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Abstract

In the submodular cover problem, we are given a non-negative monotone submodular func-
tion f over a ground set E of items, and the goal is to choose a smallest subset S ⊆ E such that
f(S) = Q where Q = f(E). In the stochastic version of the problem, we are given m stochastic
items which are different random variables that independently realize to some item in E, and
the goal is to find a smallest set of stochastic items whose realization R satisfies f(R) = Q.
The problem captures as a special case the stochastic set cover problem and more generally,
stochastic covering integer programs.

A fully adaptive algorithm for stochastic submodular cover chooses an item to realize and
based on its realization, decides which item to realize next. A non-adaptive algorithm on the
other hand needs to choose a permutation of items beforehand and realize them one by one
in the order specified by this permutation until the function value reaches Q. The cost of the
algorithm in both case is the number (or costs) of items realized by the algorithm. It is not
difficult to show that even for the coverage function there exist instances where the expected cost
of a fully adaptive algorithm and a non-adaptive algorithm are separated by Ω(Q). This strong
separation, often referred to as the adaptivity gap, is in sharp contrast to the separations observed
in the framework of stochastic packing problems where the performance gap for many natural
problem is close to the poly-time approximability of the non-stochastic version of the problem.
Motivated by this striking gap between the power of adaptive and non-adaptive algorithms, we
consider the following question in this work: does one need full power of adaptivity to obtain a
near-optimal solution to stochastic submodular cover? In particular, how does the performance
guarantees change when an algorithm interpolates between these two extremes using a few
rounds of adaptivity.

Towards this end, we define an r-round adaptive algorithm to be an algorithm that chooses a
permutation of all available items in each round k ∈ [r], and a threshold τk, and realizes items in
the order specified by the permutation until the function value is at least τk. The permutation
for each round k is chosen adaptively based on the realization in the previous rounds, but the
ordering inside each round remains fixed regardless of the realizations seen inside the round.
Our main result is that for any integer r, there exists a poly-time r-round adaptive algorithm for
stochastic submodular cover whose expected cost is Õ(Q1/r) times the expected cost of a fully
adaptive algorithm. Prior to our work, such a result was not known even for the case of r = 1
and when f is the coverage function. On the other hand, we show that for any r, there exist
instances of the stochastic submodular cover problem where no r-round adaptive algorithm can
achieve better than Ω(Q1/r) approximation to the expected cost of a fully adaptive algorithm.
Our lower bound result holds even for coverage function and for algorithms with unbounded
computational power. Thus our work shows that logarithmic rounds of adaptivity are necessary
and sufficient to obtain near-optimal solutions to the stochastic submodular cover problem, and
even few rounds of adaptivity are sufficient to sharply reduce the adaptivity gap.
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1 Introduction

Submodular functions naturally arise in many applications domains including algorithmic game
theory, machine learning, and social choice theory, and have been extensively studied in combi-
natorial optimization. Many computational problems can be modeled as the submodular cover
problem where we are given a non-negative monotone submodular function f over a ground set
E, and the goal is to choose a smallest subset S ⊆ E such that f(S) = Q where Q = f(E). A
well-studied special case is the set cover problem where the function f is the coverage function and
the items correspond to subsets of an underlying universe. Even this special case is known to be
NP-hard to approximate to a factor better than Ω(logQ) [22,25,35,36], and on the other hand, the
classic paper of Wolsey [44] shows that the problem admits a poly-time O(logQ)-approximation
for any integer-valued monotone submodular function.

