternative
language definition or a conforming implementation [2, 9, 11].

The C memory model has been of particular interest: cross-
platform low-level access to memory is a defining feature of C-
family languages and is essential for applications such as operat-
ing system kernels and language runtimes. However, subtle pointer
aliasing rules [6], reliance on implementation-specific behavior,
and the treatment of pointers to uninitialized memory makes rea-
soning about even single-threaded programs non-trivial.

One popular extension of the standard C memory model that has
not previously been formalized is the unrestricted manipulation of
pointers as integer values. While the language definition provides
an integer type uintptr t that may be legally cast to and from
pointer types, it does not require anything of the resulting values [5,
§7.20.1.4p1]. Nevertheless, there are many important use cases for
manipulating the representation of pointers in low-level code.

For example, casting pointers to integers is widely used in
the Linux kernel and JVM implementations to perform bitwise
operations on pointers. Another common usage pattern occurs in
the C++ standard library (std::hash), where the pointer’s bit
representation is used as a key for indexing into a hash table. This
is useful since taking a pointer is a cheap way to get a unique key.

The most straightforward way to support bit-level pointer ma-
nipulation is to adopt what is often called a concrete memory
model. This approach most closely resembles what the machine
is actually doing: pointers have the same representation as integer
values of the appropriate width, and they simply index into a single
flat array representing memory.

However, the combination of finite memory and allowing casts
of arbitrary integers to pointers invalidates many basic compiler
optimizations. Consider, for example, a function f that initializes a
local variable a and then calls some unknown external function g.
We might expect the compiler to deduce that the value of a is
unaffected by the call to g and perform constant propagation:

extern void g();

int f(void) {
int a = 0;
g();
return a;

}

→

int f(void) {
int a = 0;
g();
return 0;

}

→

int f(void) {

g();
return 0;

}

Using a simple concrete memory model, however, we have to
consider the possibility that g is able to “guess” the location of a in
memory and changes its value. This can happen if, for instance, our
semantics allocates memory deterministically and the caller of f
sets up the state of memory appropriately for g.

The compiler may further optimize the program by completely
removing the now unused local variable a. This latter transfor-
mation is again disallowed by concrete models because it might
change the behavior of the program: by virtue of there being one
fewer memory cells allocated, the call to g might succeed where
initially it exhausted memory.

In order to enable such compiler optimizations, most work on
verified compilation instead relies on logical memory models.
These models represent pointers as pairs of an allocation block
identifier and an offset within that block, where typically the set of
valid allocation block identifiers is infinite. In the above example,
the first optimization is allowed since there is no way to forge the
logical address of the variable a from those of other blocks. Also,
the second one is allowed since the memory is infinitely large.

Logical models allow most compiler optimizations, but cannot
support many low-level C programming idioms using casts be-
tween pointers and integers, treating programs containing them as
undefined (i.e., erroneous).

In this paper, we propose a quasi-concrete memory model
for C/C++ that combines the strengths of the aforementioned ap-
proaches. It gives semantics to programs that manipulate the bit-
level representation of pointers, yet permits the same optimizations
as logical models for code not using these low-level features. Cru-
cially, we achieve this without substantially complicating the proof
techniques required for a verified compiler while retaining a model
that is simple for the programmer to reason about.

The key technical ingredient for making this work is having two
distinct representations of pointer values, a concrete and a logical
one, and a process for converting between the two. By default,
a pointer is represented logically, and only when it is cast to an
integer type, is the logical pointer value realized to a concrete 32-
bit (or 64-bit) integer. When an integer is cast (back) to a pointer
value, it is mapped to the corresponding logical address.

The quasi-concrete model conservatively extends the logical
model. It gives semantics to strictly more programs than those sup-
ported by the logical model without changing the semantics of
those programs that do have semantics under the logical model.
Thus, any sound reasoning about programs in the logical model
also holds in the quasi-concrete model, but the quasi-concrete
model also supports reasoning about pointer arithmetic as in the
concrete model.

Finally, the quasi-concrete model is not intended to replace the
memory model in the C standard. Like the concrete and logical
models, it is a formal refinement of the (informal) C standard that
can be used for formally reasoning about programs and program
transformations (as in compiler verification).

Our contributions are:

• The first formal memory model that fully supports integer-
pointer casts and yet allows the standard compiler optimiza-
tions.
• A technique for proving program equivalence under our mem-

ory model, and its application to verify a number of standard op-
timizations that are difficult to verify in the presence of integer-
pointer casts.

All the proofs reported in this paper have been fully formalized
in Coq and can be found in the following project webpage.

http://sf.snu.ac.kr/intptrcast

2. Technical Background
In this section, we introduce a minimal C-like programming lan-
guage and review the concrete memory model (§2.1) as well
as CompCert’s logical model (§2.2), because our quasi-concrete
model builds on them. We then review behavioral refinement
(§2.3), a key definition used for proving compiler optimizations
correct.

To simplify the presentation, in this paper, we focus on handling
integer-pointer casts and do not discuss many of the orthogonal
aspects of C memory models. Specifically:

• We assume a 32-bit architecture: words are 4 bytes wide, and
the size of the address space is 232.
• We consider only integer and pointer values, and omit values of

other types such as float or char.
• We also omit subword arithmetic, and assume each address

stores a 32-bit value.
• We do not consider concurrency.

Except for concurrency, the other simplifications we made can
easily be lifted.

For concreteness, we consider the following simple C-like lan-
guage:

Typ ::= int | ptr
Bop ::= + | - | * | && | =
Exp ::= Int | Var | Global | Exp Bop Exp
RExp ::= Exp | malloc(Exp) | free(Exp) | (Typ) Exp

| input() | output(Exp)
Instr ::= Fid(Exp, . . . ,Exp); | Var = RExp | Var = *Exp

| *Exp = Exp | if (Exp) Instr else Instr
| while (Exp) Instr

Decl ::= Fid(Typ Var , . . . ,Typ Var)
{var Typ Var; Instr}

The input and output operations produce externally visible
events; all other operations are intended to model the corresponding
operations in C. By T we mean a list of T . For simplicity, we omit
return instructions and instead return values via pointer-valued
arguments to functions.

2.1 Concrete Model
Concrete memory consists of a 232-sized array of values, and a list
of allocated blocks, represented as pairs (p, n) of the block’s start-
ing address and its size. Loading from or storing to an unallocated
address raises an error (i.e., undefined behavior). Values are just
32-bit integers, since pointers are merely integers in the concrete
model. As a result, the concrete model natively supports integer-
pointer casts.

