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ABSTRACT
We study the feasibility of the exact and approximate com-
putation of the probability of relational queries with differ-
ence on tuple-independent databases. We show that even
the difference between two “safe” conjunctive queries with-
out self-joins is “unsafe” for exact computation. We turn to
approximation and design an FPRAS for a large class of re-
lational queries with difference, limited by how difference is
nested and by the nature of the subtracted subqueries. We
give examples of inapproximable queries outside this class.

1. INTRODUCTION
Query evaluation on probabilistic databases has been stud-

ied for a long time (we refer to the recent overviews [12, 28,
8]). It eventually became known [20, 10] that there exist
simple queries for which the exact computation of the prob-
ability of the answers is hard (specifically, #P-hard) even
when database instances follow the simple tuple-independent
model. In [10], Dalvi and Suciu showed a remarkable di-
chotomy for the class of conjunctive queries (which we de-
note CQ) but without self-joins (which we denote CQ−) by
separating them into “safe” queries for which answer prob-
abilities can be computed in polynomial time and “unsafe”
ones for which the computation is #P-hard. For CQ− the
safe queries have a simple characterization. We do not need
the characterization in this paper but it is instructive to note
that it does not take much to destroy safety. The query q
in Figure 1b is safe but the query q′ in Figure 1c is not.

In an important series of papers they have then extended
the dichotomy results both to the class of all positive queries
(which can be described equivalently as the select-project-
join-union (SPJU) queries or as the unions of conjunctive
queries (UCQ)), on independent-tuple databases [11, 9] and
to CQ− on disjoint-independent databases [12].

In this paper we work only with tuple-independent prob-
abilistic databases. These are defined by tables such as
those in Figure 1, where each tuple ti is associated with
a probability pi ∈ [0, 1]. We will also need to associate each
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R
b1 c1 u1(0.7)
b2 c2 u2(0.8)
b1 c3 u3(1.0)

S
c1 a1 v1(0.1)
c1 a2 v2(0.5)
c2 a3 v3(0.2)
c3 a2 v4(0.9)

T
a1 w1(0.3)
a2 w2(0.4)
a3 w3(0.6)

(a)

q(x) : −R(x, y), S(y, z)

(b)

q′(x) : −R(x, y), S(y, z), T (z)

(c)

b1 u1(v1 + v2) + u3v4
b2 u2v3

q(I)

b1 u1v1w1 + u1v2w2 + u3v4w2

b2 u2v3w3

q′(I)

(d)

Figure 1: (a) A tuple-independent probabilistic
database I with three relations R,S, T , the tuples are
annotated with probabilities and tuple variables; (b)
a safe query q; (c) an unsafe query q′; (d) answer
tuples annotated with their boolean provenance.

tuple ti with a distinct boolean variable ui which can be
thought of as a notation for the event that ti appears in a
random instance, independently of the other tuples. Then
pi = Pr[ui]. We call the ui’s tuple variables. For example in
Figure 1a, the tuple variable u1 denotes the event that the
tuple R(b1, c1) appears in a random instance defined by I
and the fraction 0.7 inside parentheses is the probability of
that event (i.e. Pr[u1] = 0.7).

For all queries q (safe or unsafe), given a probabilistic
database I, the computation of the probabilities for the tu-
ples in the answer q(I) can be presented in two stages [18,
44]. In the first stage we compute for each tuple in q(I)
a boolean expression in the tuple variables from I. The
boolean expression computed for a tuple to ∈ q(I), which we
call the boolean provenance of to, describes the event that
to appears in q(I) as a combination of the events denoted
by the input tuple variables. This first stage is not a source
of computational hardness, provided we are concerned, as is
the case throughout this paper, only with data complexity
(i.e., we assume that the size of the query is a constant).
Indeed, every boolean provenance in q(I) is of poly size and
can be computed in poly time, in the size of I. A further
observation that will play a fundamental role in this paper
is that for positive queries (UCQ, equivalently SPJU), the
DNF of each boolean provenance is also of poly size and can
be computed in poly time, again in the size of I1.

1Through this paper we use DNF for the irredundant DNF



In the second stage, the probability of each boolean prove-
nance is computed from the probabilities that the model
associates with the tuples in I, i.e., with the tuple vari-
ables. For example, in Figure 1d the event that tuple q′(b2)
appears in q′(I) for a random instance described by I is
described by its boolean provenance u2v3w3. By the in-
dependence assumptions it has probability Pr[u2v3w3] =
Pr[u2] Pr[v3] Pr[w3] = 0.4 × 0.2 × 0.6 = 0.048. This break
into two stages, called intensional semantics in [18, 10])
and described as the correct way of computing probabili-
ties for unsafe queries gives a better understanding of the
source of computational hardness. Indeed, the probability
of a boolean expression is related to counting the number
of its satisfying assignments which leads to #SAT, Valiant’s
first #P-complete problem [42].

But even for safe queries the separate study of the boolean
provenance is beneficial. Olteanu and Huang have shown
that if q ∈ CQ− is safe then for any I the boolean provenance
of any tuple in q(I) is read-once [31]. A boolean expression
is in read-once form if each of its variables appears exactly
once, and is read-once if it is equivalent to a boolean expres-
sion in read-once form. It is easy to see that the probability
of an expression whose variables denote independent events
can be computed in linear time if the expression is in read-
once form (basic trick: Pr[ϕ∨ψ] = 1−(1−Pr[ϕ])(1−Pr[ψ]),
because ϕ and ψ have disjoint sets of variables and hence are
independent). With hindsight, the quest in [10] for plans for
safe queries that on all inputs compute probability in poly
time can be seen as a quest for plans that compute boolean
provenance directly in read-once form. In our example, the
boolean provenance of both answers to the safe query q is
shown already in read-once form in Figure 1d. It is in fact
computed in this form by the safe plan Πx(R 1 ΠyS) found
through the algorithm given in [10]. On the other hand,
for the unsafe query q′ the boolean provenance of the tu-
ple q′(b1) is not read-once (there is no equivalent read-once
form). Using knowledge compilation techniques [15] such as
BDDs and d-DNNFs the analysis of boolean provenance can
also explain safety, i.e., poly time computation of probabil-
ities, for classes of queries larger than safe CQ−s, as shown
in [31, 25].

What of unsafe positive queries? As we saw from the
example above, they can be quite common and cannot be
ignored. Given the #P lower bound, researchers have dealt
with such queries in various ways (see Section 5). One obser-
vation relevant for this paper is that an unsafe query q can
produce on some probabilistic database I boolean prove-
nance for tuples in q(I) whose probability can be computed
efficiently and hopefully this can be decided in poly time
based on I. For instance, modify our example in Figure 1a
by deleting the tuple S(c3, a2). To obtain the modified
boolean provenance just set Figure 1d the corresponding tu-
ple variable v4 to 0. The query q′ is unsafe, but on this mod-
ified instance the boolean provenance of the answers is read-
once because u1v1w1 + u1v2w2 = u1(v1w1 + v2w2) and thus
the efficient way of computing probabilities applies. This
leads to an “instance-by-instance” approach (taken in [39,
36]) in which both queries and instances are examined before
choosing a probability computation algorithm.

Another observation relevant for this paper is that giv-
ing up on exact computation of the probabilities completely

of an expression, i.e., a disjunction of minterms that cannot
be further shrunk by idempotence or absorption.

Pr[q1 − q2]
q1 q2 Exact Approximate

UCQ safe CQ−
#P-complete

FPRAS
UCQ UCQ Inapproximable

Table 1: Complexity of computation of probability
for differences of positive queries.

solves the problem for unsafe positive queries. This is be-
cause the boolean provenance of positive queries has IDNF
of poly size and, as shown in [10] (see also [33]), an FPRAS
(Fully Polynomial Randomized Approximation Scheme) is
given by slightly adapting the one for DNF counting in [26].

To summarize so far, there has been considerable work
done on positive queries. But what of queries that include
the relational difference operation? The concept of boolean
provenance and the intensional semantics extend to differ-
ence. This was essentially shown in an early seminal paper
by Imieliński and Lipski, and sets of tuples annotated by
boolean provenance form particular cases of their c-tables
[23]. However, there are some new and considerable diffi-
culties with such queries. For one, the IDNF of the boolean
provenance may be of exponential size and this precludes us-
ing either the read-onceness testing algorithm of [19] and the
FPRAS for DNF counting in [26]. The latter is already ob-
served by Koch [28] who also discusses techniques for avoid-
ing the difference operation in some practical applications.
Nonetheless, queries with difference are important. Prac-
tical SQL queries make use of difference not just explicitly
(the EXCEPT construct) but also implicitly as when SE-
LECT subqueries are nested within WHERE clauses with
logically complex conditions.

