
New Trade-Offs for Fully Dynamic Matching

via Hierarchical EDCS

Soheil Behnezhad
Stanford University
beh@stanford.edu

Sanjeev Khanna∗

University of Pennsylvania
sanjeev@cis.upenn.edu

Abstract

We study the maximum matching problem in fully dynamic graphs: a graph is undergoing
both edge insertions and deletions, and the goal is to efficiently maintain a large matching after
each edge update. This problem has received considerable attention in recent years. The known
algorithms naturally exhibit a trade-off between the quality of the matching maintained (i.e.,
the approximation ratio) and the time needed per update. While several interesting results
have been obtained, the optimal behavior of this trade-off remains largely unclear. Our main
contribution is a new approach to designing fully dynamic approximate matching algorithms
that in a unified manner not only (essentially) recovers all previously known trade-offs that were
achieved via very different techniques, but reveals some new ones as well.

Specifically, we introduce a generalization of the edge-degree constrained subgraph (EDCS)
of Bernstein and Stein (2015) that we call the hierarchical EDCS (HEDCS). We also present a
randomized algorithm for efficiently maintaining an HEDCS. In an m-edge graph with maxi-
mum degree ∆, for any integer k ≥ 0 that is essentially the number of levels of the hierarchy in
HEDCS, our algorithm takes !O(min{∆1/(k+1),m1/(2k+2)}) worst-case update-time and main-
tains an (almost) α(k)-approximate matching where we show:

• α(0) = 1, α(1) = 2
3 , α(

1
δ) ≥ (12 + Ωδ(1)) for any δ > 0, and α(log∆) ≥ 1

2 .

These bounds recover all previous trade-offs known for dynamic matching in the literature
up to logarithmic factors in the update-time.

• α(2) > .612 for bipartite graphs, and α(2) > .609 for general graphs.

Note that these approximations are obtained in !O(min{∆1/3,m1/6}) update-time.

• α(3) > .563 for bipartite graphs, and α(3) > .532 for general graphs.

Note that these approximations are obtained in !O(min{∆1/4,m1/8}) update-time.

∗Supported in part by NSF awards CCF-1763514, CCF-1934876, and CCF-2008305.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3529

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Contents

1 Introduction 3

1.1 Overview of Techniques . 4

1.2 Organization . 6

2 Preliminaries 6

3 Hierarchical Edge-Degree Constrained Subgraphs (HEDCS) 8

3.1 Basic Properties of HEDCS . 8

3.2 Approximation Ratio of HEDCS: Basic Definitions 8

3.3 Approximation Ratio of HEDCS: A Factor Revealing LP 10

4 Maintaining a Hierarchical EDCS in Fully Dynamic Graphs 12

4.1 High-Level Overview of the Algorithm . 13

4.2 The Formal Algorithm . 14

4.3 Basic Properties of the Algorithm of Section 4.2 . 15

4.4 The Approximation Ratio . 17

4.5 Update Time of the Algorithm of Section 4.2 . 20

4.6 Getting a Worst-Case Update-time Bound . 26

4.7 Bounding Maximum Degree by O(
√
m) . 26

5 Conclusion & Open Problems 27

A Approximation Ratio of HEDCS: An Analytical Lower Bound 32

B Proof of Proposition 3.6 34

C Proof of Claim 4.7 37

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3530

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

1 Introduction

The maximum matching problem in graphs plays a central role in combinatorial optimization, and
hence has been extensively studied in the classical setting where we are given a static graph, and
the goal is to compute a maximum matching of the graph. However, in many applications of the
matching problem, the input graph may be dynamically changing via edge insertions and deletions.
A natural question is if it is possible to efficiently maintain a near-optimal matching of a graph as
it undergoes changes. In this paper, we study design of efficient fully dynamic algorithms for the
maximum matching problem. Specifically, given a graph G that undergoes both edge insertions
and deletions, the goal is to maintain a matching of G that

(i) is approximately as large as the maximum matching of G after each update, and

(ii) the time-complexity needed to address each update is small.

Throughout the paper, we will denote by n the number of vertices in G, by m the maximum
number of edges in G at any time, and by ∆ the maximum degree in G at any time. We will say
that a matching is an α-approximate for some α ∈ [0, 1] if its size is at least an α-fraction of the
maximum matching size.

When the goal is to maintain an exact maximum matching, then there are conditional lower
bounds [AW14, HKNS15, Dah16] ruling out any O(n1−ε) update-time algorithm (see also [San07,
vdBNS19] for some progress on the algorithmic side). As a result, much of the focus in the liter-
ature has been on approximate solutions (see e.g. [BGS11, BGS18, NS13, GP13, BHI18, BHN17,
BHN16, Sol16, CS18, ACC+18, BFH19, BDH+19, BLM20, Waj20, BDL21, BK21, RSW21] and
the references therein). These works indeed show that settling for an approximate matching does
translate into much improved update times. We highlight some of these results below.

Baswana, Gupta, and Sen [BGS11, BGS18] showed that a maximal matching, and hence a
1/2-approximate matching, can be maintained in O(log n) amortized update time (see also the
follow-up work by Solomon [Sol16]). At a high-level, their algorithm is based on the insight that
if a vertex of degree d is matched to a random neighbor, then in expectation, Ω(d) updates need
to occur before this edge is affected. Gupta and Peng [GP13] showed that for any fixed ε > 0, a
(1−ε)-approximate matching can be maintained with a worst-case update time of O(min{∆,m1/2}).
At a high-level, their approach is based on recomputing a (1 − ε)-approximate matching once a
sufficiently large number of updates have occurred. This idea directly gives the desired result when
the matching size is large, and the authors then show that whenever the matching size is small,
the underlying graph can be appropriately reduced in size. Bernstein and Stein [BS15a, BS16]
introduced a powerful data structure called the edge-degree constrained subgraph (EDCS), a sparse
subgraph of the original graph guaranteed to contain an (almost) 2/3-approximate matching. The
authors showed that this data structure can be maintained with O(min{∆1/2,m1/4}) amortized
update time, yielding a much faster algorithm for maintaining a 2/3-approximate matching. A
different approach, based on augmenting a half-approximation using short augmenting paths, was
subsequently used by [BLM20] (see also [BHN16, Waj20]) to show that a (1/2+Ωε(1))-approximate
matching can be maintained in !O(∆ε) update time for any ε > 0.

The results above clearly highlight a trade-off between the approximation ratio of the maintained
matching and the update-time. While these results capture many interesting trade-offs, two salient
features of the current state of the art are (i) there are many interesting regions where the trade-off
between approximation ratio and update time is not understood, and (ii) very different techniques
are used in obtaining results at different parts of this trade-off spectrum.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3531

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Approximation Update-Time k Note

∼ 1 !O(min{∆,m1/2}) k = 0 This matches [GP13].

∼ 2/3 !O(min{∆1/2,m1/4}) k = 1 This matches [BS15a, BS16].

.609 (.612 bipartite) !O(min{∆1/3,m1/6}) k = 2 This is a new trade-off.

.532 (.563 bipartite) !O(min{∆1/4,m1/8}) k = 3 This is a new trade-off.
...

1/2 + Ωδ(1) !Oδ(min{∆δ,mδ/2}) k = 1/δ − 1 This matches [BLM20].

∼ 1/2 !O(1) k = Θ(log∆) This matches [BGS11, BGS18, Sol16].

Table 1: Approximation/update-time trade-offs of our algorithm for different values of parameter k.
The algorithm is randomized and the bound on the update-time is worst-case. By an approximation
factor of ∼ α we mean the algorithm can get (1− ε)α-approximation for any fixed ε > 0.

The main contribution of this work is a new approach to designing fully dynamic algorithms
for approximate maximum matching that in a unified manner not only (essentially) recovers all
previously known trade-offs (up to logarithmic factors in the update-time) but reveals some new
ones as well. Specifically, we prove the following theorem:

Theorem 1.1. For any integer k ≥ 0 and any ε > 0, there is a randomized algorithm that main-
tains an (α(k)−ε)-approximate maximum matching of a fully dynamic graph against an oblivious
adversary with worst-case update time min{∆1/(k+1),m1/(2k+2)} · poly(k, 1/ε, log n) where

α(0) = 1, α(1) = 2/3, α(2) ≥ .609, α(3) ≥ .532, ..., α(log∆) ≥ 1/2.

If the graph is bipartite, then we show α(2) ≥ .612 and α(3) ≥ .563.

Therefore, our algorithm takes as input an integer parameter k ≥ 0 such that as k goes from 0
to log∆, the update time improves from !O(min{∆,m1/2}) to !O(1). The approximation ratio, on
the other hand, goes from almost 1 to almost 1/2 as k goes from 0 to log∆.

Additionally, we prove α(1/δ) ≥ 1
2 +

1

22
O(1/δ) for any δ > 0. Thus our algorithm can also beat

half-approximation with any arbitrarily small polynomial update-time.

Table 1 summarizes these trade-offs and compares them with prior works.

1.1 Overview of Techniques

As our main tool, we introduce a generalization of the edge-degree constrained subgraph (EDCS) of
Bernstein and Stein [BS15b, BS16] that we call the hierarchical EDCS (HEDCS). Before formalizing
our generalization HEDCS of EDCS, let us recall the notion of EDCS.

For any edge e = (u, v) in a graph G we use the notation degG(e) := degG(u) + degG(v) to
denote the degree of e in H, which is simply sum of the degrees of its endpoints. For an integer
β > 1, a subgraph H of a graph G is called a β-EDCS of G if:

(i) For any e ∈ H, degH(e) ≤ β.

(ii) For any e ∈ G \H, degH(e) ≥ β − 1.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3532

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Interestingly, these two local constraints suffice to guarantee that subgraph H of G includes a
(2/3−O(ε))-approximate maximum matching of G if β ≥ 1/ε (see [Beh21, AB19]).

The HEDCS is a hierarchical generalization of EDCS, where in addition to β, we have a pa-
rameter k which is the number of levels in the hierarchy. Formally, the HEDCS is defined as:

Definition 1.2 (Hierarchical Edge-Degree Constrained Subgraphs (HEDCS)).
Let β ≥ 2 and k ≥ 1 be integers. We say that a graph H is a β-HEDCSk of G iff there is a
hierarchical decomposition ∅ = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆ Hk = H satisfying the following:

(i) For every 1 ≤ i ≤ k and any edge e ∈ Hi \Hi−1, degHi
(e) ≤ β.

(ii) For any edge e ∈ G \H, degH(e) ≥ β − 1.

Note that a β-HEDCSk for k = 1 is equivalent to a β-EDCS. However, as k becomes larger than
1, the edge-degree constraints in a β-HEDCSk H of G become more relaxed, and for some edges
e, we may now have degH(e) > β (this can, e.g., happen for any edge in Hk−1). This relaxation
of edge-degree constraints gradually weakens the 2/3-approximation guarantee of an EDCS as k
becomes larger but in return, we show that it becomes easier to maintain a β-HEDCSk in dynamic
graphs as we increase the number of levels k.

Maintaining an HEDCS: We give an algorithm that for any β and k can (lazily) maintain a
β-HEDCSk in a fully dynamic graph with update-time !O(min{∆1/(k+1),m1/(2k+2)}). Here, and for
the sake of intuition, we will only overview the key insights behind maintaining a β-HEDCSk in
amortized update-time !O(∆1/(k+1)).

Our definition of β-HEDCSk allows for a k-step greedy way of constructing it: construct H1,
then construct H2 by adding some edges to H1, then construct H3 by adding edges to H2, and
so on so forth. The crucial observation here is that each edge e ∈ Hi is constrained by property
(i) of HEDCS to have edge-degree ≤ β only in subgraph Hi, regardless of which edges belong
to Hi+1, . . . , Hk. Hence, it is safe to increase the edge-degree of e ∈ Hi in the higher levels to
beyond β. As a result of this greedy construction, right after constructing Hi, any edge e with
degHi

(e) ≥ β − 1 will for sure satisfy the constraint degH(e) ≥ β − 1 of property (ii) of HEDCS.
Thus, this edge e can be safely ignored in constructing the higher levels.

To make use of the greedy construction above, we first random sample the edges of G into
subgraphs G1 ⊆ G2 ⊆ . . . ⊆ Gk+1 = G, where each Gi includes each edge of G with probability

pi ≈ ∆
i

k+1
−1. We construct H1 only using the edges of G1, then construct H2 by adding some of

the edges of G2 \G1 to H1, then construct H3 by adding some of the edges of G3 \G2 to H2, etc.
However, instead of considering all the edges in Gi \Gi−1 in constructing Hi, we ignore those edges
in Gi \Gi−1 that are already covered by Hi−1. To make sure that this helps with pruning the set of
edges that we consider in each level, we specifically construct each Hi in a way that guarantees a
sparsification property. That is, the set of edges left uncovered by Hi in the remaining graph, will
be in the order !O(µi/pi) where µi is the size of the largest matching in Gi.

One main challenge in maintaining this HEDCS H in a fully dynamic graph is that the edges
that are removed from each Hi may result in uncovered edges in the remaining graph, invaliding
property (ii) of HEDCS. The crucial observation is that each edge removal of the adversary belongs
to Hi (and thus Gi) with probability at most pi. Hence, the adversary needs to issue ≈ εµi/pi
updates to remove εµi edges of Hi. We can thus take a lazy approach in maintaining our solution.
For every i ∈ [k], we can roughly speaking “pretend” for εµi/pi updates that no edge of Hi is

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3533

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

removed (i.e., we assume those removed still exist in the graph) and thus all edges covered by Hi

remain covered. After εµi/pi updates, we recompute all of Hi, . . . , Hk from scratch, and amortize
the cost over these updates. Since Hi−1, as discussed, only leaves !O(µi−1/pi−1) edges uncovered,
we are able to construct all of Hi, . . . , Hk in time !O(µi−1/pi−1). Amortizing this cost over εµi/pi
updates leads to a bound of ≈ µi−1/pi−1

εµi/pi
≲ pi

pi−1
= ∆1/(k+1) update-time for each level i ∈ [k].

It is worth noting that our algorithm for maintaining a β-HEDCSk is very different from the
algorithms of Bernstein and Stein [BS16] for maintaining an EDCS. In particular, [BS16] maintain
a β-EDCS for β ≈

√
∆ deterministically and their update-time bound is amortized. In our con-

struction, however, β is much smaller and a constant value often suffices (for k = 1, particularly,
where we recover the (almost) 2/3-approximation of [BS16], β is a constant). Additionally, we use
randomization in a crucial way but achieve a worst-case update-time in return.

