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Abstract. In this article we further investigate the well-studied problem of finding a perfect matching
in a regular bipartite graph. The first nontrivial algorithm, with running time O(mn), dates back to
König’s work in 1916 (here m = nd is the number of edges in the graph, 2n is the number of vertices,
and d is the degree of each node). The currently most efficient algorithm takes time O(m), and is due
to Cole et al. [2001]. We improve this running time to O(min{m, n2.5 ln n

d }); this minimum can never be
larger than O(n1.75

√
ln n). We obtain this improvement by proving a uniform sampling theorem: if we

sample each edge in a d-regular bipartite graph independently with a probability p = O( n ln n
d2 ) then

the resulting graph has a perfect matching with high probability. The proof involves a decomposition
of the graph into pieces which are guaranteed to have many perfect matchings but do not have any
small cuts. We then establish a correspondence between potential witnesses to nonexistence of a
matching (after sampling) in any piece and cuts of comparable size in that same piece. Karger’s
sampling theorem [1994a, 1994b] for preserving cuts in a graph can now be adapted to prove our
uniform sampling theorem for preserving perfect matchings. Using the O(m

√
n) algorithm (due to

Hopcroft and Karp [1973]) for finding maximum matchings in bipartite graphs on the sampled graph
then yields the stated running time. We also provide an infinite family of instances to show that our
uniform sampling result is tight up to polylogarithmic factors (in fact, up to ln2 n).
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1. Introduction

A bipartite graph G = (U, V, E) with vertex set U ∪ V and edge set E ⊆ U × V
is said to be regular if every vertex has the same degree d . We use m = nd to
denote the number of edges in G and n to represent the number of vertices in U
(as a consequence of regularity, U and V have the same size). Regular bipartite
graphs have been the subject of much study. Random regular bipartite graphs rep-
resent some of the simplest examples of expander graphs [Motwani and Raghavan
1995]. These graphs are also used to model scheduling, routing in switch fab-
rics, and task-assignment problems (sometimes via edge coloring, as described
shortly) [Aggarwal et al. 2003; Cole et al. 2001].

A regular bipartite graph of degree d can be decomposed into exactly d per-
fect matchings, a fact that is an easy consequence of Hall’s theorem [Bollobás
1998]. Finding a matching in a regular bipartite graph is a well-studied problem,
starting with the algorithm of König in 1916, which is now known to run in time
O(mn) [König 1916]. The well-known bipartite matching algorithm of Hopcroft
and Karp [1973] can be used to obtain a running time of O(m

√
n). An algorithm

of complexity O(nω), where ω is the matrix multiplication constant, was given by
Mucha and Sankowski [2004]. In graphs where d is a power of 2, the following
simple idea, due to Gabow and Kariv [1982], leads to an algorithm with O(m) run-
ning time. First, compute an Euler tour of the graph (in time O(m)) and then follow
this tour in an arbitrary direction. Exactly half the edges will go from left to right;
these form a regular bipartite graph of degree d/2. The total running time T (m)
thus follows the recurrence T (m) = O(m) + T (m/2) which yields T (m) = O(m).
Extending this idea to the general case proved quite hard, and after a series of
improvements (e.g., by Cole and Hopcroft [1982], and then by Schrijver [1999] to
O(md)), Cole et al. [2001] gave an O(m) algorithm for the case of general d .

The main interest of Cole et al. [2001] was in edge coloring of general bi-
partite graphs of maximum degree d , where finding perfect matchings in regular
bipartite graphs is an important subroutine. Finding perfect matchings in regular
bipartite graphs is also closely related to the problem of finding a Birkhoff von Neu-
mann decomposition of a doubly stochastic matrix [Birkhoff 1946; von Neumann
1953].