In a recent and independent work [17], Fink et. al. pro-
posed a framework to compute exact and approximate prob-
abilities for answers of arbitrary relational algebra queries
that allow difference operations. They extended the ap-
proach in [32] that computes a d-tree given a DNF expression
by repeated use of independent AND, independent OR and
Shannon’s expansion, and showed that the boolean prove-
nance of the answer is not required to be converted to DNF
for queries with difference. Though this approach always re-
turns an exact or approximate probability of the answer, the
size of the d-tree is not guaranteed to be of poly-size in the
input expression and therefore the running time may not be
polynomial in the worse case. In fact, in this paper we show
that it is not possible to get any non-trivial poly-time ap-
proximation of the answer probability for very simple queries
with difference under standard complexity assumptions.

Our Contributions. We study the complexity of com-
puting the probability of relational queries with difference on
tuple-independent databases. Our first result is negative,
and a somewhat surprising one. We exhibit two boolean
queries q1 and q2, both of which are very nice by themselves,
namely they are safe CQ−s, but such that computing the
probability of q1 − q2 is #P-hard. The proof is complex,
involving reductions from counting independent sets in 3-
regular bipartite graphs to counting edge covers in another
special class of bipartite graphs to counting satisfying as-
signments of certain configurations of boolean expressions2.

2It has recently been brought to our attention that this re-
sult also follows from a hardness result in [9]. However, our
proof uses completely different ideas and also shows #P-
hardness of some natural graph problems which may be of



This hardness of exact computation result suggests that any
class of interesting queries with difference which are safe in
the spirit of [10, 11, 9] would have to be severely restricted3.

In view of this lower bound for exact computation we
turn to approximate computation of the probabilities. Our
second result gives an FPRAS for computing probabilities
for large classes of queries with difference. In particular, a
corollary of our result applies to queries of the form q1 − q2
where q1 is an arbitrary positive query (UCQ/SPJU) while
q2 is a safe query in CQ−. The latter restriction is im-
portant because our third result shows the inapproxima-
bility of computing the probability of “True − q” where
True is the boolean query that is always true while q is the
boolean CQ q() :− S(x), R(x, y), S(y) which has a self-join.
The three results give a simple summary of the situation for
differences of positive queries, see Table 1.

In fact, our full FPRAS result is not restricted to a sin-
gle differences of positive queries. In particular, it gives an
FPRAS for any relational algebra query q with multiple uses
of difference as long as they are restricted as follows: (1) If
q1 ./ q2 is a subquery of q then at least one of q1, q2 must
be positive, (2) If q1− q2 is a subquery of q then q1 must be
positive and q2 must be a safe query in CQ− (in an instance-
by-instance approach, the last requirement can be relaxed
to q2(I) having read-once boolean provenance on a given I).
To allow for instance-by-instance approaches we state our
full FPRAS result in terms of requirements on the boolean
provenance of the queries, using combinations of DNFs and
d-DNNFs. The proof uses a new application of the Karp-
Luby framework [26] that goes well beyond DNF counting.

Roadmap. In Section 2 we review boolean provenance,
read-onceness and d-DNNFs. We also introduce the no-
tion of difference rank and describe the connection between
graph configurations (such as cliques or independent sets)
and truth assignments that satisfy the boolean provenance
of certain queries. In Section 3 we give our #P-hardness
result for exact computation of probability of tuples pro-
duced by difference queries q1 − q2, where both q1, q2 are
safe for UCQ. Section 4 gives our inapproximability results
for general SPJUD queries with difference rank 1, as well
as an FPRAS when the boolean provenance are in a special
form. We also discuss classes of queries that produce this
special form. In Section 5 we review some of the related
work. Finally we conclude in Section 6 with directions for
future work.

2. PRELIMINARIES
In this section we review some preliminary notions rele-

vant to the rest of the paper.

2.1 Boolean provenance
The annotation of tuples with boolean expressions goes

back to the c-tables of Imieliński and Lipski [23] who used
them to describe incomplete databases. It was then used
in [18, 44] and ever since for probabilistic databases. This is
a particular case of provenance annotation [21] which is why
in this paper we use the terminology “boolean provenance”.

independent interest.
3There is always the obvious easy case when the events as-
sociated with q1 and with q2 are independent of each other
because, for example, they operate on separate parts of the
input database. We consider this case uninteresting.

The algorithm [23] for computing boolean provenance is
quite well-known so we only illustrate it here on an exam-
ple, namely for the query q in Figure 1b and the instance
I in the same figure. We use the relational algebra expres-
sion Πx(R 1 ΠyS) which is equivalent to q and we show
the steps of the computation in Figure 2. First, to com-
pute ΠyS, the boolean provenances of tuples in S with the
same value of y are combined using disjunction (+) (see Fig-
ure 2a); disjunction is also used with union. For join, the
boolean provenance of two tuples are combined using con-
junction (see Figure 2b). Thus, the boolean provenance of
the answers of positive queries is a monotone boolean ex-
pression. Moreover, an easy induction shows:

Proposition 1. For any positive (UCQ/SPJU) query q
and for any probabilistic database I where |I| = n, the DNF
of the boolean provenance of the tuples in q(I) can be com-
puted in time polynomial in n (and so it also has poly size).

Now consider R = R1 − R2 where the tuples in R1, R2

are annotated with boolean provenance. For a tuple t to
appear in R, t must appear in R1, let’s say with boolean
provenance φ. If t does not appear in R2, then the boolean
provenance of t in R will be also φ; on the other hand if
t appears in R2, let’s say with boolean provenance ψ, then
the boolean provenance of t in R will be φ ∧ ψ. Figure 2d
shows the boolean provenance for the difference query q′−q
where q, q′ are given in Figure 1

When difference is added, Proposition 1 fails. Indeed,
it is easy to see that if U and V each have n tuples and
no common join attributes, then the DNF of the boolean

provenance of True − Π∅(U × V ) has 2n
2

minterms. (here
True is the boolean query that is always true, for example
a 0-ary base relation containing one “dummy” tuple).

2.2 Difference Rank
As we have seen, for queries with difference the DNF of

the boolean provenance can have exponential size. Thus,
it is natural to study queries in which difference is used in
restricted ways. The first step toward this is to limit the
amount of “nesting” involving difference in a relational al-
gebra expression. We do it through the following definition.

Definition 1. The difference rank of a relational algebra
expression is a function δ : RA→ N defined inductively as:

• (Base relation) δ(R) = 0,

• (Project) δ(Πq) = δ(q),

• (Select) δ(σq) = δ(q),

• (Join) δ(q1 1 q2) = δ(q1) + δ(q2),

• (Union) δ(q1 ∪ q2) = max(δ(q1), δ(q2)),

• (Difference) δ(q1 − q2) = δ(q1) + δ(q2) + 1.

The queries of difference rank 0 are exactly the positive
(SPJU) queries. The positive results in this paper will be for
queries of difference rank 1, subject to further restrictions.
There are natural queries of difference rank 2 however (see
subsection 2.4). Proposition 2 below (the proof is given in
Appendix A) is an extension of Proposition 1 and it justi-
fies our focus on queries of difference rank 1. It shows that
their boolean provenance has a certain structure that is po-
tentially more manageable, and indeed, we will exploit this
structure in designing approximation algorithms (Section 4).



c1 v1 + v2
c2 v3
c3 v4

(a)

b1 c1 u1(v1 + v2)
b2 c2 u2v3
b1 c3 u3v4

(b)

b1 u1(v1 + v2) + u3v4
b2 u2v3

(c)

b1 (u1v1w1 + u1v2w2 + u3v4w2) · (u1(v1 + v2) + u3v4)

b2 (u2v3w3) · (u2v3)

(d)

Figure 2: Boolean provenance for (a) Πy(S); (b) R 1 Πy(S); (c) Πx(R 1 ΠyS); (d) Πx((R 1 S) 1 T )−Πx(R 1 Πy(S)).

Proposition 2. For any relational algebra query q such
that δ(q) ≤ 1, and for any probabilistic database I where
|I| = n, the boolean provenance of any tuple t ∈ q(I) can be
computed in poly-time in n in the form

α0 +

r∑
i=1

αiβi

where each of α0, · · · , αr and β1, · · · , βr is a monotone DNF
in poly-size in n while r is also polynomial in n; moreover,
if δ(q) = 0, then r = 0 (we have a single DNF α0).

2.3 Read-Once and d-DNNF
A boolean expression φ is said to be in read-once form

if every variable x ∈ Var(φ) appears exactly once, where
Var(φ) denotes the set of variables in φ. An expression hav-
ing an equivalent read-once form is called read-once. For
example, x1(x2 + x3x4) + x5x6 is read-once but x1(x2 +
x3x4) + x4x6 is not. The expression xy + yz is read-once
but xy + yz + zx is not. A read-once expression φ can be
naturally represented by a read-once-tree (see Figure 3 (a)).

