Equivalence and Preorder Checking for
Finite-State Systems

Rance Cleaveland
Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794-4400
USA

rance@cs.sunysb.edu

Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389
USA

sokolsky@saul.cis.upenn.edu

Abstract

This chapter surveys algorithms for computing semantic equivalences and refine-
ment relations, or preorders, over states in finite-state labeled transitions systems.
Methods for calculating a general equivalence, namely bisimulation equivalence, and a
general preorder are described and shown to be useful as a basis for calculating other
semantic relations as well. Two general classes of algorithms are considered: global
ones, which require the a priori construction of the state space but are generally more
efficient in the asymptotic case, and local, or on-the-fly ones, which avoid the construc-
tion of unnecessary states while incurring some additional computational overhead.

Keywords: process algebra, finite-state systems, labeled transition systems, bisimulation,
equivalence checking, preorder checking.

Contents

1 Introduction

2 Basic Definitions

2.1
2.2
2.3
24

Labeled Transition Systems
Bisimulation Equivalence o 0oL
Simulation-Based Refinement Orderings
A Parameterized Semantic Relationo 00000

3 Global Equivalence Algorithms

3.1
3.2
3.3
3.4
3.5

A Basic Partition-Refinement Algorithm for Bisimulation Equivalence
The Paige-Tarjan Algorithm for Bisimulation Equivalence
OBDD-Based Equivalence Checking
Computing Other Equivalences via Process Transformations
Computing Branching Bisimulation Equivalence

4 Global Preorder Algorithms

5 Local Algorithms

6 Tools

7 Conclusions

21

28

34

35

1 Introduction

Research in process algebra has focused on the use of behavioral relations such as equivalences
and refinement orderings as a basis for establishing system correctness (see Chapter 1.1 of
this volume and [BBK86, BB87, Hoa85, Mil80, Mil89]). In the process-algebraic framework
specifications and implementations are both given as terms in the same algebra; the intuition
is that a specification describes the desired high-level behavior the system should exhibit,
while the implementation details the proposed means for achieving this behavior. One then
uses an appropriate equivalence or preorder to establish that the implementation conforms
to the specification. In the case of equivalence-based reasoning, conformance means “has the
same behavior as”; in this case an implementation is correct if its behavior is indistinguish-
able from that of the specification. Refinement (or preorder) relations, on the other hand,
typically embody a notion of “better than”: an implementation conforms to (or refines) a
specification if the behavior of the former is “at least as good as” that stipulated by the
specification. The benefits of such process-algebraic approaches include the following.

e Users need only learn one language in order to write specifications and implementations.

e The algebra provides explicit support for compositional specifications and implemen-
tations, allowing the specification (implementation) of a system to be built up from
the specifications (implementations) of its components.

e Specifications include information about what is disallowed as well as what is allowed.

Consequently, a number of different process algebras have been studied, and a variety of
different equivalences and refinement relations capturing different aspects of behavior have
been developed.

A hallmark of process-oriented behavioral relations is that they are usually defined with
respect to labeled transition systems, which form a semantic model of systems, rather than
with respect to a particular syntax of process descriptions. This style of definition permits
notions of equivalence and refinement to be applied to any algebra with a semantics given in
terms of labeled transition systems. It also means techniques for establishing these relations
may be given in terms of labeled transition systems. If, in addition, these labeled transition
systems are finitary, then the relations may be calculated in a purely mechanical manner:
tools may then be developed for automatically checking that (finitary) implementations
conform to (finitary) specifications.

This paper surveys algorithms for calculating behavioral relations for a particular class
of finitary labeled transition systems, namely, those consisting of a finite number of states
and transition labels. We focus on relations that are sensitive only to the degree of nonde-
terminism systems may exhibit; we do not consider relations sensitive to other aspects of
system behavior such as timing, probability, priority, or parallelism. See Chapters 4.1-4.3
and 5.1 of this volume, respectively, for a treatment of these features. This decision is due
to the fact that models of nondeterminism have a longer history and hence are more settled,
and to the fact that techniques for computing these relations find direct application in the
computation of the others.

The remainder of this chapter has the following structure. The next section introduces the
basic definitions and notations used throughout the remainder of the survey. The discussion
then breaks into two major parts. Section 3 presents algorithms for calculating behavioral
equivalences using partition refinement and symbolic techniques. Section 4 considers an
algorithm for behavioral preorders. Section 5 introduces local, or on-the-fly techniques. Local
algorithms aim to reduce the amount of work required by avoiding the a prior: construction
of the entire state space. Section 6 presents some of the tools that implement the algorithms
described in this chapter, while Section 7 concludes.

2 Basic Definitions

This section contains definitions of concepts and notations used in the remainder of the
chapter.

2.1 Labeled Transition Systems

Semantically, systems are modeled as labeled transition systems, which may be defined as
follows.

Definition 2.1 A labeled transition system (LTS) is a triple (S, A, —), where S is a set
of states, A is a set of actions, and -C S8 x A X S is the transition relation.

Intuitively, an LTS (S, A, —) defines a computational framework, with S representing the set
of states that systems may enter, A the actions systems may engage in, and — the execution
steps system undergo as they perform actions. In what follows we generally write s — s’ in
lieu of (s,a,s’) €—, and we say that s’ is an a-derivative of s. We use %" to denote the
transitive closure of —. We define a process to be a quadruple (S, A, —, s;) where (S, A, —)
is an LTS and s; € S is the start state.

Let (S, A, —) be an LTS, and let s € S be a state and a € A an action. We use the
following terminology and notations in what follows.

e (S, A, —) is finite-state if S and A are both finite sets.

e s holds if s = &' for some s' € S.

{e % s} C S, the preset of s with respect to a, is the set {r € S |r 5 s}.

{s % o} C S, the postset of s with respect to a, is the set {t € S |s > t}.

{s 3} C A, the initial actions of s, is the set {a € A|s 5 }.

{s —* e} C S, the reachable set of states from s, is the smallest set satisfying the
following.

— s€{s—>" e}
— Ift € {s »" o} and t = ' for some a € A then t' € {s —* o}.

These notions may be lifted to sets of states by taking unions in the obvious manner. Thus
if § C S then we have the following.

{e 55} = US{.im}
{55 e} = SEUS{sﬂ.}
{55} = SGUS{s—'>}
{7} = SLEJ{S%* o}

SES

The traditional approach to defining the semantics of process algebras involves construct-
ing an LTS in the following manner. Firstly, the syntax of the algebra includes a set A of
actions and a set P of process terms. Then a transition relation -C P x A x P is de-
fined inductively in the SOS style using proof rules [Plo81] (but also see Chapter 1.3 of this
Handbook). The structure (P, A, —) constitutes an LTS that in essence encodes all possible
behavior of all processes. Of course, this LTS is not usually finite-state, so one may wonder
how algorithms for finite-state systems could be used for determining if two process terms in
a given algebra are semantically related. The answer lies in the fact that in general, one does
not need to consider the entire LTS of the algebra; it typically suffices to consider only the
terms reachable from the ones in question. If this reachable set is finite (and typically one
may give syntactic characterizations of terms satisfying this property) then one may apply
the algorithms presented in this chapter to the LTS induced by the finite set of reachable
states. We return to this point later.

2.2 Bisimulation Equivalence

Bisimulation equivalence is interesting in its own right as a basis for relating processes; it also
may be seen as a basis for defining other relations as well. Bisimulation and other behavioral
equivalences are treated in more detail in Chapter 1.1 of this Handbook.

Definition 2.2 (Bisimulation Equivalence) Let (S, A, —) be an LTS.

e A relation R C 8§ X S is a bisimulation if whenever (s1, s2) € R then the following hold
for alla € A.
1. If sy = s\ then there is an s, such that sy — s and (s, sh) € R.
2. If so = sb then there is an s such that s, ~ s} and (s}, s) € R.

e Two states si1,80 € S are bisimulation equivalent, written s; ~ so, if there exists a
bisimulation R such that (s1, s2) € R.

Intuitively, two states in an LTS are bisimulation equivalent if they can “simulate” each
other’s transitions. Under this interpretation a bisimulation indicates how transitions from
related states may be matched in order to ensure that the “bi-simulation” property holds.

Bisimulation equivalence enjoys a number of mathematical properties. Firstly, it is indeed
an equivalence relation in that it is reflexive, symmetric and transitive. Secondly, it is itself a
bisimulation, and in fact is the largest bisimulation with respect to set containment. Finally,
it may be seen as the greatest fixpoint of the following function mapping relations to relations.

Definition 2.3 Let £ = (S, A, —) be an LTS. Then F. : 2575 — 2535 s given by:

Fr(R)={(s1,8) |Va€ AVs' €S. (51 > 8 =3 €S.50 5t AN{s',t') €R) A
s9 38 =" €Ss SrA{rsYER)}

Theorem 2.4 Let L = (S, A,—) be an LTS. Then ~= Fr(~), and for any R such that
R =F.(R), R C~.