In this article we present an algorithm for finding a perfect matching in a regular
bipartite graph that runs in time O(min{m, n2.5 ln n

d }). It is easy to see that this min-
imum can never be larger than O(n1.75

√
ln n). This is a significant improvement

over the running time of Cole et al. [2001] when the bipartite graph is relatively
dense. We first prove (Theorem 2.1 in Section 2) that if we sample the edges of a
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regular bipartite graph independently and uniformly at rate p = O( n ln n
d2 ), then the

resulting graph has a perfect matching with high probability. The resulting graph
has O(mp) edges in expectation, and running the bipartite matching algorithm of
Hopcroft and Karp [1973] gives an expected running time of O( n2.5 ln n

d ). Since we
know this running time in advance, we can choose the better of m and n2.5 ln n

d in
advance. It is worth noting that uniform sampling can easily be implemented in
O(1) time per sampled edge assuming that the data is given in adjacency list for-
mat, with each list stored in an array, and assuming that log n bit random numbers
can be generated in one time-step.1

We believe that our sampling result is also independently interesting as a combi-
natorial fact. The proof of our sampling theorem relies on a sequential decomposi-
tion procedure that creates a vertex-disjoint collection of subgraphs, each subgraph
containing many perfect matchings on its underlying vertex set. We then show that
if we uniformly sample edges in each decomposed subgraph at a suitably chosen
rate, with high probability at least one perfect matching survives in each decom-
posed subgraph. This is established by using Karger’s sampling theorem [Karger
1994a, 1994b] in each subgraph. An effective use of Karger’s sampling theorem re-
quires the min-cuts to be large, a property that is not necessarily true in the original
graph. For instance, G could be a union of two disjoint d-regular bipartite graphs,
in which case the min-cut is 0; nonpathological examples are also easy to obtain.
However, our serial decomposition procedure ensures that the min-cuts are large
in each decomposed subgraph. We then establish a 1-1 correspondence between
possible Hall’s theorem counterexamples in each subgraph and cuts of comparable
size in that subgraph. Since Karger’s sampling theorem [1994a, 1994b] is based on
counting cuts of a certain size, this coupling allows us to claim (with high prob-
ability) that no possible counterexample to Hall’s theorem exists in the sampled
graph. On a related note, Benczúr [1997] presented another sampling algorithm
which generates O(n ln n) edges that approximate all cuts; however, this sampling
algorithm, as well as recent improvements [Spielman and Teng 2004; Spielman and
Srivastava 2008] take !̃(m) time to generate the sampled graph. Hence these ap-
proaches do not directly help in improving upon the already known O(m) running
time for finding perfect matchings in d-regular bipartite graphs.

The sampling rate we provide may seem counterintuitive; a superficial anal-
ogy with Karger’s sampling theorem [1994a, 1994b] or Benczúr’s work [1997]
might suggest that sampling a total of O(n ln n) edges should suffice. We show
(Theorem 4.1, Section 4) that this is not the case. In particular, we present a family
of graphs where uniform sampling at rate o( n

d2 ln n ) results in a vanishingly low
probability that the sampled subgraph has a perfect matching. Thus, our sampling
rate is tight up to factors of O(ln2 n). This lower bound suggests two promising
directions for further research: designing an efficiently implementable nonuniform
sampling scheme, and designing an algorithm that runs faster than Hopcroft-Karp’s
algorithm for near-regular bipartite graphs (since the degree of each vertex in the
sampled subgraph will be concentrated around the expectation).

1 Even if we assume that only one random bit can be generated in one time-step, the running time
of our algorithm remains unaltered since the Hopcroft-Karp algorithm incurs an overhead of

√
n per

sampled edge, anyway.
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2. Uniform Sampling for Perfect Matchings: An Upper Bound

In this section, we will establish our main sampling theorem stated shortly. We will
then show in Section 3 that this theorem immediately yields an O(n1.75

√
ln n)-time

algorithm for finding a perfect matching in regular bipartite graphs.

THEOREM 2.1. There exists a constant c such that given a d-regular bipartite
graph G(U, V, E), a subgraph G ′ of G generated by sampling the edges in G
uniformly at random with probability p = cn ln n

d2 contains a perfect matching with
high probability.

Our proof is based on a decomposition procedure that partitions the given graph
into a vertex-disjoint collection of subgraphs such that (i) the minimum cut in
each subgraph is large, and (ii) each subgraph contains !(d) perfect matchings on
its vertices. We then show that for a suitable choice of sampling rate, with high
probability at least one perfect matching survives in each subgraph. The union of
these perfect matchings then gives us a perfect matching in the original graph. We
emphasize here that the decomposition procedure is merely an artifact for our proof
technique. Note that the theorem is trivially true when d ≤

√
n log n. So in what

follows we assume that d >
√

n log n.

