
On Regularity Lemma and Barriers in Streaming and
Dynamic Matching∗

Sepehr Assadi

sepehr.assadi@rutgers.edu

Rutgers University

New Brunswick, New Jersey, USA

Soheil Behnezhad

s.behnezhad@northeastern.edu

Northeastern University

Boston, Massachusetts, USA

Sanjeev Khanna

sanjeev@cis.upenn.edu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

Huan Li

huanli@cis.upenn.edu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

ABSTRACT

We present a new approach for finding matchings in dense graphs

by building on Szemerédi’s celebrated Regularity Lemma. This al-

lows us to obtain non-trivial albeit slight improvements over long-

standing bounds for matchings in streaming and dynamic graphs.

In particular, we establish the following results for n-vertex graphs:

(i) A deterministic single-pass streaming algorithm that finds a

(1 − o(1))-approximate matching in o(n2) bits of space. This consti-
tutes the first single-pass algorithm for this problem in sublinear

space that improves over the
1/2-approximation of the greedy algo-

rithm.

(ii) A randomized fully dynamic algorithm that with high probabil-

ity maintains a (1 − o(1))-approximate matching in o(n) worst-case
update time per each edge insertion or deletion. The algorithm

works even against an adaptive adversary. This is the first o(n)
update-time dynamic algorithm with approximation guarantee ar-

bitrarily close to one.

Given the use of regularity lemma, the improvement obtained

by our algorithms over trivial bounds is only by some (log∗ n)Θ(1)

factor. Nevertheless, in each case, they show that the “right” answer

to the problem is not what is dictated by the previous bounds.

Finally, in the streamingmodel, we also present a randomized (1−

o(1))-approximation algorithm whose space can be upper bounded

by the density of certain Ruzsa-Szemerédi (RS) graphs. While RS

graphs by now have been used extensively to prove streaming lower

∗
Sepehr Assadi is supported in part by an NSF CAREER Grant CCF-2047061, a Sloan

Research Fellowship, a Google Research gift, and a Fulcrum award from Rutgers

Research Council. Sanjeev Khanna is supported in part by NSF awards CCF-1934876

and CCF-2008305. Huan Li is supported in part by NSF award CCF-2008305.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9913-5/23/06. . . $15.00

https://doi.org/10.1145/3564246.3585110

bounds, ours is the first to use them as an upper bound tool for

desigining improved streaming algorithms.

CCS CONCEPTS
• Theory of computation→ Streaming models; Communica-
tion complexity;

KEYWORDS
Maximum Matching, Streaming Algorithms, Dynamic Algorithms,

Regularity Lemma

ACM Reference Format:

Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. 2023. On

Regularity Lemma and Barriers in Streaming and Dynamic Matching. In

Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC ’23), June 20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3564246.3585110

1 INTRODUCTION
Given a graph G = (V , E), a matching M in G is any collection of

edges that share no endpoints. Finding maximum matchings has

been a cornerstone of algorithm design starting from the work of

König [64] over a century ago. Nevertheless, many fundamental

questions regarding the complexity of this problem have remained

unresolved, specifically in modern models of computations such as

streaming or dynamic graphs. Indeed, in both mentioned models,

despite significant attention, there has been no improvement in

certain key cases over longstanding barriers that have remained in

place since the introduction of the model itself.

In this paper, we make an ever so slight improvement over these

barriers, showing that the right answer to the problem must be

different than what is dictated by prior bounds. Our results combine

tools from extremal combinatorics, primarily Szemerédi’s Regu-

larity Lemma [80] and its extensions, with multiple ideas (old and

new) tailored to each model specifically. To put our results in more

context, we start with the history of the problem in each model

separately.

131

https://doi.org/10.1145/3564246.3585110
https://doi.org/10.1145/3564246.3585110
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585110&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

Graph Streaming. In this model, edges of an n-vertex graph

appear one by one in a stream in an arbitrary order. The algorithm

can read the edges in the arrival order while using a limited memory

smaller than the input size, and output the solution at the end of

the stream. The holy grail of algorithms here is a one that uses

O(n · polylog(n)) memory and a single pass over the stream. The

study of graph streaming algorithms were initiated by Feigenbaum

et al. [43] who already observed that there is a straightforward

1/2-approximation algorithm for matching in O(n logn) space1:
greedily maintain a maximal matching in the stream. They further

proved that finding an exact maximum matching requires Ω(n2)
space, which matches the trivial algorithm that stores the entire

input via its adjacency matrix.

Almost two decades since [43], there are still no better algorithms

for matchings than these two straightforward solutions. On the

lower bound front, a series of work by Goel et al. [50] and Kapralov

[59] culminated in a recent work of Kapralov [60] that rules out

better than 1/(1 + ln 2) ≈ 0.59 approximation in n1+o(1/log logn)

space. This lack of progress has led researchers to consider various

relaxations of the problem, in particular by allowing a few more

passes over the input (e.g., in [9, 44, 58, 66–68]) or assuming random

arrival of edges in the stream (e.g., in [10, 11, 25, 42, 67])
2
. At this

point, beating 1/2-approximation factor of the greedy algorithm in

O(n · polylog(n)) space, or even much larger than that, has become

one of the most central open questions of the graph streaming

literature; see, e.g., [44, 60, 67, 71, 82] for various references to this

question.

(Fully) Dynamic Graphs. In this model, we have an n-vertex
graph that undergoes an arbitrary sequence of edge insertions and

deletions. The goal is to maintain the solution to the problem, say

an approximate maximum matching of the graph, with a quick

update time per each insertion or deletion. Dynamic algorithms for

matchings were studied first in this model by Ivkovic and Lloyd

[57] in 1993 and continue to be a highly active area of research (see,

e.g. [8, 19, 20, 22–24, 26, 27, 29–33, 37, 52, 53, 63, 72, 73, 76, 78, 83]

and references therein).

There is a folklore algorithm that for any ε > 0, maintains a

(1 − ε)-approximate matching in O(n/ε2) (amortized) update time:

Assume inductively that we have a (1− ε/2)-approximate matching

M of the current graph; (i) for the next (ε/2) · |M | updates do

nothing and returnM still as the answer; after that, (ii) compute a

(1−ε/2)-approximate matching of the current graph inO(m/ε) time

using the Hopcroft-Karp algorithm [56] wherem is the number of

edges in the graph and repeat from step (i). Sincem = O(n · |M |)
in any graph with maximum matching size bounded by O(|M |),
the amortized update time will be O(n/ε2), and the correctness can

be easily verified. This algorithm can also be deamortized using

standard batching ideas.

For sparser graphs, this folklore algorithmwas improved byGupta

and Peng [53] to achieve an O(
√
m/ε2) update time wherem de-

notes the (dynamic) number of edges. Faster algorithms are only

1
Throughout, we always measure the space of streaming algorithms in bits.

2
See the papers of Feldman and Szarf [44] and Assadi and Behnezhad [11], respectively,

for the state of the art in each case, and more details on previous work on each

relaxation.

known for smaller approximations between 1/2 and 2/3 which

can respectively be maintained in O(1) [79] (see also [19]) and

O(
√
n) update-times [29]. See also a recent result of [23] for update-

time/approximation trade-offs between 1/2 and 2/3, and the recent

breakthroughs of [21, 34] in beating 1/2-approximation in polylog-

arithmic time for estimating size of maximum matching. Yet, for

the original (1 − ε)-approximation question, raised e.g. in [53], an

O(n) update time still remains a barrier in general.

1.1 Our Contributions
We present the first algorithms that beat the aforementioned barri-

ers for finding matchings in streaming and dynamic graphs with

non-trivial albeit quite small factors:

Result 1 (Formalized in Theorem 3). There is a random-
ized (1 − o(1))-approximate matching algorithm in single-pass
streamswith adversarial order of edge arrivals inn2/(log∗ n)Ω(1)

space and polynomial time.

This is the firsto(n2)-space algorithm formatchings in adversarial-

order streams with better than 1/2-approximation guarantee. In

fact, it was not known previously how to achieve a (1 − o(1))-
approximation in o(n2) space even on random-arrival streams and

even if we allow any constant number passes over the input (see [1,

2, 13, 17, 46, 70] for representative examples of multi-pass streaming

matching algorithms
3
). Moreover, combined with the lower bound

of Ω(n2) space by [43] for computing exact matchings, Result 1

shows the first provable separation between the space complexity

of computing nearly-optimal versus exact-optimal matchings in

single-pass streams.

Result 2 (Formalized in Theorem 2). There is a randomized
(1 − o(1))-approximate matching algorithm in fully dynamic
graphs against an adaptive adversary with n/(log∗ n)Ω(1) worst
case update time.

This is the first algorithm for matchings in fully dynamic graphs

that achieves o(n) update time for all densities with close to one

approximation guarantee (this was not known before even for

oblivious adversaries).

The key idea behind both these results is to maintain a match-
ing cover—introduced by Goel et al. [50] in spirit of cut/spectral

sparsifiers—that is a “sparse” subgraph which approximately pre-

serve matchings in each induced subgraph of the input graph. We

present a polynomial time algorithm for constructing o(n2)-size
matching covers using Szemerédi’s Regularity Lemma [80] and

along the way extend them to general graphs ([50] only proves

their existence and for bipartite graphs). We then show this new

construction can be maintained in streaming and dynamic graphs

using several new ideas combined with standard tools from prior

work specific to each model. We elaborate more on our techniques

in Section 2.

We also present a third result specific to the graph streaming

model. All previous lower bounds for approximating matchings in

3
The state-of-the-art is the Oε (n1+1/p)-space O (p/ε)-pass algorithm by Ahn and

Guha [2] and Oε (n · polylog(n))-space poly(1/ε)-pass by Fischer et al. [46] (see also

algorithms by Assadi et al. [13] and Assadi et al. [17] with improved bounds for

bipartite graphs).

132

On Regularity Lemma and Barriers in Streaming and Dynamic Matching STOC ’23, June 20–23, 2023, Orlando, FL, USA

graph streams in a single pass [14, 50, 59, 60], multi-pass [9, 18, 38],

or random-order streams [11] rely on constructions based on Ruzsa-

Szemerédi (RS) graphs [77]. These are graphs whose edges can

be partitioned into “large” induced matchings (see Section 3.3 for

details). We present a converse approach by developing a streaming

algorithm for matchings whose space can be upper bounded by the

density of (certain) RS graphs. In particular,

Result 3. (Formalized in Theorem 4)For any k ⩾ 1, there is
a randomized (1 − o(1))-approximate matching algorithm in
single-pass streams with adversarial order of edge arrivals in(

n2/k + RS(n,o(n/k))
)
· polylog (k)

space and exponential time; here, RS(n, r) denotes the largest
number of edges in any n-vertex graph whose edges can be par-
titioned into induced matchings of size r . The algorithm can be
made deterministic if the goal is an additive o(n) approximation
instead.

Result 3 builds on and generalize the RS graph based communi-

cation protocol of Goel et al. [50] to the streaming model (and from

bipartite to general graphs).