The proof of this theorem relies on the Tarski-Knaster fixpoint theorem, which gives char-
acterizations of the fixpoints of monotonic functions over complete lattices. In this case, the
complete lattice in question is the set 25*S of binary relations ordered by set inclusion; in
this lattice it is easy to see that F, is monotonic (the more pairs there are in R, the more
pairs there are in F¢(R)), and hence the Tarski-Knaster theorem is applicable.

The characterization of bisimulation equivalence in Theorem 2.4 suggests that in order
to compute the relation over a given LTS L, it suffices to calculate the greatest fixpoint of
Fr. The next result suggests how this might be done for finite-state LT'Ss.

Definition 2.5 An LTS (S, A,—) is image-finite if for every s € S and a € A, the set
{s 5 e} is finite.

In other words, an LTS is image-finite if every state has a finite number of outgoing transitions
for any given action. Certainly, any finite-state LTS is also image-finite.

Now, when an LTS £ is image-finite, the function F, turns out to be continuous, and its
greatest fixpoint (i.e. ~) has the following “iterative” characterization.

Theorem 2.6 Let L = (S, A, —) be an image-finite LTS. Then ~= (2, ~i, where the ~;
are defined as follows.

~y = SxS8
~Ni+l = .7:[,(’\41) fOI'ZzO

This characterization provides the basis for the algorithms discussed later in the chapter.

Parameterized Bisimulation Equivalence. We will show that other semantic equiv-
alences may be computed by combining appropriate transformations on labeled transition
systems with a bisimulation algorithm. For this purpose, it turns out that a slight modifi-
cation of the definition of bisimulation equivalence is useful.

Definition 2.7 Let (S, A,—) be an LTS, and let E C S x S be an equivalence relation.

1. A relation R C S x S s an E-bisimulation if R is a bisimulation and R C E.

2. Two states si, 59 € S are E-bisimulation equivalent, written s, ~% s, if there is an E
bisimulation R with (s, s2) € R.

The relation ~% differs from ~ in that it requires equivalent states to be related by E in
addition to satisfying the transition conditions imposed by ~. It is easy to show that ~
coincides with ~V where U is the universal relation relating every state to every other state.

Theorems 2.4 and 2.6 have obvious analogs for ~%.

2.3 Simulation-Based Refinement Orderings

Refinement orderings relate states in an LTS on the basis of the relative “quality” of their
behavior. The (forward) simulation ordering represents one such notion that plays an im-
portant algorithmic role. Its definition is as follows.

Definition 2.8 Let (S, A,—) be an LTS.

e A relation R C SX S8 is a forward simulation if whenever (s, s3) € R then the following
holds for all a € A.

If 51 = sy then there is an sy such that sy — sb and (s}, sh) € R.
e 51589 if there is a forward simulation R such that (s1,s2) € R.

Note that s;C sy, holds when sy is able to track, or “simulate”, the transitions that s; is
capable of. The relation C turns out to be a preorder (i.e. reflexive and transitive), and
like bisimulation it turns out to be the greatest fixpoint of an appropriately defined function
over relations.

Definition 2.9 Let L = (S, A, —) be an LTS. Then G, : 25%5 — 25%5 s defined as
follows.

Ge(R) ={(s1,5) |Va € AVs' €S. (51 = s =3t'.sy ' AN (s,)€ R)}

That C is the greatest fixpoint of G, follows from the same line of reasoning offered for
Theorem 2.4. In addition, one may give the following analog of Theorem 2.6, which provides
a basis for algorithms presented later in the chapter.

Theorem 2.10 Let £ = (S, A, —) be an image-finite LTS. Then T = (),_, C,, where the
L, are defined as follows.

5, = &x8§
S = Ge(L,) fori >0

The backward simulation ordering 3 is the inverse of C: s s, if and only if s5Cs;.

2.4 A Parameterized Semantic Relation

We close this section with the definition of a parameterized semantic relation that proves
useful as a basis for calculating other simulation and bisimulation relations.

Definition 2.11 Let (S, A, —) be an LTS, let Il C S x S be a relation on states, and let
D, Py C S XS X A be relations on states and actions.

e A relation R C S X S is a (II, 1, ®y)-bisimulation if, whenever (s, s3) € R, then the
following hold for all a € A.
1. <81, SQ) ell
2. If (51, 89,a) € ®; and s; > s then there is a sb, such that s, — s} and (s}, s,) € R.
3. If (s1,59,a) € ®y and sy = sl then there is a s such that s, = s} and (s}, sb) € R.

e Two states sy, so are (II, @1, ®o)-bisimilar if there is a (I, @1, ®o)-bisimulation R with
<81, SQ) € R.

The definition of (II, 1, y)-bisimilarity is somewhat complicated. Intuitively, the three
parameters have the following roles.

o [l serves as an “initial condition” that related states must satisfy.

e ®; and &, constrain when related states are required to track each others transitions.

We denote (II, ®;, ®,)-bisimulation as Egl 8,
when ®; # ®,, it is not an equivalence relation.

For example, if we let U be the (overloaded) symbol for the universal relation, then ~
coincides with (U, U, U)-bisimilarity, while ~¥ is (E, U, U)-bisimilarity. Similarly, T turns
out to be (U, U, 0)-bisimilarity, and 3 (U, 0, U)-bisimilarity.

using the preorder symbol since in general,

3 Global Equivalence Algorithms

In this section, we present several equivalence-checking algorithms which, given a finite-
state LTS (S, A, —) and an equivalence relation E, iteratively compute the parameterized
bisimulation equivalence ~¥. Then, the equivalence of two given states can then be tested
by checking whether they belong to the same equivalence class. The equivalence relation
is represented by the set of equivalence classes, or a partition of the states in the LTS. A
partition is a set of blocks {B; C S| B;NB; = 0,i # j AJ; Bi = S}ticr. The algorithms
iteratively compute the fixed point of F as stipulated by Theorem 2.6. The starting point
for the iteration is the partition induced by E. To simplify exposition, the algorithms below
are presented for the important special case when F = U. In this case, the equivalence
relation computed is bisimulation equivalence ~, and the initial partition is {S}.

The algorithms discussed in this section differ in the way the partition is represented,
and in the data structures used in the fixed-point computation. We first concentrate on the
algorithms that represent the partition explicitly, as a set of sets of individual states. Such
algorithms are commonly known as partition refinement algorithms. Section 3.3 describes a
symbolic approach based on boolean functions.

B,

PRRLOQI O PO

BZ
ROQJ[Q

a |a —p aja a a
OO0 100 0D OO0 100 |00
B’ B’

Figure 1: Splitting a block in the partition.

3.1 A Basic Partition-Refinement Algorithm for Bisimulation
Equivalence

The first partition refinement algorithm for bisimulation equivalence is due to Kanellakis
and Smolka [KS90]. Let P = {By,...,B,} be a partition consisting of a set of blocks.
The algorithm is based around the notion of splitting. A splitter for a block B € P is
the block B’ € P such that some states in B have a-transitions, for some a € A, into
B’ and others do not. In this case, B can be split by B’ with respect to a into blocks
B, ={seB|3s € B.s % s'}, By = B — B;. Splitting is illustrated in Figure 1.

The algorithm uses splitting in the form of procedure split(B,a, P), which detects
whether the partition P contains a splitter for a given block B € P with respect to ac-
tion a € A. If such splitter exists, split returns the blocks By and B, that result from the
split. Otherwise, B itself is returned. Efficient implementation of split is critical to the over-
all complexity of the algorithm. Therefore, we will discuss in more detail the implementation
of split and the data structures necessary to make it efficient.

In presenting the procedure split we use the following notation: for a set of states .S,
[S]p ={B € P|ds € S.s € B} is the minimal set of blocks in P that contain all states in S.
Then, [{s = e}]p is the set of blocks that can be reached from s by an a-transition. We will
abuse terminology and call this set the postset of s in P with respect to a. Figure 2 gives the
pseudo-code for procedure split. The procedure chooses a state from B and compares its
postset in P to the postsets in P of other states in B. Clearly, if the postsets of two states
are different, then there exists a splitter that will put these states in different blocks.

In order to compare the postsets of the states of B efficiently, we need to order the
transitions of s. For this purpose, we impose an ordering on the blocks of P. The transitions
of s are lexicographically ordered by their labels. Further, for each label a, the transitions
are ordered by the containing block of the target state of the transition. When a block
is split, the ordering of transitions in states that have transitions into that block can be
violated. Therefore, one needs to sort the a-transitions of all states of a block immediately
before attempting to split the block. Procedure SortTransitions(a, B) uses lexicographic
sorting to reorder the a-transitions of block B.

Finally, we present the main loop of KS_.PARTITIONING in Figure 3. The algorithm
iteratively attempts splitting of every block in P with respect to every a € A until no more
blocks can be split.

