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Abstract

Binary search is one of the most fundamental search routines, exploiting the hidden structure of the search
space. In particular, it cuts down exponentially on the complexity of the search assuming that the search
space is monotone. This paper is prompted by a basic question – how does the query complexity of the search
problem change if the data has corruption? In particular, we study the powerful outlier noise model and
assuming a bound on the fraction of such corruptions, establish nearly matching upper and lower bounds for
the following problems: (i) binary search on an ordered set of size [n]; (ii) search on the posets {0, 1}d; and
(iii) search on the posets [n]d. In all three cases, we use randomization to create robust versions of classical
algorithms for these problems that handle corrupted data with relatively small performance penalties, specified
as a function of the amount of corruption K. We complement these algorithmic results with almost matching
lower bounds that show that no randomized algorithm can solve these problems with a smaller performance
hit on the query complexity as a function of K.

1 Introduction
Search problems are among the most fundamental class of computational problems. While it is possible to

always perform an exhaustive search on any domain, sometimes algorithms can substantially improve upon this
by leveraging underlying structure. Probably, the simplest and most prominent example of this is the binary
search. In particular, suppose f : [n] → R defines a monotone (say increasing) function. Then, given an oracle
for f and a target element x, the binary search algorithm makes ⌈log n⌉ calls to f and finds i ∈ [n] such that
f(i) = x (provided there exists such an i).

The high level question addressed in this paper is the following: Can we design noise tolerant versions of
non-trivial search routines like binary search? In particular, the usual guarantee of routines like binary search
requires that there is no noise in the oracle for f , a rather strong and sometimes unrealistic modeling assumption.
In this paper, we study the problem when the oracle for f is noisy.

1.1 Our results This work studies the basic (search) problem in computation – binary search – with the
goal of making it robust to noise. In particular, we study the powerful outlier noise model, where the only
assumption we make about the noise is that there is an upper bound on the fraction of corrupted points. We
note that there are plenty of works considering stochastic noise [KK07, BM08] or noise that is bounded in
magnitude [HS17, SV15, HS16]. We will discuss more about these works in our next subsection.

1.1.1 Noisy binary search The first problem we consider is the classical problem of binary search. Suppose,
we are given oracle access to a function f : [n] → R such that f is monotonically increasing, i.e., f(i) ≥ f(j)
whenever i ≥ j. Then, given any element x, binary search can make ⌈log n⌉ queries to f and (i) if there exists
i∗ such that f(i∗) = x, then return i∗; (ii) return ⊥ otherwise. Now, consider a “corrupted” monotone function
where up to K entries have been altered in an arbitrary manner. In other words, we get oracle access not to f but
to f̃ : [n] → R such that |x : f(x) ̸= f̃(x)| ≤ K. In other words, the function f̃ defined by the oracle is guaranteed
to be K-close to the “true” monotone function f . We refer to the oracle for f̃ as K-corrupted. We are interested
in the complexity of searching for an element x given a corrupted oracle f̃ . We now make two crucial assumptions
about the target element x: (i) the element x itself is not corrupted – i.e., if f(i) = x, then f̃(i) = f(i). (ii) if
f(j) ̸= f̃(j), then f̃(j) ̸= x. In other words, we do not introduce a corruption whose value is x.
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Assumption (i) is easily seen to be necessary – if we are searching for a corrupted element x, it is easy to see
that the query complexity can grow as Ω(n). To justify Assumption (ii), suppose f is the function f(i) = i and
f̃ is the corrupted version which is the same as f except f̃(n) = n + 1. Then, note that if the target element is
n+1, then we expect our algorithm to return “NO” as n+1 ̸∈ Range(f). On the other hand, given oracle access
to f̃ (which is now itself monotone), even with an arbitrary number of queries, it is not possible to tell that n+1
is a corruption and not present in Range(f). Our first main result is stated below (informally).

Informal Theorem 1.1. There is a randomized algorithm which given query access to a K-corrupted monotone
f̃ and an uncorrupted element x ∈ Range(f) has the following guarantee: with O(K + log n) queries, it produces
an index i∗ ∈ [n] such that f(i∗) = x. On the complementary side, we show that any randomized algorithm for
this problem requires Ω(K + log n) queries.

In fact, we prove a stronger guarantee, namely, there is a randomized algorithm that uses O(log(n/K)) queries
to trap the index i∗ (if it exists) in an interval of length slightly above 2K. On the other hand, we show that any
randomized algorithm that narrows down i∗ to any interval of size 2K must necessarily use Ω(K) queries.

We refer the reader to Theorem 2.1 for the formal theorem of this statement. Note that the above theorem can
be interpreted as follows: Suppose A is a sorted array with K corruptions. Then, we can narrow down the target
index to an interval of size approaching 2K with Ω(log(n/K)) queries. A fortiori, this implies that the unknown
element can be found with queries O(K + log n). Note that log n is just the time required for binary search and
thus, the additional overhead we require to handle K corruptions is just O(K). Further, the linear dependence on
K is necessary. In particular, if n = K + 1, then with K corruptions, we have an arbitrary array and thus search
in this array will necessarily take Ω(K) queries. On the complementary side, we also show a sharp threshold
behavior at 2K: namely, narrowing down the target index to an interval of size 2K or smaller requires Ω(K)
queries.

To explain the high level idea behind our algorithm, note that in the usual binary search, when we query an
element f(i), we move “left” or “right” depending on whether f(i) > x or f(i) < x (and return i if f(i) = x). This
search routine is of course extremely brittle to noise as it is possible that the point i that the algorithm queries is
itself corrupted. To circumvent this problem, we instead query a randomly chosen index j in an interval of length
M around i. We now move “left” or “right” depending on whether f(j) > x or f(j) < x. It turns out that as
long as M exceeds 2K by a constant factor, using such a randomly chosen j is a noise-tolerant way to choose a
direction in binary search. This lets us essentially locate the target index to an interval of size O(K). Once we
have reduced the problem to this case, it suffices to a do a brute-force search. This leads to a query complexity
of O(K + log n).