2.1. HALL’S THEOREM WITNESS SETS. Let G(U, V, E) be a bipartite graph.
We denote by V (G) the vertex set of G. For any set S ⊆ V (G), let δG(S) denote
the set of edges crossing the boundary of S in G. Also, for any set S ⊆ V (G), we
denote by #G(S) the set of vertices that are adjacent to vertices in S.

A pair (A, B) with A ⊆ U and B ⊆ V is said to be a relevant pair to Hall’s
theorem if |A| > |B|. Given a relevant pair (A, B), we denote by E(A, B) the set
of edges in E ∩ (A × (V \ B)). We refer to the set E(A, B) as a witness edge set
if (A, B) is a relevant pair. Also, for any two sets A, A′ ⊆ U we denote by A ⊕ A′

the set (A \ A′) ∪ (A′ \ A). In what follows we will be using Hall’s theorem, which
we state here for convenience of the reader:

THEOREM 2.2 (HALL’S THEOREM, REFER TO BOLLOBÁS [1998]). A bipartite
graph G(U, V, E) contains a matching that includes every vertex in U iff |#G(S)| ≥
|S| for all S ⊂ U.

Note that if |U | = |V |, then any matching that includes every vertex in U is
also a perfect matching in G. Since |U | = |V | in a d-regular graph, by Hall’s
theorem, to prove Theorem 2.1 it suffices to show that with high probability in the
sampled graph G ′, at least one edge is chosen from each witness set. We will focus
on a subclass of relevant pairs, referred to as minimal relevant pairs. A relevant
pair (A, B) is minimal if there does not exist another relevant pair (A′, B ′) with
A′ ⊂ A and E(A′, B ′) ⊆ E(A, B). A witness edge set corresponding to a minimal
relevant pair is called a minimal witness set, respectively. If a graph G has a perfect
matching, every minimal witness set must be nonempty. It also follows from Hall’s
theorem that any balanced subgraph of G that includes at least one edge from every
minimal witness set must have a perfect matching. We refer to a bipartite graph as
balanced if it contains the same number of vertices in each side.

A key idea underlying our proof is a mapping from minimal witness sets in G to
distinct cuts in G. In particular, we will map each minimal witness set E(A, B) to
the cut δG(A ∪ B). The next theorem shows that this is a one-to-one mapping.
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THEOREM 2.3. Let G(U, V, E) be a bipartite graph that has at least one perfect
matching. If (A, B) and (A′, B ′) are minimal relevant pairs in G with E(A, B) "=
E(A′, B ′), then δG(A ∪ B) "= δG(A′ ∪ B ′).

PROOF. Assume by way of contradiction that there exist minimal relevant pairs
(A, B) and (A′, B ′) in G with E(A, B) "= E(A′, B ′) but δG(A ∪ B) = δG(A′ ∪ B ′).
Then the following conditions must be satisfied for any edge (u, v) ∈ E .

(A1) If u ∈ A ⊕ A′ then v ∈ B ⊕ B ′. To see this, assume without loss of generality
that u ∈ A\ A′, and then note that if v ∈ B ∩ B ′, then (u, v) ∈ δG(A′ ∪ B ′) but
(u, v) "∈ δG(A∪B), which is a contradiction. Similarly, if v ∈ V \(B∪B ′), then
(u, v) ∈ δG(A ∪ B) but (u, v) "∈ δG(A′ ∪ B ′), which is again a contradiction.

(A2) If u ∈ (A ∩ A′) then v "∈ B ⊕ B ′. To see this, without loss of generality,
assume that v ∈ (B \ B ′). Then (u, v) ∈ δG(A′ ∪ B ′) but (u, v) "∈ δG(A ∪ B).
This is a contradiction.

In what follows, we slightly abuse the notation and given any (not necessarily
relevant) pair (C, D) with C ⊆ U and D ⊆ V , we denote by E(C, D) the set of
edges in E ∩ (C × (V \ D)). As an immediate corollary of the properties A1 and
A2, we now obtain the following containment results.