+

+ v4u3

v2v1

u1

+

+ u1

v4

v1

u1

v2

v1
+

u3
v2

(a) (b)

Figure 3: φ = u1(v1+v2)+u3v4: (a) as a read-once tree,
(b) as a d-DNNF.

A d-DNNF (for deterministic decomposable negation nor-
mal form), introduced by Darwiche [13, 15], is a rooted
DAG, where the leaves are labeled with positive or nega-
tive literals x or x, and internal nodes are +-nodes or ·-
node (see Figure 3). The ·-nodes are decomposable, in the
sense that, for any two children ui and uj of a ·-node u,
Var(φui)∩Var(φuj ) = ∅ (i.e., φui and φuj are independent).
On the other hand, +-nodes are deterministic, i.e., for any
+-node u, and for any two children ui, uj of u, the set of
assignments of Var(φ) that satisfy φui and the set of as-
signments that satisfy φuj are disjoint. Similar to read-once
expressions, for a boolean expression φ represented as a d-
DNNF, Pr[φ] can be computed in linear time in the size of
the d-DNNF repeatedly using Pr[φu] = Π`

i=1 Pr[φui ] (if u

is a ·-node) and Pr[φu] =
∑`
i=1 Pr[φui ] (if u is a +-node),

where u1, · · · , u` are children of u. The following propo-
sition shows containment of these knowledge compilation
forms which we will exploit while designing our approxima-
tion algorithms (the containment is strict [25]):

Proposition 3. If φ is in read-once form, then φ has a
d-DNNF representation of size O(n) (n = |Var(φ)|) which
can be computed in O(n) time from the read-once tree of φ.

The proof of the above proposition follows from [13, 31, 25]
using the construction of an OBDD [6] as an intermediate
step. We illustrate the read-once-tree and d-DNNF repre-
sentation of the read-once boolean provenance u1(v1 +v2)+
u3v4 of the tuple q(b1) from Figure 1d (see, for instance, [25]
for the exact procedure).

Whether a boolean expression is read-once was known
to be decidable in poly-time (along with the computation
of the equivalent read-once form), when φ is in DNF [22,
19]; recently [39, 36] gave poly-time algorithm to achieve
the same when a boolean expression φ produced by a CQ−

query is given in any arbitrary form along with the query
plan that produced φ. An equivalent d-DNNF for a given
boolean expression may not be compact, and also it is not
known whether the boolean expressions having poly-size d-
DNNF expressions are closed under negation [14, 15]. Nev-
ertheless, since read-once boolean expressions are obviously
closed under negation it follows from Proposition 3 that if
φ is read-once, then φ has a d-DNNF representation of size
O(|Var(φ)|).

2.4 From Graphs to Queries
There is a tight connection between graph properties that

assert the existence of vertex configurations such as cliques,
vertex covers, independent sets, etc., and certain (boolean)
relational algebra queries. Indeed, consider the relational
schema (V,E, S) where V (A), S(A) are unary relations while
E(A1, A2) is binary. The idea is that (V,E) encodes a sim-
ple undirected graph while the vertex subset S ⊆ V and
describes a configuration such as a vertex cover, a clique,
etc. in the graph. Not all (V,E)-relational databases en-
code simple graphs so we restrict attention to those satisfy-
ing the constraints E ⊆ V × V , ∀v1v2 E(v1, v2)→ E(v2, v1)
and ∀v ¬E(v, v).

To express the relational algebra queries we begin with
formulating the clique, cover, etc. properties as first-order
sentences which we then transform into queries (making sure
of domain independence).

Examples

1. S induces a clique: ∀x, y S(x)∧S(y)∧x 6= y → E(x, y)
qclique = True − [σA1 6=A2(ρA1/AS × ρA2/AS)− E]

2. S is a vertex cover : ∀x, y E(x, y)→ S(x) ∨ S(y)
qv−cover = True− [E 1 ρA1/A(V −S) 1 ρA2/A(V −S)]

3. S is an independent set : ∀x, y S(x)∧S(y)→ ¬E(x, y)
qind−set = True − [E 1 ρA1/AS 1 ρA2/AS]

Note that δ(qind−set) = 1 while δ(qv−cover) = δ(qclique) = 2.
Consider probabilistic databases I with schema (V,E, S)

such that the tuples in V (the vertices) and E (the edges)
have probability 1 while S has the same tuples as V but



with arbitrary probabilities. The tuple variables that mat-
ter are those for S and they correspond 1-1 to the vertices
of the graph. A random instance of S is subset of V and
these are in 1-1 correspondence with the truth assignments
to the tuple variables. Hence there is a 1-1 correspondence
between configurations satisfying the query (e.g., forming
a clique, or an independent set) and the truth assignments
that make the boolean provenance of the query true. This
gives a reduction from counting the configurations to count-
ing the corresponding satisfying assignments (this is further
reduced to computing probability by choosing all probabili-
ties in S to be 1

2
).

3. HARDNESS OF EXACT COMPUTATION
In this section we give a hardness result for SPJUD queries.

We will consider boolean SPJUD queries of the form q =
q1 − q2, where both q1, q2 are CQ− queries; hence δ(q) = 1.
We show that the problem of exact probability evaluation
for this class of simple-looking query is hard even in very
restricted cases.

Given an SPJUD query q = q1 − q2 and a probabilistic
database instance I, let φ1 and φ2 denote the two boolean
provenance-s produced by q1 and q2 on I respectively. Hence
the boolean provenance of the unique tuple in q(I) will be
φ = φ1·φ2. As we discussed in Section 2.3, if φ (and therefore
φ) is a read-once (RO) boolean expression on independent
random variables, then Pr[φ] and Pr[φ] can be computed
efficiently. In this section we show that, the exact compu-
tation of Pr[φ1 · φ2] is #P-hard, even when both φ1, φ2 are
RO. In fact, we show that the expressions φ1, φ2 can be
generated by simple queries q1 and q2 of constant size that
are individually safe for the class CQ− [10]. The following
theorem states the main result proved in this section.

Theorem 1. There exists a fixed-size SPJUD query q of
the form q = q1− q2 where both q1, q2 are safe CQ− queries,
such that the exact computation of the probabilities of the
answers is #P-hard.

Let C(φ) be the number of satisfying assignments of a boolean
expression φ. A tuple-variable x in a boolean expression
or in a probabilistic database instance will be called un-
certain if the variable x is present with some uncertainty,
i.e., Pr[x] /∈ {0, 1}. In our reduction, we will construct a
probabilistic database instance where for all uncertain tu-
ple variables x, Pr[x] = 1

2
. In this scenario, computation of

Pr[φ1.φ2] is equivalent to the computation of the number of

satisfying assignments of φ1.φ2 (since Pr[φ1.φ2] = C(φ1.φ2)

2N
,

where N = the number of uncertain tuple variables); hence
we focus on the counting version from now on.

To prove Theorem 1, intuitively, (i) first we need to con-
struct a boolean expression φ which is expressible as the
product of two RO expressions φ1 and φ2, and where the
computation of Pr[φ] is #P-hard; (ii) then we need to con-
struct two safe boolean queries q1, q2 and a database instance
I such that q1, q2 produce φ1, φ2 as the boolean provenance
of the unique answer tuples in q1(I) and q2(I) respectively.
Note that if φ1 and φ2 do not share any variables and are
RO, then Pr[φ1 · φ2] = Pr[φ1] · (1 − Pr[φ2]) can be easily
computed. Hence the challenge in the first step is to find
a “hard” expression which can be factored into two “easy ”
expressions which share variables, whereas, the challenge in
the second step is to construct a query that produces these

expressions without using self join operation (since φ1 and
φ2 share variables, we need to ensure that no two variables
from the same relation join in either of them).

Before we describe the steps of the proof of Theorem 1, we
first define two counting versions of satisfiability problems,
one is the product of two RO CNF expressions, and, the
other is the product of two RO DNF expressions.

Definition 2. We are given two CNF (resp. DNF) ex-
pressions ψ1 and ψ2, such that (i) Var(ψ1) = Var(ψ2) = V
(say), (ii) all literals are positive in both ψ1 and ψ2, (iii)
both ψ1, ψ2 are RO, (iv) every clause (resp. term) in both
ψ1 and ψ2 has at most four variables, and, (v) the vari-
ables in V can be partitioned into four groups V1, · · · , V4

such that no two variables from any group Vi co-occur in any
clause (resp. term) of ψ1 and ψ2. The goal is to compute
C(ψ1 · ψ2). We call this problem #RO×RO-4Partite-4CNF
(resp. #RO×RO-4Partite-4DNF).