In this work we consider the stochastic version of the problem that naturally arises when there
is uncertainty about items. For instance, in stochastic influence spread in networks, the set of
nodes that can be influenced by any particular node is a random variable whose value depends on
the realized state of the influencing node (e.g. being successfully activated). In sensor placement
problems, each sensor can fail partially or entirely with certain probability and the coverage of a
sensor depends on whether the sensor failed or not. In data acquisition for machine learning (ML)
tasks, each data point is apriori a random variable that can take different values, and one may wish
to build a dataset representing a diverse set of values. For example, if one wants to build a ML
model for identifying a new disease from gene patterns, one would start by building a database
of gene patterns associated to that disease. In this case, each person’s gene pattern is a random
variable that can realize to different values depending on the race, gender, etc. For other examples,
we refer the reader to [34] (application in databases) and [2] (application in document retrieval).

In the stochastic submodular cover problem, we are given m stochastic items which are different
random variables that independently realize to an element of E, and the goal is to find a lowest
cost set of stochastic items whose realization R satisfies f(R) = Q. In network influence spread
problems each item corresponds to a node in the network, and its realization corresponds to the
set of nodes it can influence. In sensor placement problems an item corresponds to a sensor and
its realization corresponds to the area that it covers upon being deployed. In the case of data
acquisition, an item corresponds to a data point and its realization corresponds to the value it
takes upon being queried. The problem captures as a special case the stochastic set cover problem
and more generally, stochastic covering integer programs.

In stochastic optimization, a powerful computational resource is adaptivity. An adaptive al-
gorithm for stochastic submodular cover chooses an item to realize and based on its realization,
decides which item to realize next. A non-adaptive algorithm on the other hand needs to choose a
permutation of items and realize them in the order specified by the permutation until the function
value reaches Q. The cost of the algorithm in both cases is the number (or costs) of items real-
ized by the algorithm. It is well-understood that in general, adaptive algorithms perform better
than non-adaptive algorithms in terms of cost of coverage. However, in practical applications a
non-adaptive algorithm is better from the point of view of practitioners as it eliminates the need
of sequential decision making and instead requires them to make just one decision. This motivates
the study of separation between the performance of adaptive and non-adaptive algorithms, known
as the adaptivity gap. For many stochastic packing problems, the adaptivity gap is only a con-
stant. For instance, the adaptivity gap for budgeted stochastic max coverage where you are given
a constraint on the number of items that can be chosen and the goal is to maximize coverage,
the adaptivity gap is bounded by 1 − 1/e [4]. In a sharp contrast, for the covering version of the
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problem, it is not difficult to show an adaptivity gap of Ω(Q) [26].

Motivated by this striking separation between the power of adaptive and non-adaptive algo-
rithms, we consider the following question in this work: does one need full power of adaptivity
to obtain a near-optimal solution to stochastic submodular cover? In particular, how does the
performance guarantees change when an algorithm interpolates between these two extremes using
a few rounds of adaptivity.

Towards this end, we define an r-round adaptive algorithm to be an algorithm that chooses a
permutation of all available items in each round k ∈ [r], and a threshold τk, and realizes items
in the order specified by the permutation until the function value is at least τk. A non-adaptive
algorithm would then correspond to the case r = 1 (with τ1 = Q), and an adaptive algorithm
would correspond to the case r = m (with τk = 0 for all k ∈ [r]). The permutation for each round
k is chosen adaptively based on the realization in the previous rounds, but the ordering inside
each round remains fixed regardless of the realizations seen inside the round. We will call this the
“permutation framework” for an r-round algorithm.

Our main result is that for any integer r, there exists a poly-time r-round adaptive algorithm
for stochastic submodular cover whose expected cost is Õ(Q1/r) times the expected cost of a fully
adaptive algorithm, where the Õ notation is hiding a logarithmic dependence on the number of items
and the maximum cost of any item. Prior to our work, such a result was not known even for the case
of r = 1 and when f is the coverage function. Indeed achieving such a result was cast as an open
problem by Goemans and Vondrak [26] who achieved an O(n2) bound (corresponding to O(Q2)) on
the adaptivity gap of stochastic set cover. Furthermore, we show that for any r, there exist instances
of the stochastic submodular cover problem where no r-round adaptive algorithm can achieve
better than Ω(Q1/r) approximation to the expected cost of a fully adaptive algorithm. Our lower
bound result holds even for coverage function and for algorithms with unbounded computational
power. Thus our work shows that logarithmic rounds of adaptivity are necessary and sufficient to
obtain near-optimal solutions to the stochastic submodular cover problem, and even few rounds of
adaptivity are sufficient to sharply reduce the adaptivity gap.