1.1.2 Noisy search on the hypercube We now move to search over partially ordered sets (posets) – in
contrast, binary search is meant to find an item in a totally ordered set. To state the problem, define a function
f : [n]d → R to be monotonically increasing if x ⪰ y implies f(x) ≥ f(y). Here x ⪰ y if for all 1 ≤ i ≤ d, xi ≥ yi.
Note that the grid [n]d is a basic example of a poset and thus it is natural to ask if we can generalize “noisy binary
search” from a totally ordered set to this specific poset. Before we discuss the problem of noisy search on the
grid, let us first recall the complexity of search on the grid in the noiseless case. The monotone search problem is
defined as follows: given oracle access to a monotone function f : [n]d → R and x ∈ Range(f), find α such that
f(α) = x.

For simplicity, we first focus on the case n = 2 – i.e., the domain is equivalently {0, 1}d. The complexity of
the monotone search problem over {0, 1}d is Θ(2d/

√
d) [KTDV96]. The proofs of both upper and lower bounds

crucially depend on two combinatorial concepts – chain and anti-chain.

Definition 1.1. For a poset X , a chain is a sequence x1, . . . , xN ∈ X such that x1 ⪯ x2 . . . ⪯ xN .
An anti-chain is a sequence x1, . . . , xN ∈ X such that for any i ̸= j, xi and xj are not comparable. In other

words, neither xi ⪰ xj nor xj ⪰ xi.

The algorithm for monotone search {0, 1}d relies on splitting the domain into a so-called symmetric chain
decomposition (see Definition 3.1). Roughly speaking, a symmetric chain decomposition splits the domain {0, 1}d
into Θ(2d/

√
d) chains, each of size d. With such a chain decomposition, the search is easy – namely, for each

chain, do a binary search to find the unknown x. Each chain is of length d and thus the total time for monotone
search is O((2d log d)/

√
d).
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To obtain the lower bound, we rely on the existence of the antichain Xanti of size Ω(2d/
√
d). Note that since

an anti-chain is an incomparable set of points, such an anti-chain can be used to embed problem of searching
an unordered array of |Xanti| inside the monotone search problem on {0, 1}d. This also gives a lower bound of
Ω(2d/

√
d) on the complexity of the monotone search problem on {0, 1}d.

We now turn our attention to the noisy search problem on {0, 1}d. As was the case with the previous
subsection, we define f̃ : {0, 1}d → R to be K-corrupted monotone if there is a “true” monotone function
f : {0, 1}d → R such that f and f̃ differ in at most K places. Similar to Theorem 1.1, we stipulate that (i) the
target element x is itself not a corruption; (ii) if f̃(i) ̸= f(i), then the corruption f̃(i) ̸= x. Our main result here
is informally stated below.

Informal Theorem 1.2. There is a randomized algorithm which given query access to a K-corrupted
monotone f̃ : {0, 1}d → R and an uncorrupted element x ∈ Range(f) has the following guarantee: with
O(min{2d, 2d√

d
(log d + logK)}) queries, it finds an i∗ such that f(i∗) = x. On the complementary side, we

show that any randomized algorithm to find i∗ requires Ω(min{2d, 2d

log d
√
d
logK}) queries.

Our upper bound crucially uses the notion of symmetric chain decomposition. In particular, we first randomize
our chain decomposition by randomly permuting the coordinates. This ensures that the average number of
corruptions contained in any chain ≈ O(logK). Now, within each chain, we essentially apply a noise tolerant
binary search (Theorem 1.1) to obtain the final upper bound on the complexity.

To obtain our lower bound, we first use Yao’s minimax lemma to reduce the problem to showing a lower
bound for deterministic algorithms. Subsequently, we leverage the structure of the hypercube, in particular, that
(i) the middle layer of {0, 1}d, i.e., the points with d/2 ones are an antichain; (ii) for any a in the middle layer,
the number of points b in the next ℓ layers such that b ⪰ a can be bounded by ≈ dℓ. Roughly speaking, our hard
instance starts with a function f̃ with the property that (i) if a is above layer d/2 + logd K, f̃(a) = ∞ and (ii)
if a is below layer d/2 − logd K, f̃(a) = −∞. All the other elements are filled with positive integers respecting
the order defined by the hypercube. Now, we randomly choose a position a∗ from the layers d/2 − logd K to
d/2+ logd K and label f̃(a∗) = 0. We let the target element x be zero – using property (ii) of the hypercube, it is
easy to see that f̃ differs from a monotone function f in at most K places. Exploiting the size of the antichains in
the hypercube, it is not difficult to show that any deterministic algorithm must essentially now do a brute force
search for the target element in the middle d/2± logd K layers. This finishes the proof sketch for the lower bound.

1.1.3 Search on the grid [n]d We now turn to our results for the high-dimensional grid [n]d. Note that
vis-a-vis the hypercube, the alphabet size is now n as opposed to 2 (for the hypercube). Similar to the hypercube,
it is first instructive to understand the complexity of search without errors.

The complexity of the monotone search problem on the grid without errors turns out to be (up to log(nd)
factors) Θ(nd−1/

√
d) – note that this saves a factor of n

√
d over the trivial search algorithm whose complexity is

Θ(nd). While we suspect that this is a folklore fact, we could not find a reference for this. The upper bound can
be achieved by doing a symmetric chain decomposition of the grid and performing a binary search on each chain.
The lower bound is immediate from the fact that the set Amid = {x : x1 + . . . + xn = ⌈nd/2⌉} is an antichain
of size Ω(nd−1/

√
d). As we can always embed unordered search inside an antichain, this gives a lower bound

of Ω(nd−1/
√
d). The next informal theorem describes the complexity of monotone search on [n]d in presence of

errors.