Correctness of KS_PARTITIONING relies on the fact that when changed is false, there

split(B, a, P) — ({B;} a set of blocks)
choose s € B
{* B, contains states equivalent to s %}
B =10
{* By contains states inequivalent to s *}
B, =10
for each s’ € B do
begin
£ [{s 5 o}]p = [{' % o}l
then B; = B U {S,}
else By = By U {s'}
end
then return {B}
else return {Bj, By}

Figure 2: The pseudo-code for procedure split.

P .= {S}
changed := true
while changed do
begin
changed := false
for each B¢ P do
begin
for each a € A do
begin
SortTransitions(a, B)
if split(B,a, P) # {B}
then begin
P:=P —{B} U split(B,a, P)
changed := true
break
end
end
end
end

Figure 3: Algorithm KS_PARTITIONING.

10

is no splitter for any of the blocks in P. Therefore, P = F.(P) and, by Theorem 2.4,
R C~. Moreover, if we denote by P; the partition after ith iteration of the main loop
of KS_.PARTITIONING, we have ~C~;C P;,. Thus we have that at termination of the
algorithm, P =~.

The complexity of KS_ PARTITIONING is given by the following theorem.

Theorem 3.1 Given a finite-state LTS (S, A, —) with |S| = n and | — | = m, algorithm
KS_PARTITIONING takes O(n - m) time.

Proof. The main loop of the algorithm is repeated at most n times. Within one iteration of
the main loop, procedure split is called for each block at most once for each action a. In turn,
split considers each transition of every state in the block at most once. Therefore, the calls
to split within one iteration of the main loop take O(m) time. The calls to SortTransitions
collectively take O(|.A| +m) time, or O(m) when the set of labels is bounded by a constant.
O

3.2 The Paige-Tarjan Algorithm for Bisimulation Equivalence

Performance of the basic partition refinement algorithm can be significantly improved
through the use of more complex data structures. Paige and Tarjan [PT87] proposed an
algorithm that utilizes information about previous splits to make future splits more efficient.
To simplify the presentation of the algorithm, we describe the case where the alphabet of
the LTS is a singleton. An extension of the algorithm to handle multiple actions is straight-
forward. First, we introduce the notion of stability of blocks and partitions.

Definition 3.2
e A block B is stable with respect to a block S if either B C {# — S} or BU{e — S} = {).

o A partition P 1is stable with respect to a block S if every B € P 1is stable with respect
to S.

o A partition P is stable with respect to partition @ if P is stable with respect to every
S eq.

e A partition s stable if it is stable with respect to itself.

Clearly, ~ is the coarsest stable partition.

The Paige-Tarjan algorithm is based on the following observation. Let B be stable with
respect to S, and let S be partitioned into S; and Sy. Then, if BUS = (), B is stable with
respect to both S; and S;. Otherwise, B can be split into three blocks:

Bl = B—{.%SQ}
312 = Bﬂ{O%Sl}ﬂ{O—)SQ}
BQ = B—{.—)Sl}

This three-way splitting is illustrated in Figure 4.

11

Figure 4: Efficient splitting of a block.

The improvement in complexity that the Paige-Tarjan algorithm provides over the ba-
sic partition refinement algorithm of the previous section stems from the fact that three-
way splitting can be performed in time proportional to the size of the smaller of the two
blocks S1,S. To do so, with every state s € & and for every block S, we keep a variable
count(s,S) = |{s' € S|s —s>l}. Now, we can decide in constant time to which of the sub-
blocks of B a state s € B belongs. We have three cases: 1) if count(s, S1) = count(s,S),
then s € By; 2) if 0 < count(s, S1) < count(s,S), then s € Byy; 3) if count(s, S1) = 0, then
s € Bs.

In addition to maintaining the count variables, we have to store the information about
the history of prior splits. If a block has been used as a splitter, it is stable with respect to
a partition. If such a block has been split itself, the smaller of its sub-blocks can be used in
three-way splitting. We use an additional data structure to store split history: X is a forest
of binary trees. Each node in a tree is a block satisfying the following conditions:

e For each leaf block B, B € P.

e FEach non-leaf block is the union of its children.
e For each root block B, P is stable with respect to B.

Roots of the trees are used as splitters for the current partition until X is empty. A splitter
is called compound if it is the root of a non-trivial tree; otherwise it is called simple. For
a compound splitter S, compound(S) is the set of the non-trivial subtrees rooted at the
children of S.

The algorithm, called PT_PARTITIONING, is shown in Figure 5. It repeatedly chooses
a splitter Sp from X. A compound splitter is chosen if one exists. Then, every block B € P
that has transitions into Sp is split with respect to the chosen splitter. We use the notation
B € {e — Sp} to mean {B € P|3s € B.s — s A's’ € Sp}. The operation is denoted
split(B, Sp). The result is a set of blocks P’ containing one, two, or three blocks, depending
on how B was split. By Spr we denote P’ represented as a tree. The shape of Sp/ is given
in Figure 6.

12

P :={S}
X:=P
while X # () do
begin
choose S € X
X=X-5
{* choose splitter *}
if S is compound then
begin
Sp := the smaller of the children of S
{* compound children of S stay in X =}
X = X U compound(S)

end
else
Sp.=5
for each B € {e — Sp} do
begin

P' = split(B, Sp)
updateX (B, P')
end end

Figure 5: Algorithm PT_PARTITIONING.

13

P'={B1,By} B P'={B1,B1, By} B

Figure 6: Splitting a block.

Operation split(B, Sp) also updates the variables count(s,S) for all s € B. To do this,
split scans the set {® — S} twice. On the first pass, counts are computed, and splitting
itself is done on the second pass.

When P’ is a singleton, no splitting has occurred and no further work is necessary.
Otherwise, X needs to be updated to reflect the splitting of B. Three cases are possible:

1. B is a simple splitter in X. In this case, B is removed from X and all elements of P’
are added to X as simple splitters.

2. B is a leaf in one of the trees in X. The tree is extended at B with Sp:.
3. B does not appear in any tree in X. Sp/ is added to X as a new tree.

The three cases are illustrated in Figure 7. We denote by updateX (B, P') the operation of
updating X as just described.

Correctness of PT_PARTITIONING is established by means of the following invariant.
For B € P, if B is not a simple splitter in X and B is not a leaf of a compound splitter in
X, then P is stable with respect to B. Indeed, every newly split block is placed in one of the
trees in X, and it remains there until it is used in splitting. At every iteration of the outer
loop of the algorithm, at most two blocks are removed from X: the one used as a splitter in
that iteration, and the sibling of the splitter, if one exists. After the iteration is complete,
P is stable with respect to both blocks. Subsequent refinements do not alter stability with
respect to a block: if P is stable with respect to a block B and P’ is a refinement of P, then
P' is stable with respect to B. Therefore, when X is empty, P is stable with respect to itself.

The worst-case running time of PT_PARTITIONING is O(m - log, n). For each state in
a splitter Sp, the algorithm visits every incoming edge twice, performing O(1) work for each
edge. Because the smaller of the two sub-nodes of a compound splitter is used, each state
can appear in at most log, n + 1 splitters.

3.3 OBDD-Based Equivalence Checking

A major drawback of the algorithms presented in the preceding sections is that they require
the LTS to be fully constructed in advance. When a process term is constructed from n
subprocesses by parallel composition, the size of the resulting LTS may grow exponentially
large in n, rendering equivalence checking infeasible. Several approaches have been proposed

14

casel

case 2

case 3

Figure 7: Updating the splitters.

to alleviate this problem. A group of algorithms called “local,” which construct only as much
of the LTS as needed to determine equivalence (or inequivalence), will be introduced later
in this chapter. This section is concerned with a different approach, one that uses ordered
binary decision diagrams (OBDDs) to succinctly represent the LTS. OBDDs [Bry86] are
widely used in symbolic analysis algorithms such as model checking. We present an OBDD-
based bisimulation checking algorithm based on the one by Bouali and de Simone [BdS92].

An OBDD is a representation of a boolean function by a rooted acyclic directed graph
with respect to a fixed variable ordering. Terminal nodes of the graph are labeled with
boolean constants, non-terminal nodes are labeled with input variables. Each non-terminal
node has two outgoing edges for the two possible values of the variable labeling the node,
indicating which node is evaluated next. Every path from the root of the OBDD to a
terminal node has to respect the ordering of variables. In addition, an OBDD does not
contain duplicate terminals or non-terminals, nor redundant tests (i.e., nodes with both
outgoing edges leading to the same node). Figure 8 shows the OBDD for the function
(1 V 9) A z3 with the ordering z1 < z9 < z3.

For a fixed variable ordering, OBDDs offer a canonical representation of boolean func-
tions; that is, two OBDDs representing the same function are isomorphic. Commonly used
operations on boolean functions, such as boolean operations, functional composition, and
variable quantification can be computed with OBDDs in time polynomial in the size of the
OBDD representations for the component functions. The size of the OBDD for a boolean
function depends on the chosen variable ordering. In the worst case, the size is exponential

15

—— true branch

--- false branch

Figure 8: An example OBDD.

in the number of variables. Still, many functions have much more compact representations.
For a detailed discussion of OBDD properties we refer the reader to [Bry92].