Remark 1.1. One may consider an alternate notion of r-round adaptive algorithm: In each round
k ∈ [r], the algorithm chooses a fixed set of items to realize in parallel where the choice of the set
depends on the realizations in the previous rounds (instead of a permutation over items). Let us
call this framework the “set framework”. One benefit of this variation is that items in each round
can be realized in parallel. Unfortunately in this framework, any algorithm that always outputs a
valid cover (as is our requirement), must in general include all remaining items in the last round,
because for any proper subset of the remaining items there will be positive probability that this
subset will not able to cover the entire set. Hence, the r-round adaptivity gap would be Ω(m).

Hence, one would have to consider a relaxed version of the problem and require that the al-
gorithm achieves the desired coverage guarantee only with probability 1 − o(1). Our algorithmic
results directly carry over to this variant of the problem. In particular, for any fixed r, we ob-
tain poly-time r-round adaptive algorithm in the set framework whose cost is Õ(Q1/r) times the
expected cost of a fully adaptive algorithm, and that succeeds with probability at least 1 − o(1).
At the same time, our lower bound of Ω(Q1/r) continues to hold in this relaxed setting. In the
following we will provide results for only the permutation framework, with the understanding that
all our results carry over to the set framework with the relaxed version of the problem.
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1.1 Problem Statement

Let X := {X1, . . . ,Xm} be a collection of m independent random variables each supported on
the same ground set E and f be an integer-valued1 non-negative monotone submodular function
f : 2E → N+. We will refer to random variables Xi’s as items and any set S ⊆ X as a set of items.
For any i ∈ [m], we use xi ∈ E to refer to a realization of item (random variable) Xi and define
X := {x1, . . . , xm} as the realization of X. We slightly abuse notation2 and extend f to the ground
set of items X such that for any set S ⊆ X, f(S) := f(∪Xi∈SXi): this definition means that for any
realization S of S, f(S) = f(∪xi∈Sxi). Finally, there is an integer-valued cost ci ∈ [C] associated
with item Xi ∈ X.

Let Q := f(E). For any set of items S ⊆ X, we say that a realization S of S is feasible iff
f(S) = Q. We will assume that any realization X of X is always feasible, i.e. f(X) = Q3. We will
say that a realization X of X is covered by a realization S ⊆ X of S iff S is feasible. The goal in the
stochastic submodular cover problem is to find a set of items S ⊆ X with the minimum cost which
gets realized to a feasible set. In order to do so, if we include any item Xi to S we pay a cost ci,
and once included, Xi would be realized to some xi ∈ E and is fixed from now on. Once a decision
made regarding inclusion of an item in S, this item cannot be removed from S.

For any set of items S ⊆ X, we define cost(S) to be the total cost of all items in S, i.e.
cost(S) =

∑
i∈[m] ci · 1[Xi ∈ S], where 1[·] is an indicator function. For any algorithm A, we

refer to the total cost of solution S returned by A on an instantiation X of X as the cost of A on
X denoted by cost(A(X)). We are interested in minimizing the expected cost of the algorithm A,
i.e., EX∼X [cost(A(X))].

Example 1.1 (Stochastic Set Cover). A canonical example of the stochastic submodular
cover problem is the stochastic set cover problem. Let U be a universe of n “elements” (not to
be mistaken with “items”) and X = {X1, . . . ,Xm} be a collection of m random variables where
each random variable Xi is supported on subsets of U , i.e., realizes to some subset Ti ⊆ U . We
refer to each random variable Xi as a stochastic set. In the stochastic set cover problem, the
goal is to pick a smallest (or minimum weight) collection S of items (or equivalently sets) in X

such that the realized sets in this collections cover the universe U .