Mem
def
= (int32→ Val)× list Alloc

Alloc
def
= { (p, n) | p ∈ int32 ∧ n ∈ int32 }

Val
def
= { i ∈ int32 }

Memory allocation inserts a block into the list of allocated
blocks, whereas deallocation removes one. Overall, the list of al-
located blocks should be consistent:1

• If (p, n) is allocated, then ∅ 6= [p, p+ n) ⊆ (0, 232 − 1).
• If blocks (p1, n1) and (p2, n2) are distinct allocations, their

ranges [p1, p1 + n1) and [p2, p2 + n2) are disjoint.

1 These are a subset of malloc’s properties according to the C11 Stan-
dard [5]. For more details, see §7.22.3 paragraph 1 and §6.5.8 paragraph 5.

http://sf.snu.ac.kr/intptrcast

As we have seen, however, the concrete model does not support
standard compiler optimizations such as constant propagation and
dead allocation elimination in the presence of external function
calls. This is because the model does not provide a mechanism
for ensuring that a module has exclusive control over some part of
memory, thereby assuming that unknown code can read and update
the contents of every allocated memory cell.

2.2 CompCert’s Logical Model
In CompCert’s logical model [9, 10], memory consists of a finite
set of logical blocks with unique block identifiers. Each block is
a fixed-sized array of values together with a validity flag v that
indicates whether the block is accessible or has been freed. As
before, accessing a freed block raises an error. Values are either
32-bit integers or logical addresses. Here, a logical address (l, i)
consists of a block identifier l and an offset i inside the block.

Mem
def
= BlockID⇀fin Block

Block
def
= { (v, n, c) | v ∈ bool ∧ n ∈ N ∧ c ∈ Valn }

Val
def
= { i ∈ int32 }] { (l, i) ∈ BlockID× int32 }

An important advantage of the logical model over the concrete
one is that it allows functions to have exclusive control over a
logical block as long as they do not allow its address to escape. The
reason is that it is not possible to manufacture the logical address of
an already allocated block. This property guarantees the correctness
of many useful optimizations, such as constant propagation across
function calls and dead allocation elimination.

A secondary advantage is that programs have infinite memory,
rendering their allocation behavior unobservable, which in turn
makes it easy for compilers to remove dead allocations.

Apart from that logical models have a slightly more complicated
semantics, their main disadvantage is that they do not support
integer-to-pointer casts very well. As a result, CompCert has very
weak support for integer-pointer casts. Generally, they are treated
as nops (i.e., the identity function) rather than undefined (i.e.,
erroneous), and thus variables of integer (or pointer) types can
contain both integers and logical addresses. In CompCert’s higher-
level languages (CompCert C and Clight), once a pointer is cast
into an integer, any arithmetic on that integer returns an unspecified
value. In its lower-level languages (Cminor, RTL, etc.), however,
some of the integer operations (namely, addition, subtraction, and
equality tests) are also well-defined for pointer values in special
cases. More specifically, for instance, the addition of an integer to
an address, the subtraction between addresses when they are in the
same logical block, and the equality test between an address and
NULL are well-defined.

2.3 Behavioral Refinement
The standard notion of compiler correctness is behavioral refine-
ment, which states that the set of target program behaviors must be
a subset of the set of source program behaviors. We consider sets
of behaviors as opposed to single behaviors because in general a
program may have multiple behaviors due to non-determinism.

Given a set of I/O events that the program may generate, a
behavior is one of the following three forms:

1. A terminating execution producing a finite sequence of I/O
events, e1, · · · , en, term

2. A diverging execution that has produced only a finite sequence
of I/O events, e1, · · · , en, nonterm.

3. A diverging execution producing an infinite sequence of I/O
events, e1, · · · , en, · · · .
We regard the undefined behavior as described in the C11 stan-

dard as the set of all behaviors. This captures the intuitive prop-

erties of compilers on undefined behavior: if the target program’s
behavior is undefined, then the source program’s behavior is also
undefined. If the source program’s behavior is undefined, then com-
piler can choose any program as its result.

Then what is the set of behaviors of out of memory?2 Intuitively,
we should allow the target program to run out of memory even if
the source program does not, because important compiler trans-
formations such as register allocation may increase the program’s
memory requirements. Dually, since running out of memory is not
that serious a problem for programmers as is genuine undefined
behavior (e.g., accessing freed memory), the target behavior of a
source program running out of memory should not be arbitrary, but
should match the source behavior and also run out of memory.

Therefore, CompCertTSO [12] models out of memory as the
empty set of behaviors, that is no behavior. However, what hap-
pens if there were I/O events prior to the out-of-memory error?
Discarding I/O events before running out of memory is absurd: the
target program should always perform a prefix of the events the
source program could have performed. To handle this, CompCert-
TSO also observes partial behaviors, possibly before discarding
behavior due to running out of memory:

4. A partial execution of the program that has produced a finite
sequence of I/O events, e1, · · · , en, partial.

As before, refinement is defined as inclusion of the set of (possibly
partial) behaviors of the target program into that of the source
program.

In this paper, we follow CompCertTSO’s approach of handling
out of memory. However, unlike CompCertTSO, where only the
target language can run out of memory, our source language can
also run out of memory due to pointer-to-integer casts, as we
explain below.

3. The Quasi-Concrete Model
Our quasi-concrete model is simply a hybrid of the fully concrete
model and the fully logical model. However, there are several is-
sues with how to combine the two models to minimize their dis-
advantages. In this section, we introduce the quasi-concrete model
and discuss how we address the design issues at a high level. More
detailed discussions with concrete examples will follow in the sub-
sequent sections. All the optimization examples presented in this
section are performed by clang -O2.

3.1 Memory Representation
Our quasi-concrete model slightly generalizes the logical model to
allow both concrete blocks (as in the concrete model) and logical
blocks (as in the logical model). For this, we add one more attribute
p to a logical block, which is either undefined or a concrete address.
The attribute p indicates whether the block is logical (when p is
undefined) or it is a concrete block starting at the address p (when
p is defined).

Block
def
= { (v, p, n, c) | p ∈ int32] {undef}

∧ v ∈ bool ∧ n ∈ N ∧ c ∈ Valn }
We say that an address (l, i) is concrete when the block l is a
concrete block starting at an address p. In this case, the address
(l, i) can be cast to the integer p + i and vice versa (see §4 for
details).

2 In C11 Standard [5], malloc returns 0 in case of out-of-memory [§7.22.3
paragraph 1]. However, this semantics does not justify dead allocation
eliminations. The reason is that, for example, if a dead malloc is eliminated,
then the source may have more allocated blocks than the target has and thus
a subsequent allocation may return 0 in the source but return a valid pointer
in the target.

a = (a - b) + (2 * b - b);
q = (ptr) a;
*q = 123;

→ q = (ptr) a;
*q = 123;

Figure 1. Arithmetic Optimization Example I

As in the concrete model, the list of allocated (i.e., valid) blocks
with concrete addresses must be consistent: they should not in-
clude 0 or the maximum address, and their ranges should be dis-
joint. Logical blocks have no such requirement, since they are non-
overlapping by construction.