The OBDD representation of an LTS. An LTS (S, .4, —) is represented by OBDDs in
the following way. The states of the L'T'S are represented by an encoding of their enumeration,
that is, by means of a function o : S — {0, 1}* that associates with each state a distinct
boolean vector. Thus, representation of n states in an LTS requires & = logon boolean
variables. We let s’ represent the encoding of a state s. The alphabet of the LTS is encoded in
the same way, and @ is the encoding of a label a. States(z) is the characteristic function of the
set, of states in the LTS. The transition relation of an LTS is represented by a characteristic
function 4(d, s, 5’), which returns true when s = s'. Since all boolean functions considered
in this section operate on encodings of state, labels, etc., and not on the objects themselves,

-

we will use z for (x) where no confusion can arise.

Symbolic computation of the bisimulation equivalence. Like the algorithms pre-
sented previously, the algorithm for symbolic bisimulation checking is based on the charac-
terization of Theorem 2.6. In order to compute the iterative fixed point symbolically, we
need to express the function ¥, in terms of efficient OBDD operations.

First, we introduce several auxiliary operations on boolean functions. A restriction of
function f with respect to variable z is f|,k(1,...,2,...,2,) = f(z1,...,k,...,2,). The
smoothing operator is defined by S,(f) = fleco V floc1- We have Sp(f) = 3z f. The
smoothing operator is extended to sets of variables in the obvious way. Substitution of a vec-
tor X = {zy,...,z,} by avector Y = {y1,...,y,} within the OBDD for the function f is the
simultaneous replacement of variables from X by respective variables from Y. Substitution
is defined as

Y« X]f=8x(\/ wi<z)rf)

ie{l,...,n}

With these definitions, we can give the definition of F.(R) suitable for symbolic com-
putation. We represent R as the characteristic function of the cartesian product of the
equivalence classes of R, denoted R(z,y). R(z,y) returns true if x and y belong to the same
equivalence class.

16

R(z,y) := States(x) A States(y)
New(z,y) := R(z,y)
while New(z,y) # false do
begin
R* (2,y) = Fe(R)
New(z,y) := R*(z,y) AN R(z,y)
R(x’ y) = R+($a y)
end

Figure 9: Symbolic computation of bisimulation.

An auxiliary function
Ea(xa Z) = Sy(R(l‘a y) A (5(&, 2 y))

represents the relationship “z has an a-transition into the equivalence class of x.” With this
function, we can express the relationship that two states cannot be in the same equivalence
class:
Bad(z,y) = [z + y](\/ Se(ly < 2] Eu(z, 2) <> Eu(z, 2))).
acA

Finally, we have
-FC(R) = R(.Z', y) A Bad(m: y)

Note that the use of substitutions in the definition of Bad(x,y) allows us to construct E,
once per the application of F,. Construction of E,, which computes the inverse of the
transition relation of the LTS, is a much more expensive operation than substitution.

The algorithm to compute the bisimulation equivalence symbolically, shown in Figure 9,
is now a straightforward iterative fixed point computation that applies F, to the current
partition in each iteration. Initially, R =& x S or, in a functional representation, R(z,y) =
States(z) A States(y).

Performance issues. The time and space efficiency of the OBDD-based algorithm de-
pend on the OBDD variable ordering and certain details of the LTS encoding. Significant
performance improvements can be achieved in the case when the LTS under consideration is
obtained as a product of several communicating processes. Then, in addition to representing
and manipulating the global LTS, we need to represent the LTSs of the components, which
we refer to as local LTSs, and compute the global LTS from the local LTSs symbolically.
States in the global LTS are represented as tuples of local states. There are two natural
ways to order the variables used in the representation of local states. One ordering groups
together all variables representing a state in a local LTS and uses the order of local states in
the tuple to separate the states from different local LTSs. The other ordering groups local
states together bit by bit. That is, the ordering places the first bit of the encodings of all
local states before the second bit, etc. Experimental results presented in [BdS92] suggest

17

that the former ordering yields more compact representation during the initial stages of the
algorithm, when the equivalence relation is coarse. When there are many equivalence classes,
the latter ordering is a better choice. Dynamic reordering of variables may allow one to take
advantage of both orderings.

In addition, the order of local states within global state tuples has its effect on the size of
OBDDs. As a rule of thumb, it is advantageous to group together the processes that actively
communicate with each other. For example, let the global process be composed of three local
processes, p1, P2, p3. Assume that p; communicates with both p, and ps, but there is little or
no communication between ps and p3. Then, the optimal order of local processes is to place
p1 in the middle, for example (py, p1, p3)-

3.4 Computing Other Equivalences via Process Transformations

The algorithms presented above can be used to decide several other behavioral equivalences
in addition to bisimulation equivalence. Examples of equivalences that can be decided by
partition refinement include weak bisimulation [Mil89] and testing equivalence [Hen88]. In
order to obtain a partition refinement algorithm for an equivalence relation R, we need to
define a suitable process transformation Ty and an equivalence relation Er that will be used
by the algorithm.

Given an LTS £ = (S, A, —), a process transformation is a function Tz(£) = (§', A', =)
from the set of LTSs to itself. Abusing notation, we will also use 7z to denote a mapping
from S to &’ that relates the states of P and Tgr(L). A process transformation can be used to
decide an equivalence relation R if there is an equivalence relation Eg such that the following
condition holds:

51 R sy iff 7?2(31) ~PR 732(82)

In this case, we can construct Tz(£) and then apply an equivalence-checking algorithm to
compute ~Fr.

Weak bisimulation equivalence. As an example of process transformation, we present
T~ that is used to decide =, weak bisimulation equivalence or observational equivalence.
Weak bisimulation equivalence abstracts away from the special unobservable action 7 € A
by allowing transitions to be matched by sequences of transitions having the same observable
(non-7) content.

Definition 3.3 Let (S, A,—) be an LTS.

o A symmetric relation R C 8§ x S is a weak bisimulation if whenever (s, s2) € R and
51— s then one of the following holds:

. *
— a =7 and there is an s}, such that sy — s, and (s}, s,) € R, or
2 2 1> 82 ;

. * *
— there is an s, such that s = =5 s and (', s5) € R.
2 2 1, 59

e Two states s1, 9 € S are weak bisimulation equivalent, written s; ~ sq, if there exists
a weak bisimulation R such that (s, s2) € R.

18

The transformation used to decide weak bisimulation is 74 ({S, A, —)) = (S, A — {7} U
€,=). The weaktransition relation = is defined as follows:

€ ' T* 4

e s= s’ when s — s
a T*¥a T* ,
o fora#7,s= s when s » —-— .

We compute = in two steps. First, = is constructed by applying a transitive-closure al-
gorithm to the 7-transitions of the original LTS. Then, the composition of relations = and
2. a # €, produces all observable weak transitions.

Weak bisimulation equivalence can now be computed as U-bisimulation over T4 ((S, 4, —
))- The correctness of this approach follows directly from Definition 3.3 and the construction
of =.

Other equivalences. Several other process transformations for equivalence checking have
been presented in the literature. In particular, observational congruence [Mil89] is computed
as U-bisimulation over congruence transition systems (see [CPS93] for details).

Testing equivalence [Hen88] can also be computed by process transformation. It turns
out to be an A-bisimulation over acceptance graphs. Both the process transformation and
the acceptance set equivalence A are described in [CH93].

3.5 Computing Branching Bisimulation Equivalence

Branching bisimulation equivalence, introduced by [vGW96], is similar to weak bisimulation
equivalence in the sense that it abstracts away from the unobservable action 7. However,
branching bisimulation equivalence preserves the branching structure of processes; that is,
the non-deterministic choices are resolved by the equivalent processes in the same order.
Consequently, branching bisimulation equivalence is finer than weak bisimulation equivalence
and possesses an appealing set of algebraic properties.

Despite its close relation to bisimulation equivalence, branching bisimulation equiva-

lence requires a modification of the partition refinement algorithm. The extended algorithm
BB_PARTITIONING has been presented by Groote and Vaandrager [GV90].

Definition 3.4 Let (S, A,—) be an LTS.

o A symmetric relation R C 8§ X § is a branching bisimulation if whenever (s1,s2) € R
and s, = s} then one of the following holds:

—a=7 and (s|,52) € R, or
. *
— there exist s, 5% such that sy = sy = s and (s},s5) € R

o Two states s1, s € S are branching bisimilar, written s1<sq, if there exists a branching
bisimulation R such that (s1, s2) € R.

19

Before presenting the algorithm, we introduce some additional terminology. Given a
partition P, a transition s — s is called P-inert if s and s’ belong to the same block in P.
A bottom state s in a block B is such that for all outgoing transitions of s, s = s’ = s’ & B.

We will assume that the LTS does not contain cycles of unobservable events. This
assumption is not a restriction. Indeed, if s L s and 8 5 s, then s<s’. Then, states
strongly connected by unobservable transitions will always be within the same equivalence
class, and we can collapse them into the same state before the algorithm is run.