To put this result in more context, notice that RS graphs are

naturally becoming denser and denser by reducing the size of their

induced matchings
4
, leading to a tradeoff between the two terms

in the space guarantee of Result 3. Unfortunately, proving tight

bounds on the density of RS graphs is a notoriously difficult prob-

lem in combinatorics (see, e.g., [40, 48, 51]). As such, the space

complexity of the algorithm in Result 3 as purely a function of n
is not clear at this point. However, using Result 3 combined with

Fox’s triangle-removal lemma [47] that, to our knowledge, provides

the best approach currently for bounding density of RS graphs with

o(n)-size induced matchings, we can obtain the following result:

• A corollary of Result 3 (Formalized in Corollary 6.6). There
is a deterministic (1 − o(1))-approximate matching algorithm in

single-pass streams with adversarial order of edge arrivals using

n2/2Θ(log
∗ n)

space and exponential time.

This corollary improves upon our algorithm in Result 1 based

on the regularity lemma in terms of approximation ratio and being

deterministic at the cost of taking exponential time. Moreover, by a

result of Goel et al. [50] on lower bounds for streaming matching

via RS graphs, obtaining streaming algorithms with better space

complexity than this corollary, namely, beating n2 by more than

a 2
Θ(log∗ n)

factor, immediately implies improved RS graph upper

bounds; in other words, improving upon our algorithm at the
very least requires proving better RS graph upper bounds
than currently known bounds (see [49] for why this can be

challenging).

Finally, given the current state of knowledge about RS graphs

(see [6, 48]), it is possible that the space of the algorithm in Result 3

can be improved to n2/2Θ(
√
logn)

—thus more than any polylog(n)
factor shaving in the space over n2—assuming that the currently

best construction of dense RS graphs in [77] (see also [6]) with

induced matchings of size n/2Θ(
√
logn)

cannot be improved sub-

stantially to larger induced matching sizes.

4
Any (simple) graph can be seen as an RS graph with induced matchings of size one.

In conclusion, our paper shows that these longstanding barriers

in computing large matchings in streaming and dynamic graphs

can at least be broken by some non-trivial albeit quite small factors.

Moreover, these algorithms rely on techniques and ideas that are

vastly different from prior approaches used in these two models.

We hope our work paves the path toward further progress on these

longstanding open questions.

2 TECHNICAL OVERVIEW
Matching sparsifiers, which loosely speaking, are sparse subgraphs

that approximately preserve the maximum matching have long

been known to be an important tool for fully dynamic and (vari-

ants of) streaming algorithms. Some prominent examples include

edge-degree constrained subgraphs (EDCS) [28, 29] and its gener-

alizations [12, 23], kernels [8, 26, 30, 31], and matching skeletons

[50]. One of our main contributions, and the key to both Result 1

and Result 2, is a new matching sparsifier based on Szemerédi’s

Regularity Lemma.

Our matching sparsifier, more strongly, is a matching cover—à la
Goel et al. [50]—which not only preserves an approximate maxi-
mum matching of the graph, but rather “covers” smaller matchings

of it as well. Let us formalize this. For a given graph G, we write
µ(G) to denote the maximum matching size ofG , and writeG[A,B]
to denote the bipartite subgraph ofG between some disjoint vertex

subsets A,B. We say a subgraph H of G is an α-matching cover
for α ∈ (0, 1) if for any disjoint subsets of vertices (A,B) in G,
µ(H [A,B]) ⩾ µ(G[A,B]) − α · n. That is, H preserves the largest

matching in the induced bipartite subgraphG[A,B] to within an ad-

ditive α · n factor. While from an information theoretic perspective,

existence of an o(n2)-edge o(1)-matching cover for bipartite graphs

was proved in the original paper of Goel et al. [50], it was not known

up until now whether one can find such matching covers efficiently,

say in polynomial time. Note that this is specially important, for

instance, for applications in dynamic algorithms where the goal is

to optimize the update time.

In this paper, we prove that there is an Õ(nω)-time
5
offline al-

gorithm that computes an o(n2)-edge o(1)-matching cover of any

n-vertex graph (not necessarily bipartite). Our algorithm builds on

Szemerédi’s Regularity Lemma (and its algorithmic version due to

Alon et al. [5]). We first explain how our offline algorithm for obtain-

ing a matching cover works, and then outline its use in obtaining

improved dynamic matching and streaming algorithms.

2.1 Matching Covers via Regularity Lemma
Roughly speaking, Szemerédi’s regularity lemma [80] says that the

vertices of any graph can be partitioned into a small irregular part
C0 with |C0 | = o(n), plus k other equal-size parts C1, . . . ,Ck for

some k ∈ [ω(1), logn]. The latter k parts have the property that

all but o(1)-fraction of the Ci ,Cj pairs are regular: for any pair of

subsets X ⊆ Ci ,Y ⊆ Cj with large enough size, the edge density

between X ,Y is similar to that of Ci ,Cj . Therefore, if the edges

5
Here and throughout,ω ≈ 2.37286 is thematrix multiplication exponent with current

best bounds achieved by Alman and Williams [3].

133

STOC ’23, June 20–23, 2023, Orlando, FL, USA Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

betweenCi ,Cj are dense to start with, the density will also be high

between every large enough X ⊆ Ci ,Y ⊆ Cj pair.

It is not difficult to see that by regularity, any large matching

between a dense regular pair Ci ,Cj can be mostly preserved if we

subsample edges between them at a sufficiently high rate p = o(1).
In particular, the subsampled graph will be a matching cover of

the graph induced by edges between the regular pair Ci ,Cj . This

suggests a natural strategy for building an o(1)-matching cover

with o(n2) edges: subsample the edges between dense regularCi ,Cj
pairs at rate p = o(1) and take all other edges. We would like to

show that this is an α-matching cover for some α = o(1).

This idea runs into the following problem. Suppose we have an

(αn)-size matching M whose edges are evenly distributed across

all

(k
2

)
pairs ofCi ,Cj , then the number of edges ofM between each

Ci ,Cj pair is only O(α · n/k2). This means that only an O(α/k)
fraction of vertices in Ci ,Cj are matched to each other – this is

unfortunately way too small to invoke the regularity property.

We get around this issue by first focusing on solving an α -hitting
set problem: find one edge between endpoints of any (αn)-size
matching – we will show later on using a similar argument as

in [50] that this is sufficient for obtaining an α-matching cover.

Now to fix our problem about an (αn)-size matching whose edges

are distributed across many pairs, we present a strategy for consoli-
dating the support of a matching over different pairs. This consoli-

dation argument shows that whenever there is a large matchingM
between dense regular Ci ,Cj pairs, there must also exist another

(almost as) large matchingM ′ that is supported on the same set of

vertices V (M) but only uses edges between a small number of such

Ci ,Cj pairs. As a result, there must exist one pair of Ci ,Cj where a

substantial fraction of vertices are matched to each other, to which

we are now able to apply regularity to prove the existence of an

edge between them in the subsampled graph (which solves our α-
hitting set problem). At a high level, our argument for consolidating

the support of the matching is proved by (i) viewing the matching

M as a fractionalmatching in a meta graph obtained by contracting

eachCi into a supernode; and (ii) rounding the fractional matching

by an edge sampling process.

All in all, using the algorithm of [5] for finding the regular-

ity lemma partition in Õ(nω) time, and a direct sampling algo-

rithm between dense regular pairs, this step gives us an Õ(nω) time

and Õ(n) space algorithm for finding an α-matching cover of size

n2/(log∗ n)Ω(1) for some α = 1/(log∗ n)Ω(1).

2.2 Applications of Matching Cover
A fully dynamic matching algorithm. The matching cover

algorithm above is offline. But observe that since the algorithm

takes Õ(nω) = n3−Ω(1) time, the time spent per edge in a dense

instance is sublinear in n. This gives hope that perhaps such a

matching cover can be maintained in o(n) time, and indeed we

show this to be the case.

Our algorithm roughly proceeds by re-computing ano(1)-matching

cover every Θ̃(nω−1) updates, and then using the O(
√
m)-update

time data structure by Gupta and Peng [53] to maintain a nearly

optimal matching in the matching cover through the subsequent

Θ̃(nω−1) updates. Since the matching cover only has o(n2) edges,
we immediately get an update time of o(n) for the Gupta-Peng algo-
rithm. To argue the correctness, we show that the matching cover

found by our offline algorithm has the additional feature that it is

robust to edge updates: not only is it an o(1)-matching cover of the

graph at the time we compute it, but it remains an o(1)-matching

cover throughout any arbitrary sequence of n2−o(1) updates. This
suffices to show that our algorithm can dynamically maintain an

approximate matching with an additive error o(n).

When the number of edges is close to n2, this additive approx-
imation becomes a (1 − o(1))-multiplicative approximation, since

the maximum matching size is itself Ω(n). On the other hand, when

the number of edges is o(n2), directly applying the Gupta-Peng

data structure gives us a nearly-optimal matching in o(n) update
time. Our final algorithm then balances the dense and the sparse

regimes together to maintain a (1 − o(1))-approximate matching in

o(n) update time.

Streaming algorithms. Our streaming algorithm in Result 1

is also based on using matching covers as a natural sparsifier for

matchings. The algorithmworks through a series of buffers of edges

B1,B2, . . . ,. The first buffer B1 reads the edges from the input until

it gets “full”, i.e., receives some o(n2) edges (which is some constant

factor larger than the size of our matching cover). At that point

we compute a matching cover of the edges in the buffer using an

offline/non-streaming algorithm and send its edges to the buffer B2;
then, we “restart” B1 by emptying all its current edges and letting it

collect more edges from the stream. The same approach is repeated

across all other buffers as well. The number of these buffers can

be bounded as only a constant fraction of edges in one buffer can

make their way to the next one, eventually reaching a buffer that

never gets full. This also implies that fewer edges will be be further

“sparsified” in each matching cover, thus the error occurred due to

the approximation guarantee of the matching cover does not get

amplified “too much”. Thus, using this algorithm along with our

matching cover algorithm for regularity lemma, leads to an o(n2)-
space (1− o(1))-approximation algorithm for single-pass streaming

matchings.

The strategywe outlined aboveworks for any choice of matching

cover (as long as we can compute it in a small space offline). Thus,

we can alternatively implement the matching cover subroutine

by simply enumerating all subgraphs of the input (in exponential

time) and the optimal one. An argument due to Goel et al. [50]—

extended in our paper to general graphs—shows that density of

optimal matching covers can be bounded by the density of certain

RS graphs. To obtain Result 3, we also need to turn the additive ap-

proximation guarantee of the matching cover into a multiplicative

bound. This is done using vertex-sparsification methods of Assadi

et al. [16] and Chitnis et al. [39] (as specified in [15]) that reduce

the number of vertices in the graph down to its maximummatching

size without reducing the matching size by much. This turns the

additive guarantee of the matching cover into a multiplicative one,

giving us Result 3 as well.