In the subsequent sections, we discuss several issues that arose
during the design of our quasi-concrete model and justify our
solutions to the issues.

3.2 Combining Logical and Concrete Blocks
Our quasi-concrete model is a hybrid model that allows both con-
crete and logical blocks to coexist. Though we allow both, concrete
and logical blocks still have their own disadvantages: concrete ones
do not provide exclusive ownership and logical ones do not allow
casting to integers.

Thus, one may naturally ask why we do not develop a new no-
tion of block that has the advantages of both concrete and logical
blocks. Our answer is that such a model would not justify other im-
portant optimizations such as simplification of integer operations,
while our quasi-concrete model justifies them.

For instance, consider a model in which some blocks have both
concrete addresses and some extra permission information, so that
we can tell when a block is exclusively owned. In such a model,
we would like to know that we do not lose permission information
when a pointer is cast to an integer, even if integer operations
are performed on it (e.g., base64 encoding a pointer and then
base64 decoding it).

However, this prevents the optimization presented in Figure 1.
Suppose the variable b contains an integer with permission to
access some valid block l, and a contains an integer without any
permission that is equal to the concrete address of the block l.
Then the source program successfully stores 123 into the block l
because q has the relevant permission, whereas the target program
fails because q does not have the permission. See §6.1 for how to
verify this optimization in our quasi-concrete model.

Furthermore, while our quasi-concrete model does disallow
some optimizations based on exclusive ownership (since once a
block has become concrete it is non-exclusive for the remainder
of the execution), we expect that our model would not lose many
optimization opportunities in practice. This is because exclusively
owned blocks are mostly local or temporary ones, so that their con-
crete addresses are unlikely to be used by integer operations. See
§3.7 for further details.

3.3 Choosing Concrete Blocks
As discussed in §2.1, using concrete addresses for memory loca-
tions provides no guarantees of ownership, and thus prevents cer-
tain optimizations. In the worst case, one function could guess the
concrete address of a supposedly-private resource of another func-
tion, and then forge a pointer to that address and modify it. In order
to maximize the range of optimizations that can be performed, a
hybrid model should assign concrete addresses to as few blocks as
possible.

The natural choice, then, is to make concrete only those blocks
whose concrete addresses are really used in some operation. If we
perform some computation with the value of a pointer that only
makes sense when that value is an integer (e.g., comparing it with
an integer value) then the target of that pointer must have a real ad-
dress. In all other cases, even if the address of the block is taken,

foo(int a) {
a = a & 123;
// return a;

}
· · ·
a = (int) p;
foo(a);
bar();

→

foo(int a) {
a = a & 123;
// return a;

}
· · ·
a = (int) p;

bar();

Figure 2. Dead Code Elimination Example

p = malloc (1);
*p = 123;
bar();
a = *p;
hash_put(h, p, a);

→

p = malloc (1);
*p = 123;
bar();
a = *p;
hash_put(h, p, 123);

Figure 3. Ownership Transfer Example

we could conceivably use a logical value and maintain the owner-
ship guarantees of the logical model. However, this approach has
a serious problem: it does not justify some important integer opti-
mizations, such as a dead code elimination presented in Figure 2.

Suppose the pointer p contains a logical block l. In the source
program, since its concrete address is used in the function foo, the
block lmust be given a concrete address. In the target, the read-only
call to foo is optimized away, and the block l may not be given
a concrete address. That is, the source may have more concrete
blocks than the target. Thus, if bar() accesses an arbitrary concrete
memory location, then that access might succeed in the source but
fail in the target. Since a failure is possible in the target that did not
exist in the source, the optimization has introduced new behavior,
and is invalid.

Instead, we make concrete those blocks whose addresses are
cast to integers, even if the cast integers are not used in any opera-
tion. This gives us a simple way to determine which blocks should
be made concrete, and avoids making integer operations memory-
relevant (see §6.2 for how to verify this example in the quasi-
concrete model). In practice, this choice also allows most of the
optimizations that would be performed in the minimally-concrete
model (see §3.7 for details).

3.4 Assigning Concrete Addresses
Once we know which blocks will need concrete addresses, we
need to decide when during a program’s execution to assign those
addresses.

One approach would be to make such a decision as early as pos-
sible (i.e., at allocation time). We allocate blocks as either logical or
concrete, and cause concrete operations (namely integer casts) on
logical blocks to raise out-of-memory-type behavior (i.e., no be-
havior). Since it is difficult to determine whether a block will need
a concrete address, we would need to choose the kind of block to
allocate non-deterministically. However, this would add unintuitive
failures to our model, effectively allowing out-of-memory-type be-
havior when the allocator chooses the wrong kind of block even
when concrete blocks are available.

Our solution is to instead allocate all blocks as logical blocks,
and assign concrete addresses to logical blocks at casting time. This
casting can result in out of memory only when there is not enough
free concrete space. By waiting to make blocks concrete until we
reach the casting point, we can remove the non-determinism about
whether the blocks are concrete or logical. That is, blocks are
always logical until the first casting point, and concrete afterward.

d1 = a + (b - c1);
d2 = a + (b - c2);

→
t = a + b;
d1 = t - c1;
d2 = t - c2;

Figure 4. Arithmetic Optimization Example II

This also allows ownership transfer optimizations such as the
constant propagation example in Figure 3, in which pointers are
privately owned up until some point and then become publicly
available. In this example, the allocated block is initially logical and
becomes concrete when cast to an integer (possibly in the call to
hash put). At this point, the ownership of the block is transferred
from private to public. Since a is treated as logical up until the
call to hash put, we can perform constant propagation as normal
before the call. (For formal details, see §6.3.)

On the other hand, the above model with non-deterministic
allocation does not allow such optimizations. The reason why this
optimization is not allowed in the above model is as follows. When
the allocated block in the target is concrete, the corresponding
allocation in the source must be concrete; otherwise, when the
function hash put casts the address of the block to an integer
the source program raises no behavior, while the target succeeds.
Thus, you lose the ownership over the block and cannot justify the
constant propagation due to the presence of bar().

However, note that this may not be a decisive example, since this
optimization is not used in all real-world compilers (it is performed
by clang -O2 and higher, but not by gcc -O2 or higher).

3.5 Operations on Pointers
In §3.3, we explained that the fewer blocks we make concrete, the
more we can take advantage of the ownership guarantees provided
by logical blocks. We have seen that operations that require pointers
to have integer values force a lower bound on the number of blocks
that must be made concrete. As such, we can improve our model by
reducing the number of operations that require concrete addresses.
We take our cue from CompCert’s memory model, in which several
arithmetic operations, such as integer-pointer addition and subtrac-
tion of pointers from pointers in the same block, are well-defined
even in the absence of a concrete address (see §2.2).