Approximation ratio of HEDCS: To understand the approximation ratio of β-HEDCSk, we
study a function α(k) which essentially tracks how the native 2/3-approximation guarantee of
EDCS gradually weakens with increasing k, when β is sufficiently large. The precise analysis of the
function α(k) becomes challenging even for small values of k. However, for any β, the computation
of α(k) can be expressed as a linear program (LP) (formalized in Section 3.3). As a result, for
k = 2, 3, we compute the value of α(k) by solving this LP for a sufficiently large value of β which
we then feed into our dynamic algorithm.

For larger values of k and β sufficiently large with respect to k, we analytically compute the
value α(k) and show that it is at least 1/2 + Ω(1/22

2k
) for any k ≥ 1. This, in particular, means

that for any fixed ε > 0, the update time can be driven down to !Oε(min{∆ε,mε/2}) while still
obtaining an approximation ratio that is strictly better than 1/2, namely, 1/2 + Ωε(1).

1.2 Organization

We start by presenting some notation and relevant results from previous works in Section 2. We
then present the hierarchical EDCS (HEDCS) data structure and its properties in Section 3. We
also present here an LP-based approach for analyzing the approximation ratio achieved by the
HEDCS data structure, and show the performance implied by it when the number of hierarchy
levels k is small. We defer the analysis of approximation achieved by HEDCS data structure when
k is allowed to asymptotically grow to Appendix A. Finally, in Section 4 we present our randomized
algorithm for maintaining the HEDCS data structure, and analyze its performance.

2 Preliminaries

Notation: We denote the input graph by G = (V,E). The vertex-set V includes n vertices that
are fixed. However, the edge-set E is dynamic. Particularly, edges can be both inserted and deleted
from E. We use ∆ as a fixed upper bound on the graph’s maximum degree at all times.

All graphs that we define in this work are on the same vertex-set V as the input graph G. As
such, when it is clear from the context, we may treat these (sub)graphs as essentially sets of edges.
Particularly, for a subgraph H we may use |H| to denote the number of edges in H, or may use
H \ H ′ for two graphs H and H ′ on vertex set V to denote a subgraph on the same vertex-set,
including edges of H that do not belong to H ′.

For any graph H, we use µ(H) to denote the size of a maximum matching in H and use !µ(H)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3534

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

to denote the size of a maximal matching of H. (We particularly use !µ(H) when we want the value
to be computable in linear time.) For any edge e = (u, v) we define degH(e) := degH(u) + degH(v)
to be the edge-degree of e in graph H. We note that so long as the endpoints of e belong to the
vertex-set of H, degH(e) is well-defined and e does not need to belong to the edge-set of H. For any
edge e = (u, v), we say e is (H,β)-underfull if degH(e) < β − 1 and (H,β)-overfull if degH(e) > β.

Throughout the paper, the !O(f) notation hides poly(log n) factors, i.e., !O(f) = f · poly(log n).

Oblivious Adversary and Worst-Case Update-Time: Our dynamic algorithms are based on
the standard oblivious adversary assumption. The sequence of updates in this model are provided
by a computationally unbounded adversary that knows the algorithm to be used. However, the
updates should not depend on the coin flips of the dynamic algorithm. Equivalently, one may
assume that the sequence of updates are fixed before the dynamic algorithm starts to operate.

As standard, we say a fully dynamic algorithm has “worst-case update-time” T if every update
is w.h.p. addressed in T time by the algorithm.

Tools: We will use the following algorithms from prior work.

Proposition 2.1 ([MV80, Vaz12]). Given any m-edge graph G = (V,E) and any parameter ε > 0,
there is a static algorithm to find a (1− ε)-approximate maximum matching of G in O(m/ε) time.

In our algorithm, we will need a subroutine that maintains a c-approximation to the size of
maximum matching in poly(log n) time, where c can be any arbitrarily large constant. Since
there are already highly efficient 2-approximate algorithms, we will use them for this purpose but
emphasize that we can instead use any other O(1)-approximate algorithm.

Proposition 2.2 (See [BFH19] or [BDH+19]). There is a randomized algorithm that maintains a
maximal matching of an n-vertex fully dynamic graph against an oblivious adversary in poly(log n)
worst-case update-time.

We also use the following algorithm to argue that if the maximum matching of G becomes small
at any point during the updates, then there is already an algorithm that can efficiently maintain
a (1 − ε)-approximation during those updates. We use this algorithm to assume that at all times
µ(G) is larger than, say log n, which is useful for our probabilistic events. See Remark 4.2.

Proposition 2.3 ([GP13]). Let µ′ = Ω(1) and 0 < ε < 1 be any parameters. There is a determinis-
tic algorithm that maintains a matching M of a fully dynamic graph G with worst case update-time
O(µ′/ε2 + log3 n) satisfying the following: at any time during the updates where µ(G) ≤ µ′ it also
holds that |M | ≥ (1− ε)µ(G).

Proof sketch. The idea is due to [GP13]. Consider a graph G and suppose that C is a vertex cover
of size O(µ(G)) of G. Consider a core subgraph of G that includes all the edges of G with both
endpoints in C and also includes |C|+ 1 arbitrary edges of each vertex in C. It is not hard to see
that a core graph includes a maximum matching of G — see [GP13, Section 3] for the proof.

Suppose that we maintain a 3-approximate vertex cover C at all times. This can be done
deterministically in O(log3 n) worst-case update time using the algorithm of [BHN17]. If at any
point during the updates |C| > 12µ′ then we know µ(G) ≥ |C|/6 > 2µ′ so even returning the empty
matching satisfies the proposition. Otherwise, we can construct the core graph in O(|C2|) = O(µ′2)
time, find a maximum matching of it in O(µ′2/ε) time using Proposition 2.1 and amortize the cost

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3535

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

over the next εµ′ updates where the maximum matching size can only change by a small amount.
As a result, we get a (1 − ε)-approximation with O(µ′/ε2 + log3 n) amortized update-time. The
update time can also be made worst-case by standard techniques. See [GP13] for more details.

The following algorithm also follows from [GP13] which is helpful when ∆ is small.

Proposition 2.4 ([GP13]). Let ∆ be an upper bound on the maximum degree of a fully dynamic
graph G at all times. For any ε > 0, one can maintain a (1− ε)-approximate maximum matching
of G in worst-case update-time O(∆/ε2).

3 Hierarchical Edge-Degree Constrained Subgraphs (HEDCS)

In this section, we focus on HEDCS, give a few useful definitions for it, and prove some of its key
properties. The dynamic algorithm for maintaining an HEDCS is then presented in Section 4.

3.1 Basic Properties of HEDCS

One useful property of any β-HEDCSk is that its maximum degree is ≤ β − 1, regardless of the
value of k. This sparsity of HEDCS is particularly useful for maintaining it.

Observation 3.1. Every β-HEDCSk H has maximum degree at most β − 1.

Proof. Fix a hierarchical decomposition H1 ⊆ . . . ⊆ Hk of H. We define the level of any edge e ∈ H
to be the unique value of i ∈ [k] such that e ∈ Hi \Hi−1.

Towards contradiction suppose degH(v) ≥ β for some vertex v. Take an arbitrary edge e of
v with the highest level. Suppose that the level of e is i, i.e., e ∈ Hi \ Hi−1. It holds that
degHi

(e) ≥ degHi
(v) + 1 = degH(v) + 1 ≥ β + 1 contradicting property (i) of HEDCS.

While we do not use the next two simple observations in our proofs, it might be instructive to
state them here regardless.

Observation 3.2. For any integers k′ ≥ k and β, any β-HEDCSk H is also a β-HEDCSk′.

Proof. Let H1, . . . , Hk be a hierarchical decomposition of H and let Hk+1 = ∅, . . . , Hk′ = ∅. It is
easy to see that H1, . . . , Hk′ satisfies properties of β-HEDCSk′ , thus H is also a β-HEDCSk′ .

Observation 3.3. For any parameters k ≥ 1 and β ≥ 2, any graph G has a β-HEDCSk.

Proof. Any graph G is known to have a β-EDCS for any β ≥ 2 [BS15b]. Since a β-EDCS is
equivalent to a β-HEDCS1, the statement follows from Observation 3.2.

3.2 Approximation Ratio of HEDCS: Basic Definitions

We now turn to measuring the approximation ratio guaranteed by an HEDCS, and give a few
definitions for this purpose.

For any integers β > β− ≥ 1, and k ≥ 1 we define a number f(k,β,β−) that plays a crucial role
in bounding the approximation ratio achieved by a β-HEDCSk (for now think of β− as a number
that is very close to β but is smaller, we will specify its value soon). In the definition below, by a
bipartite HEDCS we mean an HEDCS defined on a bipartite graph.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3536

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Definition 3.4 (Function f). For integers k ≥ 1 and β > β− ≥ 1, let f(k,β,β−) be the largest
number such that in every bipartite β-HEDCSk with vertex parts P and Q and ≥ β−|P |/2 edges,

|Q| ≥ f(k,β,β−)|P |.

Based on f , we define a function α that is more convenient to use for our approximations:

Definition 3.5 (Function α). For any integers k ≥ 1 and β > β− ≥ 1 we define

α(k,β,β−) =
2f(k,β,β−)

2f(k,β,β−) + 1
.

Let us now relate HEDCS to the value of function α defined above.

Proposition 3.6 (Approximation guarantee of HEDCS). Let H and U be subgraphs of a graph G,
let β ≥ 2 be any integer, and suppose that H is a β-HEDCSk of G \ U . Then:

• If G is bipartite, µ(H ∪ U) ≥ α(k,β,β − 1)µ(G).

• If G is not necessarily bipartite, and β ≥ c(β′k)2 log(β′k) for some integer β′ and a sufficiently
large constant c ≥ 1, then µ(H ∪ U) ≥ α(k,β′ + 2k − 1,β′)µ(G).

Subgraph U in Proposition 3.6 will be important for our particular application. But it would be
instructive to let U = ∅. Doing so, note that we get µ(H) ≥ α(k,β,β−1)µ(G) if H is a β-HEDCSk
of a bipartite graph G. Hence, H is guaranteed to include an α(k,β,β − 1)-approximate matching
of its base graph G in this case. The same can be done for general graphs, albeit with a slightly
different dependence on the parameter β.

The proof of Proposition 3.6 is very similar to the proof of [AB19] that an EDCS obtains a near
2/3-approximation. We provide the details of the needed modifications in Appendix B.

So it only remains to lower bound the value of function α(k,β,β−) for various k, β, and β− to
understand the approximation ratio achieved via HEDCS. Let us start with a trivial bound.

Observation 3.7. For any k ≥ 1 and any β > β− ≥ 1, α(k,β,β−) ≥ β−/(β−1)
β−/(β−1)+1

.

Proof. Let H be a β-HEDCSk with vertex parts P and Q and at least |H| ≥ β−|P |/2 edges. Since
the maximum degree in H is at most β−1 by Observation 3.1, we have |Q|(β−1) ≥ |H| ≥ β−|P |/2.
Rearranging the terms, we get |Q| ≥ β−

2(β−1) |P | and thus f(k,β,β−) ≥ β−

2(β−1) . As such, we get

α(k,β,β−) =
2f(k,β,β−)

2f(k,β,β−) + 1
≥

2 · β−

2(β−1)

2 · β−

2(β−1) + 1
≥ β−/(β − 1)

β−/(β − 1) + 1
.

Observation 3.7 implies that α(k,β,β − 1) ≥ 1/2 for any β > β− ≥ 1 and k ≥ 1. From
Proposition 3.6, we thus get that a β-HEDCSk for every choice of k ≥ 1 and β ≥ 2 includes
an at least 1/2-approximation for bipartite graphs. For general graphs too, Observation 3.7 and
Proposition 3.6 together imply that by increasing β, the approximation ratio of a β-HEDCSk can
get arbitrarily close to at least 1/2-approximation.

As we will see, however, much better lower bounds can be proven for α(k,β,β−) when k is
moderately small. In particular, by adapting techniques from [AB19] one can show f(1,β,β−)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3537

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

gets arbitrarily close to 1 if β is large and β− is close to β. This implies that α(1,β,β−) can get
arbitrarily close to 2/3, recovering the 2/3-approximation guarantee of EDCS.

The analysis of function α(k,β,β−), however, is more challenging for k > 1. In Section 3.3 we
give an LP-based approach that can lower bound α(k,β,β−) for moderately small values of k and
β. We use the bounds achieved by this approach for our claimed approximations for k ∈ {2, 3}.
Later in Appendix A, we present a different approach for bounding α, implying that for k = O(1/ε)
and an appropriate β, the approximation guarantee is 1

2 + Ωε(1), i.e., strictly better than half.

3.3 Approximation Ratio of HEDCS: A Factor Revealing LP

In this section, we show how to lower bound the value of f(k,β,β−) (and thus α(k,β,β−)) by
running a linear program (LP). This LP is particularly useful when the values of β and k are not
too large. In particular, we use this LP to reveal the approximation factor of our algorithm for
k = 2 and k = 3.

The LP is written based on three parameters β, β−, and k. Let us start with a number of
definitions. Define sets P = {0, . . . ,β}k and Q = {0, . . . ,β}k. For any p ∈ P (resp. q ∈ Q) and
any i ∈ [k], we use pi (resp. qi) to denote the i-th entry of p (resp. q). We define ELP to denote
all triplets (p, q, j) ∈ P ×Q× [k] such that

"j
i=1 pi + qi ≤ β.

The LP has four types of variables. First, for any (p, q, j) ∈ ELP we have a variable x(p, q, j).
Second, for any p ∈ P we have a variable nP (p). Third, for any q ∈ Q we have a variable nQ(q).
Fourth, we have a single variable r that is also the objective value to be minimized.

The LP can now be formalized as follows; we use LP (k,β,β−) to denote its optimal value.

minimize r

subject to nP (p) · pj =
#

q:(p,q,j)∈ELP

x(p, q, j) for all p ∈ P and j ∈ [k]

nQ(q) · qj =
#

p:(p,q,j)∈ELP

x(p, q, j) for all q ∈ Q and j ∈ [k]

"
q∈Q nQ(q) = r

"
p∈P nP (p) = 1
#

(p,q,j)∈ELP

x(p, q, j) ≥ β−/2

x(p, q, j) ≥ 0 for all (p, q, j) ∈ ELP

nQ(q) ≥ 0, nP (p) ≥ 0 for all p ∈ P and q ∈ Q.

In the next lemma, we show that LP (k,β,β−) lower bounds the value of f(k,β,β−).

Lemma 3.8. For any k ≥ 1, β, and β−, we have f(k,β,β−) ≥ LP (k,β,β−).