A new notion of splitter is taken directly from Definition 3.4. For B, B’ € P and a € A,
let

reach,(B,B') ={se€ B |3n>03s,...,s,3s' € B'.
so=sANMO<i<nsi | 55)A(sp—8V(ia=1NAs,=25))}

A block B' is an a-splitter for B if () # reach,(B, B') # B.

A partition refinement algorithm that uses this definition of splitter directly would be
impractical. It would have to maintain information about sequences of inert T-transitions in
each block and update this information as blocks are split. Instead, a different characteriza-
tion of splitter is used, as stipulated by the following theorem.

Theorem 3.5 Let P be a partition of S, B,B' € P, and a € A. Then, B' is an a-splitter
of B if

1. a# 71 or B#B';
2. there exists s € B such that for some s' € B', s % §';

3. there exists a bottom state s € B such that for no s' € B', s % s'.

Proof. Suppose B'is an a-splitter of B. If a = 7, then clearly B # B, since reach,(B, B') is
trivially equal to B, satisfying the first condition. By definition of a splitter, reach, (B, B') #
(), which means that condition 2 holds. Finally, assume that for every bottom state s € B
there is an a-transition into B’. Choose an arbitrary state ¢ € B. Since there are no 7-
cycles in the LTS, then there is a (possibly trivial) 7-path from ¢ to a bottom state s. This
means that ¢ € reach,(B, B'). Since t was chosen arbitrarily, reach,(B, B') = B, which is a
contradiction, and condition 3 holds. For the reverse direction, reach,(B, B') # () because
of condition 2, and reach,(B, B") # B because of conditions 1 and 3. O

This characterization of a splitter allows us to find splitters in P efficiently. To do this,
we need the following data structures. For each block B, we keep two lists of states. One list
holds bottom states of the block, the other holds non-bottom ones. Moreover, we assume
that non-bottom states are topologically sorted according to 7-transitions. That is, is s — s,
then s’ precedes s in the list of non-bottom states. This ordering is always well-defined since
there are no 7-cycles. Each non-bottom state s contains a list of inert transitions inert(s)
originating in this state. Each block B, in addition to the lists of states, contains a list in(B)
of non-inert transitions that end in B. Non-inert transitions are lexicographically sorted by
their label. Every state s € S has a boolean variable mark(s), initialized to false.

20

Blocks of P are stored in two disjoint lists, stable and working. P is stable with respect
to blocks in the first list; blocks in the second list can be splitters. When working becomes
empty, the partition is stable and the algorithm terminates.

The pseudo-code of the refinement step is shown in Figure 10, where pre is the set of
blocks that have a transition into B. Procedure setMarks accomplishes two things: 1) if s is
the source state of transition t, set mark(s) to true; 2) add the block to which s belongs to
pre. For each B € pre, S is not a splitter if all bottom states of B are marked.

If there are unmarked bottom states in B, procedure split(B, By, By) partitions B into
two blocks Bi, By in the following way. First, marked bottom states of B become bottom
states of B; and unmarked states become bottom states of By. Next, non-bottom states of
B are scanned. If a state s is unmarked and does not have an outgoing transition that leads
to a state in Bj, then s becomes a non-bottom state of By. All transitions in inert(s) must
lead to a state in B, and thus no adjustment of inert(s) is needed. Here, the ordering of the
non-bottom states is important (note that the ordering is preserved by splitting). Otherwise,
s is placed in B;. Its inert transitions are scanned and, if a transition leads to a state in B,
it is removed from inert(s) and placed into in(Bs). If inert(s) becomes empty, s is placed
into the list of bottom states of B;. Otherwise, it remains a non-bottom states of B;. As
each state is moved from B to its new block, its mark is cleared. Finally, in(B) is distributed
to in(B;) and in(By) according to the target state of each transition.

Procedure split returns a boolean value, which is true if the set of bottom states changed.
It can be easily seen that, unless the set of bottom states in a partition has changed, stability
of a block is preserved after refinement. Otherwise, every block in stable has to be considered
as a splitter again. Thus, if split returns true, the contents of stable are moved to working.

Theorem 3.6 Given a finite-state LTS (S, A, —) with |S| = n and | — | = m, algorithm
BB_PARTITIONING computes the stable partition in O(|A|+m - n) time.

Proof. Initialization of the data structures in the algorithm is accomplished in O(|.A| + m)
time. This includes the computation of strongly connected components of S and topological
sorting of inert transitions in each block of the initial partition. Both can be accomplished
in O(m) time. Lexicographic sorting of non-inert transitions takes O(|A| 4+ m) time. There
can be at most n — 1 refinement steps, each of which takes O(m) time. O

4 Global Preorder Algorithms

In this section we present an efficient algorithm to compute the parameterized semantic
relations Egl’% introduced in Section 2.4. The algorithm is due to Celikkan and Cleave-
land [CC95]. We first introduce an auxiliary function on relations similar to the one given
in Definition 2.3.

Definition 4.1 Let L = (S, A,—) be an LTS and R C § x S be a relation between states.

21

select S € working
pre = ()
for eacha € A do
begin
for each a-transition ¢t € in(S) do
setMarks(t)
for each B € pre do
if S is a splitter of B then
begin
remove B from its list
changed := split(B, By, By)
add B, By to working
if changed then
append stable to working
end
end
working := working — {S}
stable := stable U {S}

Figure 10: Refinement step of BB_.LPARTITIONING.

Then FE : 25%8 — 25%5 45 given by:

Fr(R) ={(p,q)| pllgAVae A
{p,q,a) €1 =[p>p =3¢ q>¢d N{p,q¢) € RA
(pg,a) €@y =>[g—¢ =W . p=>p NP, ¢)€R]}

Note that relation R is a (II, ®;, ®o)-bisimulation iff R C Fr(R). Correspondingly, if
R— FE(R) # 0 then R is not a (I, &1, ®o)-bisimulation. It is easy to see that the algorithm
EFF_PREORDER in Figure 11 computes Egh% over § x S.

In order to efficiently implement this algorithm, one must maintain the value of
ToDelete = R — F5(R), as removing an element from R may change the value of FZ (R).
Now from the definition of F% it follows that if (p,q) € R — F5(R) then one of the three

conditions below must hold.
L (p,q) ¢ 11
2. (p.g,a) €A . p P AVE (¢ ¢ = (P, ¢) € R)
3. (p.g,a) €D N3¢ ¢ ¢ AV (p =0 = (V. ¢) ¢ R)
To understand how we may exploit these conditions, suppose that (p,q) € R, (p,q,a) € ¥4,

and p has an a-derivative p' such that (p', ¢’) for only one a-derivative ¢’ of q. Now if (p', ¢")

22

R:=8xS;
ToDelete := R — Fz(R)
while ToDelete # () do begin
Choose (p, q) € ToDelete;
R:=R—{(p,q)};
ToDelete := R — FE(R);
end;

Figure 11: Algorithm EFF_PREORDFER for computing the Egl o, relation.

is removed from R, it follows that (p, ¢) ¢ F=(R) and hence (p, ¢) € R—FE(R). Thus (p, q)
must be removed from R, as R cannot be a bisimulation if (p,¢) € R. This suggests that if
we know how many a-derivatives of ¢ that p’ is related to, then when this number reaches 0
we can remove pairs involving g and states (like p) having an a-transition into p’. To record
this information, FFF_PREORDFER maintains two arrays of counters. We describe these
in turn.

e HighCount(a,p', q) is the number of a-derivatives of the state ¢ that are “higher” than

!

p.

e LowCount(a,p,q') is the number of a-derivatives of the state p that are “lower” than
!

q.

Formally they are defined as follows.
HighCount(a,p',q) = [{¢' | ¢ = ¢ AV, ¢') € R}

LowCount(a,p,q) = |{p | p S p A (r',qd) € R}

The task of implementing EFF_PREORDER can now be divided into an initialization
phase and an iteration phase. The former involves the computation of the initial value of R,
ToDelete, HighCount and LowCount. The initialization code is given in Figure 12. Note
that HighCount(a,p',q) is set to the number of a-derivatives of ¢ since we are assuming
that all states are related (that is, we start with the coarsest partition), and similarly for
LowCount. The set R holds the intermediate approximations to the preorder, and it will
contain the desired preorder upon termination of the algorithm.