Informal Theorem 1.3. There is a randomized algorithm Search-corrupt-monotone-grid which given query
access to a K-corrupted monotone f̃ : [n]d → R and an uncorrupted element x ∈ Range(f) has the following
guarantee: with O(min{nd, nd−1K1/dd + nd−1d

K1−(1/d) log(n) log log(n)}) queries, it finds an i∗ such that f(i∗) = x.
On the complementary side, we show that any randomized algorithm to find i∗ requires Ω(min{nd, nd−1K1/d

√
d})

queries.

Note that our upper and lower bounds for the K-corrupted monotone search can be off by a factor of about
√
d

in the worst-case. Further, vis-a-vis, Theorem 1.2, the dependence on K is K1/d (as opposed to logK). We also
note that our lower bound in this theorem only applies for n greater than some sufficiently large constant (10e
suffices, see our proof in Section 4.2), and thus it does not apply to the Boolean cube.
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The proof of the lower bound is similar to that of Theorem 1.2. Specifically, we randomly choose a position
a∗ from the points with ℓ1-norm between dn/2− dK1/d/(20e) to dn/2+ dK1/d/(20e) and plant the target there.
Then essentially repeating the same argument as Theorem 1.2 yields the lower bound in Theorem 1.3.

The upper bound in Theorem 1.3 follows a somewhat different idea. Namely, we tile the grid [n]d by, what we
refer to as, “cubic diagonals”. Roughly speaking, a cubic diagonal is a collection of cubes {C1, . . . , Ct} such that
if j > i, then xj ⪰ xi for any xj ∈ Cj and xi ∈ Ci. We show that the grid can be covered with O(d(n/K1/d)d−1)
such cubic diagonals. Once we achieve such a tiling, we do a binary search on the “diagonals” and brute force
search inside the cubes to obtain the final time complexity.

1.2 Related Work We note that the high level question of “making algorithms robust to noise” is by no means
new. In particular, several papers in the past have studied the problem of binary search (and its generalizations)
where the data is erroneous [Now09, BOH08, KK07]. All these papers model noise as a probabilistic process. As
an example, in [KK07], for every comparison query (i, j), the algorithm gets the true order with probability 1− δ
and false order with probability δ. In related vein is the long line of work on noisy sorting. This includes the
papers [BM08, RV17, AFHN15, BMP19]. Similar to the work on noisy binary search, the modeling of noise in
these papers is also probabilistic.

There are also some early works that have considered the question of solving search problems with an erroneous
oracle [RMK+80, DGW92, FRPU94, Pel02]. We refer the reader to [Pel02] for a comprehensive survey on results
of this flavor. Of a particular note is the paper by Rivest et al [RMK+80] which studies the problem of finding an
unknown value x ∈ [n] using comparisons of x to any chosen y ∈ [n], when at most K of the comparisons may be
incorrect. The authors give a tight bound of log2 n+K log2 log2 n+O(K log2 K) on the number of comparisons
needed to determine the value x. However, we remark that their results are incomparable to ours since in their
model the adversary can be adaptive—the adversary can decide whether to corrupt a comparison based on the
comparisons that the algorithm has made so far. In contrast, in our model the adversary is oblivious and has to
fix a (corrupted) input beforehand. In fact, in their model randomization does not help, since one can easily show
that there is always an optimal strategy that is deterministic. All our algorithms, on the other hand, crucially
rely on randomization.

Two recent papers [DFGM17, DFKM21] studied an extension of the problem in [RMK+80], where the target
is chosen from a distribution µ on [n] known to the algorithm, and the performance of the algorithm is measured
by comparing the number of comparisons (or other kinds of queries) it makes to the entropy of µ. Very recently,
the authors also studied optimization of convex functions under outlier noise, where we want to get close to the
minimizer of a convex function that is corrupted in a bounded region [DKLN21]. Such a problem may be seen as
a continuous analog of the discrete search problems studied in this paper.

1.3 Organization We present our upper and lower bounds for searching in a corrupted monotone array,
Boolean cube, and monotone higher-dimensional grid in Sections 2, 3, and 4, respectively.

2 Search in a Corrupted Monotone Array
We consider the problem of locating a given target element in a corrupted monotone array of length n where at
most K elements are corrupted. We will show that the query complexity of this problem is Θ(log n/K +K). We
focus here on the algorithmic upper bound on the query complexity, and defer the lower bound results to the
Appendix.

At a high-level, our algorithm performs the search in two phases. In the first phase it traps the target to an
interval of length 10K, and in the second phase, it does an exhaustive search on all of the elements. The theorem
below summarizes the exact performance guarantee achieved by our algorithm.
Theorem 2.1. Let A be a monotone array of n numbers such that at most K of them are corrupted. Then, there
is an algorithm that finds a target t in the array using O(log 1

δ · (log(n/K) +K)) queries with success probability
1− δ, where 0 < δ < 1.
Proof. We will create a robust version of the binary search that will allow us at each step to reduce the search
space by a factor of half as long as it is larger than 10K. At this point, the algorithm switched to an exhaustive
search in the remaining interval. Specifically, the algorithm finds a target t in array A as follows:

1. while |A| > 10K
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(a) Let m be the mid-point of A.
(b) Compare t with a random element in A[m− 3K/2,m+ 3K/2]. If the element is t, we are done.
(c) If t is the bigger one, discard from A the elements to the left of index m− 3K/2, otherwise discard the

elements to the right of index m+ 3K/2.

2. Perform an exhaustive search on the remaining elements.

Line 1 repeats at most O(log n/K) times, and in each repetition the algorithm queries one element. So it makes
at most log n/K queries at this step. For Line 2, it makes at most 10K queries. So the total query complexity of
the above algorithm is O(log n/K +K).