Proof. Suppose that f(k,β,β−) = ρ. From the definition of f(k,β,β−), we get that there exists a
bipartite β-HEDCSk H with vertex parts P and Q and at least β−|P |/2 edges, such that |Q| = ρ|P |.
Based on this graph H, we construct a feasible solution to the LP, and show that its objective value
is ρ. This clearly suffices to prove f(k,β,β−) ≥ LP (k,β,β−).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3538

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Let (H1, . . . , Hk) be a hierarchical decomposition of H satisfying β-HEDCSk constraints. Let
s = (s1, . . . , sk) be a vector with each si ∈ {0, . . . ,β}. We say a vertex v in H has degree-profile s
if for any i ∈ [k], degHi\Hi−1

(v) = si. For any p ∈ P, we use P (p) to denote the subset of vertices
in part P of H that have degree-profile p. Similarly, for any q ∈ Q, we use Q(q) to denote the
subset of vertices in part Q of H with degree-profile q. For any p ∈ P, q ∈ Q, and j ∈ [k], we use
H(p, q, j) to denote the subset of edges of H that belong to Hj \Hj−1, with the P -endpoint having
degree-profile p and the Q-endpoint having degree profile q.

Consider the following values for the variables of the LP:

• For any p ∈ P, we set nP (p) = |P (p)|/|P |.

• For any q ∈ Q, we set nQ(q) = |Q(q)|/|P |. (Note that the denominator is |P | and not |Q|.)

• For any (p, q, j) ∈ ELP we set x(p, q, j) to be |H(p, q, j)|/|P |.

• We set r = |Q|/|P | = ρ.

Let us now verify that this is a feasible solution for the LP.

For the LHS of the first constraint, we have nP (p) · pj =
|P (p)|pj
|P | and for the RHS, we have"

q:(p,q,j)∈ELP |H(p, q, j)|/|P |. The |P | factors cancel out from both sides, and we just need to show

|P (p)|pj =
#

q:(p,q,j)∈ELP

|H(p, q, j)|.

The LHS is the number of vertices in P with degree-profile p times pj . Since every vertex with
degree-profile p by definition has exactly pj edges in Hj \Hj−1, the LHS counts the number of edges
of Hj \ Hj−1 connected to vertices of P with degree-profile p. Note from definition of H(p, q, j)
that the RHS counts exactly the same quantity as we sum over all possible degree-profiles in the
Q-side and thus count all the Hj \Hj−1 edges with the P -endpoint having degree-profile p.

The second constraint can be verified to be satisfied in exactly the same way as the first.

For the LHS of the third constraint, we have
"

q∈Q nQ(q) =
"

q∈Q |Q(q)|/|P | = 1
|P |

"
q∈Q |Q(q)|.

Since every vertex in Q has a unique degree-profile, the sum equals |Q|. Hence, the LHS of the
third constraint equals |Q|/|P | = ρ. Since we set r = ρ, the third constraint is also satisfied.

For the LHS of the fourth constraint, we have
"

p∈P nP (p) =
"

p∈P |P (p)|/|P | = 1
|P |

"
p∈P |P (p)|.

The sum counts the number of vertices in P , thus this indeed equals one as required by the LP.

For the fifth constraint, observe that the LHS equals 1
|P |

"
(p,q,j)∈ELP |H(p, q, j)|. We claim that

1
|P |

"
(p,q,j)∈ELP |H(p, q, j)| ≥ |H|/|P |. Combined with our discussion of the first paragraph of the

proof that |H| ≥ β−|P |/2, this suffices to prove that the fifth constraint holds. To prove this claim,
take an edge e ∈ H, and let (p, q, j) be such that e ∈ H(p, q, j). We show that (p, q, j) ∈ ELP

which means means the sum
"

(p,q,j)∈ELP |H(p, q, j)| counts each edge of H at least once, proving

the claim. From the definition of degree-profiles, it can be confirmed that degHj
(e) =

"j
i=1 pi+ qi;

now since e ∈ Hj \ Hj−1, from property (i) of k-HEDCSβ , we get that degHj
(e) ≤ β. Hence,

"j
i=1 pi + qi ≤ β and thus (p, q, j) ∈ ELP by definition of ELP .

Finally, the non-negativity constraints can be easily verified to hold since P (q), Q(q), H(p, q, j),
and P are all sets and hence have non-negative size.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3539

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

k β β− f(k,β,β−) α(k,β,β−) Note

2 220 217 ≥ .780 ≥ .609 Used for k = 2 and general graphs in Theorem 1.1.

2 142 141 ≥ .789 ≥ .612 Used for k = 2 and bipartite graphs in Theorem 1.1.

3 47 42 ≥ .569 ≥ .532 Used for k = 3 and general graphs in Theorem 1.1.

3 35 34 ≥ .645 ≥ .563 Used for k = 3 and bipartite graphs in Theorem 1.1.

Table 2: Lower bounds on the values of f(k,β,β−) and α(k,β,β−) obtained via LP (k,β,β−).

From Lemma 3.8, we get that it suffices to run LP (k,β,β−) to lower bound the value of
f(k,β,β−), and thus α(k,β,β−), which determines the approximation ratio of HEDCS for different
parameters. Table 2 gives some of these results that we use in our approximation guarantees.1

4 Maintaining a Hierarchical EDCS in Fully Dynamic Graphs

In this section, we describe an algorithm that maintains a β-HEDCSk in fully dynamic graphs
efficiently (the maintained structure actually deviates slightly from a β-HEDCSk since the updates
are handled lazily, but the matching maintained is approximately as large as that of a β-HEDCSk).

The formal guarantee of the algorithm is as follows.

Theorem 4.1. Let k ≥ 0 and β ≥ 2 be integers, and let ε ∈ (0, 1/12). Let G be an n-vertex fully
dynamic graph with ∆ and m being fixed upper bounds on the maximum degree and the number
of edges of G. Provided that there are at least Ω(m) edge updates, there is an algorithm that
maintains a matching M of G such that:

• Update-time: Each update takes min{∆
1

k+1 ,m
1

2(k+1) } · poly(ε−1βk log n) time w.h.p.

• Approximation: Suppose k ≥ 1 and let α be as in Definition 3.5. If graph G is bipartite,
then at any point, w.h.p., it holds that

|M | ≥
$
α(k,β,β − 1)−O(ε)

%
· µ(G).

If G is not necessarily bipartite and β is such that β ≥ c(β′k)2 log(β′k) for some integer β′ ≥ 1
and a large enough constant c ≥ 1, then at any point, w.h.p.,

|M | ≥
$
α(k,β′ + 2k − 1,β′)−O(ε)

%
· µ(G).

If k = 0, then at any point, w.h.p., |M | ≥ (1−O(ε)) · µ(G).

For ease of exposition, we have decided not to optimize the poly(ε−1βk log n) factor in the
update-time guarantee of Theorem 4.1. Note, however, that for our final claimed bounds in Table 1

we will only need ε−1βk log n = poly(log n) and so the update time is !O(min{∆
1

k+1 ,m
1

2(k+1) }).
In Section 4.2 we present an algorithm that we show obtains the same guarantees as those

stated in Theorem 4.1, except that its amortized update-time bound is !O(∆
1

k+1). We then show in
Section 4.6 how the algorithm can be slightly modified to turn this amortized bound to worst-case

1The code is available upon request.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3540

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

using standard techniques. Finally, in Section 4.7 we show how to ignore some of the edges of the
graph as they are inserted, such that the maximum degree remains O(

√
m/ε) without changing the

maximum matching of the graph by much. From this, we get the claimed !O(min{∆
1

k+1 ,m
1

2(k+1) })
worst-case update-time guarantee of Theorem 4.1.

4.1 High-Level Overview of the Algorithm

Our starting point is a pre-processing algorithm where we construct three sequences of subgraphs
Gi, Ui, Hi of G satisfying certain structures. We maintain these subgraphs upon updates too, but in
a lazy fashion. The following properties, in particular, continue to hold throughout the algorithm:

(i) ∅ = G0 ⊆ G1 ⊆ . . . ⊆ Gk+1 = G,

(ii) G = U1 ⊇ U2 ⊇ . . . ⊇ Uk+1, and

(iii) ∅ = H0 ⊆ H1 ⊆ . . . ⊆ Hk.

Subgraphs Gi are simply edge-sampled random subgraphs of G. Specifically, for each edge e we
draw a real πe ∼ Unif[0, 1] independently (upon arrival of the edge) and e appears in Gi iff πe ≤ pi
for some parameters p1 ≤ . . . ≤ pk+1 = 1 (defined in Algorithm 1).

Each subgraph Hi, at any time, will be a β-HEDCSi of graph (G \Gi) \Ui+1 with (H1, . . . , Hi)
being its hierarchical decomposition (we prove this in Lemma 4.9). Subgraph Ui+1, in particular,
will include all (Hi,β)-underfull edges in G\Gi at any time. This immediately proves Property (ii)
of β-HEDCSi for Hi since no (Hi,β)-underfull edge is in (G \Gi) \ Ui+1 (as they are all in Ui+1).

The final matching M that we output, and lazily maintain, is an (almost) maximum matching
of the edges of Hk ∪ Uk+1 that are present in the graph. By our discussion above, Hk will be a
β-HEDCSk of (G \Gk) \ Uk+1, thus by the guarantee of HEDCS (Proposition 3.6), µ(Hk ∪ Uk+1)
should well-approximate µ(G\Gk) ≈ µ(G) where the last almost-equality comes from the fact that
Gk includes pk = o(1) fraction of the edges of G randomly, hence their removal does not change
the matching size by much. It would be useful to note here that during the updates, some of the
edges of each subgraph Hi may get removed from the graph. We do not remove these edges from
Hi immediately. Rather, we recompute Hi frequently enough to ensure that at any point only a
small number of its edges have been removed from the graph. We note that the output matching
M will not use the edges of Hk that are deleted and will always be a proper matching of G.

Remark 4.2 (Assumptions). We make the following assumption throughout the rest of Section 4
which all hold without loss of generality (w.l.o.g.).

We assume that µ(G) ≥ µ′ = 103ε−1k log n throughout the whole sequence of updates. This
assumption comes w.l.o.g. since by plugging this value of µ′ in Proposition 2.3, we get an algorithm
with worst-case update time O(log3 n + k log n/ε3) that already maintains a (1 − ε)-approximate
matching of G whenever µ(G) < µ′.

We assume ∆ ≥ 15 log n/ε as otherwise Proposition 2.4 already gives a (1 − ε)-approximation
with O(log n/ε) worst-case update time.

We assume k is small enough that ∆
1

k+1 ≥ 15 log n/ε. If not, we can pick a smaller k that

satisfies it and additionally ∆
1

k+1 = O(log n/ε). Note that by picking a smaller k the approximation

improves and the update-time of Theorem 4.1 would be poly(ε−1βk log n) when ∆
1

k+1 = O(log n/ε).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3541

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

4.2 The Formal Algorithm

We start with the pre-processing algorithm described as Algorithm 1.

Algorithm 1: PreProcessing(G)

1 Input: A graph G = (V,E) with maximum degree bounded by ∆.
2 Parameters: Integers β ≥ 1 and k ≥ 1 and real ε ∈ (0, 1).

3 For any i ∈ [k] let pi := ε ·∆
i

k+1
−1 and let pk+1 = 1. ⊲ See Claim 4.3.

4 Draw a random ranking π, i.e., for each edge e ∈ E draw πe ∼ Unif[0, 1] independently.
5 For any i ∈ [k + 1] let Gi be the subgraph of G including all edges e with πe ≤ pi.
6 Let U1 ← G, let G0 ← ∅, and let H0 ← ∅.
7 Run ComputeLayers(1) (formalized as Algorithm 2) to generate subgraphs H1, . . . , Hk+1,

U2, . . . , Uk+1, integers µ1, . . . , µk+1, and the output matching M .

SubroutineComputeLayers(j) formalized below in Algorithm 2 is called both in pre-processing
Algorithm 1 (for j = 1) and during the update time (for various j ∈ [k + 1]).

Algorithm 2: ComputeLayers(j).

1 for i in j, . . . , k do
2 µi ← !µ(Gi) ⊲ See paragraph “Maintaining !µ(Gi)” below.
3 Hi ← AddLayer(Ui ∩Gi, Hi−1, µi). ⊲ Formalized as Algorithm 3.
4 Let Ui+1 be the graph including every edge in Ui \Gi that is (Hi,β)-underfull.

5 µk+1 ← !µ(Gk+1) ⊲ See paragraph “Maintaining !µ(Gi)” below.
6 M ← a (1− ε)-approximate max matching of (Hk ∪ Uk+1) ∩G computed via Proposition 2.1.

The next subroutine AddLayer(Γ, Hi−1, µi), which is called only from Algorithm 2, starts
with Hi ← Hi−1, then iterates over the edges of Γ in the increasing order of ranks π (the same
rank function as in Algorithm 1), adds each encountered underfull edge to to Hi (and removes
their incident overfull edges that belong to Hi \ Hi−1, if any). After the algorithm iterates over
sufficiently many edges without detecting any underfull edges, it returns Hi.

Algorithm 3: AddLayer(Γ, Hi−1, µi). Input Γ will be Ui ∩Gi when called.

1 Let Hi ← Hi−1, η ← 0.
2 Iterate over the edges of Γ in the increasing order of π. Upon visiting an edge e = (u, v):
3 η ← η + 1.
4 if e is (Hi,β)-underfull then
5 Add e to Hi.
6 If there exists any (Hi,β)-overfull edge (u,w) ∈ Hi \Hi−1 remove one arbitrarily.
7 If there exists any (Hi,β)-overfull edge (v, w) ∈ Hi \Hi−1 remove one arbitrarily.
8 η ← 0.

9 if η > ⌊|Γ|/(4µiβ2 + 1)⌋ then
10 return Hi. ⊲ Corollary 4.8 guarantees that we reach this line eventually.

Handling edge updates: We would like to maintain the same output as that of Algorithm 1.
However, to optimize the update-time we handle most edge updates in a lazy fashion. Only the
following trivial updates are done immediately upon insertion/deletion:

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3542

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

• Upon insertion of an edge e to G, we add e to any graph Ui+1 where e is (Hi,β)-underfull and
e ∕∈ Gi. Moreover, we immediately draw the rank πe ∼ Unif[0, 1] for e and for any i ∈ [k + 1]
with πe ≤ pi, we add e to graph Gi.

• Upon deletion of an edge e from G, we immediately remove e from any of G1, . . . , Gk+1,
U1, . . . , Uk+1,M that includes e. Note that we do not remove e from H1, . . . , Hk.

By storing all the graphs in the adjacency-list format and storing each adjacency-list as a balanced
binary search tree, these operations can easily be implemented in O(k log n) time per update.