After the initialization phase, the algorithm repeatedly removes elements from T'oDelete,
deletes them from R, and incrementally updates ToDelete = R — F5(R) using the counters
HighCount and LowCount. (As a practical matter, note that when an element is added
to T'oDelete, one may immediately remove it from R without affecting the correctness of
the algorithm.) These counter values determine when a pair of states is not an element of
F=(R) and thus should be added to ToDelete for eventual removal from R. The algorithm
terminates when ToDelete = (), in which case R = F;(R) and R is therefore the largest
(IT, &4, ®y)-bisimulation on S. Figures 13 and 14 illustrate how HighCount counters are used

23

ToDelete :== { (p,q) | p Xg};
R:=8xS;

foreach (p,q) € R do begin
foreach a € ({p >} U {¢ >}) do begin
HighCount(a,p,q) = [{¢' | ¢ = ¢' };
LowCount(a,p,q) = {p' | p = ' };

{* If q does not have an a-transition, pair {p,q) is inserted into ToDelete. *}
if HighCount(a,p,q) = 0 and (p,q,a) € ®; and (p, q) & ToDelete then
ToDelete := ToDelete U {(p, q)};

{* If p does not have an a-transition, pair (p,q) is inserted into ToDelete. *}
if LowCount(a,p,q) =0 and (p, q,a) € @3 and (p, q) ¢ ToDelete then
ToDelete := ToDelete U {(p, q)};
end;
end;

Figure 12: Initialization of T'oDelete and R.

during the algorithm. A HighCount(a,p, q) value of 0 means that there is no a-derivative of
q related to p'; thus all pairs (p, ¢) such that p = p’ should be inserted into the set ToDelete.
Note that the insertion of a pair (p, ¢) into the set T'oDelete is guarded by the predicates @,
and ®o. A HighCount(a,p',q) value of 0 causes a pair (p, q) to be inserted into ToDelete
only if (p, ¢, a) is in ®;. LowCount is employed analogously. Figure 15 contains the code for
the iteration phase of the algorithm.

We now remark on the time complexity of the preorder-checking algorithm given in
Figures 12 and 15. If £ = (S, A, —) is an LTS, let |£| = |S| + | — |. Also let t;u; be the
time spent on computing II, ®; and ®,. We also assume that sets are implemented using
hash tables and thus that insertion, deletion and set membership may be computed in O(1)
time.

Theorem 4.2 The code given in Figure 12 takes O(tii + |S| X |L]) time.

Proof. Initialization of ToDelete and R takes O(tini + |S|?) time units. The nested
“foreach” loops require O(|S| x |£]) set membership operations. This follows from the fact

that
Y2 Y o) < Y He S+ He)

PES 485 ae({piuleD)) PEs 4€8
< DD Ha M+ Hp
peES ¢€S PES ¢S

24

Before<p',q'> in ToDelete s processed. After <p',q'> is processed.

HighCount(ap’,0) =0

Figure 13: Illustration of the main loop where HighCount value is 1.

Before <p’,q,1> in ToDelete is processed . After <p”q’1> is processed_

HighCount(a,p’,q) = 1

Figure 14: Illustration of the main loop where HighCount value is greater than 1.

25

while ToDelete # () do begin
Choose (p',q') € ToDelete;
R:=R-{{,d)};
/* First condition */
foreach a € {-> ¢'} do begin
foreach g € {® = ¢'} such that (p,q,a) € ®; do begin
HighCount(a,p',q) := HighCount(a,p',q) — 1;
if HighCount(a,p',q) = 0 then begin
foreach p € {e % p'} do
if (p,q) € R and (p, q) € ToDelete then
ToDelete := ToDelete U {(p, q)};
end;
end;
end;
/* Second condition */
foreach a € {3 p'} do begin
foreach p € {® % p'} such that (p,q,a) € &, do begin
LowCount(a,p,q') := LowCount(a,p,q') — 1;
if LowCount(a,p,q') = 0 then begin
foreach ¢ € {e = ¢'} do
if(p,q) € R and (p,q) & ToDelete then
ToDelete := ToDelete U {(p, q)};
end;
end;
end;
ToDelete := ToDelete — {(p, ¢'} };
end

Figure 15: Main loop of algorithm FFF_PREORDER.

26

< L+ 1L

pES geS

< O(IS] < [£] +[S8] < [L])

and checking predicates ®; and ®, may be done in constant time after initializing them
properly. Then the total amount of time spent is O (t;; + |S|> + |S| % |£|). This reduces to

Theorem 4.3 The code given in Figure 15 takes O(|S|> + |S| % |L£]) time.

Proof. We first note that in the worst case, the outer loop executes at most O(|S|?) times.
Let T} represent the total amount of time spent executing the first “foreach” loop over
all iterations of the outermost “while” loop and 75 represent the time spent in the second
“foreach” loop. T} may be further decomposed into:

Tl = ,Tz+Tr

where T; represents the total amount of time spend in the innermost “foreach p € {e = p'}
do begin” loop and T, represents the time spent in the rest of the loop (e.g. in decrementing
HighCount(a,p,q') and performing the test in the if-then statement). From the structure
of the loops, we have the following.

L= > 2 2 o

(p',q"YeESXS aE{—')q’} qe{.gql}

= 2.0 2. 2. o

P'ESIES 4e(¢} ge{o ¢’}

=) o(L)

p'ES

= O8] [£])

Regarding T;, first note that for any a, p’ and g, HighCount(a, p', q) has its value changed to
zero at most once. Thus the total amount of time spent in the innermost loop is:

T, = > Y o)

(a,p’,q)EActxSXS pe{eSp'}

=2 2 2 o

q€S (a,p)EActXSpe{._)p }

= Y _o(cl)

geS

= O8] x|£])

Thus 77 = O(|S| x |£]). Using a similar argument, we may also infer that 7o = O(|S| x |L]),
and the theorem then follows. O

Note that the time spent in the initialization phase of this algorithm asymptotically domi-
nates the time devoted to the second phase. We thus have the following.

27

Theorem 4.4 Given a finite-state LTS (S, A, —) with |S| = n and | — | = m, algorithm
EFF_PREORDER takes O(tiny + |S| x |L]) time.

Speeding up the Algorithm

I:H
Oy ,dy
states, p and ¢, are related. If they are found not to be, then it is possible to terminate

the algorithm immediately. Therefore if p ¥ then we would like to determine this as

In general, when computing we are in fact really interested in whether the two given

i
q,

®1,P2

quickly as possible. This immediately suggests an optimization: if (p, g) is ever inserted into

ToDelete then the algorithm can terminate.

Another heuristic for early termination involves processing elements in ToDelete in a
particular order. Note that when (p/, ¢’} € ToDelete is processed, it may induce the removal
of (p, q) from R, where p % p’ and ¢ = ¢'. Therefore while processing the pairs in ToDelete,
the pair that is “closest” to the pair (p, q) that we are interested in will be the most promising
candidate to process. Formally, define [(p’) to be the length of the shortest path from p to
P, and [(q’) to be the length of the shortest path from ¢ to ¢'. Also let h(p',¢") = 1(p") +1(q").
Then among the pairs in T'oDelete the pair that minimizes h(p',¢') should be chosen for
processing.

Another way to speed up the algorithm is to avoid entirely the corresponding loops when
either ®; or ®, is empty. If one of these relations is empty there is no need check the
condition involving this relation, since that condition is trivially satisfied.

5 Local Algorithms

Algorithms for computing semantic equivalences and refinement replations usually consist
of two steps [CPS93]. In the first, the state space is generated and stored (possibly sym-
bolically), while the second then manipulates the state space to determine whether an ap-
propriate relation exists. The algorithms presented in the previous sections are examples of
such “global” algorithms. Global algorithms often perform poorly in practice because of the
requirement that the state space be generated in advance. In particular, in many cases, one
may be able to determine that one process fails to be related to another by examining only
a fraction of the state space. In a design setting where one is repeatedly changing a design
and checking it against a specification, one would like a verification algorithm exploiting this
fact.

On-the-fly verification algorithms combine the checking of a system’s correctness with the
generation of the system’s state space [CVWY90]. In this section we present the efficient on-
the-fly preorder-checking algorithm proposed in [Cel95]. To determine whether two states
Do, qo are related, the algorithm attempts to construct a relation relating the states of the
LTS incrementally starting with the pair (po, go)- In order to achieve the desired complexity
we represent the relation being built as an edge-labeled graph whose vertices are pairs of
related states. Formally let £ = (S, .4, —) be an LTS and py, gy € S. We have the following.

Theorem 5.1 pOEgl 3,0 iff there exists a graph G = (V,E) with V C § x S8 and E C
V x AxV such that

28

)y _
p,qo,a =r

fa, ==} [r]=q fa,—=e}[1]= q;

r

Figure 16: Illustration of the pointers highy 4 q-

(po,q0) €V

whenever (p,q) € V then (p,q) € 11

whenever (p,q) € V and (p,q,a) € ®, and p = p' then there erists a ¢' such that
q > q with (p',q¢") €V and ((v',q'), a1, (p,q)) € E.

whenever (p,q) € V and (p,q,a) € ®, and ¢ = ¢' then there erists a p' such that
p=p with (p',q') €V and ((¢',¢), as, (p,q)) € E

If such a graph exists then V represents a (II, ®;, ®y)-bisimulation relating py and go. If
(p,q) € V(G), then the edges leading into (p, ¢) may be thought of as the “justification” for
including (p, ¢) in the preorder. The index i of the action a indicates which of the conditions
of Definition 4.1 the justification is based on. If 4 = 1 then the basis of justification is
condition 2; if 7 = 2 then it is condition 3.