An example of a RO×RO-4Partite-4CNF expression is ψ =
ψ1 ·ψ2, where ψ1 = (x1+y1+z2)(x2+y2+z1+w1) and ψ1 =
(x2 +y1 + z2 +w1)(x1 +y2 + z1) (both ψ1 and ψ2 read-once,
and the variables {xi}, {yi}, {zi} and {wi} form a partition
into four groups). Note that #RO×RO-4Partite-4CNF is a
special case of the #Twice-SAT problem4 which has been
proved to be #P-hard in [7] without the requirements of
bipartiteness of clauses in the expression ψ1 · ψ2 in terms of
sharing variables and 4-partiteness of variables in terms of
belonging to the same clause.

Now we can give a proof sketch of Theorem 1, the details
are deferred to Appendix B due to space constraint.

Proof Sketch of Theorem 1: The theorem is proved by
a sequence of reductions that preserve #P-hardness. Our
starting point is the problem of counting independent sets in
a 3-regular graphs which is known to be #P-complete [43].
The steps are as follows:

Step1 Show that counting edge covers in bipartite graphs of
degree at most four where the edge set can be parti-
tioned into four matchings (called #4Partite-4BEC)
is #P-hard by a reduction from counting independent
sets in 3-regular bipartite graphs.

Step2 Show that #RO×RO-4Partite-4CNF is #P-hard by a
reduction from #4Partite-4BEC.

Step3 Show that #RO×RO-4Partite-4DNF is #P-hard by a
reduction from #RO×RO-4Partite-4CNF.

Step4 Show that Pr[q(I)] is #P-hard by a reduction from
#RO×RO-4Partite-4DNF, where q = q1 − q2 satisfies
the desired properties stated in Theorem 1.

In Step4, the queries we construct are q1() := R1(x, y1)
R2(x, y2) R3(x, y3) R4(x, y4) and q2() := R1(x1, y) R2(x2, y)
R3(x3, y) R4(x4, y). Clearly, q1, q2 do not use self-join and
hence belong to CQ−. Further, both of them are hierarchical
(i.e. for every two variables x, y, the sets of subgoals that
contain x, y are either disjoint or one is contained in the
other) and therefore are safe for the class CQ− [11].

4Twice-SAT is an instance of SAT where every variable ap-
pears in at most two clauses.



4. ESTIMATING TUPLE PROBABILITIES
Since the exact computation of the probabilities of the

result tuples of a simple class of SPJUD queries has shown
to be #P-hard in Section 3, now we focus on the question
whether we can efficiently approximate the probabilities to
a desired accuracy level. In other words, we attempt to
get a fully polynomial randomized approximation scheme (or
FPRAS). An FPRAS is a randomized algorithm that runs in
time polynomial in the input size and 1/ε (ε is the accuracy
parameter) and produces a result that is correct to within
relative error (1 ± ε) with high probability. In particular,
for the boolean provenance φt of a tuple t in the answer
q(I) for an SPJUD query q and database instance I, the
approximation algorithm should run in time polynomial in

n = |I|, and 1/ε, and output a value P̂t such that

Pr[|Pr[φt]− P̂t| ≤ εPr[φt]] ≥ 3/4

The success probability can be boosted to 1 − δ for any
given confidence parameter δ by repeating the experiment
log(1/δ) times and then taking the median of the values.

The results in this section are summarized in the follow-
ing theorems. First we state the inapproximability result in
Theorem 2 (proof is given in Appendix C.3).

Theorem 2. There exists a fixed size SPJUD query of
difference rank 1 such that the computation of probabilities
of the answers does not have any FPRAS unless P = NP .

Nevertheless, we show that an FPRAS can be achieved in
some cases where the boolean provenance of the answers can
be computed in a certain probability friendly form (PFF) as
defined below.

Definition 3. A boolean expression φ on n variables is
said to be in PFF if φ is in form

φ = α0 +

r∑
i=1

αiγi

where α0, α1, · · · , αr are DNFs, γ1, · · · , γr are d-DNNFs5,
all of polynomial size in n, and r is polynomial in n.

Note that we are allowed to have negative literals in αi-s and
γj-s in the above definition. The next theorem shows that if
the boolean provenance of the answers of the SPJUD query
can be expressible in PFF, then the probability computation
of the answers has an FPRAS.

Theorem 3. There is an FPRAS for approximating the
probabilities of the answers of any SPJUD query q on prob-
abilistic databases I such that the boolean provenance of the
tuples in q(I) have PFF-s that can be computed in polyno-
mial time in the size of I.

We prove Theorem 3 in Section 4.1. In Section 4.2 we
show that, indeed there is a natural class of queries of dif-
ference rank 1 that will produce boolean provenance expres-
sions in PFF which can also be computed in poly-time.

5To be specific, each γi is represented by d-DNNF DAGs.

4.1 FPRAS for Pr[φ] when φ is in PFF
Consider a PFF φ of the form φ = α0 +

∑r
i=1 αiγi, Where

r is polynomial in n = |Var(φ)|, all αi-s are represented in
DNF, and γi-s are represented in d-DNNF, all having size
polynomial in n. By expanding the minterms in the αi-s, φ
can be expressed in the form

φ = A1 +A2 + · · ·+As +B1 · γ1 + · · ·+Bq · γq (1)

where Aj-s and Bj-s are minterms (conjunction of positive
and negative literals) from the DNFs αi-s and some of the
γi-s may be the same. Moreover, s, q will be polynomial in
n. The equivalent DNF of φ can be of exponential size in
n. However, we show that the general Karp-Luby framework
to estimate the size of union of sets [26, 30] can still be used
to obtain an FPRAS for Pr[φ].

Given Pr[x] for all (independent) variables in Var(φ), the
general Karp-Luby framework works for estimating Pr[φ]
where φ = φ1 + φ2 + · · ·+ φm, and φi-s are boolean expres-
sions (not necessarily DNF minterms) satisfying the follow-
ing three properties:

(Q1) For each φi, Pr[φi] can be computed in poly-time,

(Q2) For each φi, a random satisfying assignment σ (of vari-
ables in Var(φ)) of φi can be generated in poly-time

(i.e. σ is sampled with probability Pr[σ|φ] = Pr[σ]
Pr[φ]

).

(Q3) For each assignment σ and each φi, it can be decided
in poly-time whether σ satisfies φi.

The framework is presented in Appendix C.1 (Algorithm 2)
for the sake of completeness. It is well-known that a set of
samples of size O(m

ε2
log( 1

δ
)) suffices to estimate Pr[φ] within

accuracy (1± ε) with probability ≥ 1− δ.
Hence it remains to show that all (Q1), (Q2), (Q3) hold

when φ = φ1 + · · · + φm is in PFF. The property (Q3)
trivially holds for all assignments σ and for all φi. Again, if
φi in (1) is one of A1, · · · , As (conjunction of literals), then
properties (Q1) and (Q2) easily hold. Therefore we focus on
proving (Q1) and (Q2), when φi is of the form Biγi, where
Bi is conjunction of literals and γi is in d-DNNF.

Restricted d-DNNFs for φi = Bi · γi: It is easy to see
that if a boolean expression f is represented in a poly-size
d-DNNF, then any partial assignments of the variables in
f also has a poly-size d-DNNF, which can be computed in
poly-time by replacing some of the variables by their unique
assignments and reducing the d-DNNF with repeated use
of True + f ′ = True, False + f ′ = f ′, etc. Consider the
boolean expression Bi · γi. If Bi · γi is true, then Bi must
be true, which forces a unique assignment of the variables
in Bi. The d-DNNF for the expression γi with this partial
assignment of the variables in Var(Bi)∩Var(γi) can be com-
puted in poly-time. Let us call this d-DNNF as Di (on the
variable set Var(γi) \ Var(Bi)).

(Q1): Computation of Pr[Bi · γi]. The value of Pr[Bi ·
γi] can be computed from its d-DNNF Di in time linear in
the size of Di as discussed in Section 2.3, and multiplying
this probability with the probability of the unique satisfying
assignments of the variables in Var(Bi).

(Q2): Uniform Sampling from d-DNNF. Uniform
sampling of a satisfying assignment of φi = Bi · γi, will be
done by uniformly sampling a satisfying assignment σ of
Var(γi) \ Var(Bi) using d-DNNF Di, extending σ to include



the unique satisfying assignment of variables in Var(Bi) and
then further extending that assignment to an assignment
σ′ of Var(φ) by a random assignment to the variables in
Var(φ) \ Var(φi) (for every variable x ∈ Var(φ) \ Var(φi),
assign x = 1 with probability Pr[x]).