One disadvantage of CompCert’s approach to arithmetic opera-
tions is that it invalidates some important arithmetic optimizations,
such as the optimization presented in Figure 4, by introducing log-
ical addresses as possible values for integer-typed variables. To see
this, suppose that the integer variables a, b, c1, and c2 contain the
same logical address (l, 0). The source program shown will suc-
cessfully assign (l, 0) to the variables d1 and d2, because b - c1
and b - c2 evaluate to 0. However, in the target, the variable t
gets an unspecified value, because the addition of two logical ad-
dresses is undefined. Thus, the target has more behaviors than the
source, and the optimization is invalid.

We avoid this disadvantage through the use of type checking. As
in the LLVM IR, we use types to ensure that integer variables con-
tain only integer values. This allows us to justify the full range of
arithmetic optimizations on integer variables (see §6.4 for details),
while also giving semantics to the operations on logical addresses
when possible. See §4 for an example of type-dependent semantics
of arithmetic operations in our model.

3.6 Dead Cast Elimination
As a result of our design decisions thus far, casts have become
important effectful operations in our model, determining the points
at which logical blocks are given concrete addresses. This leads
to a potential problem with dead code elimination. Since casting
a pointer to an integer has a side effect in memory, removing

foo(ptr p, int n) {
var ptr q, int a, r;
q = malloc (n);
a = (int) p;
r = a * 123;
// return r;

}

→

foo(ptr p, int n) {
var ptr q, int a, r;
q = malloc (n);
a = (int) p;
r = a * 123;
// return r;

}

· · ·
foo(p, n);
bar();

→
· · ·

bar();

Figure 5. Dead Cast Elimination Example

dead cast operations is not obviously justified in the quasi-concrete
model.

However, in fact, we can solve this problem and support dead
cast elimination in our framework. The solution stems from our
model’s place in a broader compilation framework. We expect the
quasi-concrete model to be used for mid-level intermediate rep-
resentations in a compiler, while the back-end low-level language
will use a fully concrete model. In the quasi-concrete model, cast-
ing a pointer to an integer has a side effect on memory, and we
cannot eliminate cast operations. In the fully concrete model, how-
ever, a cast from pointer to integer is a no-op, and such casts can
always be eliminated. Thus, we can perform dead-cast-elimination
optimizations in the backend.

However, we still have a problem when dead cast is combined
with dead allocation. In the concrete model allocations of dead
blocks cannot be removed, because otherwise an arbitrary access
in the source may succeed but fail in the target.

Our solution to this problem is to remove dead casts combined
with dead blocks during the translation from the quasi-concrete
to the fully concrete model. For instance, consider the dead call
elimination optimization presented in Figure 5. This optimization is
not valid when both the source and the target use the quasi-concrete
model, due to the cast operation in the function. It is also not valid
when both the source and the target use the concrete memory, due
to the allocation in the function. However, the optimization is valid
when the source uses the quasi-concrete model and the target uses
the fully concrete model (see §6.5 for formal details).

Although our solution does not justify the removal of all dead
casts, it should cover most of them in practice (see §3.7).

3.7 Drawbacks of the Quasi-Concrete Model
Although our quasi-concrete model is designed to allow as many
optimizations as possible, it still disallows some reasonable opti-
mizations. In particular, if a function newly allocates a block and
casts its address to an integer, then it loses the ownership guaran-
tees on the block. Even if the block is still effectively locally owned,
once its address is cast to an integer, we can no longer perform op-
timizations that rely on its locality, such as dead code elimination
or constant propagation.

However, we think that blocks whose addresses are cast to
integers in actual programs are unlikely to be completely local.
There are few reasons to cast a local pointer to an integer unless
the address will be shared with other code sections.

For instance, consider the following example of a simple pro-
gram in which we might want to perform a locality optimization
even after casting a pointer to an integer. The program is a variant
of the example in §3.6, in which we cast q into an integer instead
of p, so that in our model the local block becomes concrete and can-
not be eliminated. Although this optimization cannot be performed
in our framework, the function foo is nothing but an unpredictable
number generator, and is unlikely to occur in real programs.

foo(ptr p, int n) {
var ptr q, int a, r;
q = malloc (n);
a = (int) q;
r = a * 123;
// return r;

}

→

foo(ptr p, int n) {
var ptr q, int a, r;
q = malloc (n);
a = (int) q;
r = a * 123;
// return r;

}

· · ·
foo(p, n);
bar();

→
· · ·

bar();

Another, more reasonable limitation of our model occurs when
one privately uses a local block for some time, then casts its address
to an integer and releases it to the public (e.g., by using the integer
as a key for hash table). Consider the following example, which is
a variant of the example in §3.4, where we cast the address of a
newly allocated block into an integer and use the integer as a key
for hash table:

· · ·
p = malloc (1);
*p = 123;
b = (int) p;
bar();
a = *p;
hash_put(h, b, a);
· · ·

→

· · ·
p = malloc (1);
*p = 123;
b = (int) p;
bar();
a = *p;
hash_put(h, b, 123);
· · ·

This constant propagation optimization is invalid in the quasi-
concrete model because the newly allocated block is cast to an
integer before the call to bar. (It becomes valid if the cast is moved
after the call to bar, though.) However, while ownership transfer
optimizations of this sort are indeed performed by clang -O2,
they are not performed by gcc -O2 or higher, and can be viewed
as minor optimizations that are not often used.

4. Language Semantics
This section describes how to use the ideas of the quasi-concrete
memory model to give semantics to the C-like language of §2.

NULL pointer We represent the NULL pointer as the logical
address (0, 0) and initialize the block 0 as follows:

m(0) = (v, p, n, c) with v = true, p = 0, n = 1.

The only special treatment of the block 0 is that we (i) raise
undefined behavior when accessing it via a load or a store; and (ii)
do nothing when freeing it (because free(0) is allowed in C).

Casting between Integers and Pointers We first define casting
between integers and logical addresses via reification and validity
checking. The reification function ↓m under memory m converts a
logical address to a corresponding integer if its block in memory
has a concrete address. The validity predicate validm checks if a
logical address is inside the range of a valid block.