Given LTS £ = (S, A, —) and two states pg,go € S, the algorithm works by attempting
to build a graph as described in Theorem 5.1. This construction proceeds incrementally
using a depth-first search of S x S, starting with (pg, go). When the algorithm is invoked on
p and g, a vertex for (p,q) is added to the graph (if one does not exist already) provided
that (p,q) € II. The algorithm then attempts to add nodes relating each a-derivative of p
to some a-derivative of ¢ whenever (p, q,a) € ®;, with edges being added from these nodes
to (p,q) to indicate that the inclusion of (p,q) € G currently depends on the presence of
these nodes. If no matching a-derivative of ¢ can be found for some a-derivative p’ of p,
then p and ¢ cannot be related. In this case (p, ¢) must be removed from the graph, and the
nodes depending on (p,¢) must be re-examined to determine whether they should also be
removed. Note that once p and ¢ are found not to be related, they need not be processed
again; no graph can be constructed that includes (p, ¢) as a node. A similar action is taken
while matching the each a-derivative of g to some a-derivative of p. Note that if (p,q) € II
and (p,q,a) & ®; and (p, q,a) & P then (p, q) becomes a leaf vertex of G.

The following three data structures are used:

e The graph G.

29

e A set R that stores all the state pairs that have been determined not to be related.

e A set of pointers of the form highy ,, and lowy p .. Intuitively, highy 4, is the index
of the state in {g - o} that is currently matched to p' and lowy ,, is the index of the
state in {p - e} that is currently matched to ¢’. By using these pointers we ensure
that p' will be compared to each a-transition of ¢ at most once and similarly ¢’ will be
compared to each a-transition of p at most once.

e A set A which records the pairs that need to be re-examined. It contains tuples of the
sort {(r = 7', s, type). 7,7, and s are states, and type indicates which condition needs
to be rechecked. If type is equal to 1 then r and s are candidates for being related by
7‘521 5,5 and 7’ needs to be matched to some a-derivative of s using the high pointers,
namély highy s q. Dually, if type is equal to 2 then r and s are supposed to be related

by sggl 0,7 and low pointers will be used to find a match for 7.

The algorithm consists of three procedures. Given a transition p — p' and state g,
procedure SEARCH _HIGH tries to match p' to some a-derivative of ¢, under the assump-
tions that highy ., is the index of the first potential candidate and (p,q,a) € ®;. If it
finds a match then it adds the edge {(¢',¢'), a1, (p,q)) into G to indicate that the status
of (p,q) depends on the status of (p/,¢')— any status change of (p,¢') requires the re-
analysis of state (p,q). Procedure SEARCH _LOW performs the dual task of procedure
SEARCH_HIGH. Given states p and ¢, main procedure PREORDFER tries to match
each a-derivative of p with some a-derivative of ¢ by calling SEARCH _HIGH and each a-
derivative of ¢ with some a-derivative of p by calling SEARCH _LOW. PREORDER does
not invoke SEARCH _HIGH or SEARCH _LOW if (p,q) ¢ II. When SEARCH _HIGH
or SEARCH _LOW returns a not_related status (SEARCH_HIGH returns a not_related
status if some a-derivative of p cannot be matched to any a-derivative of ¢) then vertex
(p,q) is removed from G and inserted into R. Then all the vertices having an incoming edge
from (p,q) are re-analyzed. These vertices are stored in the set A. Pseudo-code for these
procedures may be found in Figures 17, 18 and 19.

Theorem 5.2 Let p,q be states in a finite-state LTS, and assume R = 0 and G = (0,0).
Then PREORDER(p, q) terminates, and PREORDER(p, q) = related iff p” _ q.

~dq,Po
Proof. Each possible vertex and edge is added and deleted at most once from G. Since the
number of potential edges and vertices is bounded, PREFORDFER eventually terminates.
As for correctness, we first note that when PREORDER(p, q) terminates G satisfies the
conditions laid out in Theorem 5.1. Also, PREORDER(p, q) returns a related result if and
only if (p,q) is a vertex in G. Therefore, if PREORDER(p,q) = related then pggh%q.

Now note that PREORDER(p, q) = not_related if and only if (p,q) € R at termination.
Also, (p,q) is added to R only if some a-transition of p can not be matched to any a-

transition of ¢ in such a way that the resulting G satisfies Theorem 5.1. Therefore, if
PREORDER(p,q) = not_related then p Zg. O

The time complexity of PREORDER may now be characterized as follows. We assume
that the calculation of the transitions from a state takes unit time (that is, the set of
transitions of a state is stored in the state rather than being computed by the algorithm).

30

R:=0;
G = (0,0);
PREORDER(p,q) — (result : {related,not_related})
{* p and q are not related. *}
if (p,q) € R then return (not_related);

if (p,q) ¢ II then

R:=RU{(p,9)};
return (not_related);
end;

{* Pair (p,q) has already been inserted into V(G). Its status is assumed related. *}
if (p,q) € V(G) then return (related);
{* Pair (p,q) is going to be analyzed for the first time. *}
G :=(V(9) U{(p,a)}, E(9));
status := related,
{* Match each a-derivative of p with some a-derivative of q. *}
foreach a € {p >} while status = related do
foreach p’ € {p % o} while status = related do
status := not_related;
if highy 4.4 does not exist then
create highy 4,
highy g0 == 1;
end;
{* Match p' with some a-derivative of q. *}
status := SEARCH _HIGH (p = ¢, q);
if status = not_related then
{* A contains vertices that are going to be affected as a result of
the removal of (p,q) from G. *}
A= {{r 5 p,s,i) [{{p,q), i, (r,)) € B(G) };
end;
end;
{* Match each a-derivative of q with some a-derivative of p. *}
foreach a € {q >} while status = related do
foreach p’ € {q > o} while status = related do
status := not_related;
if lowg p o does not exist then
create lowy 4
lowg pq = 1;
end;
{* Match q' with some a-derivative of p. *}
status := SEARCH _LOW (¢ % ¢',p);
if status = not_related then A := { (s % q,r,i) | {{p,q),a;, (r,s)) € E(G) };
end;
end;

Figure 17: “On-the-fly” PREORDER.
31

{* Re-analyze all the states that are affected from the removal of vertezx (p,q) from G.
The set A contains all such pairs. *}

if status = not_related then
{* Remove incoming and outgoing edges from vertex (p,q). *}

G :=V(G) —{(p.0)}, E(G) = {{m,a5,m2) | (1 = {p,q) V2 = (p,q)) Ni € {1,2} });
{* Add (p,q) to the set of unrelated state pairs. *}

R:=RU{(p,q)};
while A # () do
Choose {r = 7', s, type) € A;
A=A—{{r 5, s, type)};
if {ype = 1 then begin
highr’,s,a = highr’,s,a + 1;
{* Match r' to the next a-derivative of s. *}
status == SEARCH _HIGH (r % r',s);
if status = not_related then

A=AU{(rr LN r, 88,1y | {(r,s),b;, {rr,ss)) € E(G) };
G = (V(G) —{{rs)}, E(G) — {(m,bi,m2) | 11 = (r,s) VM2 = (1, 5) });
R:=RU{{(r,s)};
end;
end;
if {ype = 2 then begin
lowys 4.4 = lowy 4 + 1;
status := SEARCH _LOW (r 5 ', s);
if status = not_related then

A=AU{(rr LN r,s8,1) | ((s,7),b;, (ss,r7)) € E(G) };
G :=(V(9) —{{s,m)}, E(G) — { {7y, bi,m2) | 11 = (s,7) V2 = (s,7) });
R:=RU{(s,m)};
end;
end;
end;

endif;

return(status);

end PREORDER;

Figure 18: “On-the-fly” PREORDER (continued).

32

SEARCH _HIGH (p % p',q) — (result : {related, not_related})
status := not_related,
if (p,q,a) ¢ ®; then status := related;
while status = not_related and highy ., < |{qg — e}| do
{* Start searching beginning from the first potential candidate referenced by highy 4. *}
status := PREORDER(p, {q = o}[highy 44));
if status = related then
G:=(V(G), B(G) U{{(,{g = o}[highy g.]), a1, (P,) };
else
{* A match is not found. Process the next candidate. *}
highy 4o == highy 4+ 1;
end;
return (status);
end SEARCH_HIGH:;

SEARCH _LOW (¢ % ¢',p) — (result : {related, not_related})
status := not_related,
if (p,q,a) ¢ P, then status := related;
while status = not_related and lowy ,, < |{p - }| do
{* Start searching beginning from the first potential candidate referenced by lowy pq. *}
status := PREORDER({p = e}[lowy p4,q);
if status = related then
G = (V(G), B(G) U {{({p % o} llowy pal,), @z, (.)}
else
{* A match is not found. Process the next candidate. *}
lowy po = lowy pa + 1;
end;
return (status);
end SEFARCH_LOW,

Figure 19: Procedures SEARCH _HIGH and SEARCH_LOW.