As discussed, the more time-consuming updates are done lazily. Particularly, for any i ∈ [k+1]
we keep a counter ci that is initially zero after the pre-processing step. Then upon every update we
set ci ← ci+1 for all i ∈ [k+1]. For any j ∈ [k+1] immediately after condition cj ≥ ε

k ·
µj+1
pj

holds, we

reset cj , cj+1, . . . , ck+1 to zero and call subroutine ComputeLayers(j) of Algorithm 2 to recompute

Hj , . . . , Hk, Uj+1, . . . , Uk+1, and Mj , . . . ,Mk+1. (If for multiple j the condition cj ≥ ε
k ·

µj+1
pj

holds

at once, we apply the procedure on the minimum such j.)

Maintaining !µ(Gi): In Algorithm 2 we need to compute the size of a maximal matching !µ(Gi)
for any i ∈ {j, . . . , k + 1}. This can of course be done in time |Gi| for each i by iterating over
the edges of Gi and constructing a maximal matching greedily. However, we need a more efficient
algorithm. To do this, for each i ∈ [k + 1] we maintain a maximal matching of Gi after each edge
update along with its size. This can be done in poly(log n) worst-case update-time for each Gi using
Proposition 2.2. Hence, whenever we call Algorithm 2 we have !µ(Gi) readily computed. That is, it
can be accessed in O(1) time, without the need to go over all edges of Gi to construct the maximal
matching. The cost is only an additive worst-case k · poly(log n) factor to the final update-time.
It is worth noting that instead of !µ(Gi), any O(1)-approximation of µ(Gi) would suffice for our
purpose and the maximality is not important. We decided to use maximal matching algorithms
since they are already fast enough.

In Section 4.3 we state some basic properties of the algorithm described above. In Section 4.5
we analyze the update-time of this algorithm. Then in Section 4.4 we analyze its approximation.

4.3 Basic Properties of the Algorithm of Section 4.2

In this section we prove a number of basic properties of the algorithm that we later use to analyze
its update-time and approximation.

Claim 4.3. Values of p1, . . . , pk+1 are set in Algorithm 1 such that they satisfy the following:

(i) p1 ≤ p2 ≤ . . . ≤ pk+1 = 1.

(ii) p1 ≥ 15 logn∆ .

(iii) pi/pi−1 = O(∆
1

k+1 /ε) for all i ≥ 2.

(iv) pk ≤ ε.

(v) pi−pi−1

1−pi−1
≥ pi/2 for all i ≥ 2.

Proof. Note from Algorithm 1 that pi := ε ·∆
i

k+1
−1 for i ∈ [k] and pk+1 = 1. From this definition,

we immediately get p1 ≤ . . . ≤ pk ≤ ε < pk+1 = 1, hence proving part (i).

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3543

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Property (ii) follows since p1 = ε·∆
1

k+1
−1 and we assumed in Remark 4.2 that∆

1
k+1 ≥ 15 log n/ε.

For Property (iii), note that pi/pi−1 ≤ ∆
i

k+1
−1/(ε∆

i−1
k+1

−1) = O(∆
1

k+1 /ε).

Property (iv) trivially holds since pk = ε∆
k

k+1
−1 ≤ ε.

Property (v) holds since pi−pi−1

1−pi−1
≥ pi − pi−1 ≥ pi − pi/∆

1
k+1 ≥ pi/2. (The latter holds so long

as ∆
1

k+1 ≥ 2 and recall that in Remark 4.2 we assume it is indeed much larger.)

Claim 4.4. It holds at all times that:

(i) G1 ⊆ G2 ⊆ . . . ⊆ Gk+1 = G.

(ii) ∅ = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆ Hk.

(iii) G = U1 ⊇ U2 ⊇ . . . ⊇ Uk+1.

(iv) For any i ∈ [k], Ui+1 is the set of all (Hi,β)-underfull edges in G \Gi.

(v) Hi ⊆ Gi for all i ∈ {0, . . . , k}.
Proof. Property (i) follows from Claim 4.3 part (i) since Gi simply includes an edge e iff πe ≤ pi,
at all times.

For Property (ii), observe that Hi’s are only modified in Algorithm 2. Particularly Hi is
obtained by calling AddLayer(Ui ∩Gi, Hi−1, µi) which only adds some of the edges of Ui ∩Gi to
Hi−1. Additionally, any time that Hi is recomputed, all of Hi, . . . , Hk are also recomputed. Hence,
the property continues to hold at all times.

We prove Property (iv) by induction. The base case i = 0 holds trivially since U1 is always equal
to G. Now observe that we set Ui+1 in Algorithm 2 to be the graph including (Hi,β)-underfull
edges in Ui \Gi. By induction hypothesis, Ui is the subgraph of (Hi,β)-underfull edges in G\Gi−1.
Hence, Ui+1 includes every (Hi,β) underfull edge in (G \ Gi−1) \ Gi = G \ Gi (by Property (i)).
During the update time, we maintain the invariant that Ui+1 is the set of all (Hi,β)-underfull edges
not in Gi for every update. Hence, the property holds at all times.

For Property (iii), note that if e ∈ Ui+1, then it must be (Hi,β)-underfull and in G \ Gi by
Property (iv). Since Hi−1 ⊆ Hi by Property (ii), then e is also (Hi−1,β)-underfull and definitely
in G \Gi−1 (since Gi−1 ⊆ Gi by Property (i)). This means e should also belong to Ui.

We prove Property (v) by induction on i. The base case i = 0 trivially holds since H0 = ∅.
Now observe that subgraph Hi is obtained in Algorithm 3 by adding some edges of Ui∩Gi to Hi−1.
This means Hi ⊆ (Gi ∩ Ui) ∪Hi−1 ⊆ Gi ∪Hi−1 ⊆ Gi ∪Gi−1 = Gi where the last two follow from
the induction hypothesis and Property (i) respectively.

The next observation will play an important role later in Lemma 4.9 where we argue that Hk

is a β-HEDCSk of (G \Gk) \Gk+1.

Observation 4.5. By the end of every iteration of the loop in Line 2 of Algorithm 3 (and thus by
the end of the whole algorithm also), the subgraph Hi \Hi−1 includes no (Hi,β)-overfull edge.

Proof. We prove by induction on the number of iterations. Initially Hi \Hi−1 is empty and so the
claim holds. Once we add an edge e to Hi, e must be (Hi,β)-underfull meaning that degHi

(e) <
β−1. Hence, after inserting e to Hi, we have degHi

(e) < β+1 which means e is not (Hi,β)-overfull.
Note, however, that adding e to Hi increases its endpoints’ degrees in Hi by one. This may lead
to (Hi,β)-overfull edges in Hi \Hi−1 that are incident to e, but removing any one such edge from
each endpoint of e ensures that Hi \Hi−1 remains to have no (Hi,β)-overfull edges.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3544

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

We will also use the following upper bound on the maximum degree of any Hi several times.

Observation 4.6. For any i ∈ {0, . . . , k}, the maximum degree of Hi is at most β at all times.

Proof. We prove by induction on i. For the base case H0 = ∅ and so the claim clearly holds.
Suppose, now, that the claim holds for Hi−1, we prove it for Hi. Consider a call to Algorithm 2
where we set Hi ← AddLayer(Ui ∩ Gi, Hi−1, µi). It suffices to prove that at this point, Hi has
maximum degree β since until Hi gets re-computed, we may only remove edges from it.

Suppose toward contradiction that degHi
(v) > β for some vertex v. Since degHi−1

(v) ≤ β by
the induction hypothesis and Hi−1 ⊆ Hi by Claim 4.4, v must have an edge e = (v, u) ∈ Hi \Hi−1.
Moreover, degHi

(e) = degHi
(u) + degHi

(v) ≥ degHi
(v) ≥ β + 1 and so e must be (Hi,β)-overfull.

This, however, contradicts Observation 4.5. Hence degHi
(v) ≤ β for all v.

The following claim bounds the number of times that we encounter an (Hi,β)-underfull edge
in Algorithm 3 by 4µiβ

2. The proof is based on a potential function used previously for EDCS by
[BS16, ABB+19, AB19, Ber20] with a simple additional idea that bounds the number of edges of
Hi by 2µiβ. For completeness, we provide the full proof in Appendix C.

Claim 4.7. Algorithm 3 reaches Line 5 at most 4µiβ
2 times.

As an immediate corollary of Claim 4.7 we get that Algorithm 3 always terminates:

Corollary 4.8 (of Claim 4.7). Algorithm 3 reaches Line 10 with probability one.

Proof. Suppose for the sake of contradiction that the algorithm does not reach Line 10. Note from
Algorithm 3 that this means η ≤ τ at all times where τ = ⌊|Γ|/(4µiβ2 + 1)⌋. From the definition
of counter η in Algorithm 3, we get that the algorithm encounters at least one (Hi,β)-underfull
edge within every τ consecutive edges of Γ (processed in the order of π). But this means, we must
encounter at least |Γ|/τ ≥ 4µiβ

2+1 edges that are (Hi,β)-underfull, contradicting Claim 4.7.

4.4 The Approximation Ratio

We now analyze the size of M and prove the approximation guarantee of Theorem 4.1.

Fix an arbitrary sequence of updates and suppose that we run the algorithm of Section 4.2
on them. Unless otherwise stated, when we refer to a data structure of the algorithm throughout
Section 4.4 (such as matching M , subgraph Hi, integer µi, graph G, etc.) we refer to the value
stored in this data structure after the whole sequence of updates has been applied.

We prove that, w.h.p., the size of M is as claimed in Theorem 4.1 at the end of applying this
sequence of updates. Note that since this holds for any arbitrary sequence, it also holds for any
update throughout the sequence.

Our starting point is the following lemma.

Lemma 4.9. Hk is a β-HEDCSk of (G \ Gk) \ Uk+1 with (H1, . . . , Hk) being its hierarchical de-
composition.

Proof. Let us first confirm property (i) of β-HEDCSk. Observe that Hi is computed in Algorithm 2
and is the output of AddLayer(Ui∩Gi, Hi−1, µi). As such, by Observation 4.5, Hi \Hi−1 includes
no (Hi,β)-overfull edges. That is, for any edge e ∈ Hi, we have degHi

(e) ≤ β right after recom-
putation of Hi. Now note that any time that some subgraph Hj for j ≤ i is recomputed, Hi gets

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3545

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

recomputed too in Algorithm 2. Moreover, other than these recomputations, the subgraphs Hi do
not change (even if their edges are removed from the graph). Hence, property (i) of β-HEDCSk
continues to hold throughout the sequence of updates.

For property (ii) of β-HEDCSk, recall from Claim 4.4 part (iv) that all (Hk,β)-underfull edges
of G \Gk belong to Uk+1 at all times. Hence, (G \Gk) \ Uk+1 includes no (Hk,β)-underfull edges.
That is, for any e ∈ (G \Gk) \ Uk+1, we have degHk

(e) ≥ β − 1.

The only remaining problem is that some of the edges of Hk may have been deleted from the
graph. Therefore, although Hk is a valid β-HEDCSk of G \ Uk+1, not all the edges in Hk ∪ Uk+1

actually exist in the graph. The rest of this section is essentially devoted to upper bounding the
number of such deleted edges.

A few definitions are in order. We use Ĝi to denote subgraph Gi right after the last recompu-
tation of µi and Hi, which must have been exactly ci updates ago. We also use Fi to refer to any
edge inserted or removed at least once from Gi during the last ci updates.

A key claim to bounding the number of deleted edges of Hk, say, is the following:

Lemma 4.10. With probability 1− 1/n4, |F1|+ . . .+ |Fk+1| ≤ 13εµ(G).

Let us first see why Lemma 4.10 proves the approximation guarantee of Theorem 4.1.

Proof of approximation guarantee of Theorem 4.1. Consider the last time that we recomputed M ;
this must have been ck+1 updates ago. Let us use H ′

i, U
′
i , and G′ to denote Hi, Ui, and G right

before recomputation ofM . Observe that we setM to be a (1−ε)-approximate maximum matching
of (H ′

k ∪ U ′
k+1) ∩G′. We show that

|M | ≥ (1− ε)µ
$
(H ′

k ∪ U ′
k+1) ∩G′%− |G′ \G|

≥ (1− ε)µ
$
(Hk ∪ Uk+1) ∩G

%
− |G′ \G|− |G \G′|− |Uk+1 \ U ′

k+1|− |Hk \H ′
k|. (1)

The first inequality holds since M at the end of the sequence is its last value computed, which is a
(1 − ε)-approximate maximum matching of (H ′

k ∪ U ′
k+1) ∩ G′, excluding its edges that have been

removed from the graph during the last ck+1 updates. The second bound holds sincy by replacing
G′ with G, H ′

k with Hk, and U
′
k+1 with Uk+1, we may only add (G\G′)∪ (Hk \H ′

k)∪ (Uk+1 \U ′
k+1)

edges to the matching, which is then canceled out with the subtracted terms.

Now note that H ′
k = Hk where recall we use Hk to denote the final value of Hk at the end of the

update sequence. This is correct because M gets recomputed any time that ComputeLayers(j)
is called for any value of j. Hence, since the last recomputation of M , we have not called
ComputeLayers(j) for any j and so Hk must have remained unchanged. Note also that any
edge in Uk+1 \U ′

k+1, G \G′, or G′ \G must have been updated during the last ck+1 updates. Since
Fk+1 by definition includes any edge of Gk+1 = G updated during the last ck+1 updates, (1) gives

|M | ≥ (1− ε)µ
$
(Hk ∪ Uk+1) ∩G

%
− 3|Fk+1|. (2)

Next, observe that Uk+1 ⊆ G by Claim 4.4. Moreover, if an edge e ∈ Hi\Hi−1 does not belong to
G, then e must have been updated during the last ci updates and must belong to Gi which together
imply e ∈ Fi. Combined with H1 ⊆ . . . ⊆ Hk of Claim 4.4, we get |Hk \G| ≤ |F1|+ . . .+ |Fk|. Now
combined with (2) this implies

|M | ≥ (1− ε)µ
$
Hk ∪ Uk+1

%
− 3|Fk+1|− (|F1|+ . . .+ |Fk|)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3546

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

≥ (1− ε)µ
$
Hk ∪ Uk+1

%
− 3(|F1|+ . . .+ |Fk+1|)

≥ (1− ε)µ
$
Hk ∪ Uk+1

%
− 39εµ(G). (Holds w.h.p. by Lemma 4.10.) (3)

This immediately proves the approximation guarantee of Theorem 4.1 for k = 0 since at all
times Uk+1 = U1 = G. So let us now focus on k ≥ 1.