(B1) E(A \ A′, B \ B ′) ⊆ E(A, B). This follows directly from property A1 given
before.

(B2) E(A ∩ A′, B ∩ B ′) ⊆ E(A, B). This follows directly from property A2 given
before.

We now consider three possible cases based on the relationship between A and
A′, and establish a contradiction for each case.

Case 1. A ∩ A′ = ∅. By property A1, if u ∈ A ∪ A′ then v ∈ B ∪ B ′. In
other words, there are no edges from A ∪ A′ to vertices outside B ∪ B ′. Since
|A ∪ A′| = |A| + |A′| > |B| + |B ′|, this contradicts our assumption that G has at
least one perfect matching.

Case 2. A = A′. For any edge (u, v) with u ∈ A, property A2 shows that
v "∈ B ⊕ B ′. Then E(A, B) = E(A′, B ′). A contradiction.

Case 3. A ∩ A′ "= ∅ and A "= A′. Assume without loss of generality that
A \ A′ "= ∅. Since |A| > |B|, it must be that either |A \ A′| > |B \ B ′| or
|A ∩ A′| > |B ∩ B ′|. If |A \ A′| > |B \ B ′|, then (A \ A′, B \ B ′) is a relevant
pair, and by B1, it contradicts the fact that (A, B) is a minimal relevant pair. If
|A ∩ A′| > |B ∩ B ′|, then (A ∩ A′, B ∩ B ′) is a relevant pair set, and by B2, it
contradicts the fact that (A, B) is a minimal relevant pair.

2.2. A DECOMPOSITION PROCEDURE. Given a d-regular bipartite graph on n
vertices, we will first show that it can be partitioned into k = O(n/d) vertex-disjoint
graphs G1(U1, V1, E1), G2(U2, V2, E2), . . . , Gk(Uk, Vk, Ek) such that each graph
Gi satisfies the following properties.

(1) The size of a minimum cut in Gi (Ui , Vi , Ei ) is strictly greater than α = d2

4n .
(2) |δG(Ui ∪ Vi )| ≤ d/2 (hence Gi contains at least d/2 edge-disjoint perfect

matchings).

The decomposition procedure is as follows. Initialize H1 = G, and set i = 1.
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(1) Find a smallest nonempty proper subset Xi ⊆ V (Hi ) such that |δHi (Xi )| ≤ 2α.
Let Mi denote the number of edges in the cut δHi (Xi ). If no such set Xi exists,
we define Gi to be the graph Hi , and terminate the decomposition procedure.

(2) Define Gi to be the subgraph of Hi induced by the vertices in Xi , that is,
Xi = Ui ∪ Vi = V (Gi ). Also, define Hi+1 to be the graph Hi with vertices
from Xi removed.

(3) Increment i , and go to step (1).

Note that if the minimum cut of G is greater than 2α, then the procedure termi-
nates after the first step, and the decomposition trivially satisfies both P1 and P2.
So we focus shortly on the case when step (2) is executed at least once.

We now prove the following properties of the decomposition procedure.

THEOREM 2.4. The decomposition procedure outlined earlier satisfies proper-
ties P1 and P2.

PROOF. We start by proving that property P1 is satisfied. Suppose that there
exists a cut (C, V (Gi ) \ C) in Gi of value at most α, that is, |δGi (C)| ≤ α (note that
one could have C ∩ U %= ∅ and C ∩ V %= ∅). Let D = V (Gi ) \ C . We have
|δHi (C) \ δGi (C)| + |δHi (D) \ δGi (D)| ≤ 2α by the choice of Xi in (1). Suppose
without loss of generality that |δHi (C) \ δGi (C)| ≤ α. Then |δHi (C)| ≤ 2α and
C ⊂ Xi , which contradicts the choice of Xi as the smallest cut of value at most 2α
in step (1) of the procedure.

It remains to show that |δG(Ui ∪ Vi )| ≤ d/2 for all i . In order to establish this
property, it suffices to show that

∑k
i=1 Mi ≤ d/2 (recall that Mi = |δHi (Xi )|).