For a node u in the d-DNNF Di, we will use φu to denote
the sub-expression induced by the node u. Uniform sam-
pling from a d-DNNF critically uses the determinism of the
+-nodes: If a +-node u has children u1, · · · , uk, then for
every pair of j, `, where j 6= `, the set of satisfying assign-
ments for φuj and that for φuk are disjoint. The procedure
for uniform sampling is given in Algorithm 1. It processes
the nodes in the d-DNNF DAG Di in reverse topological
order (i.e., all the children of a node u in Di is processed
before u is processed). After a node u is processed by the
procedure, a satisfying assignment σu of Var(φu) is returned.
For a ·-node u, σu is computed by concatenating the assign-
ments σuj , j = 1 to k, where u1, · · · , uk are the children of
u. This works because Var(φui) ∩ Var(φuj ) = ∅, for every
two distinct children ui, uj . On the other hand, for every +-
node u, one of the children uj is chosen at random, and σu
is assigned to be σuj . It is easy to check that the sampling
procedure runs in time linear in the size of Di, the formal
analysis of its correctness is given in Appendix C.2.

Algorithm 1 Uniform satisfying assignment generation
from a d-DNNF.

Input: A d-DNNF D with root r.
Output: A satisfying assignment σ of Var(φr)
output with probability Pr[σ]/Pr[φr] .

– Compute Pr[φu] for every node u in D (see Section 2.3).
– Compute a reverse topological order π of the nodes in
the d-DNNF DAG D. Process the nodes in the order π.
for each node u in D do

if u is a sink-node marked with variable x then
if φu = x, set σu to be x = 1; else set σu to be x = 0.

else {/* u is an internal node */ }
– Let u1, · · · , uk be the children of u.
if u is a ·-node then

– Set σu to be concatenation of σuj , j = 1 to k.
else {/* u is a +-node */ }

– Choose child uj with probability
Pr[uj ]∑k

`=1
Pr[uj ]

.

– Extend σuj to σ′uj
by randomly assigning the

variables in Var(φu) \ Var(φuj ).
– Set σu to be σ′uj

.
end if

end if
end for
return – σ = σr.

4.2 Classes of Queries Producing PFF
For an SPJUD query q with difference rank δ(q) = 1, we

call a difference sub-query to be the sub-query that imme-
diately appears on the right hand side of a difference oper-
ation. Since we allow union, there may be more than one
difference sub-query of a query q with δ(q) = 1. It is well-
known that the boolean provenance φt of answers t of a safe
CQ− query on tuple-independent databases are read-once
[31], furthermore, if φt is read-once, φt is also read-once, and
there is a poly-size d-DNNF for φt which can be computed

in poly-time (see Proposition 3). Consider Proposition 2.
From the proof of this proposition it follows that only the
boolean provenance βi produced by difference sub-queries
appear as βi of the boolean provenance φ of result tuples of
an SPJUD query q with δ(q) = 1. Since these βi-s are read-
once when the corresponding difference sub-query is safe for
CQ−, we have the following corollary:

Corollary 1. Given an SPJUD query q with δ(q) = 1,
if all the difference sub-query-s in q are safe for the class
CQ−, then for any probabilistic database instance I, the
boolean provenance of all answers in q(I) will have a PFF
that can be computed in poly-time. Therefore there is an
FPRAS for this class of queries on any instance I.

Corollary 1 can be extended to the instance-by-instance
approach taken in [39, 36]: for the query-instance pairs (q, I)
such that for every difference sub-query q′ of q the boolean
provenance-s in q′(I) are read-once, the probability of the
answers in q(I) can be approximated. On the other hand,
a similar result can be obtained when the difference sub-
queries are UCQ queries such that for all instances I, the
boolean provenance-s have a poly-size OBDD (ordered bi-
nary decision diagrams) representation [25]; this can also
be decided from the query. Since OBDD-s are closed un-
der negation, and a d-DNNF of poly-size in OBDD can be
constructed in poly-time [25, 13], the boolean provenance
of the answer tuples for all such queries on all database in-
stances will have PFF-s computable in poly-time, and there-
fore again an FPRAS can be obtained using our result in the
previous section.

5. RELATED WORK
There has been significant progress since 2004 in proba-

bilistic databases. We have already mentioned the dichotomy
results that have identified exactly the safe positive queries
[10, 11, 11, 9]. Ré and Suciu show a trichotomy result [35] for
queries in CQ− extended with aggregate operations. Such
queries can be divided into safe [34] which have efficient ex-
act computation, approx-safe which have an FPRAS, and
hazardous, which are inapproximable. This is a stronger
kind of result than our lower bounds because we do not
show that every query for which we don’t give an FPRAS is
inapproximable, just that some such queries exist. Approxi-
mation techniques for queries on probabilistic databases are
also studied in [27, 32]. We have also mentioned work ex-
plaining the tractability of safe queries through knowledge
compilation applied to their boolean provenance [31, 25] and
a recent work proposing a framework for exact and approx-
imate probability evaluation for queries with difference, but
without a guarantee of polynomial running time [17].

Exploiting boolean provenance through knowledge com-
pilation has been used for unsafe queries, in an instance-
by-instance approach for the class of CQ−s [39, 36]. An
earlier, completely different approach compiles queries and
databases into probabilistic graphical models and then per-
forms inference on these [37, 38], taking advantage of the
considerable theoretical and practical arsenal developed in
Machine Learning. Knowledge compilation is combined with
Bayesian network inference in [24]. Significant work has also
been done on top-k queries on probabilistic databases [33,
29, 40]. Finally, several systems for query processing on
probabilistic databases have been developed, including Mis-
tiQ [5], Trio [2], and MayBMS [1].



6. CONCLUSIONS AND FUTURE WORK
We have examined the theoretical difficulty of comput-

ing exactly, and of approximating, the answers to relational
queries with difference on probabilistic databases. The ob-
vious next step is to assess the practical validity of the al-
gorithms that we have presented as part of our FPRAS.

Desirable extensions of this work include using more flexi-
ble probabilistic models, e.g. disjoint-independent databases,
and continuing to improve the sharpness of the divisions we
have discovered, including dichotomy or trichotomy results
as discussed before.
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APPENDIX
A. PROOFS FROM SECTION 2

A.1 Proof Sketch of Proposition 1 and Propo-
sition 2

For simplicity, we combine the proofs of these two propo-
sitions together since they use similar induction argument.

Proof. Let us denote by N (q, I), the number of tuples
in the answer output by query q on instance I. We prove
by induction on the size of the RA expression q that (1)

N (q, I) is bounded by n|q|, (b) the provenance expression φt
of all result tuples t can be computed in total time O(nc|q|),
for some constant c ≥ 3, such that (a) each expression φt
has the form φt = α0 +

∑r
i=1 αiβi, (b) for every such φt,

for all αi and βj , |αi| and βj are bounded by n|q|+1, (c)∑
t∈q[I] rt ≤ n|q|, and, (d) for each t, rt = 0 if δ(q) = 0 (it

may be the case that rt = 0 even when δ(q) = 1). Since |q|
is considered a constant, this will imply the statements of
both Proposition 1 and Proposition 2.

The base case follows for queries q such that |q| = 1, which
must be a single base relation R; hence δ(q) = 0. Here
N (q, I) ≤ n, the provenance expressions are the tuple vari-
able themselves, so they can be computed in O(n) = O(nc)
time. The tuple variables are trivially IDNF expression α0

with rt = 0 (hence
∑
t∈q[I] rt = 0 ≤ n|q|) and |α0| = 1 ≤

n|q|.
Suppose the induction hypothesis holds for all RA expres-

sions q such that |q| < k, where δ(q) ≤ 1. Now consider a
query q such that |q| = k, k > 1. The hypothesis is proved
for all possible operations in q, however due to space con-
straint, we describe the proof outline for project, join and
difference operations; select and union can be similarly han-
dled.

1. (Project) If q is of the form Πq1, then |q1| = |q| −
1 < k. Hence N (q, I) ≤ N (q1, I) ≤ n|q1| (by IH),

≤ n|q|. The provenance expression for every tuple t
will equal to φt1 + · · · + φt` , for some tuples t1, · · · , t`
in q1[I]. Since ` ≤ n|q1|, this can be computed in time

O(n3|q1|) + O(nc|q1|) = O(nc|q1|) = O(nc|q|) (the to-
tal time complexity to compute the project operation
even by brute-force method is O(N (q1, I)×N (q1, I)×
maxt1∈q1[I])|φt1 | = O(n3|q1|), and the time complex-

ity to compute q1[I] is O(nc|q1|)) . Also,
∑
t∈q[I] rt is

bounded by
∑
t∈q1[I] rt1 ≤ n

|q1| (by IH), ≤ n|q|. This is

because every tuple in q1[I] contributes to exactly one
tuple in q[I].

φt = φt1 +· · ·+φt` will have the form α0+
∑r
i=1 αiβi by

IH. Size of every DNF αi-s and βj-s remains the same,
hence the sizes are bounded by n|q1| ≤ n|q|. Further, if
δ(q) = 0, δ(q1) = 0 as well. So the value of r = r(tj) is
0 for all j ∈ [1, `]. Hence rt is also 0.