Now we prove that with constant probability the algorithm correctly finds the target t. We say the algorithm
makes an error in the i’th step of Line 1 if the algorithm deletes the part of the array that contains t, and we use ei
to denote the probability of the error. If the algorithm queries an uncorrupted target, error does not happen. So
the probability that the algorithm does not make an error in i’th step is at least 1− vi

3K where vi is the number of
corrupted elements in the middle interval of length 3K. By union bound, the probability that error never happens
in any steps is 1−

∑log(n/K)
i=1

vi
3K . As the intervals of length 3K are disjoint, we have

∑log(n/K)
i=1

vi
3K ≤ K

3K = 1/3.
So the probability that the algorithm traps t successfully at the end of Line 1 is at least 2/3. When the algorithm
traps the target, it will successfully find the target in Line 2. By repeating the above algorithm for log 1/δ times,
the algorithm finds t with probability 1− δ using O(log( 1δ ) · (log(n/k) +K)) queries.

The idea outlined in the Line 1 of the algorithm can also be extended to show the following result.

Theorem 2.2. Let A be a monotone array of n numbers such that at most K of them are corrupted. Then, there
is an algorithm that returns an interval of length at most l = (2 + ϵ)K that contains the target t w.p. 1− δ using
O(log(n/K) log(1/δ)) +O(1/ϵ2 log(1/ϵ) log log(1/ϵ) log(1/δ)) queries, for any ϵ > 0 and 0 < δ < 1.

A proof of the above algorithm is provided in Appendix A. Thus even in a corrupted array, essentially binary
search can be used to narrow down the target to an interval of length 2K. Interestingly, we show that a phase
transition occurs in the problem at the threshold of 2K in that any further reduction in the length of the interval
containing the target requires a linear number of queries.

Theorem 2.3. For a corrupted monotone array A consisting 2n numbers where half of them are corrupted and
a target t, any randomized algorithm that makes at most cn queries on A and returns an interval of (2− ϵ)n, has
an error of at least ϵ−c

2 .

A proof of the above lower bound is provided in Appendix B.

3 Search in a Corrupted Monotone Boolean Cube
We consider here the problem of searching for a target t in a monotone d-dimensional Boolean cube where at
most K elements have been corrupted. We show matching upper and lower bounds (up to logO(1) d factors) of

min

{
2d√
d
logK, 2d

}
on the query complexity for finding the target’s exact location. As a result, when K = 2Ω(

√
d), we need to query

a (nearly) constant fraction of the points in {0, 1}d in order to find the target.

Preliminaries. Let f : {0, 1}d → Z denote a Boolean cube filled with integers. For two points x, y ∈ {0, 1}d, we
say x precedes y (denoted by x ≼ y) if xi ≤ yi,∀i ∈ [d], and x succeeds y (denoted by x ≽ y) if xi ≥ yi,∀i ∈ [d].
We also say x strictly precedes (succeeds) y if x ≼ y (x ≽ y) but x ̸= y, denoted by x ≺ y (x ≻ y). We say x and
y are incomparable if x neither precedes nor succeeds y.

The boolean cube can be partitioned into d + 1 layers. The i-th layer Li contains all points with Hamming
weight i.
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For some x ∈ {0, 1}d on layer l and an integer i ≥ l, we write Sx,i to denote the successors of x on layer i, i.e.
{y : y ≽ x} ∩ Li. Similarly for i ≤ l we write Px,i to denote the predecessors of x on layer i, i.e. {y : y ≼ x} ∩ Li.
We then define Sx,≤i

def
=

∪i
j=l Sx,j and Px,≥i

def
=

∪l
j=i Px,j .

Problem Setting. Let f : {0, 1}d → Z be a monotone function such that f(x) < f(y) for all x ≺ y. An adversary
arbitrarily modifies the value of f on at most K points, and obtain a corrupted function f̃ . Let C ⊆ {0, 1}d where
|C| ≤ K denote the set of corrupted points (i.e. the points where f and f̃ differ). Given query access to f̃ , we
need to find the location of some target number t ∈ Z. It is guaranteed that f̃(x∗) = t for a unique x∗ ∈ {0, 1}d,
and that x∗ /∈ C.

3.1 An O( 2d√
d
(logK + log d)) Query Algorithm We will use a symmetric chain decomposition of the boolean

cube, which was first used in [Han66] for exact learning of a monotone Boolean function.

Definition 3.1. (Chains) X = (x1, . . . , x|X|) where each xi ∈ {0, 1}d is a chain if xi ≺ xi+1 for all i < |X|. X
is consecutive if for all i < |X|, there is no point y with xi ≺ y ≺ xi+1. It is symmetric if it is consecutive, and
for some 0 ≤ l ≤ d we have x1 ∈ Ll and x|X| ∈ Ld−l.

Theorem 3.1. (Symmetric Chain Decomposition [Han66]) There is symmetric chain decomposition
X1, . . . ,Xm of the d-dimensional Boolean cube such that

1. Each point x ∈ {0, 1}d belongs to exactly one of the Xi’s.

2. Each Xi is symmetric (thus also consecutive).

This decomposition can be constructed in O(2d) time.

A direct consequence is that the number of chains in the decomposition is

m =

(
d

⌊d/2⌋

)
= O(2d/

√
d).

Our algorithm works as follows:

1. Construct a symmetric chain decomposition X1, . . . ,Xm.

2. Repeat for 10 log(1/δ) times:

(a) Pick a random permutation to permute the coordinates of all points in X1, . . . ,Xm.
(b) For each chain Xi, use the noisy binary search algorithm in Theorem 2.2 to narrow it down to an

interval of length 100 logK that (allegedly) traps t, with the failure probability set to δ = 0.1.
(c) Search t in each of the intervals of length 100 logK by brute-force. If found, return the index.