Observe that by Lemma 4.9Hk is a β-HEDCSk of (G\Gk)\Uk+1 and so applying Proposition 3.6
and noting from the statement of Theorem 4.1 that β = c(β′)2 log(β′), we get

µ(Hk ∪ Uk+1) ≥ α(k,β,β − 1) · µ(G \Gk) for bipartite G, (4)

µ(Hk ∪ Uk+1) ≥ α(k,β′,β′ − k) · µ(G \Gk) for general G. (5)

To complete the proof, note that Gk includes each edge of G independently with probability
pk ≤ ε by Claim 4.3 part (v). This means that fixing a maximum matching of G, only ε fraction of
its edges appear in Gk in expectation. This bound also holds with high probability by a Chernoff
bound noting that µ(G) ≥ 103ε−1k log n from Remark 4.2. As such, we get that with probability,
say, 1 − 1/n4, µ(G \ Gk) ≥ (1 − ε)µ(G). Plugging this into (4) for bipartite graphs and (5) for
general graphs, and then applying (3), we get the claimed lower bound of Theorem 4.1 on |M |.

Toward proving Lemma 4.10, we prove two auxiliary claims first.

Claim 4.11. It holds that µ(G) ≥ 2
3(k+1)(µ1 + . . .+ µk+1)−

"k+1
i=1 |Fi| with probability 1.

Proof. Recall that µi is the size of a maximal matching of Ĝi. Let us denote this maximal matching
by Mi. Let us also use M1,k+1 to denote M1 ∪ . . . ∪Mk+1. Observe that if an edge of Mi does not

belong to G, then it must be in Fi. This means µ(G) ≥ µ(M1,k+1)−
"k+1

i=1 |Fi|.
Let us now lower bound µ(M1,k+1). To any edge e ∈ M1,k+1 we assign fractional value xe :=

he/(k + 1) where he is the number of matchings M1, . . . ,Mk+1 that include e. It can be confirmed
that x is a valid fractional matching ofM1,k+1. On the other hand, this fractional matching has size

exactly
|M1|+...+|Mk+1|

k+1 =
µ1+...+µk+1

k+1 . Any general graph has an integral matching of size at least

2/3 times the size of any of its fractional matchings. Hence, µ(M1,k+1) ≥ 2
3(k+1)(µ1 + . . .+ µk+1).

Combined with the bound of the previous paragraph, we thus get

µ(G) ≥ µ(M1,k+1)−
k+1#

i=1

|Fi| ≥
2(µ1 + . . .+ µk+1)

3(k + 1)
−

k+1#

i=1

|Fi|.

Next, we prove the following high probability upper bound on |Fi|.

Claim 4.12. With probability 1− 1/n4, it holds that |Fi| < 2 ε
kµi + 200 log n+ 4 for all i ∈ [k+ 1].

Proof. Fix some integer t ≥ 1. Since the update sequence is oblivious to the randomization of the
algorithm, we expect exactly pi · t edges of the last t updates to have rank ≤ pi, i.e., belong to Gi.
Applying Chernoff and union bounds, we get that with probability 1 − 1/n4, for any t ≤ n2 and
any i ∈ [k] (recall that k ≤ log n), we have at most pi · t+

&
100(pi · t) log n updates to Gi among

the last t updates in the sequence (note that this holds for all values of pi · t). We assume this high
probability event holds and proceed to prove the claim.

By definition of Fi, any edge in Fi must have been updated in the last ci updates, and that each
of these edges must have belonged to Gi. By the discussion above, at most pi ·ci+

&
100(pi · ci) log n

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3547

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

edges of Gi are updated in the last ci updates. Now observe that ci ≤ ε
k ·

µi+1
pi

+ 1 since any time

ci ≥ ε
k · µi+1

pi
, we immediately reset ci to zero in the update algorithm. Therefore, since clearly

ci ≤ n∆ ≤ n2, under the high probability event of the previous paragraph,

|Fi| ≤ pi · (εk (
µi+1
pi

) + 1) +
'
100

$
pi · (εk (

µi+1
pi

) + 1)
%
log n

= ε
kµi +

ε
k + pi + 10

'
(εkµi +

ε
k + pi) log n

≤ ε
kµi + 2 + 10

'
(εkµi + 2) log n (Since pi ≤ 1 and ε/k ≤ 1.)

≤ 2(εkµi + 2) + 2 · 100 log n.
(If (εkµi + 2) ≥ 10

&
(εkµi + 2) log n then the first term ensures inequality, otherwise the second.)

The proof is thus complete.

We are now ready to prove Lemma 4.10.

Proof of Lemma 4.10. From Claim 4.12 we get that with probability 1− 1/n4,

k+1#

i=1

|Fi| ≤
k+1#

i=1

(2 ε
kµi + 200 log n+ 4) ≤ 204(k + 1) log n+ 2

ε

k

k+1#

i=1

µi.

Combined with inequality
"k+1

i=1 µi ≤
3(k+1)

2 (µ(G) +
"k+1

i=1 |Fi|) implied by Claim 4.11, we get

k+1#

i=1

|Fi| ≤ 204(k + 1) log n+
2ε

k
· 3(k + 1)

2

(
µ(G) +

k+1#

i=1

|Fi|
)
.

Noting that k ≥ 1, we can simplify and re-arrange the terms, obtaining that

k+1#

i=1

|Fi| ≤
204(k + 1) log n+ 6εµ(G)

1− 6ε

(ε≤1/12)

≤ 408(k + 1) log n+ 12εµ(G) < 13εµ(G),

where the last inequality follows from our assumption of Remark 4.2 that µ(G) ≥ 103ε−1k log n.

4.5 Update Time of the Algorithm of Section 4.2

In this section we prove the update-time bound of Theorem 4.1, except that instead of a worst-case
update-time, we here prove an amortized update-time bound. We then show in Section 4.6 how
with a small modification this can be turned into a worst-case bound.

The cost of maintaining the maximal matchings of G1, . . . , Gk+1 as stated before is k poly(log n)
for every update w.h.p. The “easy updates” such as removing a deleted edge from any of Ui’s or
Gi’s can also be done in O(k log n) time as previously discussed. It only remains to analyze the
cost of the “heavy updates”. That is, the calls to ComputeLayers(j).

Let us fix some j ∈ [k + 1] and analyze the (amortized) cost of a call to ComputeLayers(j).
For the rest of this section, unless otherwise stated explicitly, when we refer to a data structure
of the algorithm (such as Hi, µi, G, etc.) we refer to the value of this data structure right after

the call to ComputeLayers(j). Note that it takes at least another ε
k ·

µj+1
pj

updates until we call

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3548

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

ComputeLayers(j) for this specific value of j again. As such, we can amortize the cost of a call to

ComputeLayers(j) over at least ε
k ·

µj+1
pj

updates.2 The resulting amortized update-time summed

up for all j ∈ [k + 1] gives the amortized update-time of the algorithm.

Let us start with an upper bound on the running time of ComputeLayers(j).

Claim 4.13. The time spent in subroutine ComputeLayers(j) is !O
$
(ε−1 + βk)|Uj |+ ε−1|Hk|

%
.

Proof. We start by analyzing the calls Hi ← AddLayer(Ui ∩Gi, Hi−1, µi) for i ∈ {j, . . . , k}. Note
that each graph Ui ∩ Gi can be constructed in !O(|Ui|) time by iterating over the edges e of Ui
and considering the rank πe which determines if e ∈ Gi. Algorithm AddLayer(Ui ∩Gi, Hi−1, µi)
iterates over the edges in Ui ∩ Gi and for each edge that is added to Hi, we have to find out if
there are any (Hi,β)-overfull connected to its endpoints. By trivially scanning all the at most β
neighbors (by Observation 4.6) this can be done in O(|Ui ∩ Gi|β) = O(|Ui|β) time. The overall
time-complexity of these calls is therefore bounded by

!O(|Uj |β + . . .+ |Uk|β) = !O(|Uj |βk) (Since Uj ⊇ . . . ⊇ Uk by Claim 4.4.)

Construction of each Ui+1 from Ui can also be done in O(|Ui|) time by simply iterating over the
edges and checking the edge-degree of each edge in O(1) time. Since this is run for i ∈ {j, . . . , k},
the total time is O(|Uj |+ . . .+ |Uk|) = O(|Uj |k).

As discussed, each µi takesO(1) time to compute, hence µj , . . . , µk+1 takeO(k) time to compute.

The final step is to run Proposition 2.1 to find a (1− ε)-approximation of (Hk ∪Uk+1)∩G. We
first construct graph (Hk ∪ Uk+1) in O(|Hk|+ |Uk+1|) time, then iterate over its edges and remove
any edge that does not belong to G. This can be done easily in !O(|Hk| + |Uk+1|) time and !O(m)
space by storing the adjacency lists of G in a BST so that each pair can be checked to be neighbors
in !O(1) time. Then running Proposition 2.1 on the resulting graph requires O(ε−1(|Hk|+ |Uk+1|))
time. Noting that Uk+1 ⊆ Uj by Claim 4.4, the overall time of this step is !O(ε−1(|Hk|+ |Uj |)).

Summing up all the mentioned bounds proves the bound of the claim.

Recall that the time-complexity of ComputeLayers(j) is amortized over ε
k · µj+1

pj
updates.

Using the upper bound of Claim 4.13, we amortized cost of ComputeLayers(j) is thus at most:

O

(ε−1 + βk)|Uj |+ ε−1|Hk|
ε
k ·

µj+1
pj

 =

.
pj |Uj |
µj + 1

+
pj |Hk|
µj + 1

/
poly(ε−1βk log n). (6)

Claim 4.14 below can be used to bound the first term, and Claim 4.15 can be used to bound
the second term.

Claim 4.14. For every j ∈ [k + 1], with probability 1− 1/n4,
pj |Uj |
µj+1 = ∆

1
k+1 · poly(ε−1β log n).

Claim 4.15. For every j ∈ [k + 1], with probability 1− 1/n4,
pj |Hk|
µj+1 = O(β log n).

2Note that there is an edge case: If the number of remaining updates is not as large as ε
k

· µj+1

pj
then we

cannot amortize the cost over the future updates. However, since this happens at most once for each j, and since
ComputeLayers(j) clearly takes at most linear-time in the number of edges of the whole graph, we can amortize
this cost over the whole sequence of updates which involves Ω(m) updates as assumed in Theorem 4.1.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3549

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

The proof of Claim 4.14 is harder and is carried out in two sections. In Section 4.5.1 we
prove Claim 4.14 for j ≥ 2 using a sparsification guarantee on the size of Uj for j ≥ 2. Then in
Section 4.5.2 we prove Claim 4.14 for j = 1 using a lower bound on the size of µ1.

The proof of Claim 4.15 is simple and we present it in Theorem 4.1.

Before proving these claims, let us confirm that they do indeed imply the update-time bound
of Theorem 4.1 (emphasizing again that we are bounding the amortized update-time here which
we turn into a worst-case bound in Section 4.6).

Proof of the update-time of Theorem 4.1. As discussed, all computations outsideComputeLayers
take k poly(log n) worst-case time per update. On the other hand, replacing the bounds of Claim 4.14
and Claim 4.15 into Equation (6), we get that the amortized cost of ComputeLayers(j) for every

j ∈ [k+1] is ∆
1

k+1 · poly(ε−1βk log n). Summing all of them up, this only multiplies this bound by

a (k + 1) factor, which is still ∆
1

k+1 · poly(ε−1βk log n).

We show in Section 4.6 how the algorithm can easily be de-amortized by spreading the cost of
a call to ComputeLayers over multiple edge-updates, obtaining the claimed update-time bound
of Theorem 4.1.

4.5.1 Proof of Claim 4.14 for j ≥ 2

For when j ≥ 2, our main tool is the following sparsification lemma, which bounds the size of
subgraph Uj . This sparsification property holds because of the special way we construct subgraph
Hj−1 in Algorithm 3. Intuitively, we commit to Hj−1 in Algorithm 3 when many edges have arrived
in the order of π and none of them are (Hj−1,β)-underfull. Since π is a random order of the edge-set
of the graph, we can then conclude that w.h.p. there are not so many (Hj−1,β)-underfull edges
left, which is precisely the size of Uj right after we recompute Hj−1.

Although the details and parameters are very different, we note that the proof of this sparsifi-
cation property is inspired by a work of Bernstein [Ber20] in the random-order streaming model.

Lemma 4.16 (Sparsification Lemma). For any i ∈ [k], at any given time in the algorithm it
holds with probability 1− 1/n5 that

|Ui+1| = O

.
µiβ

2 log n

pi

/
.

Proof. Note that after Hi and Ui+1 are computed in Algorithm 2, it takes at most ε
k · µipi other

updates to recompute them. During these updates, the size of Ui+1 increases by at most ε
k ·

µi
pi

≤ µi
pi

since each edge update either adds at most one edge to Ui+1. As a result, it suffices to prove that

w.h.p. |Ui+1| = O
0
µiβ

2 logn
pi

1
right after a call to Algorithm 2.

The crux of the proof will be about analyzing the behavior of AddLayer (Algorithm 3) which
is called in Algorithm 2 to construct subgraph Hi, which in turn, is used to define Ui+1.

As a thought experiment and only for the sake of the analysis, consider a modified version of
Algorithm 3, which we call ModifiedAddLayer, with two changes: (i) instead of Γ which will be
Ui ∩Gi when AddLayer is called, we iterate over all edges of Ui in a random order; additionally
(ii) ModifiedAddLayer takes a parameter τ as the input and returns Hi when η ≥ τ as opposed

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3550

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

to the condition in Line 9 of AddLayer. We will first analyze ModifiedAddLayer and then
show how it relates to the actual algorithm AddLayer.

Let us condition on the subgraph Hi after ModifiedAddLayer processes some t edges of Ui
and let y be the number of unprocessed edges of Ui that are (Hi,β)-underfull. The probability
that the next edge that arrives is (Hi,β)-underfull is at least y/|Ui|. Moreover, assuming that this
edge is not (Hi,β)-underfull, subgraph Hi does not change and so there are still at least y other
(Hi,β)-underfull unprocessed edges. As a result, the probability that the algorithm processes at
least 10(|Ui|/y) log n more edges and none of them are (Hi,β)-underfull, is at most

(1− y/|Ui|)10(|Ui|/y) logn ≤ e−10 log n ≤ n−10.

Equivalently, by a union bound over at most n2 choices of t, we get that if ModifiedAddLayer
successfully returns subgraph Hi, which recall that happens when it processes τ edges of Ui and
does not encounter any (Hi,β)-underfull edges, then with probability 1− n−8, the total number of
(Hi,β)-underfull unprocessed edges in Ui is at most 10(|Ui|/τ) log n. By another union bound over
at most n2 choices of τ , this holds for every input τ ∈ [n2] with probability 1− n−6.