2. (Join) Let q = q1 1 q2, i.e. |q| = |q1|+ |q2|+ 1. In the
worst case, every tuple in q1 can join with every tuple in
q2. Therefore, N (q, I) ≤ N (q1, I)×N (q2, I), ≤ n|q1| ×
n|q2| (by IH), ≤ n|q|. If δ(q) = 0, both δ(q1), δ(q2) are
0, therefore we have the required form of φt for a tuple
t, where rt = 0. Hence

∑
t∈q[I] rt = 0 as well.

If δ(q) = 1, exactly one of δ(q1), δ(q2) is 1; wlog. let
δ(q1) = 1, δ(q2) = 0. Then also for every tuple φt

in q[I], φt = φt1 × φt2 . Let φt1 = α0 +
∑r
i=1 αiβi,

φt2 = α′0. Then φt =
(
α0 +

∑r
i=1 αiβi

)
× α′0 = =

α′′0 +
∑r
i=1 α

′′
i βi, where α′′i , i ∈ [0, r], are obtained by

computing the IDNF of αi × α′0. Hence
∑
t∈q[I] rt =

(
∑
t∈q[I] rt) × N (q2, I) (since every tuple in q1[I] can

join with at most N (q2, I) tuples in q2[I], and every

tuple t2 in q2[I] have rt2 = 0) ≤ n|q1| × n|q2| (by IH)

≤ n|q1|+|q2| ≤ n|q|. Size of |βj | remains the same, and

|α′′i | ≤ n|q1| × n|q2| ≤ n|q|. The time complexity of the

brute-force method can be shown to be O(nc|q|).

3. (Difference) Let q = q1 − q2, i.e. |q| = |q1| + |q2| + 1.

Therefore, N (q, I) ≤ N (q1, I), ≤ n|q1| (by IH), ≤ n|q|.
For difference, δ(q) can not be 0, i.e., δ(q) = 1, and it
must be the case that δ(q1) = δ(q2) = 0. For a tuple t in
q[I], either (i) φt = φt1 , for some t1 in q1[I] (when there
is no tuple in q2[I] that has the same value as in t), or,
(ii) φt = φt1 × φt2 , for some t1 in q1[I] and t2 in q2[I].
In case (i), φt obviously has the required form, rt = 0,
and |αi|, |βj | have the required size bound. In case (ii),
since δ(q1) = δ(q2) = 0, we have by IH, φt1 = α0

and φt2 = α′0, where both α0, α
′
0 are positive IDNF.

Hence φt = φt1 × φt2 = α0α′0. Hence again φt has the
required form, and again |α0| and |α′0| individually have
the required size bound. For both t1, t2, rt1 = rt2 = 0,
so rt = 1. Hence

∑
t∈q[I] rt ≤ N (q, I) ≤ n|q|. The

difference can be computed in time O(n|q1| × n|q2|) +

O(nc|q1|) +O(nc|q2|) (by IH), = O(nc|q|).

This completes the proof of the proposition.

B. PROOFS FROM SECTION 3
In this section we prove Theorem 1, by proving the se-

quence of four steps stated in Section 3. The following
lemma shows a nice property of product of two RO expres-
sions and will be useful in proving Step3 and Step4.

Lemma 1. Let φ1, φ2 be two read-once boolean expression
on the same set of variables. Then either each of C(φ1 · φ2),
C(φ1 · φ2), C(φ1 · φ2) and C(φ1 · φ2) is poly-time computable
or none of them is.

Proof. Let n = |Var(φ1)| = |Var(φ2)|. If φ is an RO
expression, then C(φ) can be exactly computed in time linear
in the size of φ. Therefore, C(φ1) = 2n − C(φ) can also be
efficiently computed. Now we have, (i) C(φ1) = C(φ1 · φ2) +
C(φ1 · φ2), (ii) C(φ1) = C(φ1 · φ2) + C(φ1 · φ2), (iii) C(φ2) =
C(φ1 ·φ2)+C(φ1 ·φ2), and, (iv) C(φ2) = C(φ1 ·φ2)+C(φ1 ·φ2).
Using the above equations, if any one of C(φ1 ·φ2), C(φ1 ·φ2),
C(φ1 ·φ2), or C(φ1 ·φ2) can be exactly computed in poly-time,
all the others can be exactly computed in poly-time.

B.1 Step1: #P-hardness of #4Partite-4BEC
For a graph G(V,E), a subset U ⊆ E is an edge cover

if every vertex of G has at least one incident edge in U .
Theorem 4 shows the #P-hardness of the #4Partite-4BEC

problem. The proof uses similar idea as given in [4] which re-
duces #independent set problem in a constant degree graph
to the #edge-cover problem in a graph of minimum degree
∆, and shows that by constructing a number of #edge-cover
instances, and using the interpolation technique [41], inde-
pendent set in a constant degree graph can be exactly com-
puted. However, the edge-cover instances constructed in [4]



are non-bipartite and the vertices in those instances do not
have constant degrees; hence we need to modify the con-
struction.

We reduce the problem of #independent set in 3-regular
bipartite graphs (#3-reg-BIS) to #4Partite-4BEC. #vertex-
cover in 3-regular bipartite graphs is known to be #P-hard
[43]. In a graph G(V,E), S ⊆ V is a vertex cover if and only
if V \S is an independent set. Hence the set of vertex cover
has a 1-1 correspondence with the set of independent sets in
any graph which shows that #3-reg-BIS is #P-hard.

Theorem 4. #4Partite-4BECis #P-hard.

Proof. Let G(V1, V2, E) be a bipartite 3-regular graph,
where |V1| = |V2| = n′. We will use V = V1∪V2 to denote the
vertex set of G, and and n = 2n′ to denote the total number
of vertices in G. Let Ij(G) be the number of independent
sets of size j, j ∈ [0, n]. Form G′ by inserting a vertex
ue on every edge e ∈ E. Let U = {xe : e ∈ E} (|U | =
3n/2). Let Ni(G

′) be the number of edge subsets in G′

which leave exactly i vertices in V uncovered, but no vertex
in U uncovered(N0(G′) is the number of edge covers in G′).
The set of vertices in G′ which are not covered by such a
subset of edges forms an independent set in G: if a vertex
u ∈ V is uncovered in G′, for every incident edge e on u,
e = (u, v) ∈ E, xe and hence v must be covered.

Let W ⊂ V be an independent set of size j in G. Let
us count the number of edge subsets in G′ that (i) do not
cover W , (ii) cover all members of U , and (iii) may or may
not cover the vertices in V \W . The 3j edges incident on
W must not be chosen in such a subset, hence the 3j edges
next to these edges must be chosen to cover all members in
U . Hence we are left with 3n−6j edges which can be paired
up into 3n−6j

2
groups according to the edges in E they came

from. At least one edge in each such pair must be chosen
to cover vertices in U , so we have 3 choices for each pair.
Hence for a fixed independent set W of size j, the number
of choices is 3(3n−6j)/2. If we multiply this quantity with
the number of independent sets of size j in G, i.e. Ij(G),
we double count some of the edge subsets which cover more
than one independent sets of size j. An edge subset which
covers exactly i vertices from V and all vertices from U is
counted

(
i
j

)
times, once for every choice of j out of those i

vertices the subset covers. Hence it follows that

3(3n−6j)/2Ij(G) =

n∑
i=j

(
i

j

)
Ni(G

′) (2)

Hence if we can compute all Ni(G
′), i ∈ [0, n], we can

compute the number of all independent sets
∑n
j=0 Ij(G) in

G.
So focus on computing all Ni(G

′) in G′. Let Ck denote
a chain with k nodes. We attach a copy Cvs of Cs to each
vertex v ∈ V by identifying v with an endpoint of Cs. Let us
call the resulting graph G′s. Since we started with a regular
bipartite graph G of degree 3, G′s is a bipartite graph with
maximum degree 4 (vertices in V have degree 4, vertices in
U have degree 2, and the vertices in the chains Cvs , v ∈ V
have degree at most 2).

Let Mk denote the number of edge covers in Ck. Now we
count the number of edge covers in G′s. Each edge cover of
G′s induces an edge subset of G′. To extend an edge subset
of G′ which leaves exactly i vertices in V uncovered, and
no vertex in U uncovered, to an edge cover of G′s, we must

select an edge cover for i copies of Cs, but either an edge
cover or a cover missing the first vertex (identified with the
corresponding xe) for the remaining n−i copies of Cs. Thus
the total number of edge covers N0(G′s) is given by:

N0(G′s) =

n∑
i=0

M i
s(Ms +Ms−1)n−iNi(G

′)

= Mn
s

n∑
i=0

(1 +
Ms−1

Ms
)n−iNi(G

′) (3)

In Lemma 2 we show that the edge set can indeed be par-
titioned into four disjoint matchings, which shows that each
G′s, for any value of s, is an instance of the #4Partite-4BEC

problem.
Suppose we are given an oracle for the #4Partite-4BEC

problem. That oracle can be used to compute N0(G′s) for

any s value. From Lemma 4 the values of
Ms−1

Ms
are distinct

for all distinct s, and therefore from Fact 1, all the coef-
ficients Ni(G

′) can be computed by calling the edge cover
oracle on G′s graphs for n + 1 distinct values of s (in (3).
From these Ni(G

′) values the number of independent sets
in a 3-regular graph can be exactly computed using (2). This
completes the reduction.