We note that the idea of randomly permuting the coordinates of a fixed chain decomposition was used in [RRSW11]
for approximating the influence of a monotone Boolean function.

Theorem 3.2. The above algorithm finds the target t using O( 2d√
d
(logK + log d) log(1/δ)) queries with success

probability at least 1− δ.

We first state a key lemma showing that the chain containing the target is only mildly corrupted in expectation.

Lemma 3.1. After applying the random permutation to the chains on Line 2a, let Xi∗ be the chain containing
x∗ (the location of the target t). Then the expected size of C ∩ Xi∗ is at most 20 logK (recall that C is the set of
corrupted points).

Proof. If |Xi∗ | ≤ 20 logK, the lemma follows immediately. We thus only need to consider the case when
|Xi∗ | > 20 logK. Let xj denote the intersection point of Xi∗ and layer j. Let s, t be the smallest and largest layer
intersecting Xi∗ , and let l ∈ [s, t] be the layer containing x∗. Conditioned on that Xi∗ contains x∗, we have that

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited166

D
ow

nl
oa

de
d 

08
/1

2/
22

 to
 1

65
.1

23
.2

31
.4

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1. ∀j ∈ [s, l], xj follows a uniform distribution on Px∗,j (predecessors of x∗ on layer j).

2. ∀j ∈ [l, t], xj follows a uniform distribution on Sx∗,j (successors of x∗ on layer j).

Then we have (all expectations/probabilities are conditioned on x∗ ∈ Xi∗)

E [|C ∩ Xi∗ |] =
t∑

j=s

Pr [xj ∈ C] (linearity of expectation)

=

l−1∑
j=s

|C ∩ Px∗,j |
|Px∗,j |

+

t∑
j=l+1

|C ∩ Sx∗,j |
|Sx∗,j |

(by the above observation).(3.1)

Now note that |Px∗,j | =
(

l
l−j

)
and |Sx∗,j | =

(
d−l
j−l

)
. To maximize (3.1), the adversary would corrupt as many points

as possible in the smallest Px∗,j ’s and Sx∗,j ’s. Using standard calculations of the binomial coefficients, it can be
verified that the adversary can corrupt at most 20 logK such sets before its corruption budget K runs out. The
upper bound of 20 logK on (3.1) thus follows.

We now prove the theorem.

Proof. [of Theorem 3.2] By Lemma 3.1, the chain Xi∗ that contains the target has at most 40 logK corrupted
elements with probability at least 1/2. Conditioned on this, by Theorem 2.2 we successfully traps the target in an
interval on Xi∗ of length 100 logK with probability at least 0.9. As a result, we find the target in each iteration
with probability 0.45, and thus find the target with probability at least 1− δ by O(log(1/δ)) repetition. Since the
number of the chains is m = O( 2d√

d
), and each noisy binary search takes O(log d+ logK) queries by Theorem 2.2,

in each iteration we make at most O( 2d√
d
(logK + log d)) queries in total. The statement in the theorem then

follows.

3.2 An Ω(min
{

2d

log d
√
d
logK, 2d

}
) Query Lower Bound In this subsection, we provide an

Ω(min
{

2d

log d
√
d
logK, 2d

}
) lower bound for the number of queries needed by a randomized algorithm to

find a target t in a hypercube of dimension d in the presence of K corrupted elements. We prove it using
Yao’s minimax theorem. Namely, we define a distribution over the possible inputs and show any deterministic
algorithm has a large error over the distribution.

We start by defining a distribution D(k) over functions f̃ . A function f̃ and a target is drawn from D(k) as
follows:

1. Let xmax be the point with all ones, and xmin be the point with all zeroes. Let f be the function that has
f(x) = 0 if x ∈ Sxmin,≤(d/2)−k−1, f(x) = 3 if x ∈ Pxmax,≥(d/2)+1 and f(x) = 2 for any other point.

2. Let y ∈ Sxmin,≤d/2 ∩ Pxmax,≥(d/2)−k be a random point. f̃ has the same value as f everywhere except y,
where f̃(y) = 1.

3. Define all the points that are not compatible with y as corrupted, and return f̃ as the function and 1 as the
target.

Note that 1 is always the target, and all the corrupted cells are preceding neighbors of the target in
Sxmin,≤d/2∩Pxmax,≥(d/2)−k. From now on, we refer to Sxmin,≤(d/2)−k−1 as the first layers, Sxmin,≤d/2∩Pxmax,≥(d/2)−k

as the second layers and Pxmax,(d/2)+1 as the third layers. Note that second layers contain the middle layer and
the k layers below them.

Lemma 3.2. Any function f̃ ∈ D(k) has at most
∑k

i=1

(
d/2
i

)
corrupted cells.

Proof. Let y be the point for which f̃(y) = 1. Then all the corrupted cells are the preceding cells of y in the
second layers. The number of preceding cells of y with hamming distance i is

(||y||1
i

)
. So the total number of

corrupted elements is
∑||y||1−(d/2−k)

i=1

(||y||1
i

)
≤

∑k
i=1

(
d/2
i

)
as ||y||1 ≤ d/2.
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Lemma 3.3. Any deterministic algorithm with constant success probability over D(k) should make at least
Ω(

∑d/2
i=d/2−k

(
d
i

)
) queries.

Proof. The proof follows from the fact that any deterministic algorithm gets 2 if it doesn’t hit the target and
gets 1 if it hits the target. So with each miss, the algorithm eliminates one possible cell for the target and gains
no other information about other cells. Since the target can be anywhere in the second layers, any algorithm
algorithm with constant success probability needs to make Ω(

∑d/2
i=d/2−k

(
d
i

)
) queries.

Theorem 3.3. Any randomized algorithm that can find a target t in a corrupted monotone Boolean hypercube
with a constant success probability needs to make min

{
2d

log d
√
d
logK, 2d

}
queries, where d is the dimension of the

hypercube and K is the number of corrupted cells.