We consider the following types of algorithms (sometimes referred to as policies in the literature)
for the stochastic submodular cover problem:

• Non-adaptive: A non-adaptive algorithm simply picks a fixed ordering of items in X and insert
the items one by one to S until the realization S of S become feasible.

• Adaptive: An adaptive algorithm on the other hand picks the next item to be included in S

adaptively based on the realization of previously chosen items. In other words, the choice of each
item to be included in S is now a function of the realization of items already in S.

• r-round adaptive: We define r-round adaptive algorithms as an “interpolation” between the
above two extremes. For any integer r ≥ 1, an r-round adaptive algorithm chooses the items
to be included in S in r rounds of adaptivity: In each round i ∈ [r], the algorithm chooses a
threshold τi ∈ N+ and an ordering over items, and then inserts the items one by one according to

1We present our results for integer-valued functions for simplicity of exposition. All our results can easily be
generalized to positive real-valued functions.

2Note that here f : 2E → N+ is being extended to a function f ′ : 2X → N+, but we chose to refer to f ′ as f .
3One can ensure this by adding an item Xi to the ground set such that f(xi) = Q for all realizations xi of Xi, but

cost of this item is higher than the combined cost of all other items.
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this ordering to S until for the realized set S, f(S) ≥ τi. Once this round finishes, the algorithm
decides on an ordering over the remaining items adaptively based on the current realization.

In above definitions, a non-adaptive algorithm corresponds to case of r = 1 round adaptive algo-
rithm (with τ1 = Q) and a (fully) adaptive algorithm corresponds to the case of r = m (here τi is
irrelevant and can be thought as being zero).

Adaptivity gap. We use OPT to refer to the optimal adaptive algorithm for the stochastic
submodular cover problem, i.e., an adaptive algorithm with minimum expected cost. We use
the expected cost of OPT as the main benchmark against which we compare the cost of other
algorithms. In particular, we define adaptivity gap as the ratio between the expected cost of the
best non-adaptive algorithm for the submodular cover problem and the expected cost of OPT.
Similarly, for any integer r, we define the r-round adaptivity gap for r-rounds adaptive algorithms
in analogy with above definition.

Remark 1.2. The notion of “best” non-adaptive or r-round adaptive algorithm defined above allow
unbounded computational power to the algorithm. Hence, the only limiting factor of the algorithm
is the information-theoretic barrier caused by the uncertainty about the underlying realization.

1.2 Our Contributions

In this paper, we establish tight bounds (up to logarithmic factor) on the r-round adaptivity gap
of the stochastic submodular cover problem for any integer r ≥ 1. Our main result is an r-round
adaptive algorithm (for any integer r ≥ 1) for the stochastic submodular cover problem.

Result 1 (Main Result). For any integer r ≥ 1 and any monotone submodular function
f , there exists an r-round adaptive algorithm for the stochastic submodular cover problem for
function f and set of items X with cost of each item bounded by C that incurs expected cost
O(Q1/r · logQ · log(mC)) times the expected cost of the optimal adaptive algorithm.

A corollary of Result 1 is that the r-round adaptivity gap of the submodular cover problem is

Õ(Q1/r). This implies that using only O
(

logQ
log logQ

)
rounds of adaptivity, one can reduce the cost of

the algorithm to within poly-logarithmic factor of the optimal adaptive algorithm. In other words,
one can “harness” the (essentially) full power of adaptivity, in only logarithmic number of rounds.

Various stochastic covering problems can be cast as submodular cover problem, including the
stochastic set cover problem and the stochastic covering integer programs studied previously in the
literature [21, 26, 27]. As such, Result 1 directly extends to these problems as well. In particular,
as a (very) special case of Result 1, we obtain that the adaptivity gap of the stochastic set cover
problem is Õ(n) (here n is the size of the universe), improving upon the O(n2) bound of Goemans
and Vondrak [26] and settling an open question in their work regarding the adaptivity gap of this
problem (an Ω(n) lower bound was already shown in [26]).