Now let us go back to the actual algorithm AddLayer. We prove the claim even if we condition
on subgraph Gi−1. That is, suppose that all the edges e with πe ≤ pi−1 are revealed. Note that
conditioned on this event, the rank of every edge in G \Gi−1 is independent and uniformly picked
from (pi−1, 1]. Now, recall that in AddLayer we process the edges of Ui ∩ Gi in the increasing
order of π. Since an edge belongs to Gi iff πe ≤ pi and pi < pi+1 < . . . < pk+1 and since Ui
does not include any edge of Gi−1 by definition, this is equivalent to iterating over the edges of Ui
until the next edge e in the sequence has πe > pi, i.e., does not belong to Gi anymore. But if we
reach this point in AddLayer, then it means that we have not already returned Hi, contradicting
Corollary 4.8 that the algorithm always terminates. This implies that the extra condition on
the next edge not belonging to Gi is not, in fact, needed. This implies, in turn, that algorithm
ModifiedAddLayer is exactly equivalent to AddLayer where the parameter τ is simply set
to ⌊|Γ|/(4µiβ2 + 1)⌋ = ⌊|Ui ∩ Gi|/(4µiβ2 + 1)⌋. From the discussion of the previous paragraph,
therefore, we can infer that when AddLayer terminates, the number of unprocessed edges in Ui
that are (Hi,β)-underfull (which also includes all edges in Ui+1) is with probability 1−n−6 at most

10|Ui| log n
⌊|Ui ∩Gi|/(4µiβ2 + 1)⌋ . (7)

We finish the proof by considering the two cases (i) pi|Ui| ≥ µiβ
2 log n and (ii) pi|Ui| < µiβ

2 log n
separately. (Case (ii) happens to be trivial.)

Consider case (i) first. Since Ui ⊆ G \ Gi−1 and since each edge of G \ Gi−1 belongs to
Gi independently with probability pi−pi−1

1−pi−1
≥ pi/2 (the inequality holds by Claim 4.3 part (v))

conditioned on Gi−1, we get E[|Ui ∩ Gi| | Gi−1] ≥ Ω(pi|Ui|). Moreover, pi|Ui| is large enough in
case (i) to apply the Chernoff bound and get |Ui ∩Gi| = Ω(pi|Ui|) with probability, say, 1− 1/n−6.
Combined with Equation (7) we can bound the size of |Ui+1|, with probability ≥ 1− n−5 by

|Ui+1|
(7)

≤ 10|Ui| log n
⌊|Ui ∩Gi|/(4µiβ2 + 1)⌋ = O

.
|Ui| log n

pi|Ui|/(µiβ2)

/
= O

.
µiβ

2 log n

pi

/
.

(We note that we used the assumption of (i) one more time in the first equality above to get that
the denominator does not become zero when taking the floor.)

For case (ii), note that Ui+1 ⊆ Ui from Claim 4.4 and thus we simply get |Ui+1| ≤ |Ui| ≤ µiβ
2 logn
pi

where the last inequality uses the assumption of (ii). The proof is thus complete.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3551

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Armed with the sparsification lemma, we can now prove Claim 4.14 for j ≥ 2.

Proof of Claim 4.14 for j ≥ 2. From Lemma 4.16, we get that with probability 1− 1/n5,

pj |Uj |
µj + 1

=
pj

µj + 1
·O

.
µj−1β

2 log n

pj−1

/
= O

.
(∆

1
k+1 /ε) · µj−1β

2 log n

µj + 1

/
, (8)

where the last bound follows from bound pj/pj−1 = O(∆
1

k+1 /ε) for all j ≥ 2 of Claim 4.3 part (iii).

Now note that µj−1 is set to be the size of a maximal matching of Gj−1 in ComputeLayers
and µj is the size of a maximal matching of Gj for the same reason. We would like to say that
this means µj−1 = O(µj) since Gj−1 ⊆ Gj . The only remaining challenge, however, is that we only
set µj−1 to be !µ(Gj−1) in ComputeLayers and do not update µj−1 until ComputeLayers(i)
is called again for some i ≤ j − 1. As a result, the edge updates since µj−1 was last computed
may cause !µ(Gi) to get much smaller than µj−1. However, given that µj−1 is recomputed after at

most ε
k ·

µj−1+1
pj−1

updates and only pj−1 fraction of these updates belong to Gj−1 in expectation, the

expected number of removed edges from Gi−1 is at most O(εkµj−1) = O(εµj−1) and so !µ(Gi−1) is
in expectation still at least Ω(µj−1).

To go from expectation to high probability, let Fj−1 be the set of edges added/removed from
Gj−1 during the last cj updates (i.e., since the last time µj−1 was computed). We showed in
Claim 4.12 that |Fj−1| = O(εkµj−1+log n) w.h.p. As such, under this high probability event, we have
µj = !µ(Gj) = Ω(!µ(Gj−1)) = Ω(µj−1 − ε

kµj−1 − log n) = Ω(µj−1 − log n). This means that, w.h.p.,

µj−1/(µj +1) = O(log n). Plugging this to Equation (8) we get
pj |Uj |
µj+1 ≪ O(∆

1
k+1 ε−1β2 log3 n).

4.5.2 Proof of Claim 4.14 for j = 1

For the case where j = 1, by definition Uj = U1 = G. Therefore, U1 includes all the edges of the
graph. To bound the update-time in this case, we show that µ1 is sufficiently large.

While it is well-known that any m-edge graph of maximum degree ∆ has a matching of size
Ω(m/∆), we prove in Claim 4.17 below the somewhat surprising fact that essentially the same
lower bound of Ω(m/∆) holds for the size of the maximum matching in a random edge-subgraph
provided that the edge-sampling probability satisfies a rather mild constraint.

Claim 4.17. Let G = (V,E) be an arbitrary n-vertex graph, let ∆ be an upper bound on G’s
maximum degree, and let Gp = (V,Ep) be a random subgraph of G including each edge independently

with some probability p. If p ≥ max{15 lnn∆ , 32 lnn|E| }, then Pr
2
µ(Gp) ≥ |E|

8∆

3
≥ 1− 2/n4.

Proof. Since |Ep| is a sum of |E| independent p-Bernoulli random variables, we have E |Ep| = p|E|
and by applying the Chernoff bound we get

Pr

4
|Ep| <

p|E|
2

5
≤ exp

.
−0.52E |Ep|

2

/
= exp

.
−p|E|

8

/ p≥ 32 lnn
|E|
≤ exp(−4 lnn) = n−4. (9)

Next, note that for every vertex v, degGp
(v) is a sum of degG(v) independent p-Bernoulli random

variables. This means E[degGp
(v)] = p degG(v) ≤ p∆. Applying Chernoff bound, we therefore get

Pr[degGp
(v) ≥ 2p∆] ≤ exp

.
−p∆

3

/
p≥15 lnn/∆

≤ exp

.
−15 lnn

3

/
= n−5. (10)

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3552

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

By a union bound, the maximum degree ∆p of Gp is at most 2p∆ with probability 1− n−4.

Now take an arbitrary 2∆p edge coloring of Gp and pick the color class with the largest number

of colors. This is a matching of size at least
|Ep|
2∆p

. Hence,

µ(Gp) ≥
|Ep|
2∆p

(9)

≥ p|E|/2
2∆p

(10)

≥ p|E|/2
2(2p∆)

≥ |E|
8∆

,

with probability at least 1− 2n−4.

Claim 4.17 is all we need to prove Claim 4.14 for j = 1.

Proof of Claim 4.14 for j = 1. Recall from the statement of Claim 4.14 that we need to prove
p1|U1|
µ1+1 = O(∆

1
k+1β2 log2 n). Since U1 = G at all times, we would like to apply Claim 4.17 and obtain

that µ1 is w.h.p. at least Ω(|G|/∆) = Ω(|U1|/∆). From this, we would get that p1|U1|
µ1+1 = O(p1∆).

Given that p1 ≤ 15∆
1

k+1
−1 log n, the RHS is O(∆

1
k+1 log n) which is the desired bound.

To apply Claim 4.17 and complete the proof, we only need to show that p1 ≥ 15 lnn∆ and

p1 ≥ 32 lnn|G| . The first inequality is proved in Claim 4.3 part (ii). If the second condition does

not hold, i.e., if p1 < 32 lnn|G| , then we can prove the claim trivially. To see this, note that p1|U1|
µ1+1 ≤

p1|U1| = p1|G| and the latter is at most O(log n) if p1 < 32 lnn|G| . Hence, either Claim 4.14 follows
trivially or we can apply Claim 4.17 and prove it as discussed above.

4.5.3 Proof of Claim 4.15

In this section we prove Claim 4.15 that, w.h.p.,
pj |Hk|
µj+1 = O(β log n).

We start with a simple observation to bound the size of Hk.

Observation 4.18. |Hk| ≤ 2µ(G)β.

Proof. Observe that G has a vertex cover W with size at most 2µ(G) (pick the two endpoints of a
maximum matching of G). Moreover, since Hk ⊆ G by Claim 4.4 part (v), W is also a vertex cover
of Hk. Combined with Observation 4.6 that bounds the maximum degree of Hk by β, we get that
Hk has at most |W |β = 2µ(G)β edges.

Observe that if pjµ(G) ≤ 10 log n then we readily have the bound of Claim 4.15 since, by

Observation 4.18,
pj |Hk|
µj+1 ≤ pjµ(G)β

µj+1 ≤ pjµ(G)β = O(β log n). So let us assume pjµ(G) ≥ 10 log n.

Now fix a maximum matching of G and recall that each edge appears in Gj independently with
probability pi. As such, E[µ(Gj)] ≥ pjµ(G). With our earlier assumption of pjµ(G) ≥ 10 log n, we
can thus apply the Chernoff bound to get that with probability, say, 1 − 1/n4, µ(Gj) is at least
Ω(pjµ(G)). Combined with Observation 4.18, we thus get

pj |Hk|
µj + 1

≤ pj · µ(G)β
µj + 1

≤ pj · µ(G)β
µj

=
pj · µ(G)β
Ω(pjµ(G))

= O(β).

This completes the proof of Claim 4.15.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3553

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

4.6 Getting a Worst-Case Update-time Bound

The algorithm that we presented in Section 4.2 was shown in Section 4.5 to have the same update-
time as claimed in Theorem 4.1. However, we analyzed the amortized update-time in Section 4.5
instead of the worst-case update-time. In this section, we show how with a simple trick of spreading
the computation over multiple updates, we can get the same update-time but in the worst-case.
We note that this idea is standard and has been used before in [GP13] and [BFH19]. As such, we
only give a high level discussion of how it works.

Observe that the only place in the analysis of update-time that we used amortization was in
bounding the update-time caused by the calls to ComputeLayers(j) for various j. Indeed, with
the way we defined the algorithm in Section 4.2, this amortization is necessary since when we call
ComputeLayers(j) the time-complexity is larger than the final update-time and this must be
amortized. The trick to get a worst-case bound is to spread this computation over the updates.
That is, suppose that ComputeLayers(j) takes T operations. Instead of performing all these T
operations over one single edge update, we do it over multiple edge updates.

More formally, recall that in our algorithm, when we call ComputeLayers(j), we set cj to be
zero. Then upon each update we increase cj by one and call ComputeLayers(j) again when cj
exceeds ε

k ·
µj+1
pj

. Now instead, when cj exceeds half this threshold, we call ComputeLayers(j) but

spread its computation over the next 0.5 ε
k ·

µj+1
pj

updates. Only when this computation is finished,

we update the data structures. It is easy to see that the approximation ratio does not hurt since the
total “wait time” until ComputeLayers(j) is called again remains the same. For the update-time,
one can adapt essentially the same analysis of the amortized update-time of Section 4.5 to show
that this modified algorithm now has the same update-time but in the worst-case.

See [GP13] and [BFH19] for more discussions on this deamortization technique.

4.7 Bounding Maximum Degree by O(
√
m)

Up to this point, we have given an algorithm satisfying the approximation guarantee of Theorem 4.1

in ∆
1

k+1 · poly(ε−1βk log n) = !O(∆
1

k+1) update-time, whereas observe that we claimed a bound of

min{∆
1

k+1 ,m
1

2(k+1) }·poly(ε−1βk log n) in Theorem 4.1. In this section, we show how this is possible.

We prove the following lemma that can be applied as a black-box to the algorithm we have,
yielding the guarantee of Theorem 4.1.

Lemma 4.19. Consider a fully dynamic graph G and let ∆ and m be fixed upper bounds on
the maximum degree and the number of edges of G. Suppose that there is an algorithm A that
maintains an α-approximate maximum matching of G in T (∆, n) update-time for some function
T (∆, n). Then there is an algorithm A′ that maintains a (1− ε)α-approximate maximum matching
of G in O(min{T (∆, n), T (

√
m/ε, n)} log n) update-time. If the update-time of A is worst-case,

then so is that of A′.

Proof. Consider a process where each vertex v in G marks ∆′ = O(
√
m/ε) of its edges arbitrarily

and let !G be the subgraph of G including each edge that is marked by both of its endpoints. Note
that !G clearly has maximum degree ∆′. We show that this subgraph can be maintained in a way
that every edge update to G leads to at most three edge updates to !G. Additionally, we show that
!G will always include a (1−O(ε))-approximate maximum matching of G.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3554

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Let us first show how !G can be maintained in O(log n) worst-case time, by simply maintaining
the marked and not-marked edges of each vertex in a balanced BST. Upon insertion of an edge e
we check how many edges each of its endpoints are marked; each one of them that has marked less
than ∆′ edges adds e to the set of its marked edges and if both add it we insert e to !G. Upon
deletion of an edge e, if it belongs to !G we remove it, we also remove it from the marked edges of
its endpoints. If the number of marked edges of any endpoint of e goes below the threshold ∆′, it
marks a new edge and adds it to !G if it should. Overall, each edge update to G can be handled
in O(log n) time and leads to at most 3 edge updates to !G. Additionally, the construction of !G is
completely deterministic and so the sequence of updates to !G gets fixed once those of G are fixed.

Now we prove that at any time µ(!G) ≥ (1−O(ε))µ(G). To show this, we note that the marking
algorithm above was first introduced by Solomon [Sol18]. He showed that by setting ∆′ = O(α/ε)
where α is the arboricity of the graph, !G will include a (1− ε)-approximate maximum matching of
G. This is all we need since it is a well-known fact that every m-edge graph has arboricity O(

√
m).

To conclude the proof, note that we can simply maintain !G and feed it to algorithm A. Since
the maximum degree of !G is always O(

√
m/ε) and its matching is nearly as large as G, we get the

claimed bound.