Proof. Let k be the largest integer such that K ≥
∑k

i=1

(
d/2
i

)
. By Lemma 3.2, we know each draw from D(k) has

at most K corrupted cells. Suppose k ≥
√
d. By Lemma 3.3 and Yao’s minimax theorem, the query complexity

of any algorithm with constant success probability is at least Ω(
∑d/2

i=d/2−k

(
d
i

)
). But each layer within distance of

√
d from the middle layer has Ω( 2d√

d
) cells and there are at least

√
d layers. So Ω(

∑d/2
i=d/2−k

(
d
i

)
) = Ω(2d) and we

are done in this case.
Now suppose that k <

√
d. Again, by standard binomial calculations we have k = Ω(logK/ log d), and each of

the k layers below the middle layer has Ω( 2d√
d
) cells. So by Lemma 3.3, any deterministic algorithm with constant

success probability needs to make Ω( 2d√
d
· k) queries. Then by Yao’s minimax theorem, any randomized algorithm

with constant success probability needs to make Ω( 2d√
d
k) = Ω( 2d

log d
√
d
logK) queries and this completes the proof.

4 Search in a Corrupted Monotone Higher-dimensional Grid
We now consider searching a target in a d-dimensional grid indexed by {0, 1, . . . , n}d, where when any d − 1
coordinates are fixed, the numbers are monotone with respect to the remaining coordinate. We are again concerned
with the case where at most K cells are corrupted by an adversary.

For two points x, y ∈ {0, 1, . . . , n}d, we say x precedes y (denoted by x ≼ y) if xi ≤ yi,∀i ∈ [d], and x succeeds
y (denoted by x ≽ y) if xi ≥ yi,∀i ∈ [d]. We also say x strictly precedes (succeeds) y if x ≼ y (x ≽ y) but x ̸= y,
denoted by x ≺ y (x ≻ y). We say x and y are incomparable if x neither precedes nor succeeds y.

4.1 A min
{
O(nd−1K1/dd+ nd−1

K
d−1
d

Õ(log(n))), nd
}

Query Algorithm In this subsection, we provide a

min
{
O(nd−1K1/dd+ nd−1

K
d−1
d

log(n) log(log(n))), nd
}

algorithm for searching a target t in a d-dimensional grid
of the form {0, 1, . . . , n}d in the presence of K corrupted elements. We start by some definitions and properties
of the grid, and then provide the algorithm.

A set of cells C ⊆ {0, . . . , n}d is a cuboid if it is a Cartesian product of d intervals, i.e. C =
∏d

i=1[li, ri] where
li ≤ ri,∀i. The volume of a such a cuboid is the number of cells it contains, given by vol(C) =

∏d
i=1(ri − li +1).

A cuboid is a cube if all of its sides are of equal length.
A (3K)1/d-tiling of a d-dimensional grid with side length n is the partitioning of cells into cubes of side

length (3K)1/d. Namely, the cubes are of the form∏
i∈[d]

[(ki − 1)(3K)1/d + 1, ki(3K)1/d] where ki ∈ [n/(3K)1/d],∀i.

The volume of each cube in the tiling above is 3K. We will identify the cubes in the tiling by Ck1,...,kd
. A cube

Ca1,...,ad
succeeds cube Cb1,...,bd if every cell in Ca1,...,ad

succeeds every cell in Cb1,...,bd . Also, a cube Ca1,...,ad

precedes cube Cb1,...,bd if every cell in Ca1,...,ad
precedes every cell in Cb1,...,bd .

Definition 4.1. A cubic diagonal of a grid G is a set of cubes of the form
∪

0≤i<l Ck1+i,...,kd+i for some
k1, k2, . . . , kd and l. We define l as the size of the cubic diagonal.
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Note that there is a total order on the cubes of a cubic diagonal. So when the cube is uncorrupted, for a cubic
diagonal with size l, one can trap the target in a single cube with 2 ⌈log l⌉ comparisons, by comparing the target
with minimum and maximum cells of a cube. We refer to the most preceding cube of a cubic grid as smallest
cube, i.e., the cube for which every cell in it precedes every cell in other cubes of the diagonal. Similarly, we refer
to the most succeeding as largest cube.

One can perform the binary search in the corrupted case as well. For a cubic diagonal in the presence of K
corruptions, we can use the majority argument as in Theorem 2.2. In order to decide if t succeeds or precedes cells
in a cube, we sample a number of cells from the cube and compare them with t. If t is bigger than the majority,
we search for t in the succeeding cubes and the current cube, and if t is smaller than the majority, then we search
for t in preceding cubes and the current cube. We choose the sample size large enough to successfully trap t with
high probability. The probability that a sampled cell in a cube of volume 3K is uncorrupted is at least 2/3, so for
a cubic diagonal with length l, by sampling O(log((log l)/δ)) from each cube, we can trap the target in at most
two cubes with probability at least 1− δ. Now we show that we can cover any grid with cubic diagonals.

Lemma 4.1. There is a covering of a grid G with O(d( n
K1/d )

d−1) cubic diagonals.

Proof. We provide a (3K)1/d-tiling of the grid G. Consider all the cubic diagonals for which the smallest cube has
a coordinate 1 and the largest cube has a coordinate n/(3K)1/d. In other words, the minimum cube moves up
on the same coordinate until it hits the end of the grid. Note that a cubic diagonal has one cube if the cube has
1 in one coordinate, and n/(3K)1/d in another coordinate. Let S be the union of all such cubic diagonals. Each
cube of the grid is covered by S, so every cell of the grid is covered. There are at most d( n

(3K)1/d
)d−1 candidates

for the smallest cube of a cubic diagonal, So |S| = O(d( n
(3K)1/d

)d−1) = O(d( n
(K)1/d

)d−1).