Finally, one key step in making the above algorithms work is to

store the o(n2) edges they have in the buffers more efficiently than

134

On Regularity Lemma and Barriers in Streaming and Dynamic Matching STOC ’23, June 20–23, 2023, Orlando, FL, USA

spendingΘ(logn) bits per each (which is prohibitive for us given the
extremely small improvement in the space the algorithms get over

the trivial O(n2) bound). This is done by storing the edges via the

succinct dynamic dictionary of Raman and Rao [75] (see Section 3.4)

and then performing all the computation in this compressed space

instead.

3 PRELIMINARIES
Notation. For any integer t ⩾ s ⩾ 1, we let [t] := {1, . . . , t} and
let [s, t] = {s, . . . , t}. We use the term with high probability, abbre-

viated w.h.p., to imply probability at least 1− 1/nc for any desirably
large constant c ⩾ 1 (that might affect the hidden constants in our

statements).

For a graph G = (V , E), we use V (G) = V to denote the set of

vertices and E(G) = E to denote the edges. For any subsets of edges

F ⊆ E and disjoint subsets of vertices X ,Y ⊆ V , we use X (F) and
Y (F) to denote the edges of F incident onX andY , respectively, and
F (X ,Y) to denote the edges of F going between X and Y . Similarly,

we use G[X] and G[X ,Y] to respectively denote the subgraph of

G induced on vertices X , and the bipartite subgraph of G between

verticesX andY . For any p ∈ [0, 1], we useG[p] to denote a random
subgraph of G that includes each edge of G independently with

probability p.

For any graphG , µ(G) denotes the size of the maximummatching

in G. We have,

Fact 3.1. Any graph G has at most 2n · µ(G) edges.

The proof of Fact 3.1 is simply based on picking an arbitrary

edge of the graph and adding to a matching, removing at most 2n
edges incident on this edge, and repeating until the graph is empty.

We will also need the following version of Hall’s theorem.

Proposition 3.2 (Extended Hall’s marriage theorem; cf. [54]). Let
G = (L,R, E) be any bipartite graph with |L| = |R | = n. Then
max(|A| − |NG (A)|) = n − µ(G), where A ranges over all subsets
of L and R, and NG (A) denotes the neighbors of A in G.

3.1 Szemerédi’s Regularity Lemma
Szemerédi’s Regularity Lemma [80] is a powerful tool in extremal

combinatorics. Loosely speaking, it says that every dense graph

can be well-approximated by a “small” collection of random-like

subgraphs. To formally state the lemma, we need a few definitions.

Let G = (V , E) be any given graph, and A,B ⊆ V be any disjoint

vertex subsets. We write e(A,B) to denote the number of edges

between A,B. If A,B , ∅, we define the density of edges between

A and B by:

d(A,B) :=
e(A,B)

|A| |B |
.

For a parameter γ ∈ (0, 1), we say (A,B) is γ -regular if for every
X ⊆ A and Y ⊆ B satisfying |X | ⩾ γ · |A| and |Y | ⩾ γ · |B |, we have
|d(A,B) − d(X ,Y)| < γ .

Let C0,C1, . . . ,Ck be a partition of the vertex set V . We say this

partition is equitable if the classes C1, . . . ,Ck all have the same

size. We will call C0 the exceptional class. We say this partition

is γ -regular if both of the following statements are true:

(1) It is equitable and |C0 | ⩽ γn.

(2) All but at most γ
(k
2

)
of the pairs Ci ,Cj for 1 ⩽ i < j ⩽ k are

γ -regular.

Instead of the original formulation of Szemerédi’s Regularity

Lemma in [80], we state an algorithmic version of it due to Alon

et al. [5].

Proposition 3.3 ([5]). There exists a function Q : R+ × R+ → R+

satisfying log∗Q(x,y) ⩽ poly(x,y) for all x,y, such that, given any
n-vertex graph G = (V , E) and γ ∈ (0, 1), t ⩾ 1, one can find in
nω ·Q(t, 1/γ) time a γ -regular partition of V into k + 1 classes such
that t ⩽ k ⩽ Q(t, 1/γ).

The algorithm in Proposition 3.3 can also be implemented in a

space-efficient manner (which is needed for our streaming algo-

rithms). The proof is deferred to the full version.

Proposition 3.4. Given query access to the adjacency matrix, the al-
gorithm in Proposition 3.3 can be implemented inO(n ·Q(t, 1/γ) logn)
space and poly(n,Q(t, 1/γ)) time.

3.2 Fox’s Triangle Removal Lemma
Similar to the Regularity Lemma, the Triangle Removal Lemma is

another highly useful tool in extremal combinatorics.While original

proofs of this lemma were based on the regularity lemma, Fox [47]

presented a proof that bypasses regularity lemma and thus obtains

stronger bounds. We will use this result also in one of our streaming

algorithms.

Proposition 3.5 ([47]). There exists an absolute constant b > 1 such
that the following is true. For any γ ∈ (0, 1) let δ := δ (γ) be inverse of
the tower of twos of height b · log (1/γ), i.e., δ−1 = 2 ⇈ b · log (1/γ).
Then, any n-vertex graph with at most δ · n3 triangles can be made
triangle-free by removing at most γ · n2 edges.

3.3 Ruzsa-Szemerédi Graphs
A matchingM in a graph G is called an induced matching iff the

subgraph of G induced on vertices of M only contains the edges

of M itself; in other words, there are no other edges between the

vertices of this matching.

Definition 3.6. For integers r , t ⩾ 1, a graph G = (V , E) is called
an (r , t)-Ruzsa-Szemerédi graph (RS graph for short) iff its edge-set E
can be partitioned into t induced matchingsM1, . . . ,Mt , each of size
r . For any integer n ⩾ 1 and parameter β ∈ (0, 1/2), we use RS(n, β)
to denote the maximum number of edges in any n-vertex RS graph
with induced matchings of size β · n.

RS graphs have been extensively studied as they arise naturally in

property testing, PCP constructions, additive combinatorics, stream-

ing algorithms, graph sparsification, etc. (see, e.g., [4, 6, 7, 12, 35,

45, 49, 50, 55, 61, 81]). In particular, a line of work initiated by Goel

et al. [50] have used different constructions of these graphs to prove

communication complexity and streaming lower bounds for graph

streaming algorithms [11, 14, 16, 18, 38, 41, 50, 59, 60, 65]. In this

135

STOC ’23, June 20–23, 2023, Orlando, FL, USA Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

work however, we shall use them as an upper bound tool. The only

other upper bound application of these graphs in a similar con-

text that we are aware of is the communication protocols of [50]:

they show that to obtain a one-way communication protocol for

ε ·n-additive approximation of matchings, roughlyO(RS(n, ε)) com-

munication is sufficient and also necessary.

We establish a simple property of the RS(n, β) function in Defi-

nition 3.6 that relates density of different RS graphs with similar

parameters (see full version for the proof).

Claim 3.7. For any integer n ⩾ 1 and real 0 < β < 1, RS(2n, 3β) ⩽
O(1) · RS(n, β).

3.4 Succinct Dynamic Dictionaries
We need to use succinct dynamic dictionaries from prior work

in [36, 74, 75]. For concreteness, we use the construction of [75]

although the other ones work as fine also for us.

Proposition 3.8 (c.f. [75]). There exists a dynamic data structure
D for maintaining a subset S of size at most s from a universe U of
size u that supports the following operations:

• D. insert(a): Inserts an element a ∈ U to the set S ;

• D. member(a): Returns whether the given element a ∈ U be-
longs toU or not;

The data structure requires (1 + o(1)) · log
(u
s
)
bits of space to store

S and answers each query in O(1) amortized expected time or O(s)
worst-case deterministic time.

4 A MATCHING COVER VIA REGULARITY
LEMMA

In this section, we give a polynomial time algorithm for constructing

anmatching cover of size o(n2). We use the algorithm of this section

both in the streaming model and the dynamic model. Most of the

proofs in this section are deferred to the full version.

Let us start by formally defining matching covers.

Definition 4.1 ([50]). A subgraph H of an n-vertex graph G is an
α-matching cover ofG if for any disjoint subsets of vertices (A,B) in
G, we have µ(H [A,B]) ⩾ µ(G[A,B]) − α · n.

The following theorem is our main result of this section.

Theorem 1. Given anyn-vertex graphG , for someα = (log∗ n)−Ω(1),
there is an O(nω logn) time algorithm, which is formalized below as
Algorithm 1, for finding an α-matching cover H of G with at most
n2/(log∗ n)Ω(1) edges.

Even though existence of o(n2) size o(1)-matching covers for

bipartite graphs was already proved by Goel et al. [50], it was

not known whether it is possible to find one in polynomial time

(nor whether they also exist for general, not necessarily bipartite,

graphs).

4.1 First Step: A Hitting Set Argument
In this section, we give an algorithm for finding an α-hitting set,
defined below. We later show in Section 4.2 that this can be turned

into a matching cover.

Definition 4.2. A subgraphH of ann-vertex graphG is an α -hitting
set of G if for any disjoint subsets of vertices (A,B) in G satisfying
|A| = |B | = αn and µ(G[A,B]) = αn, there is at least one edge
between A and B in H .

The following lemma is our main guarantee of this section.

Lemma4.3. Given anyn-vertex graphG , for someα = (log∗ n)−Ω(1),
there is an O(nω logn) time algorithm, formalized below as Algo-
rithm 1, for finding anα -hitting setH ofG with atmostn2/(log∗ n)Ω(1)

edges.

It is not hard to see that Algorithm 1 outputs a subgraph with

O(γn2) = o(n2) edges, since essentially the dense parts of the de-

composition are subsampled and there are ‘few’ other edges in the

graph. The following claim formalizes this.

Claim 4.4. The output F of Algorithm 1, w.h.p., has at most O(γn2)
edges.

The harder part of the proof, is to show that the sparse subgraph

returned by Algorithm 1 is indeed a matching cover. We continue

with the following claim.

Claim4.5. W.h.p., it holds for allX ⊆ Ci ,Y ⊆ Cj such that (Ci ,Cj) a
good pair, |X | ⩾ γ |Ci |, and |Y | ⩾ γ |Cj | that |F3(X ,Y)| > n2/log6 n.

Next, we prove the following lemma on consolidating the support
of an arbitrary fractional matching so that each non-zero variable

takes a sufficiently large value.

Algorithm 1. The construction of the matching cover for

Theorem 1.

Let t ← (log∗ n)δ , γ ← (log∗ n)−δ for some constant δ ∈ (0, 1)
such that Q(t, 1/γ) ⩽ logn.

(i) Run the algorithm in Proposition 3.3 to obtain a γ -

regular partition C0, . . . ,Ck with t = (log∗ n)δ ⩽ k ⩽
Q(t, 1/γ) ⩽ logn.

(ii) Let (Ci ,Cj) for i , j. We say (Ci ,Cj) is good if (i) i, j , 0,

(ii) it is γ -regular, and (iii) d(Ci ,Cj) ⩾ 8γ . Otherwise, we
say (Ci ,Cj) is bad.