(l, i)↓m
def
= p+ i if m(l) = (v, p, n, c) ∧ p is defined

validm(l, i) iff m(l) = (v, p, n, c) ∧ v = true ∧ (0 ≤ i < n)

Casting a logical address (l, i) into an integer first realizes the
block l and then reifies the address (l, i) if it is valid; otherwise,
raises undefined behavior. Casting an integer i yields a valid log-
ical address (l, j) that is reified to i if there is such an address;
otherwise, raises undefined behavior. Note that an integer is cast to
a unique address if it succeeds.

cast2intm(l, i)
def
= (l, i)↓m if validm(l, i) {after realizing l}

cast2ptrm(i)
def
= (l, j) if validm(l, j) ∧ (l, j)↓m = i

Computing with Logical Values We now give semantics to the
binary operations based on the static types of their operands. When
both operands are of type int, we perform ordinary integer addi-
tion, subtraction, etc. When one or more arguments are of type ptr,
we give the operations special semantics for the well-defined cases
and raise undefined behavior otherwise:
(p + a,m) ⇓ (l, i1 + i2) if p = (l, i1) ∧ a = i2
(a + p,m) ⇓ (l, i1 + i2) if a = i1 ∧ p = (l, i2)
(p - a,m) ⇓ (l, i1 − i2) if p = (l, i1) ∧ a = i2
(p1 - p2,m) ⇓ i1 − i2 if p1 = (l, i1) ∧ p2 = (l, i2)
(p1 = p2,m) ⇓ i1 = i2 if p1 = (l, i1) ∧ p2 = (l, i2)
(p1 = p2,m) ⇓ false if p1=(l1, i1) ∧ p2=(l2, i2) ∧ l1 6= l2

∧ validm(l1, i1) ∧ validm(l2, i2)

This definition of equality is a refinement of the pointer equality
given in the ISO C standard [5]; for instance, it allows us to con-
clude that p = p even when p is not a pointer to an allocated block,
while in the C standard the result of this comparison is undefined.

Quasi-Concrete and Concrete Semantics Using these defini-
tions, we can give the usual operational semantic definitions to
our language constructs, and perform memory operations (loads,
stores, allocations, and casts) in the quasi-concrete memory model.
Static type checking allows us to split variables into pointer-typed
variables (whose values are always logical addresses and treated
as described above) and integer-typed variables (whose values are
always ordinary integers and require no special handling).

We also give the language a purely concrete semantics and use
it as a low-level intermediate language with the concrete memory.
In this semantics, all memory blocks are realized and all values
are just integers, interpreted as either integer values or physical
addresses of memory cells.

5. Reasoning Principles
In this section, we give a high-level overview of our reasoning
principles with a running example.

5.1 Running Example & Informal Verification
Consider the following example transformation, which is indeed
performed by “clang -O2”. This transformation involves four dif-
ferent optimizations: constant propagation (CP), dead load elimi-
nation (DLE), dead store elimination (DSE), and dead allocation
elimination (DAE).

foo(ptr p) {
var ptr q, int a;

1: q = malloc (1);
2: *q = 123;
3: bar(p);
4: a = *q;
5: *p = a;

}

→

foo(ptr p) {

// DAE
// DSE

bar(p);
// DLE

*p = 123; // CP
}

We will argue that at each line in the two versions of foo (source
and target), the effects of the instruction executed (if any) are
equivalent. To do so, we will assume an initial relationship between
the memory of the source and target programs, and show that some
variant of that relationship persists throughout the function, relying
on any call to other functions to maintain a similar relationship.

This relationship will designate one section of each memory as
public, and require that related locations in the source and target
public memories have equivalent values; it will also designate a
private section of each memory, such that the source program can
make changes to its private memory when the target does not make
corresponding changes and vice versa. For the technical details of
this relation and our notion of equivalence, see §5.2.

(a) (b)

(c) (d)

Figure 6. Memory Invariants for the Running Example

We begin at line 1 by assuming the following conditions on the
memory of the source and target programs (see Figure 6 (a)):

assume (equivalent arguments) the parameter p contains equiva-
lent arguments vsrc in the source and vtgt in the target;

assume (equivalent public memories) there are a set of memory
blocks mpub:src in the source and mpub:tgt in the target that are
equivalent and publicly accessible by arbitrary functions;

assume (source private memory) there is a disjoint set of blocks
mprv:src in the source, each of which is exclusively owned by a
single function;

assume (target private memory) there is a disjoint set of blocks
mprv:tgt in the target, each of which is exclusively owned by a
single function.

After executing line 1, we add the newly allocated block (call it l)
to the private source memory mprv:src. It is important to note that
we can add the block l to the private source memory because it
is a fresh logical block and thus exclusively owned by foo. After
executing line 2, the block l contains 123 (see Figure 6 (b)).

At line 3, we guarantee that the function calls to bar are equiv-
alent as follows:

guarantee (equivalent arguments) the arguments vsrc and vtgt to
bar are equivalent;

guarantee (equivalent public memories) mpub:src and mpub:tgt,
which are equivalent and publicly accessible;

guarantee (source private memory) each location in mprv:src]
[l 7→ 123], is exclusively owned by a single function;

guarantee (target private memory) each location in mprv:tgt is ex-
clusively owned by a single function.

When the calls to bar return, we can assume that the new public
memories are equivalent to each other (though they may not be the
same as the previous public memories), and the private memories
are untouched (see Figure 6 (c)):

assume (equivalent public memories) we have new public mem-
ories m′pub:src and m′pub:tgt, which are evolved from mpub:src and
mpub:tgt (see §5.3 for the definition of memory evolution), and
are equivalent and publicly accessible;

assume (source private memory)mprv:src][l 7→ 123] is unchanged;

assume (target private memory) mprv:tgt is unchanged.

At line 4, we load the value 123 from the source’s private
memory and store it in the variable a. At line 5, in the source, we
store the value of a, which is 123, in the memory cell located at
the address vsrc. In the target, we store the constant 123 in the cell
at vtgt. Since we stored equivalent values at equivalent locations
vsrc and vtgt, we will have equivalent public memoriesm′′pub:src and
m′′pub:tgt, while leaving the private memories unchanged.

Finally, we return to the callers of foo with (see Figure 6 (d))

concrete block

logical block

Figure 7. Memory Invariants for Quasi-Concrete Model

guarantee (equivalent public memories) m′′pub:src and m′′pub:tgt that
are evolved from mpub:src and mpub:tgt, and are equivalent and
publicly accessible;

guarantee (source private memory) mprv:src;

guarantee (target private memory) mprv:tgt,

where we can ignore the block l because it is not going to be used
any more. Note that we here guarantee foo returns with the same
private memories it was given initially, as we assumed the same
property for the function bar after line 3.

5.2 Memory Invariants
As informally discussed above, we prove program refinement us-
ing a memory invariant that places conditions on public memories
(which must be equivalent in the source and target programs) and
private memories (which can differ between them). We now for-
mally define the notion of memory equivalence used in our infor-
mal example, and the conditions on the private memories.

The idea of memory equivalence is a simplification of Comp-
Cert’s memory injection [10]. Our conditions for concrete blocks
are inspired from CompCertTSO’s support for finite memory [12].
See §7 for more comparisons.