We further prove that the r-round adaptivity gaps in Result 1 are almost tight for any r ≥ 1.

Result 2. For any integer r ≥ 1, there exists a monotone submodular function f : 2E → N+,
in particular a coverage function, with Q := f(E) such that the expected cost of any r-round
adaptive algorithm for the submodular cover problem for function f , i.e., the stochastic set
cover problem, is Ω( 1

r3
·Q1/r) times the expected cost of the optimal adaptive algorithm.
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Result 2 implies that the r-round adaptivity gap of the submodular cover problem is Ω( 1
r3
·Q1/r), i.e.,

within poly-logarithmic factor of the upper bound in Result 1. An immediate corollary of this result
is that Ω( logQ

log logQ) rounds of adaptivity are necessary for reducing the cost of the algorithms to within
logarithmic factors of the optimal adaptive algorithm. We further point out that interestingly, the
optimal adaptive algorithm in instances created in Result 2 only requires r + 1 rounds; as such,
Result 2 in fact is proving a lower bound on the gap between the cost of r-round and (r+1)-round
adaptive algorithms.

We remark that our algorithm in Result 1 is polynomial time (for polynomially-bounded item
costs), while the lower bound in Result 2 holds again algorithms with unbounded computational
power (see Remark 1.2).

1.3 Related Work

The problem of submodular cover was perhaps first studied by [44], who showed that a greedy
algorithm achieves an approximation ratio of log(Q). Subsequent to this there has been a lot of
work on this problem in various settings [8, 9, 21, 27, 29, 32, 33]. To our knowledge, the question of
adaptivity in stochastic covering problems was first studied in [26] for the special case of stochastic
set cover and covering integer programs. It was shown that the adaptivity gap of this problem is
Ω(n), where n is the size of the universe to be covered. A non-adaptive algorithm for this problem
with an adaptivity gap of O(n2) was also presented.

Subsequently there has been a lot of work on stochastic set cover and the more general stochastic
submodular cover problem in the fully adaptive setting. A special case of stochastic set cover was
studied by [34] in the adaptive setting, and an adaptive greedy algorithm was studied4. In [27] the
notion of “adaptive submodularity” was defined for adaptive optimization, which demands that
given any partial realization of items, the marginal function with respect to this realization remains
monotone submodular. This paper also presented an adaptive greedy algorithm for the problem
of stochastic submodular cover, and stochastic submodular maximization subject to cardinality
constraints.5 In [32] a more general version of stochastic submodular cover problem was studied in
the fully adaptive setting, and their results imply the best-possible approximation ratio of log(Q)
for stochastic submodular cover. In [21] an adaptive dual greedy algorithm was presented for this
problem. It was also shown that the adaptive greedy algorithm of [27] achieves an approximation
ratio of k log(P ), where P is the maximum function value any item can contribute, and k is the
maximum support size of the distribution of any item. There has also been work on this problem
when the realization of items can be correlated, unlike our setting where the realization of each item
is independent. In this setting, [33] gives an adaptive algorithm which achieves an approximation
ratio of log(Qs), where Q is the desired coverage, and s denote the support size of the joint
distribution of these correlated items. In the case of independent realizations this quantity will
typically be exponential in the number of items. In [29] a similar result was shown for a slightly
different algorithm.