(iii) Let F ⊆ E be a subset of edges obtained by F := F1∪F2∪F3
where

(a) F1 contains the edges between the bad pairs; i.e. F1 :=⋃
bad Ci ,Cj E ∩ (Ci ×Cj).

(b) F2 contains the edges within each class; i.e. F2 :=⋃
0⩽i⩽k E ∩ (Ci ×Ci).

(c) F3 is obtained by sampling the edges between

good pairs with probability p := 10

logn ; i.e. F3 =⋃
good Ci ,Cj (E ∩ (Ci ×Cj))[p].

(iv) Return F .

136

On Regularity Lemma and Barriers in Streaming and Dynamic Matching STOC ’23, June 20–23, 2023, Orlando, FL, USA

Lemma 4.6. Let x be any fractional matching (not necessarily in the
matching polytope). For any ε ∈ (0, 1], there is a fractional matching
y such that all the following hold:

(1) For any vertex v , yv ⩽ xv , where here yv :=
∑
e ∋v ye and

xv :=
∑
e ∋v xe .

(2) supp(y) ⊆ supp(x). That is, if ye > 0 for some edge e , then
xe > 0.

(3) For any edge e , either ye = 0 or ye ⩾ ε3
12 ln(1/ε) .

(4) |y| ⩾ |x| − 2εn, where here |y| :=
∑
e ye and |x| :=

∑
e xe .

We are now ready to prove that Algorithm 1 returns a o(1)-
matching-cover w.h.p.

Lemma 4.7. The output of Algorithm 1 is, w.h.p., an α-hitting set
of G for α = Θ((γ log(1/γ))1/3) = (log∗ n)−Ω(1).

4.2 Second Step: From Hitting Set to Matching
Cover

We now prove that any subgraph satisfying the hitting set require-

ment (Definition 4.2) is also a matching cover (Definition 4.1). This

will follow from Hall’s theorem (Proposition 3.2), and the proof

similar to that of Lemma 9.3 in [50].

Lemma 4.8 (From Hitting Set to Matching Cover). Let G = (V , E)
be any graph that is not necessarily bipartite. Then any subgraph H
of G that is an α-hitting set is also an α-matching cover of G.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The output of Algorithm 1 being an o(1)-
hitting set was proved in Lemma 4.7. By Lemma 4.8, the output

subgraph is an o(1)-matching cover. This matching cover having

at most O(γn2) = n2/(log∗ n)Ω(1) edges was proved in Claim 4.4.

Finally, the running time follows from the algorithm of Proposi-

tion 3.3 for finding the regularity decomposition, and the fact that

Q(t, 1/γ) ⩽ logn in Algorithm 1. □

5 A FULLY DYNAMIC ALGORITHM VIA
MATCHING COVERS

In this section, we show that the matching cover of Section 4 can

be used to prove the following result in the fully dynamic model.

Theorem 2. There is a randomized, fully dynamic algorithm that
maintains with high probability a (1 − o(1))-approximate matching
under (possibly adversarial) edge updates. The algorithm has initial-
ization time O(nω logn) and worst-case update time n/(log∗ n)Ω(1).

We start by giving an overview of our algorithm.We first describe

a strategy that enables us to maintain an approximate matching

with additive error o(n), and latter explain how to make the approx-

imation guarantee multiplicative. We re-compute an o(1)-matching

cover of the current graph every Θ(nω−1 log2 n) updates, and then

pretend as if the matching cover is the entire graph, and use the

O(
√
m) update-time algorithm of Gupta and Peng [53], stated below

as Proposition 5.1, to maintain a nearly optimal matching.

Algorithm 2. A fully dynamic algorithm for Theorem 2.

Input: An n-vertex fully dynamic graphG subject to edge inser-

tions and deletions.

Output: A (dynamically changing) (1 − ε)-approximate maxi-

mum of G.

Parameters: We set t , γ , δ as in Algorithm 1, and set ε ←

10(log∗ n)−δ/64.

Sparse regime:

(1) Whenever the number of edges in G exceeds

n2/(log∗ n)δ/8, switch to the dense regime.

(2) Use Proposition 5.1 on the whole graph G to maintain a

(1 − ε)-approximation.

Dense regime:

(1) Whenever the number of edges in graph G falls below

n2/(2(log∗ n)δ/8), restart the algorithm of Proposition 5.1

on the whole graph G to maintain a (1 − ε)-approximate

matching of it, and switch to the sparse regime.

(2) Do the following every nω−1 log2 n updates (including

before the first update):

(a) Use Algorithm 1 to construct an o(1)-matching cover F
of the graph G in O(nω logn) time (see Theorem 1).

(b) Restart the algorithm of Proposition 5.1 for maintaining

a (1 − ε)-approximation of subgraph F .
(3) Upon insertion of an edge e , let F ← F ∪ {e} and trigger

an edge insertion to the algorithm of Proposition 5.1 we

use on F .
(4) Upon deletion of an edge e , if e ∈ F , let F ← F − {e} and

trigger an edge deletion to the algorithm of Proposition 5.1

we use on F ; otherwise ignore the deletion.

First, it is easy to see that the amortized update time of this strat-

egy is o(n), as the computation time O(nω logn) of the matching

cover gets amortized over Θ(nω−1 log2 n) updates to o(n), and the

number of edges in the matching cover is o(n2). Then to argue the

correctness, we have to show that the matching cover found by

our offline algorithm is robust to edge updates - that is, it remains

an o(1)-matching cover throughout the following Θ(nω−1 log2 n)
updates. This is indeed a feature of our offline algorithm: in par-

ticular, the number of edges between each pair of large enough

X ⊆ Ci ,Y ⊆ Cj for dense, regular Ci ,Cj pairs is Ω̃(n2), which
means that the hitting set property will be preserved as long as

≪ n2 edges have been deleted, and as a result the subgraph obtained
by our algorithm remains an o(1)-matching cover throughout the

following Θ(nω−1 log2 n) ≪ n2 updates, as desired.

To turn the additive approximation guarantee to a multiplica-

tive one, we will deal with “sparse” and “dense” regimes separately.

Specifically, when the number of edges is at most n2/(log∗ n)Ω(1),
we simply use the Gupta-Peng algorithm to maintain a (1 − ε)-

approximation in n/(log∗ n)Ω(1) update time. On the other hand,

when the graph is dense, we first use the matching cover of Theo-

rem 1 to sparsify the graphwhile preserving its maximummatching,

137

STOC ’23, June 20–23, 2023, Orlando, FL, USA Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

then run Proposition 5.1 on this sparse graph to maintain a (1 − ε)-

approximate matching of it in n/(log∗ n)Ω(1) update-time. We also

set up a “buffer zone” in the thresholds for switching between the

two algorithms so that we do not pay the switching overhead too

often.

We now present our algorithm. Here, we only show an algo-

rithm with initialization time O(nω logn) and amortized update

time n/(log∗ n)Ω(1), which we believe suffices to demonstrate the

main idea. We defer the discussion on how to make the update time

worst-case in the full version.

Proposition 5.1 ([53]). There is a deterministic, fully dynamic al-
gorithm for maintaining a (1− ε)-approximate matching with initial-
ization timeO(m0ε

−1) and worst-case update timeO(
√
mε−2), where

m0 is the number of edges in the initial graph, andm is the maximum
number of edges in the graph throughout the updates.

Our algorithm is formally presented in Algorithm 2. We now

turn to analyze Algorithm 2. First, we prove that it has our desired

update-time via amortization. As discuss, we will later show how

the algorithm can be deamortized. The proof is deferred to the full

version.

Claim5.2. The amortized update-time of Algorithm 2 isn/(log∗ n)Ω(1).

Next, we prove that Algorithm 2maintains a (1−o(1))-approximate

matching w.h.p.

Claim 5.3. At any point, the output of Algorithm 2 is w.h.p. a (1 −
o(1))-approximate maximum matching ofG . This holds, in particular,
against an adaptive adversary that is aware of both the output and
the state of the algorithm.

Proof. For the sparse regime, this directly follows from the

correctness of Proposition 5.1 since we run it on the entire graph

G. We thus focus on the dense regime.

First, note that in the dense regime there are at least m ⩾
n2/(2(log∗ n)δ/8) edges in the graph. Observe that any n-vertex
m-edge graph has a matching of size at leastm/(2n − 1): iteratively
pick an arbitrary free edge, add it to the matching, and remove its

endpoints from the graph; each step only removes at most (2n − 1)
edges, thus the matching must have size at leastm/(2n − 1). From
this, we get that whenever the algorithm is in the dense regime,

there is a matching of size at least µ(G) ⩾ n/(4(log∗ n)δ/8) in it.

Next, we claim that at any point in the dense regime, F is an α-
matching cover ofG (Definition 4.1), where as defined in Lemma 4.7,

α =Θ((γ log(1/γ))1/3) = Θ((log∗ n)−δ log((log∗ n)δ))1/3)

=O((log∗ n)−δ/4).

By Lemma 4.8, to show this, it suffices to show that F is an α-hitting
set ofG (Definition 4.2) at any point in the dense regime. To see this,

observe that immediately after we call Algorithm 1, F must be an

α-hitting set ofG simply by the guarantee of Theorem 1. However,

for the next nω−1 log2 n updates until we re-run Algorithm 1, both

the graphG and F change due to the updates to the graph. Observe

that edge insertions cause no problem since any edge added will

be added to F as well. But edge deletions may cause a problem. In

particular, recall that we subsample o(1) fraction of edges of the

good pairs in Algorithm 1, and if they are all removed then we

no longer have an α-hitting set. Indeed, given that the adaptive

adversary is aware of this sampled subset, he can attempt to remove

these edges one by one. The crucial observation, here, is that right

after we call Algorithm 1, Claim 4.5 guarantees that there are w.h.p.

at least |F3(X ,Y)| ⩾ n2/log6 n subsampled edges between any two

large enough subsets X ⊆ Ci ,Y ⊆ Cj of any good pair (Ci ,Cj).

On the other hand, our guarantee of Theorem 1 that F is an α-
hitting set only requires |F3(X ,Y)| > 0. As a result, even if the

adversary attempts to remove edges of F3 one by one within the

next nω−1 log2 n ≪ n2/log6 n updates, F3(X ,Y) will remain non-

empty and so F remains an α-hitting set.

Moreover, since F is an α-matching cover of G, we get from

Definition 4.1, taking M⋆
to be an arbitrary maximum matching

of G and taking sets A and B to each include one endpoint of each

edge inM⋆
arbitrarily, we get that

µ(F) ⩾ µ(F [A,B]) ⩾ µ(G[A,B]) − αn = |M⋆ | − αn = µ(G) − αn.