We are now ready to provide an algorithm for searching a target t in a grid G. The algorithm works as follows:

1. Consider a covering of G with cubic diagonals as in Lemma 4.1.

2. Perform a noisy binary search on each of the O(d( n
(K)1/d

)d−1) cubic diagonals by sampling from the cubes,
and store the candidate cubes. Perform the binary search by querying O(log(log(n)/δ)) random independent
cells for each cube.

3. Do an exhaustive search on every candidate cube. If the target is found, return the index, otherwise return
null.

Lemma 4.2. The above algorithm makes at most O(d( n
K1/d )

d−1(log n log(log(n)/δ) +K)) queries.

Proof. Performing a binary search on a cubic diagonal takes at most O(log n) log(log(n)/δ) queries as the length
of a cubic diagonal is at most n/(3K)1/d = O(n) and we take log(log(n)/δ) samples when we compare t to a
cube. So the algorithm makes O(d( n

K1/d )
d−1 log(n) log(log(n)/δ)) queries at Line 2. The exhaustive searches

on cubes take at most O(d( n
K1/d )

d−1K) queries at Line 3. So the total query complexity of the algorithm is
O(d( n

K1/d )
d−1(log n log(log(n)/δ) +K)).

Theorem 4.1. There is a randomized algorithm that makes
min{O(d( n

K1/d )
d−1(log(n) log(log(n)/δ) + K)), nd} queries and finds a target t with probability 1 − δ in a d-

dimensional grid of the form {0, 1, . . . nd − 1} when at most K elements are corrupted.

Proof. If K1/d > n/d, then we check all the cells of G. Otherwise, by using the algorithm in Lemma 4.2, we make
at most O(d( n

K1/d )
d−1(log(n) log(log(n)/δ) +K)) queries.

Now we prove that the above algorithm finds the target with probability 1− δ. Consider the cubic diagonal
that contains t. By Chernoff bound and Union Bound, the probability that the algorithm makes no error, i.e.,
always goes to the right direction in the binary seacrh, is at least 1 − δ. In this case, the cube that contains t
would be among the candidate cubes. So the algorithm would find it at Line 3. Thus the probability of success
is at least 1− δ.
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4.2 A min
{
Ω(nd−1K1/d

√
d),Ω(nd)

}
Query Lower Bound In this subsection, we prove a lower bound for

the problem. We prove our lower bound in the setting that n > 10e and K > (20e)d. Similar to the hypercube
case, we first partition the grid into layers. Layer i consists all the cells whose sum of coordinates is i. So there
are nd layers. If i > j we say layer i is above layer j and layer j is below layer i. Let Li be the number of cells
in the layer i. We also refer to Li as the size of the layer i. We know that Li’s are increasing when i ≤ nd/2
and then starts to decrease from i = ⌈nd/2⌉ onwards [Sta06]. We refer to layer ⌈nd/2⌉ as the middle layer, and l
middle layers as layers from ⌈nd/2⌉ − ⌈l/2⌉ − 1 to ⌈nd/2⌉+ ⌊l/2⌋. We first state a folklore lemma.

Lemma 4.3. ([Sta06]) The middle layer has L⌈nd/2⌉ = Θ(n
d−1
√
d
) cells. Besides, the average size of n

√
d middle

layers is Θ(n
d−1
√
d
).

Now we can define a hard distribution over the inputs for the problem. A grid G and a target t is drawn from
DG as follows:

1. Let G be any monotone grid such that the elements in the d(K
1/d

10e − 1) middle layers are positive, elements
in layers below the d(K

1/d

10e − 1) middle layers are −∞, and elements in layers above the d(K
1/d

10e − 1) middle
layers are ∞.

2. Replace a random element of the d(K
1/d

10e − 1) middle layers with 0.

3. Return G as the grid and t = 0 as the target.

Note that as we assumed K1/d

10e > 2, middle layers in Line 1 contains at least one layer.
Lemma 4.4. Any grid G drawn from DG has at most K corrupted cells.

Proof. The number of corrupted cells is the number of cells that do not agree with t = 0. Such cells are the
preceding cells of t in the d(K

1/d

10e −1) middle layers. The preceding cells form a subgrid of the main grid. The size
of the subgrid is less than the grid with minimum point 0 and d(K

1/d

10e −1) layers. One layer in the latter grid has at
most

(
d(K1/d/e−1)+(d−1)

d−1

)
cells, so the grid has at most d(K1/d

10e −1)
(
d(K1/d/e−1)+(d−1)

d−1

)
≤ dK1/d( e·dK

1/d/(10e)
d−1 )d−1 ≤

K cells, where we used the fact that
(
n
k

)
≤ (ne/k)k. So the number of the corrupted cells is at most K and the

lemma follows.

Lemma 4.5. Any deterministic algorithm with constant success probability over DG must make at least
min

{
Ω(nd−1K1/d

√
d),Ω(nd)

}
queries.

Proof. Suppose a deterministic algorithm AD makes q queries and find the target with constant probability over
DG. By the construction of DG, if a cell is not the target, its value is already known. Also, the value of cells not
located in the d(K

1/d

10e − 1) middle layers are always the same for each grid in DG. So the algorithm AD follows
the same path unless it hits the target. Thus, the probability of success is at most q

s +(1− q
s ) ·

1
s−q where s is the

number of cells in the d(K
1/d

10e − 1) middle layers. Now we consider two cases. First, suppose K1/d > n
√
d. Then

d(K1/d/e− 1) = Ω(n
√
d). Then by Lemma 4.3, a constant fraction of all cells are located in d(K

1/d

10e − 1) middle
layers. So, s = Ω(nd), and we have q = Ω(s) = Ω(nd).