We prove the following statements by induction on k, the number of times step
(2) in the preceding decomposition procedure has been executed thus far.

(1) |V (Gk)| = |Uk ∪ Vk | ≥ 2d;
(2)

∑k
i=1 Mi ≤ d/2;

(3) k + 1 ≤ n/d .

Base: k = 1. Since 2α = d2

2n ≤ d/2, we have M1 ≤ d/2, which establishes (2).
We now prove (1), that is, we show that G1(U1, V1, E1) has at least 2d vertices.
Consider any vertex u ∈ U1. Let #G1 (u) ⊆ V1 be the neighbors of u in G1. Clearly,

|δG(u) ∩ δG(X1)| +
∑

v∈#G1 (u)

|δG(v) ∩ δG(X1)| ≤ |δG(X1)| ≤ 2α ≤ d/2.

If all terms are positive then we have

d/2 ≥ |δG(u) ∩ δG(X1)| + |#G1 (u)|.
This is a contradiction since the right-hand side is d, the number of neighbors of u.
So we have |δG(v) ∩ δG(X1)| = 0 for some v ∈ #G1 (u), implying that all neighbors
of v are inside U1, so |U1| ≥ d . A similar argument shows that |V1| ≥ d , so
|X1| ≥ 2d. By the same argument, |V (H2)| ≥ 2d, which establishes (3).

Inductive step: k − 1 → k. Suppose that the algorithm constructs Gk . Since k ≤
n/d by the inductive hypothesis, we have

∑k
i=1 Mi ≤ (n/d) (2α) = n

d ( d2

2n ) ≤ d/2,
which establishes (2). Consider the cut (Xk, V (Hk) \ Xk) of Hk .
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Every edge in δG(Xk) has one endpoint in Xk and the other in either V (Hk) \ Xk
or V (Gi ) = Xi for some i < k. Thus

δG(Xk) ⊆ δHk (Xk) ∪
k−1⋃

i=1

δHi (Xi ).

Thus

|δG(Xk)| ≤ Mk +
k−1∑

i=1

Mi .

By induction k ≤ n/d , so we have

|δG(Xk)| ≤
k∑

i=1

Mi ≤ (n/d)(2α) ≤ (n/d)
d2

2n
≤ d/2.

An argument similar to the base case can be used to show that |Xk | ≥ 2d as well
as |V (Hk) \ Xk | ≥ 2d, establishing (1). Since at every decomposition step j ≤ k
at least 2d vertices were removed from the graph, we have k + 1 ≤ n/d, which
establishes (3).

2.3. PROOF OF THEOREM 2.1. We now argue that if the graph G ′ is obtained by
uniformly sampling the edges of G with probability p = #( ln n

α
), then with high

probability G ′ contains a perfect matching.
It suffices to show that in each graph Gi obtained in the decomposition procedure,

every minimal witness set is hit with high probability in the sampled graph (that
is, at least one edge in each minimal witness set is chosen in the sampled graph).
This ensures that at least one perfect matching survives inside each Gi . A union
of these perfect matchings then gives us a perfect matching of G in the sampled
graph G ′.

Fix a graph Gi (Ui , Vi , Ei ). Let (A, B) be a relevant pair in Gi . Using the fact
that our starting graph G is d-regular, we observe that |E(A, B)| ≥ d + |E(B, A)|,
and obtain

|δG(A ∪ B)| ≤ 2|E(A, B)| − d.

Let m A, m B denote the number of edges in G that connect nodes in A and B,
respectively, to nodes outside Gi . Then

|δGi (A ∪ B)| ≤ 2|E(A, B)| − d − m A − m B .

By property P2, since |δG(Ui ∪ Vi )| ≤ d/2, it follows that |E(A, B) ∩ Ei | ≥
|E(A, B)| − d/2. Also, by definition, |E(A, B) ∩ Ei | ≥ |E(A, B)| − m A − m B .
Combining, we obtain

|δGi (A ∪ B)| ≤ 2|E(A, B) ∩ Ei | − d/2.

Thus the set E(A, B) ∩ Ei contains at least half as many edges as the the cut
δGi (A ∪ B). We will now use the following sampling result due to Karger [1994b].