Putting together the bounds above, we get that at any point

during the updates in the dense regime, F includes a matching of

size at least

µ(F) ⩾ µ(G) − αn = µ(G) −O(n/(log∗ n)δ/4) ⩾ (1 − o(1))µ(G),

where the last equality holds since µ(G) ⩾ Ω(n/(log∗ n)δ/8) as
discussed above. Running the algorithm of Proposition 5.1 on top

of this, we maintain a (1 − ε)(1 − o(1))µ(G) = (1 − o(1))µ(G) size
matching overall. □

6 SINGLE-PASS STREAMING ALGORITHMS
We prove Result 1 and Result 3 in this section. Both algorithms

rely on using matching covers iteratively in the same way and

differ primarily on how they compute matching covers and some

additional steps. Because of this, we first present and prove a generic

result that uses matching covers in a blackbox way to obtain a

streaming algorithm for finding matching covers and then extend

it separately to obtain for Result 1 and Result 3. When presenting

our results, we focus more on the correctness of our algorithms,

but defer proofs of the space usage to the full version.

6.1 A Streaming Algorithm for Matching
Covers

We present an algorithm that computes the matching cover of a

graph presented in a stream by iteratively computing matching

covers of smaller subsets of the streamwithout losing “much” on the

quality of the final matching cover. For technical reasons that will

become clear later, we need this algorithm to work for multi-graphs

as well.

Proposition 6.1. For any integer k ⩾ 1 and any α ∈ (0, 1/10), there
exists a single-pass streaming algorithm that computes an α -matching
cover of n-vertex multi-graphs with at mostm edges in space

O
(m
k
· log

(
n2 · k

m

)
+MC(n,α/2k) · log

(
n2

MC(n,α/2k)

)
· logk

)
;

here, we assume we are given a subroutine Matching-Cover that
given adjacency matrix access to any n-vertex graph withm/k edges,

138

On Regularity Lemma and Barriers in Streaming and Dynamic Matching STOC ’23, June 20–23, 2023, Orlando, FL, USA

can compute an (α/2k)-matching cover withMC(n,α/2k) ⩽m/2k
edges in O((m/k) · log (n2 · k/m)) space. The streaming algorithm
requires callingMatching-Cover O(k) times and is deterministic as
long as theMatching-Cover subroutine is deterministic.

The algorithm in Proposition 6.1 is based on a novel use and

modification of the widely used “Merge and Reduce” technique in

the streaming literature (used previously e.g., for quantile estima-

tion [62, 69] or cut/spectral sparsifiers [71]). We give a high level

overview of the algorithm here and present the formal description

in Algorithm 3.

The algorithmmaintains t := O(logk) different buffersB1, . . . ,Bt
of edges throughout the stream (all these buffers store their edges

using the succinct dynamic dictionary of Proposition 3.8 to save

space). Buffer B1 simply starts reading edges from the stream un-

til it collects m/k edges; it will then use the (offline) subroutine

Matching-Cover over these edges with parameter α ′ = α/2k to

obtain an α ′-matching cover of the subgraph of input on edges in

B1. Edges of this matching cover are then inserted to buffer B2 and
we empty buffer B1, which will continue reading edges from the

stream again. In the mean time, whenever buffer B2 gets “full”, this
time meaning that it receives twice as many edges asMC(n,α ′), we
compute another α ′-matching cover using Matching-Cover, this
time over the edges in B2, pass them to buffer B3, and empty B2
which continues receiving edges from buffer B1. This process is
done the same way across all buffers until all edges of the stream

have passed (we prove buffer Bt never gets full so not having a

buffer Bt+1 is not a problem). At the end, we argue that the edges

that are remained across all buffers B1, . . . ,Bt at the end of the

stream form an α-matching cover of the input.

Algorithm 3. An algorithm for Proposition 6.1.

Input: A multi-graphG = (V , E) in the stream with n edges and

at mostm edges. We are also given integer k ⩾ 1 and approxi-

mation parameter α > 0, and access to the (offline) subroutine

Matching-Cover as specified in Proposition 6.1.

Output: An α-matching cover of G.

Parameters:We set t := (logk + 2) and α ′ := α/2k .

(i) Maintain the following buffers of edges B1, . . . ,Bt using
succinct dynamic dictionary of Proposition 3.8 (we specify

the details in Lemma 6.2):

(a) Buffer B1: add any arriving edge (u,v) arrives in

the stream to B1. Once size of B1 reaches m/k , run
Matching-Cover to find an α ′-matching-cover of the

subgraph (V ,B1) of G and add all those edges to B2.
Restart B1 by deleting all its current edges.

(b) Buffers Bi for i > 1: once size of Bi reaches 2·MC(n,α ′),
run Matching-Cover to find an α ′-matching-cover of

the subgraph (V ,Bi) of G and add all those edges to

Bi+1
a
. Restart Bi by deleting all its current edges.

(ii) Return (B1 ∪ . . . ∪ Bt) at the end of the stream.

a
We will show in Claim 6.3 that this step never happens for buffer Bt , namely, it

never gets “full”, and thus the algorithm is well-defined even though there is no

buffer Bt+1 .

The analysis of the algorithm involves showing that: (i) fewer
and fewer edges find their way to higher-indexed buffers, (ii) the
repeated application ofMatching-Cover does not blow up the ap-

proximation guarantee by too much, and (iii) all this can be im-

plemented in a relatively small space. We now present the formal

algorithm and its analysis.

We start by analyzing the space complexity of Algorithm 3.

Lemma 6.2. Algorithm 3 can be implemented in space of

O

(
m

k
· log

(
n2 · k

m

)
+ t ·MC(n,α ′) · log

(
n2

MC(n,α ′)

))
.

We now prove the correctness of Algorithm 3. To do so, we need

the following definitions:

• LetH1

1
, . . . ,H1

k1
denote the k1 separate matching covers con-

structed by the algorithm over the edges of buffer B1, one for
each time that we restart B1. LetG

2
:= H1

1
∪ . . .∪H1

k1
denote

the graph that is sent to buffer B2 throughout the algorithm
(for notational convenience, we also define G1 = G as the

input graph, namely, the graph that is sent to buffer B1).
• For any i ∈ [2 : t −1], similarly, letH i

1
, . . . ,H i

ki
denote the ki

separate matching covers constructed by the algorithm over

the edges of buffer Bi . LetG
i+1

:= H i
1
∪ . . .∪H i

ki
denote the

graph that is sent to buffer Bi+1 throughout the algorithm.

We claim that the number of subgraphs at buffer Bi drops by a

factor of 2
i
compared to B1, and defer the proof to the full version.

Claim 6.3. For any i ∈ [t − 1], ki ⩽ k/2i−1 and kt = 0 meaning
that bucket Bt never generates a matching cover (namely, it never
gets full).

The following lemma captures the loss on the size of maximum

matching that the algorithm maintains from one buffer to the next

one. In other words, the cost we have to pay for introduction of

each level of buffers.

Lemma 6.4. For any i ∈ [t − 1] and any disjoint subsets of vertices
X ,Y ⊆ V ,

µ
(
(Gi+1 ∪ B

f
i ∪ . . . ∪ B

f
1
)[X ,Y])

)
⩾

µ
(
(Gi ∪ B

f
i−1 ∪ . . . ∪ B

f
1
)[X ,Y]

)
− ki · α

′ · n.

where Bfj for j ∈ [t] is the final content of the buffer at the end of the
stream.

Proof. Fix any i ∈ [t − 1] and a maximum matching M∗i of

(Gi ∪ B
f
i−1 ∪ . . . ∪ B

f
1
)[X ,Y]. We construct a matching Mi+1 in

(Gi+1 ∪ B
f
i ∪ . . . ∪ B

f
1
)[X ,Y] such that |Mi+1 | ⩾ |M∗i | − ki · δ · n.

This will then immediately implies the lemma. To continue we need

some more definition.

For any H i
j for j ∈ [ki], let B

i
j denote the content of buffer Bi

when the algorithm creates H i
j . This way, H

i
j is a matching-cover

of (V ,Bij). Moreover, Bi
1
, . . . ,Biki

together with B
f
i partition all the

edges that are ever sent to buffer Bi , namely, the graph Gi
. These

edges are also further disjoint from B
f
i−1, . . . ,B

f
1
since the latter set

139

STOC ’23, June 20–23, 2023, Orlando, FL, USA Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

of edges were never sent to buffer Bi . We can partition the edges

ofM∗i between these sets and along the way define our matching

Mi+1 as well:

• For any j ∈ [ki], let M
∗
i , j := M∗i ∩ B

i
j and Mi , j be the maxi-

mum matching in H i
j between X (M∗i , j) and Y (M

∗
i , j).

• For any i ′ ∈ [i], letM
∗,f
i′ := M∗i ∩B

f
i andM

f
i′ := M

∗,f
i′ which

is between X (M
∗,f
i′), Y (M

∗,f
i′).

• DefineMi+1 := M∗i ,1 ∪ · · · ∪M
∗
i ,ki
∪M

f
i ∪ · · · ∪M

f
i .

We note thatMi+1 is a matching between X and Y because the sets

of vertices X (M∗i , j) and X (M∗i , j) for j ∈ [ki], as well as X (M
∗,f
i′)

and Y (M
∗,f
i′) for i

′ ∈ [i] are all disjoint given they are defined with

respect to a fixed matchingM∗i over disjoint sets of edges. Moreover,

Mi+1 belongs to (G
i+1 ∪ B

f
i ∪ . . . ∪ B

f
1
)[X ,Y] as H i

j is part ofG
i+1

for j ∈ [ki]. It thus only remains to bound the size ofMi+1.

For all i ′ ∈ [i],M
f
i′ andM

∗,f
i′ are the same so there is nothing to

do here. For j ∈ [ki], we have,

|Mi , j | =µ
(
H i
j [X (M

∗
i , j),Y (M

∗
i , j)]

)
⩾µ

(
Bij [X (M

∗
i , j),Y (M

∗
i , j)])

)
− α ′ · n

(as H i
j is a α

′
-matching-cover of Bij and by Definition 4.1)

=|M∗i , j | − α · n.

(asM∗i , j is a perfect matching in Bij between X (M∗i , j) and Y (M
∗
i , j))

Thus,

|Mi+1 | =

ki∑
j=1
|Mi , j | +

i∑
i′=1
|M

f
i′ |

⩾
ki∑
j=1
(|M∗i , j | − α

′ · n) +
i∑

i′=1
|M
∗,f
i′ |

=|M∗i | − ki · α
′ · n,

concluding the proof. □

We can now conclude the bound on the approximation ratio of

the algorithm.

Lemma 6.5. Algorithm 3 outputs an α -matching cover of any input
multi-graph G.

Proof. Recall that for every i ∈ [t], B
f
i denotes the final content

of the buffer Bi . Moreover by Claim 6.3, buffer Bt never gets full

and thus B
f
t = G

t
. Finally, the algorithm returns H := (B

f
1
, . . . ,B

f
t).