5 Conclusion & Open Problems

We introduced the hierarchical edge-degree subgraph (HEDCS). Using the HEDCS, we gave a
unified framework that leads to several new update-time/approximation trade-offs for the fully
dynamic matching problem, while also recovering previous trade-offs.

While we provided both a factor revealing LP (Section 3.3) and another analytical method
(Appendix A) for analyzing the approximation ratio achieved via HEDCS, it remains an extremely
interesting problem to analyze its precise approximation factor. Specifically:

• While the approximation ratio of HEDCS can still be tangibly above 1/2 for say k = 4, k = 5,
etc., we did not specify any lower bounds on this approximation ratio in Theorem 1.1 since
our factor revealing LP of Section 3.3 becomes too inefficient to run for k > 3.

• In our bounds of Theorem 1.1 there are gaps between bipartite graphs and general graphs. We
conjecture that this gap should not exist and the approximation ratio achieved via β-HEDCSk,
for any constant k, should converge to the same value for both bipartite and general graphs
(by letting parameter β to be a large enough constant).

• It would be interesting to analyze how fast the approximation ratio of β-HEDCSk converges
to 1/2 by increasing k. While our Lemma A.1 shows that the approximation ratio of any
β-HEDCSk is at least

1
2+

1

22
O(k) (for large enough β), we do not believe this double-exponential

dependence on k is the right answer. A bound of, say, 1
2 +

1
kO(1) would be very interesting.

Next, we note that while the oblivious adversary assumption is well-received in the literature
and holds in many natural applications of dynamic matching, it would be interesting to obtain the
new trade-offs that we give also against adaptive adversaries (see [Waj20, BK21] for discussions
about adaptive adversaries in the context of dynamic matching). One way to achieve this would
be to give a deterministic dynamic algorithm for maintaining an HEDCS.

More broadly, the following intriguing questions about dynamic matching still remain open:

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3555

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Open Problem 1. Does there exist a fully dynamic algorithm maintaining a (12+Ω(1))-approximate

maximum matching in no(1) update-time? In poly(log n) update-time?

Open Problem 2. Does there exist a fully dynamic algorithm maintaining a (23+Ω(1))-approximate
maximum matching in o(n) update-time?

Acknowledgements

We thank the anonymous SODA’22 reviewers for their thoughtful comments.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3556

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

References

[AB19] Sepehr Assadi and Aaron Bernstein. Towards a Unified Theory of Sparsification for
Matching Problems. In 2nd Symposium on Simplicity in Algorithms, SOSA 2019,
January 8-9, 2019, San Diego, CA, USA, volume 69 of OASICS, pages 11:1–11:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[ABB+19] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and
Cliff Stein. Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive
Graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1616–
1635. SIAM, 2019.

[ACC+18] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic Match-
ing: Reducing Integral Algorithms to Approximately-Maximal Fractional Algorithms.
In 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic, pages 7:1–7:16, 2018.

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
434–443, 2014.

[BDH+19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and
Madhu Sudan. Fully Dynamic Maximal Independent Set with Polylogarithmic Up-
date Time. In 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 382–405. IEEE
Computer Society, 2019.

[BDL21] Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A Framework for Dynamic
Matching in Weighted Graphs. In Proccedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, to appear, 2021.

[Beh21] Soheil Behnezhad. Improved analysis of edcs via gallai-edmonds decomposition. arXiv
preprint arXiv:2110.05746, 2021.

[Ber20] Aaron Bernstein. Improved Bounds for Matching in Random-Order Streams. In 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs,
pages 12:1–12:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[BFH19] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A Deamortization Ap-
proach for Dynamic Spanner and Dynamic Maximal Matching. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1899–1918, 2019.

[BGS11] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching
in O (log n) update time. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 383–392. IEEE Computer Society, 2011.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3557

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[BGS18] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully Dynamic Maximal Matching
in O(log n) Update Time (Corrected Version). SIAM J. Comput., 47(3):617–650, 2018.

[BHI18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic Fully
Dynamic Data Structures for Vertex Cover and Matching. SIAM J. Comput., 47(3):859–
887, 2018.

[BHN16] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New Deterministic
Approximation Algorithms for Fully Dynamic Matching. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 398–411. ACM, 2016.

[BHN17] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully Dynamic
Approximate Maximum Matching and Minimum Vertex Cover in O(log3 n) Worst Case
Update Time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 470–489. SIAM, 2017.

[BK21] Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic fractional
matchings. In 48th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), pages
27:1–27:14, 2021.

[BLM20] Soheil Behnezhad, Jakub Lacki, and Vahab S. Mirrokni. Fully Dynamic Matching:
Beating 2-Approximation in ∆ε Update Time. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 2492–2508. SIAM, 2020.

[BS15a] Aaron Bernstein and Cliff Stein. Fully Dynamic Matching in Bipartite Graphs. In Au-
tomata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in
Computer Science, pages 167–179. Springer, 2015.

[BS15b] Aaron Bernstein and Clifford Stein. Fully Dynamic Matching in Bipartite Graphs.
CoRR, abs/1506.07076, 2015.

[BS16] Aaron Bernstein and Cliff Stein. Faster Fully Dynamic Matchings with Small Approx-
imation Ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
692–711. SIAM, 2016.

[CS18] Moses Charikar and Shay Solomon. Fully Dynamic Almost-Maximal Matching: Break-
ing the Polynomial Worst-Case Time Barrier. In 45th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, pages 33:1–33:14, 2018.

[Dah16] Søren Dahlgaard. On the hardness of partially dynamic graph problems and connec-
tions to diameter. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 48:1–48:14, 2016.

[GKPS06] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. De-
pendent rounding and its applications to approximation algorithms. J. ACM, 53(3):324–
360, 2006.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3558

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[GP13] Manoj Gupta and Richard Peng. Fully Dynamic (1 + ε)-Approximate Matchings. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society, 2013.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 21–30, 2015.

[MV80] Silvio Micali and Vijay V. Vazirani. An O(
&
|V ||E|) Algorithm for Finding Maximum

Matching in General Graphs. In 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer
Society, 1980.

[NS13] Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic
maximal matching. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 745–754, 2013.

[RSW21] Mohammad Roghani, Amin Saberi, and David Wajc. Beating the folklore algorithm
for dynamic matching. CoRR, abs/2106.10321, 2021.

[San07] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In Nikhil Bansal,
Kirk Pruhs, and Clifford Stein, editors, Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA,
January 7-9, 2007, pages 118–126. SIAM, 2007.

[Sol16] Shay Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 Oc-
tober 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334. IEEE
Computer Society, 2016.

[Sol18] Shay Solomon. Local algorithms for bounded degree sparsifiers in sparse graphs. In
Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages
52:1–52:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[Vaz12] Vijay V. Vazirani. An Improved Definition of Blossoms and a Simpler Proof of the MV
Matching Algorithm. CoRR, abs/1210.4594, 2012.

[vdBNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic ma-
trix inverse: Improved algorithms and matching conditional lower bounds. In 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Balti-
more, Maryland, USA, November 9-12, 2019, pages 456–480, 2019.

[Waj20] David Wajc. Rounding Dynamic Matchings Against an Adaptive Adversary. In Proc-
cedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, Chicago, IL, USA, June 22-26, 2020, pages 194–207. ACM, 2020.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3559

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

A Approximation Ratio of HEDCS: An Analytical Lower Bound

In this section, we give a lower bound on the approximation ratio α(k,β,β−) for large k. This
analysis is particularly useful when the LP approach described in Section 3.3 (which produces
better lower bounds) becomes too inefficient to run in practice. We prove the following:

Lemma A.1. Fix any integers k ≥ 1 and β > β− ≥ 1 where β− = (1− δ)β for some 0 ≤ δ ≤ 0.2.
Define h(x) := 1/22

2x
. If h(k)− 4δ ≥ 0 then

α(k,β,β−) ≥ 1

2
+
h(k)

6
− 2

3
δ.

Note that by picking β large enough and β− close enough to β, we can make δ desirably small
(even dependent on k), satisfying h(k) − 4δ ≥ h(k)/2 > 0. Hence, Lemma A.1 together with the
approximation guarantee of HEDCS based on function α(·) discussed in Section 3 implies that
setting k = 1

ε − 1 and setting β = Oε(1) large enough, results in a β-HEDCSk which includes
a strictly better than half approximate matching of ratio 1

2 + Ωε(1) and can be maintained in

update-time !O(min{∆ε,mε/2}), as claimed in Table 1.

We prove the following auxiliary claim.

Claim A.2. Let h(x) := 1/22
2x
. Let H = (P,Q,E) be any bipartite β-HEDCSk with at least

(1− δ)β|P |/2 edges, where 0 ≤ δ ≤ 1− 3
"k

i=1

&
h(i). Then

|Q| ≥ (1 + h(k)− 4δ)
|P |
2
.

Let us first see how Claim A.2 proves Lemma A.1.

Proof of Lemma A.1. First, it can be confirmed that 1 − 3
"k

i=1

&
h(i) > 0.2 for any k ≥ 1.

As a result, the condition 0 ≤ δ ≤ 0.2 of Lemma A.1 always satisfies the condition 0 ≤ δ ≤
1− 3

"k
i=1

&
h(i) of Claim A.2.

Next, note from Definition 3.4 that since Claim A.2 holds for any bipartite β-HEDCSk, we have

f(k,β,β−) ≥ 1

2
· (1 + h(k)− 4δ).

On the other hand, by Definition 3.5 we have α(k,β,β−) = 2f(k,β,β−)
2f(k,β,β−)+1

, which means

α(k,β,β−) ≥ 1 + h(k)− 4δ

2 + h(k)− 4δ
≥ 1

2
+
h(k)− 4δ

6
=

1

2
+
h(k)

6
− 2

3
δ.

The second inequality above comes from the fact that 1+x
2+x ≥ 1

2 +
x
6 for any 0 ≤ x ≤ 1.

So it remains to prove Claim A.2.

Proof. The function h in the statement is specifically defined in a way that for any integer k ≥ 2,
it satisfies the following condition which will be useful later in the proof

h(k − 1)− 12
&
h(k) ≥ h(k). (11)

Let us, for brevity, define dP := m/|P | = (1 − δ)β/2 to be the average degree of the P side of
H. Let us also assume that H1, . . . , Hk is a hierarchical decomposition for β-HEDCSk which must
exist by definition of HEDCS.

We now prove the claim by induction on k.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3560

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Base case k = 1: Since for k = 1 a β-HEDCS1 is by definition equivalent to a β-EDCS, from the
known bounds for EDCS we have |Q| ≥ dP

β−dP |P | (see e.g. [Beh21, Lemma 2.2] or [AB19]). Thus:

|Q| ≥ dP
β − dP

|P | = (1− δ)β/2

β − (1− δ)β/2
|P | = 1− δ

1 + δ
|P | ≥ (1− 2δ)|P | = (2− 4δ)

|P |
2

> (1+
1

222
− 4δ)|P |.

Induction step: Now let us assume that the claim holds for k − 1 and prove it for k. Let us for
brevity define ξ :=

&
h(k) and assume for the sake of contradiction that

|Q| < (1 + h(k)− 4δ)
|P |
2

= (1 + ξ2 − 4δ)
|P |
2
. (12)

Define QT := {w ∈ Q | degH(w) ≤ (1−ξ)β}. Since the maximum degree of any HEDCS is bounded
by β as proved in Observation 3.1, we have

(|Q|− |QT |) · β + |QT | · (1− ξ)β ≥ m ≥ (1− δ)β|P |/2.

The LHS can be simplified to β|Q|− ξβ|QT |. Then by canceling the β terms on both sides, we get

|Q|− ξ|QT | ≥ (1− δ)|P |/2.

This, in turn, implies that

|QT | ≤
|Q|− (1− δ) |P |2

ξ

(12)

≤
(1 + ξ2 − 4δ) |P |2 − (1− δ) |P |2

ξ
=

ξ2 − 3δ

ξ
· |P |
2

(δ ≥ 0)

≤ ξ · |P |
2
. (13)

Now let Pk be the vertices in P that have at least one edge in Hk \Hk−1 with the other endpoint
in Q \QT . Observe that by definition of QT , for any v ∈ Q \QT we have degH(v) > (1− ξ)β. As
such, for property (i) of HEDCS to hold for H, every vertex in Pk must have degree at most ξβ.
(As otherwise, its edge in Hk \Hk−1 that goes to Q \QT violates property (i) of HEDCS.)

We remove all the vertices in QT (along with their edges) from graph H. We also remove all
the edges of Pk from H, leaving their vertices as singletons in the graph. Observe that this removes
all the edges of Hk \Hk−1 from the graph since any such edge must be either connected to Pk or
to QT , and so we end up with a β-HEDCSk−1 and can apply the induction hypothesis. Before
applying it, though, let us upper bound the total number of removed edges. Since as discussed
every vertex in H has degree at most β, and every vertex in Pk has degree at most ξβ,

of removed edges ≤ |QT | · β + |Pk| · ξβ
(13)

≤ ξ
|P |
2

· β + |Pk| · ξβ ≤ 3

2
ξ|P |β.

Hence, the resulting β-HEDCSk−1 still has |P | vertices in one part, and the number of its edges is

(1− δ)β|P |/2− 3

2
ξ|P |β = (1− δ − 3ξ)β|P |/2.

We have δ ≤ 1 − 3
"k

i=1

&
h(i) = 1 − 3

"k−1
i=1

&
h(i) − 3ξ from the statement of the claim. This

means that, first, 1− δ − 3ξ ≥ 3
"k−1

i=1

&
h(i) ≥ 0, and second, δ + 3ξ ≤ 1− 3

"k−1
i=1

&
h(i). Hence,

the number of edges of the resulting β-HEDCSk−1 satisfies the constraint of the lemma (i.e., the
induction hypothesis) with δ′ = δ + 3ξ and so we get

|Q| ≥ |Q \QT | ≥ (1 + h(k − 1)− 4(δ + 3ξ))
|P |
2

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3561

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

= (1 + h(k − 1)− 12ξ − 4δ)
|P |
2

= (1 + h(k − 1)− 12
&
h(k)− 4δ)

|P |
2

≥ (1 + h(k)− 4δ)
|P |
2
. (By (11).)

This is exactly the needed inequality for k and so the proof is complete.

B Proof of Proposition 3.6

Proposition 3.6 (restated). Let H and U be subgraphs of a graph G, let β ≥ 2 be any integer,
and suppose that H is a β-HEDCSk of G \ U . Then:

• If G is bipartite, µ(H ∪ U) ≥ α(k,β,β − 1)µ(G).