For the other case, suppose K1/d ≤ n
√
d . The by Lemma 4.3, we have s > Ω(d(K

1/d

10e − 1) · nd−1
√
d
) =

Ω(nd−1K1/d
√
d) where we used the condition K1/d

10e > 2. So AD must make Ω(s) = Ω(nd−1K1/d
√
d) queries.

This concludes that any deterministic algorithm AD with constant success probability over DG, must make
min

{
Ω(nd−1K1/d

√
d),Ω(nd)

}
queries.

Theorem 4.2. Any randomized algorithm that can find a target t in a monotone grid with constant success
probability must make min

{
Ω(nd−1K1/d

√
d),Ω(nd)

}
queries where d is the dimension of the grid, n is the

maximum of a coordinate in the grid and K is the number of corrupted elements in the grid.

Proof. The proof immediately follows from Yao’s minimax theorem in conjunction with Lemma 4.4 and
Lemma 4.5.
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A A (2 + ϵ)-close Algorithm for Trapping a Target in a Corrupted Monotone Array
In this section, we provide an algorithm for trapping a target in an interval of length (2 + ϵ)K.

Proof. [of Theorem 2.2] By Line 1 of the algorithm in Theorem 2.1, we can narrow down the interval to 10K.
With the same idea as Theorem 2.1, we take several samples from the middle interval of length (2 + ϵ/2)K, and
delete the part that does not contain t. The algorithm works as follows:

1. Run Line 1 of Theorem 2.1 so |A| ≤ 10K.

2. Let ϵ′ = ϵ/2 and l′ = (2 + ϵ′)K.

3. Let m be the mid-point of A.

4. Take s = 1000
ϵ2 log log( 1ϵ ) independent random samples from A[m− ⌈l′/2⌉ ,m+ ⌊l′/2⌋] and compare it with

t, if any of them was equal to t return the index.

5. For 1 ≤ i ≤ s, Xi is 1 if t is bigger than the i’th sample and 0 otherwise. Let X =
∑

i Xi. If X ≥ s/2,
discard all the elements with index less than m − ⌈l′/2⌉, otherwise discard all elements with index greater
than m+ ⌊l′/2⌋.

6. If the length of the remaining array is greater than (2 + ϵ)K, go to line 4, otherwise return the interval.

The number of recursions in Line 6 is at most O(log 1/ϵ), as in each step, the number of all elements but l′

middle elements becomes half, and we only need it to become less than Kϵ/2 = Kϵ′. For each step, the algorithms
makes O( 1

ϵ2 log log(
1
ϵ )) queries. So the query complexity for this part is O(1/ϵ2 log(1/ϵ) log log(1/ϵ)).

The probability that a sampled element in step 4 is uncorrupted is at least (1+ϵ′)K
(2+ϵ′)K > 1/2+ ϵ′/5 for ϵ′ < 1/2.

Let Yi,j be a random variable that is 1 if at the i’th recursion of the algorithm, j’th sampled element is uncorrupted
and Yi =

∑
j Yi,j . Then E [Yi,j ] ≥ 1/2+ ϵ′/5 for each i, j. Note that E [Yi] = (1/2+ ϵ′/5)s, so by Chernoff bound,

Pr
[
Yi ≤ s

2

]
< 0.1

log(1/ϵ) . So, by Union bound, with constant probability in all steps of the algorithm, |Yi| > s/2,
which means the number of uncorrupted elements is more than half for each step and the algorithm goes to the
right direction of the array. So the final interval contains t with constant probability. The probability of success
in the first part of the Theorem 2.1 is 2/3, so with constant probability the algorithm finds t. By repeating the
algorithm for log 1/δ times, we get the desired result.

B A 2-close Lower Bound for Trapping a Target in a Corrupted Monotone Array
In this section, we provide a proof of 2-close lower bound stated in Section 2. Suppose there is a monotone
array of 2n elements where half of them are corrupted and there is a randomized algorithm A that makes
cn queries and returns an interval of size (2 − ϵ)n. We’ll show that the algorithm has an error of at least
(ϵ − c)/2, means the returned interval does not contain t with probability at least (ϵ − c)/2. To do so, we
provide a distribution D over the inputs (array A and target t) and show for any deterministic algorithm AD,
Pr(A,t)∼D [t /∈ AD(A, t)] ≥ (ϵ − c)/2. Then by Yao’s minimax theorem we have the result for the randomized
algorithms. From now on we assume ϵ > c, the other case is easy, the algorithm only returns the elements that
has not queried.

An element (A, t) of D is drawn as follows:

1. Let t = n.

2. Replace one element of [0, 1, . . . , n− 1, n+ 1, n+ 2, . . . , 2n− 1, 2n] with t uniformly at random. Return the
resulted array as A, if t falls in the first half of the array, t and the second half of the array are uncorrupted
and if t falls in the second half of the array, t and the first half of the array are uncorrupted.

Note that by step 2, every drawn array from D has less than n corrupted elements.

Theorem B.1. Let AD be a deterministic algorithm that makes at most cn queries on any array A consisting
2n numbers and any target t, and returns an interval of (2− ϵ)n. Then Pr(A,t)∼D [t /∈ AD(A, t)] ≥ (ϵ− c)/2.
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Proof. By definition of D, if the algorithm queries an arbitrary index i, it either finds t or always gets the same
value. So any deterministic algorithm proceeds the same path for any instances in D, unless it hits the target. In
other words, if the oracle only returns that an element is the target or not, it would be the same as the original
oracle. This is true as by knowing that t is not in a position, we already know the value of the queried position.
The probability that the algorithm doesn’t hit t in cn queries is 2−c

2 . Then it returns the same interval of length
(2− ϵ)n for such instances. The probability that t is not placed in the interval is ϵ−c

2−c . So the probability of error
is at least (2−c)

2 · ϵ−c
2−c = (ϵ− c)/2.

The above theorem in conjunction with Yao’s minimax theorem proves Theorem 2.3.
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