The question of adaptivity has also been studied for a related problem of stochastic submodular
maximization subject to cardinality constraints [4]. The goal in this problem is to find a set of
items with cardinality at most k, so as to maximize the expected value of a stochastic submodular
function. This paper showed that a non-adaptive greedy algorithm for this problem achieves an

4The paper originally claimed an approximation ratio of log(n) for this algorithm, however, the claim was later
retracted by the authors due to an error in the original analysis [38]

5It was originally claimed that this algorithm achieves an approximation ratio of log(Q) where Q is the desired
coverage, however, the claim was later retracted due to an error in the analysis [37]. The authors have claimed an
approximation ratio of log2(Q) since then.
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approximation ratio of (1 − 1
e )

2 with respect to an optimal adaptive algorithm. This result was
later generalized to stochastic submodular maximization subject to matroid constraints [3]. In [30],
the adaptivity gap of stochastic submodular maximization subject to a variety of prefix-closed
constraints was studied under the setting where the distribution of each item is Bernoulli. This class
of prefix-closed constraints includes matroid and knapsack constraints among others. It was shown
that there is a non-adaptive algorithm that achieves an approximation ratio of 1/3 with respect to
an optimal adaptive algorithm. In [31], the problem of stochastic submodular maximization was
also studied under various types of constraints, including knapsack constraints. An approximation
ratio of τ for this problem under knapsack constraint was given, where τ is the smallest probability
of any element in the ground set being realized by any item. The question of adaptivity has also
been studied for other stochastic problems such as stochastic packing, knapsack, matching etc.
(see, e.g. [6, 7, 12,19,20,45] and references therein).

There has also been a lot of work under the framework of 2-stage or multi-stage stochastic
programming [16, 40–42]. In this framework, one has to make sequential decisions in a stochastic
environment, and there is a parameter λ, such that the cost of making the same decision increases by
a factor λ after each stage. The stochastic program in each stage is defined in terms of the expected
cost in the later stages. The central question in these problems is– when can we find good solutions
to this complex stochastic program, either by directly solving it or by finding approximations to
it? This largely depends on the complexity of the stochastic program at hand. For example, if the
distribution of the environment is explicitly given, then one might be able to solve the stochastic
program exactly by using integer programming, and this question becomes largely computational
in nature. This is fundamentally different than the information theoretic question we consider in
this paper.

Aside from the stochastic setting, algorithms with limited adaptivity have been studied across
a wide spectrum of areas in computer science including in sorting and selection (e.g. [13, 17, 43]),
multi-armed bandits (e.g. [1, 39]), algorithms design (e.g. [10, 11, 23, 24]), among others; we refer
the interested reader to these papers and references therein for more details.

Remark 1.3. Our study of r-round adaptive algorithm for submodular cover is reminiscent of a
recent work of Chakrabarti and Wirth [15] on multi-pass streaming algorithms for the set cover
problem. They showed that allowing additional passes over the input in the streaming setting
(similar-in-spirit to more rounds of adaptivity) can significantly improve the performance of the
algorithms and established tight pass-approximation tradeoffs that are similar (but not identical)
to r-round adaptivity gap bounds in Results 1 and Results 2. In terms of techniques, our upper
bound result—our main contribution—is almost entirely disjoint from the techniques in [15] (and
works for the more general problem of submodular cover, whereas the results in [15] are specific to
set cover), while our lower bound uses similar instances as [15] but is based on an entirely different
analysis.

1.4 Organization

In Section 2 we present some preliminaries for our problem. In Section 3 we present a technical
overview of our main results. In Section 4 we present a non-adaptive selection algorithm that
will be used to prove our upper bound result in Section 5. We present the lower bound result in
Section 6.
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2 Preliminaries

Notation. Throughout this paper we will use symbols S, T, and R to denote subsets of the ground
set E, and use symbols A and B to denote subsets of [m], i.e., indices of items. We will also use
symbols S,T and R to denote subsets of X which realize to subsets S, T and R of the ground set E.

Submodular Functions: Let E be a finite ground set and N+ be the set of non-negative integers.
For any set function f : 2E → N+, and any set S ⊆ E, we define the marginal contribution to f as
the set function fS : 2E → N+ such that for all T ⊆ E,

fS(T ) = f(S ∪ T )− f(S).