Lemma 2. The set of edges in each G′s in the proof of
Theorem 4 can be partitioned into set of four disjoint match-
ings.

Proof. Recall that we started with a 3-regular bipartite
graph G(V,E), inserted the vertex set U = {xe : e ∈ E} into
the edges in E to form the graph G′, and attached chains
with s vertices, Cs with every vertex in V to form the graph
G′s.

It is well-known that a 3-regular graph can be partitioned
into 3 disjoint perfect matchings (see, for instance [3]). Let
a set of 3 disjoint matchings for G be E1, E2, E3, where
E = E1 ∪ E2 ∪ E3. Let V1, V2 be the bipartition of vertices
in G (V = V1 ∪V2), and let E1

i , E
2
i , i ∈ [1, 3], denote the set

of edges in G′ which are incident on V1 and V2 respectively.
Note that

⋃3
i=1(E1

i ∪ E2
i ) is exactly the edge set in G′.

Further, any chain Cs can be partitioned into two disjoint
matchings (comprising the alternating edges). For a copy
of the chain Cvs , v ∈ V , let M1(Cvs ) the matching which
includes the edge incident on v, and M2(Cvs ) be the other
matching.

Now we construct four disjoint group of matchings P1,
P2, P3, P4 as follows (there may be several other ways): (i)
P1 = E1

1 ∪ E2
2 ∪

⋃
s∈V {M2(Cvs )}, (ii) P2 = E1

2 ∪ E2
3 , (iii)

P3 = E1
3 ∪ E2

1 , (iv) P4 =
⋃
s∈V {M1(Cvs )}.

Clearly, P1∪P2∪P3∪P4 is exactly the edge set of G′s. The
fact that P4 is a matching follows easily, since all the copies
of the chains Cvs are disjoint. Each Eij , i ∈ [1, 2], j ∈ [1, 3]
forms a matching themselves, since they are taken from the
matchings E1, E2, E3 in G. In P1, P2 or P3, the edges taken

from G′ are of the form Eij ∪ Ei
′
j′ , where i 6= i′ and j 6= j′.

Since i 6= i′, if the edges Eij are incident on V1, Ei
′

j′ are

incident on V2 (or vice versa). Since j 6= j′, no two edges
incident on some xe ∈ U are ever included together. More-
over, P1 includes the edges from the chains

⋃
s∈V {M2(Cvs )}

which themselves are matchings, and are not incident on any
vertex in V1 ∪ V2 Therefore, the Pi-s, i ∈ [1, 4] partition the
edge set in G′s in four disjoint matchings.



The following lemma counts the number of edge covers in
a chain (similar to vertex cover counting in a chain [41]).

Lemma 3. Let Mk denote the number of edge covers in
a chain graph with k nodes Ck. Then Mk can be computed
by the recurrence Mk = Mk−1 + Mk−2, for k ≥ 3, and
M2 = M3 = 1 (there is no edge cover for a singleton node).

Proof. In C2, the unique edge must be chosen, so M2 =
1. Again in C3, both the edges must be chosen to cover two
endpoints, hence M3 = 1.

Let v0, · · · , vk be the vertices in the chain Ck, k ≥ 3.
The first edge (v0, v1) in the chain must be included in any
edge cover which also covers v1. Hence v1 may or may not
be covered by the edge (v1, v2). The number of edge sub-
sets in the chain v1, ·, vk which covers v1 (and the other
vertices v2, · · · , vk), i.e. includes (v1, v2), is Mk−1, whereas
the number of edge subsets which do not cover v1 (does
not include (v1, v2)), but covers v2, · · · , vk is Mk−2. Hence
Mk = Mk−1 +Mk−2.

Corollary 2. The value of Mk is the same as the (k −
1)-th number in the Fibonacci series.

The following Fact 1 and Lemma 4 used in the proof of
Theorem 4 have been proved in [41] (Fact 4.1 and Lemma
A.1 respectively).

Fact 1. [41] Let f(x) =
∑d
i=0 aix

i be a polynomial with
rational coefficients. If (α0, β0), · · · , (αd, βd) are such that
f(αj) = βj, j = 1 to d, and all αj-s are distinct, then all
the coefficients ai-s of f can be recovered in time polynomial
in d and the maximum number of bits needed to represent
αj-s and βj-s.

Lemma 4. [41] Let FN denote the N-th Fibonacci number

and let rN =
FN+1

FN
. Then ri 6= rj for any i 6= j.

B.2 Step2: #P-hardness of #RO×RO-4Partite-4CNF
Here we prove the following theorem.

Theorem 5. #RO×RO-4Partite-4CNF is #P-hard.

Given an instance of #4Partite-4BEC, we construct an in-
stance of #RO×RO-4Partite-4CNF as follows (as done in [7]):
Let the #4Partite-4BEC instance be G(V1, V2, E). There is
a variable xe for every edge e ∈ E. The two DNF expressions
ψ1, ψ2 correspond to bipartite vertex sets V1, V2 respectively.
There is a clause

∑
e3v xe in ψ1 (resp. ψ2) for every vertex

v ∈ V1 (resp v ∈ V2). Note that E′ ⊆ E is an edge-cover of
G if and only if by assigning 1 to the variables xe, e ∈ E′ and
assigning 0 to the variables xe, e /∈ E′ we get a satisfying
assignments of ψ1 ·ψ2. Hence given an oracle for computing
C(ψ1 · ψ2), the number of edge covers in G can be exactly
computed.

By construction, both ψ1, ψ2 are positive and RO (since G
is bipartite). Moreover, since degree of every vertex in V1, V2

is bounded by 4, the number of variables in every clause is
also bounded by 4. The set of edges E can be partitioned
into four disjoint matchings Pi (i ∈ [1, 4]). However, two
variables xe, xe′ co-occur in a clause in ψ1 or ψ2 if and only
if e and e′ have a common endpoint. Therefore, the variable
set {xe : e ∈ E} can be partitioned into four groups Xi,
where Xi = {xe : e ∈ Pi} (i ∈ [1, 4]), such that no two
variables from the same Xi will co-occur in a clause in ψ1 or

ψ2. Finally, each edge has an endpoint in both V1 and V2,
hence Var(V1) = Var(V2). Hence ψ1 ·ψ2 is an instance of the
#RO×RO-4Partite-4CNF problem. Since #4Partite-4BEC

is #P-hard, #RO×RO-4Partite-4CNF is also #P-hard.

B.3 Step3: #P-hardness of #RO×RO-4Partite-4DNF
Here we show that the #RO×RO-4Partite-4DNF problem

is #P-hard by a reduction from #RO×RO-4Partite-4CNF
that uses the properties of RO expressions given by Lemma 1.

Theorem 6. #RO×RO-4Partite-4DNF is #P-hard.

Proof. Consider an instance of #RO×RO-4Partite-4CNF,
where we are given two positive RO CNF expressions ψ1, ψ2

that are defined on the variable set, such that every clause
in ψ1, ψ2 has at most four variables. The goal is to com-
pute C(ψ1 ·ψ2). Then using Lemma 1, C(ψ1 ·ψ2) is #P-hard
(otherwise given an oracle to compute C(ψ1 · ψ2), C(ψ1 · ψ2)
can be exactly computed). Since ψ1, ψ2 are positive CNF
RO expression where each clause has at most four positive
variables, both ψ1, ψ2 are DNF RO expressions, where each
term has at most four variables (all are negated literals).

From ψ1, ψ2, we construct two positive DNF RO expres-
sions η1, η2, by making each negated variable in each term
of ψ1, ψ2 positive in η1, η2 respectively. Hence η1, η2 are
positive DNF RO expressions, where each term has at most
four positive variables, and therefore η1 · η2 is an instance of
the #RO×RO-4Partite-4DNF problem. Let N = |Var(ψ1)| =
|Var(ψ2)| = |Var(η1)| = |Var(η2)|. It is easy to verify that,
x = 〈x1, · · · , xN 〉 is a satisfying assignment of ψ1 ·ψ2, if and
only if y = 〈x1, · · · , xN 〉 is a satisfying assignment of η1 ·η2.
Hence there is a one-one correspondence between the satis-
fying assignments of ψ1 ·ψ2 and η1 · η2, and therefore C(ψ1 ·
ψ2) = C(η1 · η2). Combining the above two steps, if there is
an oracle to solve #RO×RO-4Partite-4DNF, we can also solve
#RO×RO-4Partite-4CNF. Since #RO×RO-4Partite-4CNF is
#P-hard, #RO×RO-4Partite-4DNF is also #P-hard.