33

Theorem 5.3 Let L = (S, A, —) with |L| =|S|+ | — |. PREORDER takes time propor-
tional to that required by O(tinis + m) set membership operations, where m < |L* and tin
1s the time required to compute 11, @1, and P,.

Proof. Ignoring the time consumed by recursive calls, the time spent to match each a-
derivative of a state p to some a-derivative of ¢ and to match each a-derivative of a state ¢
to some a-derivative of p can be characterized as

S {p % o} xt(SEARCH_-HIGH) + Y [{q % o}| ¥ t(SEARCH_LOW)
acA acA

where t(SEARCH _HIGH) = O(|{g = e}|) and t(SEARCH_LOW) = O(|{p = e}|).
Then the total time spent to execute the nested foreach loops in Figure 17 over all the
recursive calls is bounded by

Yo D (Hp e} x{a % o} + {a % o} + [{p = o})) < O(LP).

(p,q)ESXS acA

When a state pair (p,q) is found to be unrelated, all the state pairs that depend on this
state pair need to be re-analyzed. The time spent to re-analyze these state pairs ignoring
the time consumed by recursive calls is

O [{e = p} * [{e % q}l).

acA

In the worst case each state pair needs to be re-analyzed, and total time required to re-analyze
the state pairs is bounded by

Yo D He S xl{e = a} < O(ILP).

(p,q)ESXS acA

Then it follows that the time it takes to execute PREORDER is proportional to that
required by O(tini + m) set membership operations. O

As noted in Section 2.4, ggl 5, CAN represent various behavioral equivalences and pre-
orders by choosing ®,, ®,, and II appropriately. Therefore, PREORDER yields an efficient

local checking algorithm for all these relations.

6 Tools

Over the last decade, a number of tools that use process-algebraic formalisms for specification
and analysis of systems have been developed. Several of these tools implement one or more
of the algorithms presented in this chapter.

The first successful tool in this category was the Concurrency Workbench (CWB) [CPS93],
developed as a joint project between the University of Edinburg, the University of Sussex,
and Uppsala University. The CWB implements global algorithms for several behavioral

34

equivalences and preorders, including bisimulation, observational equivalence, and branch-
ing bisimulation.

A continuation of the Concurrency Workbench effort resulted in CWB-NC, the Con-
currency Workench of the New Century [CS96]. In addition to improved efficiency and an
extended set of algorithms, CWB-NC features the ability to “plug in” user-defined system
description languages, and uses language-independent analysis algorithms on a uniform in-
ternal representation of processes.

The Fc2 toolset [BRRAS96| gives the user the choice between explicit representation
of the state space with partition refinement analysis techniques and symbolic OBDD-based
representation. A graphical user interface provided by the Autograph visual editor gives a
more intuitive specification language compared with text-based process algebra terms. The
Fc2 interchange format makes it possible to share specifications with other tools that support
this format, such as Aldébaran, described below.

CADP (C&SAR/ALDEBARAN Development Package) [FGK™T96] also supports both par-
tition refinement techniques based on the Paige-Tarjan algorithm and symbolic BDD-based
algorithms. The toolset is oriented towards analysis of systems expressed in the high-level
process-algebraic languages LoTos and E-LoTos [GS98]. A number of interchange formats
are supported, allowing the user to work with other high-level languages such as SDL as well
as low-level representations.

The commercially available tool FDR2 [Ros94] is based on the CSP [Hoa853] process
algebra. FDR2’s main analysis technique is based on establishing refinements (behavioral
preorders) between processes. Analysis of real-time systems, including schedulability and
resource requirements, is supported by the PARAGON toolset [SLBA99]. PARAGON cal-
culates a resource-sensitive version of bisimulation equivalence using a partition-refinement
algorithm.

7 Conclusions

This chapter presented several algorithms for the analysis of finite-state process-algebraic
specifications. The algorithms calculate behavioral equivalences and preorders; equivalences
can be used to compare two processes for indistinguishable behavior and to minimize the
state space of a system in a behavior-preserving manner. Preorders can be used to establish
refinements, that is, specification/implementation relationships between processes.

Finite-state systems represent an important class of system specifications, amenable to
fully automatic formal analysis. Finite-state systems are used in the specification and veri-
fication of hardware and software designs, communication and security protocols, real-time
systems, etc. Even when a specification has an infinite state space, some of its components
may be finite-state. In this case, the inherent modularity of process-algebraic specifica-
tions allows one to apply automatic equivalence and preorder checking techniques to these
components.

35

References

[BBSY]

[BBKS6]

[BdS92]

[BRRS96]

[Bry86]

[Bry92]

[CC95]

[Cel95]

[CHY3]

[CPS93)]

[CS96]

[CVWY90]

[FGK+96]

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25-59, 1987.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for
an interrupt in mechanism process algebra. Fundamenta Informatica, 9:127-168,
1986.

A. Bouali and R. de Simone. Symbolic bisimulation minimization. In Proceedings
of CAV 91, number 663 in LNCS, pages 96-108, 1992.

A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The Fc2Tools set. In
Proceedings of Computer-Aided Verification (CAV ’96), volume 1102 of Lecture
Notes in Computer Science, pages 441-445, July 1996.

R.E. Bryant. Graph-based algorithms for Boolean function manipulation. /EEE
Transactions on Computers, C-35(6):677-691, August 1986.

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293-318, September 1992.

U. Celikkan and R. Cleaveland. Generating diagnostic information for behavioral
preorders. Distributed Computing, 9:61-75, 1995.

U. Celikkan. Semantic Preorders in the Automated Verification of Concurrent
Systems. PhD thesis, North Carolina State University, Raleigh, 1995.

R. Cleaveland and M. Hennessy. Testing equivalence as a bisimulation equiva-
lence. Formal Aspects of Computing, 5(1):1-20, 1993.

R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A
semantics-based tool for the verification of concurrent systems. ACM TOPLAS,
15(1), 1993.

R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In Proceedings
of Computer-Aided Verification (CAV ’96), volume 1102 of Lecture Notes in
Computer Science, pages 394-397, July 1996.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient al-
gorithms for the verification of temporal properties. In Proceedings of Computer-
Aided Verification (CAV ’90), June 1990.

J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A protocol validation and verification toolbox. In Pro-
ceedings of Computer-Aided Verification (CAV ’96), number 1102 in Lecture
Notes in Computer Science, pages 437-440, July 1996.

36

[GS98]

[GVI0]

[Hen88]
[Hoa85]
[KS90]

[Mil80]
[Mil89]
[Plo81]

[PT87]

[Ros94]

[SLBA9]

[vGW96]

H. Garavel and M. Sighireanu. Towards a second generation of formal description
techniques - rationale for the design of e-lotos. In Proceedings of FMICS’98,
pages 187230, May 1998.

J. F. Groote and F. W. Vaandrager. An efficient algorithm for branching bisim-
ulation and stuttering equivalence. In Proceedings of 17th International Collo-
quium on Automata, Languages and Programming,, volume 443 of Lecture Notes
in Computer Science, pages 626—638. Springer-Verlag, 1990.

M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.
C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Intl., 1985.

P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):43-68, May
1990.

R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.
R. Milner. Communication and Concurrency. Prentice Hall Intl., 1989.

G. Plotkin. A structural approach to operational semantics. Aarhus University,
Computer Science Department, 1981.

R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal
of Computing, 16(6):973-989, 1987.

W. R. Roscoe. Model-checking CSP. In A Classical Mind: FEssays in Honour of
C.A.R. Hoare. Prentice-Hall Intl., 1994.

O. Sokolsky, I. Lee, and H. Ben-Abdallah. Specification and analysis of real-time
systems with paragon. Annals of Software Engineering, 7:211-234, 1999.

R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555-600, May 1996.

37

Index

~,5, 6,8 refinement ordering, see preorder

~F.6,8,18 .
< 19. 20 sphtter, 9, 12, 15, 20, 21

~. 18 compound, 12

11
S, 8, 21-23, 28, 30, 34

EJ’ 778

algorithm
BB_PARTITIONING, 1921
EFF_PREORDER, 22-28
Kanellakis-Smolka, see KS_PARTITIONING
KS_PARTITIONING, 9-11
local, 28-34
on-the-fly, see local
Paige-Tarjan, see PT_PARTITIONING
PREORDER, 30-34
PT_PARTITIONING, 11-14
symbolic, 1618

equivalence
bisimulation, 5, 8
fixpoint characterization, 6
iterative characterization, 6
parameterized, 6, 8
branching bisimulation, 19
observational, 18
observational congruence, 19
testing, 19
weak bisimulation, 18

labeled transition system, 4
finite-state, 4
image-finite, 6

LTS, see labeled transition system

OBDD, 15-18

parameterized semantic relation, 8, 21, 28
partition refinement, 9
preorder
forward simulation, 7
process transformation, 18

38