Memory Equivalence We define a more relaxed notion of equiv-
alence than simple equality, which would be too strong in the pres-
ence of (unrelated) private memories. We say that a set of blocks
msrc in the source is equivalent to a set of blocks mtgt in the target
when they satisfy the following conditions. First, there should be a
bijection, say α, between the block identifiers in msrc and those in
mtgt. Second, corresponding blocks (i.e., those related by α) should
have the same size and validity, and the values they hold at each
offset should be equivalent. Values are equivalent (w.r.t. α) when
either both are the same integer, or they are logical addresses that
are at the same offset in corresponding blocks (w.r.t. α). Whenmsrc
and mtgt are equivalent in this sense, we write msrc 'α mtgt.

The condition on the concrete addresses of corresponding
blocks merits further explanation. We have four possible cases re-
garding whether two corresponding blocks are concrete or logical
(see the public side of Figure 7). The first case in the figure (i.e.,
source: logical, target: logical) obviously should be allowed. The
second case (i.e., source: concrete, target: concrete) should also be
allowed but only when the concrete addresses coincide.

The third case (i.e., source: concrete, target: logical) should not
be allowed. To allow this case would be to allow the source memory
to contain more concrete blocks than the target, which leads to two
problems: (i) an arbitrary concrete memory access may succeed in
the source but fail in the target; and (ii) a pointer-to-integer cast
may raise out-of-memory in the source but succeed in the target.
In both cases, the target may have more behaviors than the source,
which is disallowed. On the other hand, the final case (i.e., source:
logical, target: concrete) is allowed because the situation is exactly
the opposite: the source may have more behaviors than the target,
which is allowed.

Private Memory For blocks in private memories, we have four
possible cases regarding whether the block is in the source or the
target, and whether the block is concrete or logical (see private side
of Figure 7). All the cases are allowed except for source private

memory blocks that are concrete, for the same reason that blocks
that are concrete in the source and logical in the target are not
allowed in memory equivalence: the source memory should not
contain more concrete blocks than the target memory.

Memory Invariants A memory invariant β consists of (i) a bi-
jection α between their block identifiers, (ii) the source’s private
memory mprv:src, and (iii) the target’s private memory mprv:tgt. An
invariant β = (α,mprv:src,mprv:tgt) holds on a pair of memoriesmsrc
and mtgt when they contain the private sections mprv:src and mprv:tgt
and some public sections mpub:src and mpub:tgt such that:

(msrc ⊇ mpub:src]mprv:src) ∧ (mtgt ⊇ mpub:tgt]mprv:tgt) ∧
mpub:src 'α mpub:tgt

where] and ⊆ are the disjoint union and the subset relation.

5.3 Proving Simulation
We are now ready to present our reasoning principle formally. Our
basic approach is to verify programs via local simulation in the
style of [4].

A function, say foo, in the source and target is locally simulated
if it satisfies the following conditions. First, consider a typical
lifecycle of the source and target functions:

foo(..) { foo(..) { // βs

... ... // βc βsvβc
bar(..); bar(..); // βr βcvβr ∧ βc=prvβr

... → ... // β′c βrvβ′c
gee(..); gee(..); // β′r β′cvβ′r ∧ β′c=prvβ

′
r

... ... // βe β′rvβe ∧ βs=prvβe
} }

Here boxed conditions are assumed and the others are guaranteed.
First, in foo, unknown functional calls such as bar(..) and

gee(..) should be synchronized (i.e., when the target calls bar,
the source should call bar as well). Note that when a known
function is called, the verifier can either step into the called function
and reason about its code, or treat it as an unknown function call.

Next, at the entry point of foo, we assume that we are given
memories satisfying a given invariant βs, and equivalent arguments
w.r.t. the bijection in βs. Then, we execute the code of foo in
the source and the target until the first unknown function call to
bar(..). Here we have to show that there is some invariant βc
that holds on the current memories and that the arguments to the
function bar are equivalent w.r.t. the bijection in βc.

Here, we also have to show that the current memories are
evolved from the memories given initially by showing that the
current invariant βc is a future invariant of the initial one βs (de-
noted βs v βc). We say that βc is a future invariant of βs when
satisfying the following conditions, which rule out changes to the
memory that cannot be caused by the language’s operational se-
mantics. First, the bijection in βc should include the bijection of
βs because logical blocks cannot be removed during execution (a
block becomes invalid rather than removed when it is freed). Sec-
ond, the other conditions on the public memories in βs and βc are
that (i) the size of a block does not change between βs and βc,
(ii) an invalid block in βs cannot become valid in βc, and (iii) a
concrete block in βs cannot become logical in βc. However, it is
important to note that the contents of public memories can change
between βs and βc because the operational semantics allows to
update values in memory.

Then, we consider the case when the unknown function suc-
cessfully returns. We can assume that the memories at return time
also satisfy some future invariant βr. We can also assume that the

function bar does not change the private memories in βc (denoted
βc =prv βr) because there is no way for bar to access them in our
quasi-concrete model.

We continue through the function, evolving our invariant at
non-call steps and performing similar reasoning at other call sites
such as gee(..). Finally, when foo returns to its caller, we have
to show that there is some future invariant βe that holds on the
current memories. Furthermore, we have to show that we did not
change the private memories given in the initial invariant βs (i.e.,
βs =prv βe). This condition is necessary because, as seen above,
we assume that this property holds at the end of any other function
call. In this way, we construct a local simulation proof for the foo.

6. Verification Examples
In this section, we show how to verify the examples shown in §3.
All results here are fully formalized in Coq.

6.1 Arithmetic Optimization I
Consider the transformation in Figure 1. If we assume that integer
variables only contain integer values, not logical addresses, the
instruction a = (a - b) + (2 * b - b) has no effect on the
value of a and is equivalent to no operation, so the optimization
is trivially correct.

How do we know that integer variables only contain integer
values? The straightforward answer is that our language is statically
type-checked, as in the LLVM IR. However, the key reason why
this is possible is that in the quasi-concrete model we actually turn
logical addresses into integers when they are cast to int, rather
than placing logical addresses in integer variables. Also, when we
load a value from memory to an integer variable (resp. a pointer
variable), if the loaded value is a logical address (resp. an integer
value), we raise undefined behavior (i.e., error). In other words,
the quasi-concrete model induces a form of dynamic type checking
in languages that use it. This allows us to verify integer arithmetic
optimizations as in this example.

6.2 Dead Code Elimination
Consider the transformation in Figure 2. This example is similar to
the previous one. Since we can assume that integer-typed variables
contain only integers, the execution of the call foo(a) does not
have any side effects. Furthermore, because we know the code of
the function foo, we do not need to treat it as an unknown function
call. Rather, we just step into the code of the function foo and
execute it in the source.