B.4 Step4: #P-hardness of Pr[q1 − q2]

Finally we reduce #RO×RO-4Partite-4DNF to probability
computation of a query with difference and thus prove Step4.

Proof. Consider an instance of #RO×RO-4Partite-4DNF:
η1 · η2. To prove the #P-hardness of exact computation of
Pr[φ1 · φ2] (equivalently C(φ1 · φ2) since all the uncertain
variables x will have Pr[x] = 1

2
) it suffices to construct

two queries q1, q2 along with an instance of probabilistic
database such that φ1 = q1(I) = η1 and φ2 = q2(I) = η2.
This again follows from Lemma 1, since given an oracle for
C(φ1 · φ2), C(φ1 · φ2) can be exactly computed.

(1) First we extend the minterms (any term in an RO DNF
expression is a minterm) with one, two or three variables to
have exactly four variables by inserting dummy variables
which always assume value 1 (in probabilistic database they
correspond to deterministic tuples). Let the correspond-
ing RO DNF expressions be η′1 and η′2. Always fresh vari-
ables are inserted in every clause of η1 and η2 and therefore
Var(η′1) 6= Var(η′2). However, C(η1 · η2) = C(η′1 · η′2) (the
satisfying assignments have a one-one correspondence).

(2) Now recall that the variables V = Var(η1) = Var(η2)
can be partitioned into four disjoint groups V1, · · · , V4 such
that no two variables x, y from the same group Vi, i ∈ [1, 4]
do not co-occur in a minterm in η1 or η2. Since we always in-
serted fresh variables in the minterms of η1, η2, this property



also holds for η′1 and η′2 by arbitrarily assigning new vari-
ables to different groups. Hence, every minterm will have a
variable from each of the groups V1, · · · , V4.

(3) The probabilistic database instance I has four rela-
tions R1(A,B), R2(A,B), R3(A,B), R4(A,B), all with two
attributes A and B, that contain tuples annotated with
the variables in X1, · · · , X4 respectively. Let the number
of minterms in η′1 (resp. η′2) be m1 (resp. m2). We fill out
the attribute values s of the four tables in the following way:

(a) Let the i-th minterm in η′1 be 〈xi1yi2zi3 , wi4〉, where
xi1 ∈ R1, yi2 ∈ R2, zi3 ∈ R3, and wi4 ∈ R4. Assign ai as
the values of attribute A in the i1-th row of R1, i2-th row of
R2, i3-th row of R3 and i4-th row of R4, for all i ∈ [1,m1].

(b) Similarly, let the j-th minterm in η′2 be 〈xj1yj2zj3 , wj4〉,
where xj1 ∈ R1, yj2 ∈ R2, zj3 ∈ R3, and wj4 ∈ R4. Assign
bj as the values of B in the j1-th row of R1, j2-th row of R2,
j3-th row of R3 and j4-th row of R4, for all j ∈ [1,m2].

(c) Now, due to the introduction of dummy variable, and
possible unequal values of m1,m2, some of the attribute
values in the tables R1, · · · , R4 may be unassigned after the
above two steps. Every such unassigned positions are filled
with a fresh attribute value not used before.

(4) Let Ni = |Xi| (i ∈ [1, 4]). Let the value of the tuple in
the j-th row of R1, · · · , R4 be aj , bj , cj and dj respectively,
j ∈ [1, Ni]. The original variables in V = Var(η1) = Var(η2)
appear with probability 1

2
, whereas the new variables in-

serted in η′1 and η′2 appear with probability 1.
(5) Finally, q1() := R1(x, y1)R2(x, y2)R3(x, y3)R4(x, y4)

and q2() := R1(x1, y)R2(x2, y)R3(x3, y)R4(x4, y).
Since exactly the tuples appearing in the same minterms

of η′1, η
′
2 join in q1, q2 respectively, it easily follows that

q1(I) = η′1 and q2(I) = η′2. Clearly, q1 and q2 are queries in
CQ−. Further, both boolean queries q1, q2 are hierarchical
(i.e. for every two variables x, y, the sets of subgoals that
contain x, y are either disjoint or one is contained in the
other) and therefore are safe [11].

This completes the proof of Theorem 1.

C. PROOFS FROM SECTION 4

C.1 Karp-Luby General Framework
The framework is presented in Algorithm 2.

Algorithm 2 Karp-Luby algorithm

Input: A boolean expression φ = φ1 + · · ·+ φm where
properties (Q1), (Q2), (Q3) hold for each φi (φi are
not necessarily DNF minterms), accuracy parameter
ε, confidence parameter δ
Output: An estimation of Pr[φ].

Initialize C = 0.
for t = 1 to M do do {/* M = number of samples */ }

– Sample φi w.p. Pr[φi]∑
j Pr[φj ]

.

– Sample a random satisfying assignment σ of φi.
if σ does not satisfy any of φ1, φ2, · · · , φi−1 then

– C = C + 1.
end if

end for
– Output C

M
·
∑
j Pr[φj ].

It is well-known that E[ C
M
·
∑
j Pr[φj ]] = Pr[φ], and a set of

samples of size O(m
ε2

log( 1
δ
)) suffices to estimate Pr[φ] within

accuracy (1± ε) with probability ≥ 1− δ [26, 30].

C.2 Correctness of the sampling procedure in
Algorithm 1

A d-DDNNF D with root r represents the expression φr,
(φu is the sub-expression at node u of D). Here we prove
that, for every node u ∈ Var(φr), Algorithm 1 assigns a ran-
dom assignment σu of the variables Var(φu) with probability
Pr[σu]
Pr[φu]

(which shows that at the end, a random satisfying as-

signment of Var(φr) will be output with probability Pr[σu]
Pr[φu]

).

The proof is by induction on the reverse topological order
π on Var(φu). The first node u in π must be a sink node,
and if u is labeled with x (resp. x), the unique satisfying
assignment σu will be x = 1 (resp. 0) which is assigned with
probability 1. Assume that the induction holds up to the
i-th node in order π and consider the i + 1-th node u with
children u1, · · · , u`. If u is a ·-node, then by the disjointness
of ·-nodes, Var(uj) ∩ Var(u`) = ∅. Hence φuj and φu` are

independent, and Pr[φu] = Πk
j=1 Pr[φuj ]. Each satisfying

assignment σu of φu must be a concatenation of satisfying
assignments σuj , j = 1 to k, where σuj is the projection of
the assignment σu on variables Var(φuj ), and since the vari-

ables are disjoint in all φuj , Pr[σu] = Πk
j=1 Pr[σuj ]. By in-

duction hypothesis, σuj is assigned with probability
Pr[σuj

]

Pr[φuj
]
.

Therefore Pr[σu]
Pr[φu]

= Πk
j=1

Pr[σuj
]

Pr[φuj
]
. On the other hand, if u is

a +-node, Pr[φu] =
∑k
j=1 Pr[φuj ] (satisfying assignments of

every φuj , φu` are disjoint). For a satisfying assignment σu
of φu, let σu satisfies φuj (j is unique) which is assigned with

probability
Pr[σuj

]

Pr[φuj
]

(even after the extension in Step 12).

Therefore Pr[σu]
Pr[φu]

=
Pr[φuj

]∑
` Pr[φu`

]
·
Pr[σuj

]

Pr[φuj
]

=
Pr[σuj

]∑
` Pr[φu`

]
=

Pr[σuj
]

Pr[φu]
.

C.3 Hardness for General SPJUD Queries with
Difference Rank 1

The reduction is from counting the number of indepen-
dent sets in a graph. Given a graph G(V,E), consider the
relational schema (V,E, S) where V (A), S(A) are unary rela-
tions while E(A1, A2) is binary. V and E capture the vertex
and edges in G, whereas S captures a subset of vertices, in
particular, the set of possible worlds of I which correspond
to an independent set in G. The tuple variables in V,E are
deterministic, and appear with probability 1, whereas, every
tuple variable in S appears with probability 1

2
. As we dis-

cussed in Section 2.4, the independence sets in a graph can
be captured by the SPJUD query qind−set = True − [E 1

ρA1/AS 1 ρA2/AS]. Clearly, qind−set = 1.
Let φ be the boolean provenance of the unique tuple in

qind−set(I). Clearly, Pr[φ] = NIS
2n

, where n = |V | and NIS is
the number of independent sets in G. It is known that count-
ing independent sets in an arbitrary graph does not have
any non-trivial approximation unless P= NP [16]. This
shows the inapproximability of tuple probabilities generated
by SPJUD queries even if the query has difference rank 1
and proves Theorem 2.

Remark: The above query qind−set uses self-join. The
hardness can be extended to queries without self-join under
the weaker assumption that counting independent sets in
bipartite graphs do not have any approximation [16].