Fix any disjoint sets of vertices X ,Y ⊆ V (G). We have,

µ(H [X ,Y]) = µ
(
(B

f
t ∪ B

f
t−1 ∪ . . . ∪ B

f
1
)[X ,Y]

)
(by the definition of H)

= µ
(
(Gt ∪ B

f
t−1 ∪ . . . ∪ B

f
1
)[X ,Y]

)
(as B

f
t = G

t
)

⩾ µ
(
(Gt−1 ∪ B

f
t−2 ∪ . . . ∪ B

f
1
)[X ,Y]

)
− kt−1 · α

′ · n

(by Lemma 6.4 for i = t − 1)

⩾ µ(G[X ,Y]) −
t−1∑
i=1

ki · α
′ · n

(by repeatedly applying Lemma 6.4 for all i < t − 1 and since G1 = G)

⩾ µ(G) −
t−1∑
i=1
(k/2i−1) · α ′ · n

(by Claim 6.3, ki ⩽ k/2i−1)

⩾ µ(G) − 2k · α ′ · n
(by the sum of the geometric series)

= µ(G) − α · n. (by the choice of α ′ = α/2k)

This implies that for every disjoint subsets of vertices X ,Y ⊆ V (G),
we have µ(H [X ,Y]) ⩾ µ(G[X ,Y]) − α · n, thus making H an α-
matching cover of G by Definition 4.1. □

Proof of Proposition 6.1. The bound on the space complex-

ity of the algorithm follows from Lemma 6.2 by plugging the

value of α ′ = α/2k and t = logk + 1. The correctness follows

from Lemma 6.5. Finally, Algorithm 3 is deterministic modulo any

potential randomness used byMatching-Cover. □

6.2 A Streaming Matching Algorithm via
Regularity Lemma

We now use Proposition 6.1 together with our Theorem 1 to for-

malize Result 1 as follows.

Theorem 3 (Formalization of Result 1). There is a randomized
single-pass streaming algorithm that with high probability computes
a (1 − o(1))-approximate matching of a graph presented in a stream
with adversarial order of edge arrivals in n2/(log∗ n)Ω(1) space and
polynomial time.

Proof. Note that, to apply Proposition 6.1, we need a subroutine

Matching-Cover for computing an (α/2k)-matching cover (for pa-

rametersα andk to be determined soon) on anyn-vertex graphwith
n2/k edges. Theorem 1 provides such an algorithm with parameters

(α/2k) =
1

(log∗ n)δ1
and MC(n,α/2k) =

n2

(log∗ n)δ2
,

for some absolute constants δ1, δ2 ∈ (0, 1). Let α = 1/(log∗ n)3δ1/4

and k = 1

2
· (log∗ n)δ1/4, which satisfies the conditions above. More-

over, by Proposition 3.4, we can implement Algorithm 1 of Theo-

rem 1 in polynomial time and spaceO((n2/k)·logk) = n2/(log∗ n)Ω(1),
given only adjacency matrix access to its input graph. This way,

by Proposition 6.1, we obtain a single-pass streaming algorithm

that with high probability computes an α-matching cover in space

n2/(log∗ n)Ω(1).

The main algorithm in the theorem is as follows. We store the

first 2n2/k edges in the stream using succinct dynamic dictionary

of Proposition 3.8 in n2/(log∗ n)Ω(1) space. In parallel, we also run

the algorithm mentioned above to obtain an α-matching cover of

G. The space complexity and polynomial runtime of the algorithm

is thus already established.

We now prove the correctness. If µ(G) ⩽ n/k , then by Fact 3.1,

we have stored all edges of the graph and thus at the end can

140

On Regularity Lemma and Barriers in Streaming and Dynamic Matching STOC ’23, June 20–23, 2023, Orlando, FL, USA

simply return a maximum matching of the stored edges; to do so,

we simply run Hopcroft-Karp algorithm [56] by providing it with

the adjacency matrix of the stored edges using member query on

the succinct dynamic dictionary (which only requires O(n logn)
additional space beside the input). Thus, in this case, we obtain an

exact maximum matching of the input graph.

If µ(G) > n/k , then we can pick X and Y in the definition of

matching cover output by the algorithm of Proposition 6.1 to be

the endpoints of the maximum matching of G, and have,

µ(H) ⩾ µ(G) − α · n ⩾ (1 − α · k) · µ(G) = (1 − 1/(log∗ n)δ1/2)µ(G),

which is (1 − o(1)) · µ(G) as desired. This concludes the proof. □

6.3 A Streaming Matching Algorithm via RS
Graph Upper Bounds

We formalize Result 3 as follows in this subsection (RS(n, β) below
was defined in Definition 3.6).

Theorem 4 (Formalization of Result 3). There exists an ab-
solute constant η > 0 such that the following is true. There is a ran-
domized single-pass streaming algorithm that for any 1 ⩽ k ⩽ n and
ε ∈ (0, 1/100), with high probability, computes a (1 − ε)-approximate
matching of a graph presented in a stream with adversarial order of
edge arrivals in exponential time and space

O
(n2
k
·log2 k+RS(n,η·ε2/k)·log

(
n2

RS(n,η · ε2/k)

)
·log2 k ·log (k/ε)

)
.

Moreover, the algorithm can return an additive ε · n approximation
deterministically in exponential time and space

O
(n2
k
· logk + RS(n, ε/16k) · log

(
n2

RS(n, ε/16k)

)
· logk · log (k/ε)

)
.

Roughly speaking, by ignoring lower order terms and in asymp-

totic notation, Theorem 4 gives a streaming algorithm for (1−o(1))-
approximation of matchings in a single pass with adversarial order

of edge arrivals using essentially (n2/k + RS(n,o(1/k))) space for
any integer k ⩾ 1.

Before proving Theorem 4, let us present a corollary of this

theorem with concrete bounds on the space by using Fox’s triangle

removal lemma (Proposition 3.5) to bound the RS-graph density

terms in Theorem 4 (this appears to be the only known method for

bounding density of RS graphs with o(n)-size induced matchings;

moreover, we are not aware of any reference that bounds the density

of the type of RS graphs we need, thus we present a proof of that

here also for completeness).

Corollary 6.6. There is a deterministic single-pass streaming algo-
rithm that computes a (1 − o(1))-approximate matching of a graph
presented in a stream with adversarial order of edge arrivals in
n2/2Ω(log

∗ n) space and exponential time.

We defer the proof of this corollary to the full version. To con-

tinue, we need to recall some additional tools from prior work.

specific specific to our algorithms in this subsection.

6.3.1 Additional Tools from Prior Work.

Matching covers via RS graphs. Goel et al. [50] showed that

matching covers and RS graphs are intimately connected: on bi-

partite graphs, the density of best construction for either can be

bounded by the density of other one for closely related parameters.

We need this result for general graphs as well which follows from

the result of [50] using a simple argument
6
.

Proposition 6.7 (an extension of [50, Theorem 9.2] to general

graphs). For any α ∈ (0, 1) and n ⩾ 1, there exists an α-matching
cover of any n-vertex graph with number of edges bounded by

MC(n,α) ⩽ RS(n,α/8) ·O(log (1/α)).

Proof. The result of [50] is formally as follows (to match the

definitions in our paper, our formulation is slightly different from

the statements in [50] but they are equivalent):

[50, Theorem 9.2]: For any bipartite graph G ′ = (L′,R′, E ′) with
n vertices on each side and α ′ ∈ (0, 1), there exists a subgraphH ′

with RS(2n, 3α ′/4) ·O(log(1/α ′)) edges such that for any disjoint
subsets of vertices X ⊆ L′ and Y ⊆ R′,

µ(H ′[X ,Y]) ⩾ µ(G ′[X ,Y]) − α ′ · (2n).

We now use this to prove the bound for general graphs as well.

Let G = (V , E) be any (not necessarily bipartite) graph. Consider

the bipartite double cover of G obtained by copying vertices of G
twice into sets V1 and V2 and connecting any vertex u1 ∈ V1 to

v2 ∈ V2 iff (u,v) is an edge in G. Let G ′ denote this graph and so

G ′ is a bipartite graph with n vertices on each side.

Compute an α ′-matching cover H ′ of this bipartite graph using

Theorem 9.2 of [50] for parameter α ′ = α/2 (for α given to us

in the proposition statement). Thus, H ′ contains RS(2n, 3α ′/4) ·
O(log(1/α ′)) edges. Create a subgraph H (not necessarily bipartite)

on the same vertices as G by adding the edges (u,v) to H iff either

(u1,v2) or (v1,u2)was an edge inH
′
. This way, the number of edges

in H will be at most

RS(2n, 3α ′/4) ·O(log (1/α ′)) ⩽ RS(n,α ′/4) ·O(log (1/α ′)),

where the inequality is by Claim 3.7 that relates density of RS graphs

with similar parameters.

We now argue that H is an α-matching cover of G. Fix any

disjoint subsets of verticesX ,Y inG . ConsiderX1 ⊆ V1 andY2 ⊆ V2
corresponding to these two subsets over vertices of G ′ (and H ′):

µ(H ′[X1,Y2]) ⩾ µ(G ′[X1,Y2]) − α
′ · (2n)

(by Definition 4.1 as H ′ is an α-matching cover of G ′)

⩾ µ(G[X ,Y]) − α ′ · (2n),

as by the construction of G ′ any edge (u,v) ∈ G[X ,Y] also has

a copy (u1,v2) ∈ G
′[X1,Y2] and thus µ(G ′[X1,Y2]) ⩾ µ(G[X ,Y]).

Moreover, sinceX andY are disjoint, the endpoints of the maximum

matching in H ′[X1,Y2] are disjoint from each other; thus, they are

mapped to unique edges in H also between X and Y , implying that

µ(H [X ,Y]) = µ(H ′[X1,Y2]) ⩾ µ(G[X ,Y]) − 2α ′ · n.

6
We can in fact prove this result with better bounds nearly matching those of [50]

using a white-box application of the techniques in [50]; however, since the actual

constants do not matter for our application in this paper, we opted for the simpler and

more direct proof that uses the result of [50] in a black-box way.

141

STOC ’23, June 20–23, 2023, Orlando, FL, USA Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

Noting that α ′ = α/2 in the above equations, concludes the proof.

□

Vertex-sparsification for matchings. We also use the reduc-

tions of Assadi et al. [16] and Chitnis et al. [39] for reducing the

number of vertices while preserving maximum matching size ap-

proximately. The original versions of the reductions in these work

only achieved constant probability of success and boost this to a

high probability bound by applying it Θ(logn) times in parallel. In

our setting, we cannot afford this direct success amplification. Thus,

we instead use the following variant proven by Assadi et al. [15]

that achieves a high success probability directly.

Proposition 6.8 ([15, Lemma 3.8]; see also [16, 39]). For any graph
G = (V , E), integer opt ⩾ 1, and parameter θ ∈ (0, 1), uniformly at
random pick a functionh : V → [8·opt/θ]. Consider this multi-graph
H = (VH , EH) obtained from G and h:

• VH is the range of the function of h, thus |VH | = 8 · opt/θ .

• For any edge (u,v) ∈ G, there is an edge (h(u),h(v)) ∈ EH .