6.3 Ownership Transfer
Consider the transformation in Figure 3. This example is similar to
the running example in §5.1.

Assume that the first invariant below holds before the malloc.
After allocating blocks ls in the source and lt in the target, and
storing 123 in both blocks, we can move the blocks ls and lt into the
private sections of the invariant because they are logical and disjoint
from the public sections, yielding the second invariant below. Next
we call the function bar. When it returns, we can assume that the
third invariant holds (i.e., the private sections are untouched). After
loading, the variable a will contain 123, since p contains the logical
address (ls, 0) in the source and (lt, 0) in the target.

Next, when we call hash put, we have to make sure that the ar-
guments are equivalent. The first arguments are equivalent because
we assume that we start with equivalent values in variables, and the
third arguments are equivalent because a contains 123. To show that
the second arguments, (ls, 0) and (lt, 0), are equivalent, we move
the blocks from the private sections to the public section and extend
the bijection α′ to relate ls and lt) (the fourth invariant below). Such

ownership transfer from the private sections to the public section is
allowed because the future invariant relation (v) requires only the
bijection to be non-decreasing, not the private sections.

6.4 Arithmetic Optimization II
We can easily verify the transformation in Figure 4 for the same
reason as in §6.1: because we can assume that all integer variables
contain integer values.

6.5 Dead Cast Elimination
Consider the transformation in Figure 5, in the case in which
the source uses the quasi-concrete model and the target uses the
concrete model.

We begin by assuming that the first invariant below holds before
the call to foo, where the variable p contains equivalent addresses
(ls, i) in the source and (lt, i)↓m in the target. Note that the block lt
is concrete, since the target is using the fully concrete model. After
the allocation of a block, say l′s, in foo in the source, we move it to
the source’s private memory, yielding the second invariant below.
Here it is important to note that if the source was using the concrete
model, we could not move the block l′s into the private section
because l′s would be concrete, which would invalidate our proof.

After the cast, the block ls becomes concrete, yielding the third
invariant below. Here it is important to note that if the target lan-
guage was using the quasi-concrete model and lt were logical, then
we would produce an invariant in which ls is concrete and lt is log-
ical, which would be an invalid invariant. After foo returns, we
simply drop the block l′s from the source private section because
we do not use it, yielding the fourth invariant below. Then we can
proceed to verify the rest of the code.

6.6 Identity Compilers
As a sanity check for our reasoning principles, we wrote an identity
compiler from our language with the quasi-concrete model to itself,
and a simple compiler from our language with the quasi-concrete
model to the same language with the concrete model. The latter
compiler just eliminates dead casts of the form = (int) p.
We successfully verified these two compilers in Coq using our
reasoning principles.

7. Discussion and Related Work
The quasi-concrete model refines the C standard by giving se-
mantics to more programs involving pointer operations. We in-
tend to use this model for compiler verification tasks, extending the
range of common optimizations that can be verified. Ultimately, we
would like to build a verified translation validation framework for
LLVM that supports all commonly-used features of C. We would
also like to integrate our model with CompCert and use it to jus-
tify new CompCert optimizations. We believe that our ideas are
readily applicable to CompCert(TSO) and related projects like Vel-
lvm [15, 16] because our memory model and notion of memory
invariant are technically very close to CompCert’s. (Vellvm also
uses CompCert’s memory model.) Essentially, all that would have
to change in the proofs are the cases handling pointer to integer
casts.

Additional C language features There are numerous other C lan-
guage features that have some interaction with the memory model.
Some of them, such as indeterminate values [5, §3.19.2p1], dan-
gling pointers [5, §6.2.4p2], and infinite loops with no side-effects
[5, §6.8.5p6], have semantics that are largely orthogonal to the
pointer realization used in our quasi-concrete model. Similarly, our
model explicitly allows unsafely derived pointers, which are per-
mitted in C11 and implementation-defined in C++11 [5, §3.7.4p4].
We allow them in order to support low-level programming idioms
such as XOR linked lists and compressed oops in HotSpot JVM.

Our paper does not directly address threads, so we cannot claim
with certainty that the model extends to handle them. However, we
see no obstacles in this direction, and the quasi-concrete model
is similar to CompCertTSO, which does support a weak memory
model and threads, so we are optimistic that this extension to the
semantics should follow similarly.

A few language features require some adaptation of our mem-
ory model. For instance, we can adapt the quasi-concrete model to
support union types and strict aliasing, following Krebbers’ tech-
nique [6], which works regardless of whether the model is concrete,
logical or hybrid.

As another example, in C, char* is a “universal” pointer type,
which allows efficient bulk data moves via memcpy. Krebber’s
variant of CompCert [7] already supports this semantics using a
logical memory, and the quasi-concrete model is compatible with
that solution. Briefly: we let char types store byte-indexed logical
values (such as (l, 10) : 2, which denotes the second byte of the
logical address (l, 10)). This strategy works because a char is
implicitly cast to an integer when used in arithmetic operations, and
thus we can simply treat these casts as side-effecting (i.e., realizing
the logical addresses). This approach lose (almost) no optimization
opportunities because byte-indexed logical addresses are typically
loaded from the memory and thus (mostly) already treated as public
by the compiler.

Alias analyses The quasi-concrete model is largely compatible
with common alias analyses. For instance, it can be used to justify
size-based alias analysis, which considers pointers to differently-
sized objects as distinct. For example, in the code below, there is
no alias between p and q: even if q points to the block pointed to
by p, loading or storing a double value in the block will fail since
the block is not big enough to contain double values.

int* p = malloc(sizeof(int));
double* q = foo(p); // no alias between p and q

It also justifies freshness-based alias analysis, which assumes
that the result of malloc is distinct from all other pointers. The
following example of constant propagation is valid in the quasi-
concrete model since q points to a fresh block that is different from
the block pointed to by p. It is important to note that there is no
alias between p and q even after the fresh block is realized. The
reason is because even if p and q may be cast to the same integer,
they still point to different blocks as pointer values.

foo(ptr p) {
var ptr q, int a,b,r;
q = malloc (1);
a = (int) q;
b = *p;
*q = 123;
r = *p;

}

→

foo(ptr p) {
var ptr q, int a,b,r;
q = malloc (1);
a = (int) q;
b = *p;
*q = 123;
r = b; // CP

}

Coq Formalization All the proofs reported in this paper have
been fully formalized in Coq and can be found in the project
webpage. Our Coq formalization is about 10,000 lines of code,

excluding empty lines and library code. The formalization took
about 2 person-months to complete.

Optimization Examples All optimization examples presented in
the paper are performed by Clang 3.4.2 and/or GCC 4.8.3. Exam-
ples in C and their compilation results can be found in the project
webpage.