THEOREM 2.5. (KARGER 1994b). Let Gi be an undirected graph on at most
n vertices, and let κ be the size of a minimum cut in Gi . There exists a positive
constant c such that for any ε ∈ (0, 1), if we sample the edges in Gi uniformly with
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27:8 A. GOEL ET AL.

probability at least p = c( ln n
κε2 ), then every cut in Gi is preserved to within (1 ± ε)

of its expected value with probability at least 1 − 1/n#(1).

Thus the sampling probability, needed to ensure that all cuts are preserved close
to their expected value, is inversely related to the size of a minimum cut in the
graph. We now use the previous theorem to prove that at least one perfect matching
survives in each graph Gi when edges are sampled with probability as specified in
Theorem 2.1.

By Property P1, we know that the size of a minimum cut in Gi is at least
α = d2/4n. Fix an ε ∈ (0, 1). The preceding theorem implies that if we sample
edges in Gi with probability p = %( ln n

αε2 ), then for every relevant pair (A, B), with
high probability the sampled graph contains (1 ± ε)p|δGi (A ∪ B)| = #(ln n) edges
from the set δGi (A ∪ B).

Note that the set δGi (A ∪ B) is not necessarily a Hall’s theorem witness edge
set. However, by Theorem 2.3, we know that for every left (right) minimal witness
edge set E(A, B) ∩ Ei , we can associate a distinct cut, namely δGi (A ∪ B), of size
at most twice |E(A, B) ∩ Ei |. We now show that this correspondence can be used
to directly adapt Karger’s proof of Theorem 2.5 to claim that every witness edge
set in Gi is preserved to within (1 ± ε) of its expected value. We remind the reader
that the proof of Karger’s theorem is based on an application of union bound over
all cuts in the graph. In particular, it is shown that the number of cuts of size at
most β times the minimum cut size is bounded by n2β . Then, for the sampling rate
given in Theorem 2.5, Chernoff bounds are used to claim that the probability that
a cut of size β times the minimum cut deviates by (1 ± ε) from its expected value
is at most 1/n#(β). The theorem follows by combining these two facts.

Within any piece of the decomposition, let ci be the number of cuts of size i and
let wi be the number of minimal witness sets of size i . We know by the preceding
correspondence argument that every Hall’s theorem minimal witness set of size
i corresponds to a cut of size at most 2i , and at most one minimal witness set
corresponds to the same cut.

Now, given a sampling probability p, the probability that none of the edges in
some minimal witness set is sampled is at most

∑
i wi (1 − p)i , which is at most∑

i ci (1− p)i/2. Therefore the probability that there is no matching in this piece can
be at most twice the expression used in Karger’s theorem to bound the probability
that there exists a cut from which no edge is sampled when the sampling rate is q ,
where 1 − q = (1 − p)1/2, or p = 2q − q2. Hence, it is sufficient to use a sampling
rate which is twice that required by Karger’s sampling theorem to conclude that a
perfect matching survives with probability at least 1 − 1/n#(1) in any given piece
of the decomposition. The union bound over all pieces of decomposition can be
handled by increasing the constant in the sampling probability.

Even though we don’t use it in this article, the following remark is interesting and
is worth making explicitly. The remark follows from the additional observation that
Karger’s proof [Karger 1994b] of Theorem 2.5 uses Chernoff bounds for each cut,
and these bounds remain the same if we use minimal witness sets which are at least
half the size of the corresponding cuts, and then sample with twice the probability.

Remark 2.6. There exists a positive constant c′ such that for any ε ∈ (0, 1), if
we sample the edges in G uniformly with probability at least p = c′( ln n

αε2 ), then
every minimal witness set in every piece Gi is preserved to within (1 ± ε) of its
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Perfect Matchings via Uniform Sampling 27:9

expected value with probability at least 1 − 1/n!(1). Here α = d2/(4n), as defined
before.