If µ(G) ⩽ opt, then,

Pr

h

(
µ(H) < (1 − θ) · µ(G)

)
⩽ exp

(
−
µ(G)

4

)
.

6.3.2 Proof of Theorem 4. We now use these prior tools combined

with our Proposition 6.1 to prove Theorem 4. Recall that Proposi-

tion 6.1 returns an α-matching cover which can only guarantee an

additive approximation not a multiplicative one. Thus, we first use

the vertex-sparsification of Proposition 6.8 to reduce the number

of vertices inG toO(µ(G))—by guessing µ(G) in geometric values—

so that an additive approximation also becomes a multiplicative

one. We then use Proposition 6.7 to compute the matching covers

in Algorithm 3 of Proposition 6.1.

Algorithm 4. The randomized algorithm in Theorem 4.

Input:A graphG = (V , E) in the streamwithn edges and at most(n
2

)
edges. We are also given integer k ⩾ 1 and approximation

parameter ε ∈ (0, 1) as in Theorem 4.

Output: A (1 − ε)-approximate maximum matching of G.

(i) For i = 1 to t := logk iterations in parallel:

(a) Let opti := n/2i+1 and pick a hash function hi : V →
[32 · opti/ε].

(b) Consider the multi-graph Gi obtained from G and hi
using Proposition 6.8; each edge of G arriving in the

stream can be mapped to an edge of Gi using hi .
(c) Run Algorithm 3 on Gi with parameters k and α =

ε2/64 andm =
(n
2

)
to obtain an α-matching cover Hi .

We use the matching cover construction of Proposi-

tion 6.7 as the subroutineMatching-Cover (as specified
in Claim 6.9 below).

(ii) Store the first n2/k edges of the stream using succinct

dynamic dictionary of Proposition 3.8 as the subgraph H0.

(iii) Return a maximum matching in H0 ∪H1 ∪ . . .∪Ht (spec-

ified in Claim 6.9 below).

We bound the space and approximation of Algorithm 4 in the fol-

lowing two claims, respectively.

Claim 6.9. Algorithm 4 (deterministically) requires space of

O(
n2

k
· log2 k+RS(n,

ε2

1024k
) · log

(
n2

RS(n, ε2/1024k)

)
· log2 k · log

k

ε
).

Claim 6.10. Algorithm 4 outputs a (1 − ε)-approximate matching
with high probability.

Proof. Suppose first that µ(G) ⩽ n/2k . By Fact 3.1, G in this

case has at most 2n · µ(G) ⩽ n2/k edges. Thus, in step (ii) of the
algorithm, we are simply storing all edges and thus the algorithm

returns an exact answer.

Now suppose µ(G) > n/2k . This means that there is an index

i ∈ [t] such that
n

2
i+1 ⩽ µ(G) < n

2
i . For this choice of i , we have

opti ⩽ µ(G) < 2·opti (and µ(G) > n2/2k ⩾ n/2). By Proposition 6.8
for θ = ε/2 and opt = 2 · opti > µ(G), and hi : V → [32opti/ε], we

have, Prhi (µ(Gi) < (1 − ε/2) · µ(G)) ⩽ exp

(
−
µ(G)
4

)
≪ 1/poly(n),

where we used that fact 32opti/ε = 8 · opt/θ . We condition on the

complement of this event which happens with high probability.

Based on this, we further have that ni := |V (Gi)| =
32

ε · opti ⩽
32

ε · µ(G). Since Hi is an α-matching cover ofGi , by letting X and Y
in Definition 4.1 to be the endpoints of themaximummatching ofGi ,

we have, µ(Hi) ⩾ µ(Gi)−α ·ni ⩾ (1−ε/2)·µ(G)−(ε2/64)· 32ε ·µ(G) =
(1− ε) · µ(G). Thus, returning the maximum matching of Hi as part

of H0 ∪ . . . ∪ Ht achieves a (1 − ε)-approximation. □

Theorem 4 for randomized case now follows from Claims 6.9

and 6.10. For the deterministic part with additive approximation

guarantee, we simply forgo guessing µ(G) as well as using vertex-

sparsification of Proposition 6.8 at all; instead, we just run Algo-

rithm 3 over the entire input and use Proposition 6.7, the same way

as above exactly, as the subroutine Matching-Cover for computing

an α-matching cover. Since we now only need an additive ε · n
guarantee, we can take α = ε directly which implies the improved

bounds on the space as well.

REFERENCES
[1] Kook Jin Ahn and Sudipto Guha. 2011. Linear Programming in the Semi-streaming

Model with Application to the Maximum Matching Problem. In Automata, Lan-
guages and Programming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 6756), Luca Aceto, Monika Henzinger, and Jirí Sgall (Eds.). Springer, 526–538.

[2] Kook Jin Ahn and Sudipto Guha. 2018. Access to Data and Number of Iterations:

Dual Primal Algorithms for Maximum Matching under Resource Constraints.

ACM Trans. Parallel Comput. 4, 4 (2018), 17:1–17:40.
[3] Josh Alman and Virginia VassilevskaWilliams. 2021. A Refined Laser Method and

Faster Matrix Multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, Dániel
Marx (Ed.). SIAM, 522–539.

[4] Noga Alon. 2002. Testing subgraphs in large graphs. Random Struct. Algorithms
21, 3-4 (2002), 359–370.

[5] Noga Alon, Richard A. Duke, Hanno Lefmann, Vojtech Rödl, and Raphael Yuster.

1992. The Algorithmic Aspects of the Regularity Lemma (Extended Abstract). In

33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsyl-
vania, USA, 24-27 October 1992. IEEE Computer Society, 473–481.

[6] Noga Alon, Ankur Moitra, and Benny Sudakov. 2012. Nearly complete graphs

decomposable into large induced matchings and their applications. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, Howard J. Karloff and Toniann Pitassi (Eds.). ACM,

1079–1090.

142

On Regularity Lemma and Barriers in Streaming and Dynamic Matching STOC ’23, June 20–23, 2023, Orlando, FL, USA

[7] Noga Alon and Asaf Shapira. 2006. A Characterization of Easily Testable Induced

Subgraphs. Combinatorics, Probability & Computing 15, 6 (2006), 791–805.

[8] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. 2018. Dy-

namic Matching: Reducing Integral Algorithms to Approximately-Maximal Frac-

tional Algorithms. In 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. 7:1–7:16.

[9] Sepehr Assadi. 2022. A Two-Pass (Conditional) Lower Bound for Semi-Streaming

MaximumMatching. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12,
2022. SIAM, 708–742.

[10] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,

and Cliff Stein. 2019. Coresets Meet EDCS: Algorithms for Matching and Vertex

Cover on Massive Graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019. 1616–1635.

[11] Sepehr Assadi and Soheil Behnezhad. 2021. Beating Two-Thirds For Random-

Order Streaming Matching. In 48th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference) (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

19:1–19:13.

[12] Sepehr Assadi and Aaron Bernstein. 2019. Towards a Unified Theory of Sparsi-

fication for Matching Problems. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA. 11:1–11:20.

[13] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. 2022.

Semi-Streaming Bipartite Matching in Fewer Passes and Optimal Space. In Pro-
ceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, Joseph (Seffi) Naor

and Niv Buchbinder (Eds.). SIAM, 627–669.

[14] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2017. The Stochastic Matching

Problem: Beating Half with a Non-Adaptive Algorithm. In Proceedings of the 2017
ACM Conference on Economics and Computation, EC ’17, Cambridge, MA, USA,
June 26-30, 2017. ACM, 99–116.

[15] Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2019. The Stochastic Matching

Problem with (Very) Few Queries. ACM Trans. Economics and Comput. 7, 3 (2019),
16:1–16:19.

[16] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. 2016. Maxi-

mum Matchings in Dynamic Graph Streams and the Simultaneous Communica-

tion Model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016. 1345–
1364.

[17] Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. 2021. An Auction Algorithm for

Bipartite Matching in Streaming and Massively Parallel Computation Models.

In 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, Hung Viet Le and Valerie King (Eds.). SIAM, 165–171.

[18] Sepehr Assadi and Ran Raz. 2020. Near-Quadratic Lower Bounds for Two-Pass

Graph Streaming Algorithms. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy
Irani (Ed.). IEEE, 342–353.

[19] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2011. Fully Dynamic Max-

imal Matching in O (log n) Update Time. In IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011. IEEE Computer Society, 383–392.

[20] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2018. Fully DynamicMaximal

Matching in O (logn) Update Time (Corrected Version). SIAM J. Comput. 47, 3
(2018), 617–650.

[21] Soheil Behnezhad. 2022. To appear in SODA 2023. Dynamic Algorithms for

Maximum Matching Size. CoRR abs/2207.07607 (2022. To appear in SODA 2023).

[22] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein,

and Madhu Sudan. 2019. Fully Dynamic Maximal Independent Set with Poly-

logarithmic Update Time. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019.
IEEE Computer Society, 382–405.

[23] Soheil Behnezhad and Sanjeev Khanna. 2022. New Trade-Offs for Fully Dynamic

Matching viaHierarchical EDCS. In Proceedings of the 2022 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022. SIAM, 3529–3566.

[24] Soheil Behnezhad, Jakub Lacki, and Vahab S. Mirrokni. 2020. Fully Dynamic

Matching: Beating 2-Approximation in ∆ε Update Time. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020. SIAM, 2492–2508.

[25] Aaron Bernstein. 2020. Improved Bounds for Matching in Random-Order Streams.

In 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference). 12:1–
12:13.

[26] Aaron Bernstein, Aditi Dudeja, and Zachary Langley. 2021. A Framework for

Dynamic Matching in Weighted Graphs. In Proccedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, to appear.

[27] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. 2019. A Deamor-

tization Approach for Dynamic Spanner and Dynamic Maximal Matching. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019. 1899–1918.

[28] Aaron Bernstein and Cliff Stein. 2015. Fully Dynamic Matching in Bipartite

Graphs. In Automata, Languages, and Programming - 42nd International Collo-
quium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 9134), Magnús M. Halldórsson, Kazuo Iwama, Naoki

Kobayashi, and Bettina Speckmann (Eds.). Springer, 167–179.

[29] Aaron Bernstein and Cliff Stein. 2016. Faster Fully Dynamic Matchings with

Small Approximation Ratios. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016. SIAM, 692–711.

[30] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Deter-

ministic Fully Dynamic Data Structures for Vertex Cover and Matching. SIAM J.
Comput. 47, 3 (2018), 859–887.

[31] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New

Deterministic Approximation Algorithms for Fully Dynamic Matching. In Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016. ACM, 398–411.

[32] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2017. Fully

Dynamic Approximate Maximum Matching and Minimum Vertex Cover in

O (log3 n) Worst Case Update Time. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19. SIAM, 470–489.

[33] Sayan Bhattacharya and Peter Kiss. 2021. Deterministic Rounding of Dynamic

Fractional Matchings. In 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Con-
ference). 27:1–27:14.