Formal Memory Models There have been numerous efforts to
formalize C semantics, both from the perspective of clarifying
the specification and defining implementations with formal seman-
tics [2, 3, 8, 9, 11]. These invariably use variations of the logical
memory model, where each allocation is associated with some ab-
stract identifier and pointers consist of an identifier and some path
representing an offset into the memory block, except for the work
of Norrish [11] which uses the concrete model.

Comparison with CompCert CompCert [9, 10] and its various
extensions currently allow casting pointers to and from integers,
but the semantics preserves the logical representation of pointers
after the cast. As a result, integer variables can contain not only
normal 32-bit integers, but also logical pointer representations. In
the higher-level languages (CompCert C and Clight), performing
arithmetic on cast pointer is treated as a program error, whereas in
the low-level languages (from Cminor down to assembly), adding
and subtracting integer values from converted pointers is defined
and affects only the offset into the pointer’s logical block. There
has also been work on extending the semantics to support pointer
fragments to allow, for example, memcpy to work on memory con-
taining pointers [7], but these extensions still cannot fully support
arithmetic operations on pointer values that have been cast to an
integer type.

Comparison with CompCertTSO The CompCertTSO compiler [12]
extends CompCert’s Clight language with threading and atomic
memory primitives following the x86-TSO relaxed memory model.
Similar to us, CompCertTSO’s memory model also supports finite
memory, but uses a different mechanism to do so. It has a distin-
guished logical block, where the offset serves as essentially a con-
crete memory address. During compilation, all memory operations
are lowered to act only on a single finite logical block. This allows
the source and target languages, with infinite and finite memory
respectively, to share a single memory model, and simplifies the
correctness statements by removing the need for CompCert’s mem-
ory injections. CompCertTSO handles pointer-integer casts in the
same way as CompCert, with the same limitations.

Comparison with the Symbolic Value Approach Most recently,
Besson et al. have proposed an extension to CompCert’s memory
model that gives semantics to bit-masking operations on pointers
and uninitialized values [1]. Their approach involves adding lazily-
evaluated symbolic expressions, including arbitrary operations on
the representation of pointers, to the class of semantic values.
Symbolic values are forced whenever a concrete value is needed
to take a step, for example to access memory through a pointer
or in the guard of a conditional. The mapping is performed by
a normalization function given as a parameter of the semantics.
The normalization function is partial, and is only defined precisely
when the symbolic value evaluates to a unique result under every
assignment from logical block identifiers to concrete addresses
(subject to some validity conditions).

The semantics of Besson et al. is necessarily deterministic: non-
determinism is interpreted as undefined behavior, while our model
captures the non-deterministic allocation of concrete addresses.
Furthermore, their semantics is complex and indeed intractable:
their normalization is implemented with an SMT solver, and the
semantics in general is too complex to serve as a mental model
for ordinary C programmers. Normalization in our semantics, on

the other hand, is a straightforward translation from pointers to
concrete blocks and integers.

Most importantly, while their approach gives semantics to non-
strictly-conforming C programs involving bit-masking of pointers
and uninitialized values, it fails to define useful programs that use
integer-pointer casts. Consider the hash put example discussed in
§3.4, where a pointer is hashed and then presumably used to index
into an array. Since the resulting memory location will depend on
the concrete layout of memory, the resulting program will have
undefined behavior in their semantics. In general, any program that
displays non-determinism due to the realization of pointers in our
model is necessarily undefined in Besson et al.’s model.

Acknowledgements
We are grateful to Robbert Krebbers for useful discussions. This re-
search is supported in part by the Engineering Research Center of
Excellence Program of Korea Ministry of Science, ICT & Future
Planning(MSIP) / National Research Foundation of Korea(NRF)
(Grant NRF-2008-0062609), in part by the NSF projects Validating
Program Transformations in a Mechanized LLVM (NSF 1065166),
WATCHDOG: Hardware-Assisted Prevention of All Use-After-
Free Security Vulnerabilities (NSF 1116682), and Improving Paral-
lel Program Reliability Through Novel Approaches to Precise Dy-
namic Data Race Detection (NSF 1337174), and in part by the EC
FP7 project ADVENT (308830).

References
[1] F. Besson, S. Blazy, and P. Wilke. A precise and abstract memory

model for C using symbolic values. In APLAS, 2014.
[2] C. Ellison and G. Rosu. An executable formal semantics of C with

applications. In POPL, 2012.
[3] D. Greenaway, J. Lim, J. Andronick, and G. Klein. Don’t sweat the

small stuff: Formal verification of C code without the pain. In PLDI,
2014.

[4] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and Kripke logical relations. In POPL, 2012.

[5] ISO. ISO/IEC 9899:2011 Information technology – Programming
languages – C. 2011.

[6] R. Krebbers. Aliasing restrictions of C11 formalized in Coq. In CPP,
2013.

[7] R. Krebbers, X. Leroy, and F. Wiedijk. Formal C semantics: CompCert
and the C standard. In ITP, 2014.

[8] R. Krebbers and F. Wiedijk. A formalization of the C99 standard in
HOL, Isabelle and Coq. In CICM, 2011.

[9] X. Leroy. A formally verified compiler back-end. Journal of Auto-
mated Reasoning, 43(4):363–446, 2009.

[10] X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert
memory model, version 2. Research report RR-7987, INRIA, June
2012.

[11] M. Norrish. C formalised in HOL. Computer Laboratory Technical
Report 453, University of Cambridge, Nov. 1998.

[12] J. Ševčı́k, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and
P. Sewell. CompCertTSO: A verified compiler for relaxed-memory
concurrency. Journal of the ACM, 60(3):22, 2013.

[13] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. To-
wards optimization-safe systems: Analyzing the impact of undefined
behavior. In SOSP, 2013.

[14] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding
bugs in C compilers. In PLDI, 2011.

[15] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing
the LLVM intermediate representation for verified program transfor-
mations. In POPL, 2012.

[16] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formal
verification of SSA-based optimizations for LLVM. In PLDI, 2013.

	Introduction
	Technical Background
	Concrete Model
	CompCert's Logical Model
	Behavioral Refinement

	The Quasi-Concrete Model
	Memory Representation
	Combining Logical and Concrete Blocks
	Choosing Concrete Blocks
	Assigning Concrete Addresses
	Operations on Pointers
	Dead Cast Elimination
	Drawbacks of the Quasi-Concrete Model

	Language Semantics
	Reasoning Principles
	Running Example & Informal Verification
	Memory Invariants
	Proving Simulation

	Verification Examples
	Arithmetic Optimization I
	Dead Code Elimination
	Ownership Transfer
	Arithmetic Optimization II
	Dead Cast Elimination
	Identity Compilers

	Discussion and Related Work