• If G is not necessarily bipartite, and β ≥ c(β′k)2 log(β′k) for some integer β′ and a sufficiently
large constant c ≥ 1, then µ(H ∪ U) ≥ α(k,β′ + 2k − 1,β′)µ(G).

As discussed, the proof of is obtained by adapting the technique of Assadi and Bernstein [AB19]
for the analysis of EDCS. Particularly, the analysis for the bipartite case is completely due to [AB19],
and the analysis of the general case is also based on their approach, with an additional idea.

It would be convenient to consider a slightly more definition of HEDCS.

Definition B.1. Let β > β− ≥ 1 and k ≥ 1 be integers. We say graph H is a (β,β−)-HEDCSk of
G iff there is a hierarchical decomposition ∅ = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆ Hk = H satisfying:

(i) For every i ∈ [k] and any edge e ∈ Hi \Hi−1, degHi
(e) ≤ β.

(ii) For any edge e ∈ G \H, degH(e) ≥ β−.

Note that only property (ii) has changed from the original Definition 1.2 of HEDCS. In partic-
ular, a β-HEDCSk is simply a (β,β − 1)-HEDCSk.

We start with the following lemma that directly follows from the approach of [AB19]:

Lemma B.2. Let H and U be subgraphs of a bipartite graph G and suppose H is a (β,β−)-HEDCSk
of G \ U . Then µ(H ∪ U) ≥ α(k,β,β−)µ(G).

Proof sketch. The proof is essentially identical to the proof of [AB19, Lemma 3.1] and we follow
the same terminology. Let L and R be the vertex parts of the base graph G. Consider an extended
Hall’s witness set A for graph H ∪ U , suppose w.l.o.g. that A ⊆ L and let B = NH∪U (A) ⊆ R.
Also define Ā := L \A and B̄ := R \ B̄.

There must be a matching M in G going from A to B̄ such that |M | = µ(G) − µ(H ∪ U).
Additionally, it must hold that µ(H ∪ U) ≥ |Ā|+ |B| (see [AB19] Eq (1)).

Let H ′ be the subset of edges of H with one endpoint matched by M . Let P be the subset
of vertices of H ′ that touch M and let Q the rest of the vertices of H ′. Note that H ′ must be
bipartite with P and Q being a valid partitioning. Now it can be confirmed that H ′ has at least

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3562

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

|P |β−/2 edges because every edge in M is missing from H ∪U and so its edge-degree by the second
property of HEDCS must be at least β− in H. From the definition of f(k,β,β−) applied to graph
H ′, we get that the Q side of H ′ has at least f(k,β,β−)|P | = 2f(k,β,β−)|M | vertices. But since
Q ⊆ Ā ∪B, this implies that

µ(H ∪ U) ≥ |Ā|+ |B| ≥ 2f(k,β,β−)|M | ≥ 2f(k,β,β−)(µ(G)− µ(H ∪ U)).

Moving the terms, we get

µ(H ∪ U) ≥ 2f(k,β,β−)

2f(k,β,β−) + 1
µ(G) = α(k,β,β−)µ(G).

Note that Lemma B.2 immediately implies the first part of Proposition 3.6 for bipartite graphs.
This can also be extended to the general case using the Lóvasz Local Lemma (LLL) as in [AB19],
leading to the following result (which note is slightly different from Proposition 3.6):

Lemma B.3. Let H and U be subgraphs of a general (i.e., not necessarily bipartite) graph G
and suppose that H is a β-HEDCSk of G \ U . Then for some γ = O(

&
β log(kβ)), it holds that

µ(H ∪ U) ≥ α(k, 12β + γ, 12β − γ)µ(G).

Proof. Fix an arbitrary maximum matching M$ of G and then construct a random bipartite sub-
graph !G = (L,R, !E) of G by putting one endpoint of each e ∈ M$ in L and the other in R
chosen randomly, and allocating the rest of the vertices not matched by M$ independently and
uniformly to L and R. This way, the maximum matching of !G remains exactly equal to G. Now
let !H := H ∩ !G, let (H1, . . . , Hk) be the hierarchical decomposition of H, and let !Hi = Hi ∩ !G.

As in [AB19], the key observation is that the expected degree of every vertex v in !Hi is essentially
degHi

(v)/2 up to an additive error of one. Letting λ = 6
&
log(kβ)/β, the Chernoff bound gives

Pr
2
| deg !Hi

(v)− degHi
/2| ≥ λβ + 1

3
≤ 2 exp

.
−λ2β2

3β

/
= 2 exp(−12 log(kβ)) < (kβ)−10.

Now let Ev,i be the event that | deg !Hi
(v) − degHi

/2| ≥ λβ + 1. Note that Ev,i depends only
on the part that vertices in NH(v) are assigned to. Noting that |NH(v)| ≤ β − 1 for all v by
Observation 3.1, we get that Ev,i depends on at most β2k other events Eu,j . As such, the events
{Ev,i}v∈V,i∈[k] satisfy the LLL condition, and so there is a partitioning where ∩v∈V,i∈[k]Ev,i happens.
We consider this partitioning from this point on in the analysis.

Let γ := 2λβ + 3 = O(
&
β log(kβ)). We show that !H is a (12β + γ, 12β − γ)-HEDCSk of !G.

Indeed, we show that !H1, . . . , !Hk is a hierarchical decomposition, satisfying the HEDCS properties
for !H. We just have to prove the two properties of HEDCS holds.

For property (i) of HEDCS, for any i ∈ [k] and any edge e = (u, v) ∈ !Hi we have deg !Hi
(e) ≤

1
2 degHi

(e)+2λβ+2 ≤ 1
2β+2λβ+2 ≤ 1

2β+γ where the first inequality holds because of the events
Ev,i and Eu,i, and the second inequality holds because H is a β-HEDCSk.

For property (ii) of HEDCS, take an edge e = (u, v) ∈ !G \ !H. We have deg !H(e) ≥
1
2 degH(e)−

2λβ − 2 ≥ 1
2(β − 1) − 2λβ − 2 > 1

2β − λ, where again the first inequality holds because of the
events Ev,i and Eu,i, and the second inequality holds because H is a β-HEDCSk and e ∈ G \H by
construction.

Plugging Lemma B.2, we thus get µ(!H∪U) ≥ α(k, 12β+γ, 12β−γ)µ(!G). The claim then follows

since µ(H ∪ U) ≥ µ(!H ∪ U) as !H ⊆ H, and since µ(G) = µ(!G) as discussed.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3563

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

To go from the guarantee of Lemma B.3 to the guarantee of Proposition 3.6, we prove the
following claim using the dependent rounding scheme of Gandhi et al. [GKPS06].

Claim B.4. Let k ≥ 1 and β ≥ 1 be integers, let β be such that β ≥ c(β′k)2 log(β′k) for some
sufficiently large constant c ≥ 1 and integer β′ ≥ 2k − 1, and let γ be as in Lemma B.3. Then it
holds that α(k, 12β + γ, 12β − γ) ≥ (1− o(1)) · α(k,β′ + 2k − 1,β′).

Proof. We first note that to prove this claim, it is sufficient to show that f(k, 12β + γ, 12β − γ) ≥
f(k,β′ + 2k − 1,β′). So from here on, we focus on showing this holds.

Take any bipartite graph G = (P ∪ Q,E) that is a (12β + γ)-HEDCSk with at least |E| ≥
(12β − γ)|P |/2 edges. We construct from G another bipartite graph G′ = (P ∪ Q,E′) that is
a (β′ + 2k − 1)-HEDCSk with at least |P |β′/2 edges. It follows then from Definition 3.4 that
f(k, 12β + γ, 12β − γ) ≥ f(k,β′ + 2k − 1,β′).

To go from G to G′, we first construct a fractional solution G1 obtained by assigning a weight
of β′/(12β + γ) to each edge in G. This ensures that G1 is a fractional β′-HEDCSk (where the
edge-degree constraints are generalized to fractional edge-degrees) with total weight at least

β′

1
2β + γ

· |E| ≥ β′

1
2β + γ

· (12β − γ)|P |/2 = (1− o(1))β′|P |/2,

Note that the average degree of the vertices in P is now lower bounded by (1−o(1))β′/2 instead
of β′/2 but it is straightforward to show that for any β1 > β2 > 1, we have α(k,β1, (1− o(1))β2) ≥
(1− o(1)) · α(k,β1,β2). So we will now simply focus on showing that we can round the fractional
solution above, into an integral one containing at least as many edges such that the degrees of
end-points of any edge increases by at most 2k − 1 as a result of the rounding.

Our rounding algorithm proceeds in iterations such that in the iteration i of rounding, we round
all edges whose level is i. In doing this rounding, we will ensure that the degree of an edge at a level
higher than i can increase by at most 2 due to the rounding of level i edges. As such this implies
that after all k levels have been rounded, the resulting integral solution G′ satisfies the property
that all edge degrees are bounded by β′ + 2k. However, with just a slightly more careful analysis,
we will be able to improve this to β′ + (2k − 1), giving us the desired result.

We now describe the rounding scheme. We start by considering edges at level 1. We can view
this as a fractional solution x(1) (obtained by restricting the fractional solution to only level 1
edges) that induces a fractional degree x(1)(u) at each vertex u. Now using the dependent rounding
scheme in Theorem 2.3 of [GKPS06], we know that there exists an integral solution that has (i) at
least as many edges as the weight of x, and (ii) ensures that the degree of each vertex u is either
⌊x(1)(u)⌋ or ⌈x(1)(u)⌉. Thus we can obtain an integral solution where the degree of each vertex goes
up by only 1 while preserving the total fractional mass of edges at level 1. This means that any
edge at levels 1 through k sees an increase of at most 2 in the total degree of its end-points as a
result of this rounding. We can now repeat this process on edges at levels 2 through k, ultimately
obtaining an integral solution such that degree of each edge in the final rounded solution can be
bounded by β′ + 2k.

To improve the bound to β′ + (2k − 1), we observe the following. Fix any edge (u, v) at some
level i. If each of x(1)(u), x(2)(u), ..., x(i)(u), x(1)(v), x(2)(v), ..., x(i)(v) are integral, then the de-
pendent rounding scheme leaves these degrees unaltered, and hence the degree of the edge (u, v)
in the rounded solution continues to be bounded by β′. On the other hand, if at least one of

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3564

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

x(1)(u), x(2)(u), ..., x(i)(u), x(1)(v), x(2)(v), ..., x(i)(v) is fractional, then it must be that before round-
ing, the degree of the edge (u, v) satisfies

i#

j=1

0
⌊x(j)(u)⌋+ ⌊x(j)(v)⌋

1
≤ β′ − 1.

It then follows that after rounding, the degree of the edge (u, v) is at most

i#

j=1

0
⌈x(j)(u)⌉+ ⌈x(j)(v)⌉

1
≤ β′ − 1 + (2i) ≤ β′ + (2k − 1),

since i ≤ k, completing the proof.

C Proof of Claim 4.7

Claim 4.7 (restated). Algorithm 3 reaches Line 5 at most 4µiβ
2 times.

Proof. Algorithm 3 reaches Line 5 every time that it encounters an (Hi,β)-underfull edge. Hence,
it suffices to show that the total number of (Hi,β)-underfull edges encountered cannot is ≤ 2µiβ

2.
Our proof combines a potential function defined previously in [BS16, ABB+19, AB19, Ber20] (see
e.g., [AB19, Proposition 2.4] or [Ber20, Lemma 4.2]) with a simple additional idea.

Define the following potential functions

Φ1 := (2β − 1)|Hi|, Φ2 :=
#

e∈Hi

degHi
(e), Φ := Φ1 − Φ2.

We first show that Φ is non-negative at the start of Algorithm 3 after we set Hi ← Hi−1.
Recall from Observation 4.6 that the maximum degree in Hi−1 is at most β. This means that
Φ2 ≤ β|Hi−1|, implying

Φ ≥ (2β − 1)|Hi−1|− β|Hi−1| = (β − 1)|Hi−1| ≥ 0.

The key observation is that every time that we insert an (Hi,β)-underfull edge to Hi or remove
an (Hi,β)-overfull edge from Hi, the value of Φ increases by at least 1. The proof of this part is
completely due to [BS16, ABB+19, AB19, Ber20] and proceeds as described next.

Suppose that we remove an (Hi,β)-overfull edge e from Hi. This reduces Φ1 by exactly 2β− 1.
Let us now analyze the change to Φ2. On the one hand, removing e from Hi decreases Φ2 by at least
β+1 because e no longer participates in the sum and its edge-degree before removing it was at least
β + 1 for being (Hi,β)-overfull. On the other hand, e must have had at least degHi

(e)− 2 ≥ β − 1
incident edges in Hi before being deleted. Deleting e reduces the edge-degree of each of these edges
by one, and so Φ2 overall decreases by β + 1 + β − 1 = 2β. Since Φ1 decreases by exactly 2β − 1
and Φ2 decreases by at least 2β, Φ increases by at least 1.

Now consider inserting an (Hi,β)-underfull edge e into Hi. This increases Φ1 by exactly 2β−1.
Now on the one hand, inserting e increases Φ2 by at most β because e will now participate in
the sum and its edge-degree before inserting it was at most β − 2 for being (Hi,β)-underfull. On
the other hand, e has at most β − 2 incident edges in Hi (or else it would not have been (Hi,β)-
underfull before being inserted) and adding e increases their edge-degrees by one. Therefore in

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3565

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

total Φ2 increases by at most β + (β − 2) = 2β − 2. Since Φ1 increases by exactly 2β − 1 and Φ2

increases by at most 2β − 2, the value of Φ increases by at least 1 in this case too.

In the next step of the proof, we show that Φ ≤ 2µiβ
2 at all times. From Claim 4.4 recall

that Hi ⊆ Gi. Since µi is the size of a maximal matching of Gi, there exists a vertex cover W
of Gi (and thus Hi) with size |W | = 2µi. Since each vertex in Hi has maximum degree β by
Observation 4.6 and each of these edges are connected to W , we get |Hi| ≤ 2µiβ. This in particular
implies Φ1 ≤ (2β − 1)2µiβ ≤ 4µiβ

2. By non-negativity of Φ2, we get Φ ≤ 4µiβ
2.

To finish the proof, note on the one hand that in every iteration that we encounter an (Hi,β)-
underfull edge, we add it to H and thus the value of Φ increases by at least 1 by our discussion
above. On the other hand, the value of Φ is upper bounded by 4µiβ

2 as discussed. Hence, the
number of (Hi,β)-underfull edges encountered by Algorithm 3 is ≤ 4µiβ

2, which as discussed at
the beginning, completes the proof.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited.3566

D
ow

nl
oa

de
d

07
/3

1/
22

 to
 1

08
.4

.2
37

.1
1

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