Putting everything together, the sampled graph G ′ will have a perfect matching
with high probability as long as we sample the edges with probability p > c ln n

α
for a sufficiently large constant c, thus completing the proof of Theorem 2.1. We
have made no attempt to optimize the constants in this proof (an upper bound of
8 ln n

α
follows from the previous reasoning). In fact, in an implementation, we can

use geometrically increasing sampling rates until either the sampled graph has a
perfect matching, or the sampling rate becomes so large that the expected running
time of the Hopcroft and Karp [Hopcroft and Karp 1973] algorithm is !(m).

3. A Faster Algorithm for Perfect Matchings in Regular Bipartite Graphs

We now show that the sampling theorem from the preceding section can be used
to obtain a faster randomized algorithm for finding perfect matchings in d-regular
bipartite graphs.

THEOREM 3.1. There exists an O(min{m, n2.5 ln n
d }) expected time algorithm for

finding a perfect matching in a d-regular bipartite graph with 2n vertices and
m = nd edges.

PROOF. Let G be a d-regular bipartite graph with 2n vertices and m = nd
edges. If d ≤ n3/4

√
ln n, we use the O(m)-time algorithm of Cole et al. [2001]

for finding a perfect matching in a d-regular bipartite graph. It is easy to see that
m ≤ n2.5 ln n

d in this case.
Otherwise, we sample the edges in G at a rate of p = cn ln n

d2 for some suitably
large constant c (c = 32 suffices by the reasoning from the previous section), and
by Theorem 2.1, the sampled graph G ′ contains a perfect matching with high prob-
ability The expected number of edges, say m ′, in the sampled graph G ′ is O( n2 ln n

d ).
We can now use the algorithm of Hopcroft and Karp [Hopcroft and Karp 1973] to
find a maximum matching in the bipartite graph G ′ in expected time O(m ′√n). The
sampling is then repeated if no perfect matching exists in G ′. This takes O( n2.5 ln n

d )
expected running time. Hence, the algorithm takes O(min{m, n2.5 ln n

d }) expected
time.

Note that by aborting the computation whenever the number of sampled edges is
more than twice the expected value, the preceding algorithm can be easily converted
to a Monte-Carlo algorithm with a worst-case running time of O(min{m, n2.5 ln n

d })
and a probability of success −1 − o(1). Finally, it is easy to verify that the stated
running time never exceeds O(n1.75

√
ln n).

4. Uniform Sampling for Perfect Matchings: A Lower Bound

We now present a construction that shows that the uniform sampling rate of
Theorem 2.1 is optimal to within a factor of O(ln2 n). As before, G ′ denotes the
graph obtained by sampling the edges of a graph G uniformly with probability p.
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FIG. 1. Graph H (k) for k = 2 and d = 4.

THEOREM 4.1. Let d(n) be a nondecreasing positive-integer-valued function
such that for some fixed integer n0, it always satisfies one of the following two
conditions for all n ≥ n0: (a) d(n) ≤

√
n/ ln n, or (b)

√
n/ ln n < d(n) ≤ n/ ln n.

Then there exists a family of d(n)-regular bipartite graphs Gn with 2n + o(n)
vertices such that the probability that the graph G ′

n, obtained by sampling edges of
Gn with probability p, has a perfect matching goes to zero faster than any inverse
polynomial function in n if p = o(1) when d(n) satisfies preceding condition (a),
and if

p = o
(

n
(d(n))2 ln n

)

when d(n) satisfies preceding condition (b).

PROOF. Note that the theorem asserts that essentially no sampling can be done
when d(n) ≤

√
n/ ln n. We shall omit the dependence on n in d(n) to simplify

notation.
Define H (k) = (U, V, E), 0 ≤ k ≤ d , to be a bipartite graph with |U | = |V | = d

such that k vertices in each of U and V have degree (d − 1) and the remaining
vertices have degree d . We will call the vertices of degree (d −1) deficient. Clearly,
for any 0 ≤ k ≤ d, the graph H (k) exists: starting with a d-regular bipartite graph
on 2d vertices, we can remove an arbitrary subset of k edges that belong to a perfect
matching in the graph (H (k) with k = 2 and d = 4 is shown in Figure 1). In the
following construction, we will use copies of H (k) as building blocks to create our
final instance. In doing so, only the set of deficient vertices in a copy of H (k) will
be connected to (deficient) vertices in other copies in our construction.