[34] Sayan Bhattacharya, Peter Kiss, Thatchaphol Saranurak, and David Wajc. 2022.

To appear in SODA 2023. Dynamic Matching with Better-than-2 Approximation

in Polylogarithmic Update Time. CoRR abs/2207.07438 (2022. To appear in SODA

2023).

[35] Yitzhak Birk, Nathan Linial, and Roy Meshulam. 1993. On the uniform-traffic

capacity of single-hop interconnections employing shared directional multichan-

nels. IEEE Transactions on Information Theory 39, 1 (1993), 186–191.

[36] Andrej Brodnik and J. Ian Munro. 1999. Membership in Constant Time and

Almost-Minimum Space. SIAM J. Comput. 28, 5 (1999), 1627–1640.
[37] Moses Charikar and Shay Solomon. 2018. Fully Dynamic Almost-Maximal Match-

ing: Breaking the Polynomial Worst-Case Time Barrier. In 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic. 33:1–33:14.

[38] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song,

and Huacheng Yu. 2021. Almost optimal super-constant-pass streaming lower

bounds for reachability. In STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021. ACM, 570–583.

[39] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Haji-

aghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. 2016.

Kernelization via Sampling with Applications to Finding Matchings and Related

Problems in Dynamic Graph Streams. In Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, January 10-12,
2016. 1326–1344.

[40] David Conlon and Jacob Fox. 2013. Graph removal lemmas. Surveys in combina-
torics 409 (2013), 1–49.

[41] Graham Cormode, Jacques Dark, and Christian Konrad. 2019. Independent Sets in

Vertex-Arrival Streams. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. 45:1–45:14.

[42] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A.

Rossi. 2020. Approximate MaximumMatching in Random Streams. In Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake
City, UT, USA, January 5-8, 2020. 1773–1785.

[43] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang. 2005. On graph problems in a semi-streaming model. Theor. Comput. Sci.
348, 2-3 (2005), 207–216.

[44] Moran Feldman and Ariel Szarf. 2021. Maximum Matching sans Maximal Match-

ing: A New Approach for Finding MaximumMatchings in the Data StreamModel.

CoRR abs/2109.05946. To appear in APPROX 2022. (2021).

[45] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld,

and Alex Samorodnitsky. 2002. Monotonicity testing over general poset domains.

In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada. 474–483.

[46] Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. 2022. Deterministic (1+ε)-
approximate maximum matching with poly(1/ε) passes in the semi-streaming

model and beyond. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory
of Computing, Rome, Italy, June 20 - 24, 2022, Stefano Leonardi and Anupam Gupta

(Eds.). ACM, 248–260.

[47] Jacob Fox. 2011. A new proof of the graph removal lemma. Annals of Mathematics
174, 1 (2011), 561–579.

143

STOC ’23, June 20–23, 2023, Orlando, FL, USA Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li

[48] Jacob Fox, Hao Huang, and Benny Sudakov. 2017. On graphs decomposable into

induced matchings of linear sizes. Bulletin of the London Mathematical Society
49, 1 (2017), 45–57.

[49] Jacob Fox, Hao Huang, and Benny Sudakov. 2017. On graphs decomposable into

induced matchings of linear sizes. Bulletin of the London Mathematical Society
49, 1 (2017), 45–57.

[50] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication

and streaming complexity of maximum bipartite matching. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
Kyoto, Japan, January 17-19, 2012. SIAM, 468–485.

[51] WT Gowers. 2001. Some unsolved problems in additive/combinatorial number

theory. preprint 4 (2001).
[52] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad.

2022. Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and

with Worst-Case Time Bounds. In 5th Symposium on Simplicity in Algorithms,
SOSA@SODA 2022, Virtual Conference, January 10-11, 2022. SIAM, 12–23.

[53] Manoj Gupta and Richard Peng. 2013. Fully Dynamic (1 + ε)-Approximate

Matchings. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE Computer Society, 548–

557.

[54] Philip Hall. 1987. On representatives of subsets. Classic Papers in Combinatorics
(1987), 58–62.

[55] JohanHåstad and AviWigderson. 2003. Simple analysis of graph tests for linearity

and PCP. Random Struct. Algorithms 22, 2 (2003), 139–160.
[56] John E. Hopcroft and Richard M. Karp. 1973. An n

5/2
Algorithm for Maximum

Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231.
[57] Zoran Ivkovic and Errol L. Lloyd. 1993. Fully Dynamic Maintenance of Vertex

Cover. In Graph-Theoretic Concepts in Computer Science, 19th International Work-
shop, WG ’93, Utrecht, The Netherlands, June 16-18, 1993, Proceedings (Lecture
Notes in Computer Science, Vol. 790). Springer, 99–111.

[58] Sagar Kale and Sumedh Tirodkar. 2017. Maximum Matching in Two, Three,

and a Few More Passes Over Graph Streams. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2017, August 16-18, 2017, Berkeley, CA, USA (LIPIcs, Vol. 81). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 15:1–15:21.

[59] Michael Kapralov. 2013. Better bounds for matchings in the streaming model.

In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013. 1679–
1697.

[60] Michael Kapralov. 2021. Space Lower Bounds for Approximating Maximum

Matching in the Edge Arrival Model. In Proceedings of the 2021 ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,
2021. SIAM, 1874–1893.

[61] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. 2021.

Towards tight bounds for spectral sparsification of hypergraphs. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, Samir Khuller and Virginia Vassilevska Williams (Eds.).

ACM, 598–611.

[62] Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. 2016. Optimal Quantile Approx-

imation in Streams. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, Irit Dinur (Ed.). IEEE Computer Society, 71–78.

[63] Peter Kiss. 2022. Deterministic Dynamic Matching inWorst-Case Update Time. In

13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January
31 - February 3, 2022, Berkeley, CA, USA (LIPIcs, Vol. 215). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 94:1–94:21.

[64] Dénes König. 1916. Über graphen und ihre anwendung auf determinantentheorie

und mengenlehre. Math. Ann. 77, 4 (1916), 453–465.
[65] Christian Konrad. 2015. Maximum Matching in Turnstile Streams. In Algorithms

- ESA 2015 - 23rd Annual European Symposium, September 14-16, 2015, Proceedings.
840–852.

[66] Christian Konrad. 2018. A Simple Augmentation Method for Matchings with

Applications to Streaming Algorithms. In 43rd International Symposium on Mathe-
matical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool,
UK. 74:1–74:16.

[67] Christian Konrad, Frédéric Magniez, and Claire Mathieu. 2012. Maximum Match-

ing in Semi-streaming with Few Passes. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques - 15th International Work-
shop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge,
MA, USA, August 15-17, 2012. Proceedings (Lecture Notes in Computer Science,
Vol. 7408). Springer, 231–242.

[68] Christian Konrad and Kheeran K. Naidu. 2021. On Two-Pass Streaming Algo-

rithms for Maximum Bipartite Matching. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021,
August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual
Conference) (LIPIcs, Vol. 207). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

19:1–19:18.

[69] Gurmeet SinghManku, Sridhar Rajagopalan, and Bruce G. Lindsay. 1999. Random

Sampling Techniques for Space Efficient Online Computation of Order Statistics

of Large Datasets. In SIGMOD 1999, Proceedings ACM SIGMOD International
Conference on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania,
USA, Alex Delis, Christos Faloutsos, and Shahram Ghandeharizadeh (Eds.). ACM

Press, 251–262.

[70] Andrew McGregor. 2005. Finding Graph Matchings in Data Streams. In Ap-
proximation, Randomization and Combinatorial Optimization, Algorithms and
Techniques, 8th International Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems, APPROX 2005 and 9th InternationalWorkshop on
Randomization and Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24,
2005, Proceedings (Lecture Notes in Computer Science, Vol. 3624), Chandra Chekuri,
Klaus Jansen, José D. P. Rolim, and Luca Trevisan (Eds.). Springer, 170–181.

[71] Andrew McGregor. 2014. Graph stream algorithms: a survey. SIGMOD Rec. 43, 1
(2014), 9–20.

[72] Ofer Neiman and Shay Solomon. 2013. Simple deterministic algorithms for fully

dynamic maximal matching. In Symposium on Theory of Computing Conference,
STOC’13, Palo Alto, CA, USA, June 1-4, 2013. 745–754.

[73] Krzysztof Onak and Ronitt Rubinfeld. 2010. Maintaining a large matching and

a small vertex cover. In Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010. ACM,

457–464.

[74] Rasmus Pagh. 2001. Low Redundancy in Static Dictionaries with Constant Query

Time. SIAM J. Comput. 31, 2 (2001), 353–363.
[75] Rajeev Raman and S. Srinivasa Rao. 2003. Succinct Dynamic Dictionaries and

Trees. In Automata, Languages and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30 - July 4, 2003. Proceedings (Lecture
Notes in Computer Science, Vol. 2719). Springer, 357–368.

[76] Mohammad Roghani, Amin Saberi, and David Wajc. 2022. Beating the Folklore

Algorithm for Dynamic Matching. In 13th Innovations in Theoretical Computer
Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA
(LIPIcs, Vol. 215). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 111:1–

111:23.

[77] Imre Z Ruzsa and Endre Szemerédi. 1978. Triple systems with no six points

carrying three triangles. Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai
18 (1978), 939–945.

[78] Shay Solomon. 2016. Fully Dynamic Maximal Matching in Constant Update

Time. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. IEEE
Computer Society, 325–334.

[79] Shay Solomon. 2016. Fully Dynamic Maximal Matching in Constant Update

Time. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. IEEE
Computer Society, 325–334.

[80] Endre Szemerédi. 1975. Regular partitions of graphs. Technical Report. Stanford
Univ Calif Dept of Computer Science.

[81] Terence Tao and Van H Vu. 2006. Additive combinatorics. Vol. 105. Cambridge

University Press.

[82] David Wajc. 2020. Matching Theory Under Uncertainty. Ph. D. Dissertation.

Carnegie Mellon University.

[83] David Wajc. 2020. Rounding Dynamic Matchings Against an Adaptive Adver-

sary. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. ACM, 194–207.

Received 2022-11-07; accepted 2023-02-06

144

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	2.1 Matching Covers via Regularity Lemma
	2.2 Applications of Matching Cover

	3 Preliminaries
	3.1 Szemerédi's Regularity Lemma
	3.2 Fox's Triangle Removal Lemma
	3.3 Ruzsa-Szemerédi Graphs
	3.4 Succinct Dynamic Dictionaries

	4 A Matching Cover via Regularity Lemma
	4.1 First Step: A Hitting Set Argument
	4.2 Second Step: From Hitting Set to Matching Cover

	5 A Fully Dynamic Algorithm via Matching Covers
	6 Single-Pass Streaming Algorithms
	6.1 A Streaming Algorithm for Matching Covers
	6.2 A Streaming Matching Algorithm via Regularity Lemma
	6.3 A Streaming Matching Algorithm via RS Graph Upper Bounds

	References