We now define a d-regular bipartite graph Gn . Let γ = & d2 ln n
n ' (note that γ ≤ d

since d ≤ n/ ln n). We choose W = & d
γ
', k j = γ for 1 ≤ j < W , and kW = d −

γ (W − 1) ≤ γ . We also define K (n) = &ln n' if d(n) ≥
√

n/ ln n and K (n) = & n
d2 '

otherwise.
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FIG. 2. Illustration of the family of graphs that yields the lower bound.

The graph Gn consists of K (n) ·W copies of H (k) that we index as {Hi, j }1≤i≤K (n)
1≤ j≤W .

The subgraph Hi, j is a copy of H (k j ), where k j is as defined earlier. Note that the
sum of the number of deficient vertices over each of the parts of Hi, j , 1 ≤ j ≤ W ,
equals d for all fixed i . Moreover, the number of deficient vertices in Hi, j is the
same for all i when j is held fixed.

We now introduce two distinguished vertices u and v and add additional edges
as follows.

(1) For every 1 ≤ i < K (n) and for every 1 ≤ j ≤ W , all deficient vertices in part
V of Hi, j are matched to the deficient vertices in part U of Hi+1, j (that is, we
insert an arbitrary matching between these two sets of vertices).

(2) All deficient vertices in part U of H1, j for 1 ≤ j ≤ W are connected to u.
(3) All deficient vertices in part V of HK (n), j for 1 ≤ j ≤ W are connected to v .

Essentially, we are connecting the graphs Hi, j for fixed j in series via their
deficient vertices, and then connecting the left ends of these chains to the distin-
guished vertex u and the right ends of the chains to the distinguished vertex v . The
construction is illustrated in Figure 2.
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We note that the graph Gn constructed as described before is a d-regular bipartite
graph with 2dK(n)W + 2 = 2n + o(n) vertices.

Consider the sampled graph G ′
n . Suppose G ′

n has a perfect matching M . In the
matching M , if u is matched to a vertex in part U of H ′

1, j for some 1 ≤ j ≤ W ,
then there must be a vertex in part V of H ′

1, j that is matched to a vertex in part U
of H ′

2, j . Proceeding in the same way, one concludes that for every i, 1 ≤ i < K (n)
there must be a vertex in part V of H ′

i, j that is matched to a vertex in part U of
H ′

i+1, j . Finally, vertex v must be matched to a vertex in part V of H ′
K (n), j . This

implies that the sampled graph G ′
n can have a perfect matching only if at least one

edge survives in G ′
n between every pair of adjacent elements in the sequence that

follows:

u → H1, j → H2, j → · · · → HK (n)−1, j → HK (n), j → v .

Now suppose that we sample edges uniformly with probability p. It follows from
the construction of Gn that for any fixed j , the probability that at least one edge
survives between every pair of adjacent elements in the sequence u → H1, j →
H2, j → · · · → HK (n)−1, j → HK (n), j → v is equal to

(1 − (1 − p)k j )K (n)+1 ≤ (pk j )K (n)+1.

Hence, the probability that at least one such path survives in G ′
n is at most

W
(

p max
1≤ j≤W

k j

)K (n)+1

by the union bound.
When d(n) ≤

√
n/ ln n, we have γ = 1, W = d , k j = 1 and K (n) = &n/d2'.

So the bound transforms to

W pK (n)+1 = dp&n/d2'+1, (1)

which goes to zero faster than any inverse polynomial function in n when p = o(1)
since K (n) = &n/d2' = "(ln n).

When d ≥
√

n/ ln n, we have k j ≤ γ where γ = & d2 ln n
n ', W = & d

γ
' and

K (n) = &ln n'. Hence, the bound becomes

W (pγ )K (n)+1 =
⌈

d
γ

⌉
(pγ )&ln n'+1 , (2)

which goes to zero faster than any inverse polynomial function in n when p =
o( n

d2 ln n ). This completes the proof of the theorem.

The construction given in Theorem 4.1 shows that the sampling upper bound
for preserving a perfect matching proved in Theorem 2.1 is tight up to a factor of
O(ln2 n).
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