When clear from the context, we abuse the notation and for e ∈ E, we use f(e) and fS(e)
instead of f({e}) and fS({e}).

A set function f : 2E → N+ is submodular iff for all S ⊆ T ⊆ E and e ∈ E: fS(e) ≥ fT (e).
Function f is additionally monotone iff f(S) ≤ f(T ). Throughout the paper, we solely focus on
monotone submodular functions unless stated explicitly otherwise.

We use the following two well-known facts about submodular functions throughout the paper.

Fact 2.1. Let f(·) be a monotone submodular function, then:

∀S, T ⊆ E f(S) ≤ f(T ) +
∑

e∈S\T

fT (e).

Fact 2.2. Let f(·) be a monotone submodular function, then for any S ⊆ E, fS(·) is also monotone
submodular.

3 Technical Overview

We give here an overview of the techniques used in our upper and lower bound results.

3.1 Upper Bound on r-round Adaptivity Gap

In this discussion we focus mainly on our non-adaptive (r = 1) algorithm, which already deviates
significantly from the previous work of Goemans and Vondrak [26]. A non-adaptive algorithm
simply picks a permutation of items and realize them one by one in a set S until f(S) = Q. Hence,
the “only” task in designing a non-adaptive algorithm is to find a “good” ordering of items, that
is, an ordering such that its prefix that covers Q has a low expected cost.

Consider the following algorithmic task: In the setting of stochastic submodular cover problem,
suppose we are given a (ordered) set S of stochastic items. Can we pick a low-cost (ordered) set T
of stochastic items non-adaptively (without looking at a realization of S or T) so that the coverage
of S ∪ T is sufficiently larger than S, i.e., E [fS(T)] is large? Assuming we can do this, we can use
this primitive to find sets with large coverage non-adaptively and iteratively, by starting from the
empty-set and using this primitive to increase the coverage further repeatedly.

Recall that in the non-stochastic setting, the greedy algorithm is precisely solving this problem,
i.e., finds a set T such that fS(T )

cost(T ) ≥
Q−f(S)
cost(OPT) , where with a slight abuse of notation, OPT here

denotes the optimal non-stochastic cover of f(E). This suggests that one can always find a “low”
cost set T with a large marginal contribution to S. For the stochastic problem, however, it is not at
all clear whether there always exists a “low cost” (compared to adaptive OPT) T whose expected
marginal contribution to S is large. This is because there are many different realizations possible
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for S, and each realization S, in principle may require a dedicated set of items T(S) to achieve a
large value E [fS(T(S)) | S]. As such, while adaptive OPT can first discover the realization S of S
and based on that choose T(S) to increase the expected coverage, a non-adaptive algorithm needs
to instead pick ∪S∈ST(S), which can have a much larger cost (but the same marginal contribution).
This suggests that cost of non-adaptive algorithm can potentially grow with the size of all possible
realizations of S. We point out that this task remains challenging even if all remaining inputs other
than S are non-stochastic, i.e., always realize to a particular item.

Nevertheless, it turns out that no matter the size of the set of all realizations of S, one can
always find a set of stochastic items T such that E [fS(T)] = Ω(1) · E [Q− f(S)] while cost(T) =
Õ(Q) ·E [cost(OPT)], i.e., achieve a marginal contribution proportional to E [Q− f(S)] while paying
cost which is Õ(Q) times larger than OPT (here OPT corresponds to an optimal adaptive algo-
rithm corresponding the residual problem of covering Q− f(S)). Compared to the non-stochastic
setting, this cost is Õ(Q) times larger than the analogous cost in the non-stochastic setting (see
Example 4.1). This part is one of the main technical ingredients of our paper (see Theorem 1). We
briefly describe the main ideas behind this proof.

The idea behind our algorithm is to sample several realizations S1, . . . , SΨ from S and pick a
low cost dedicated set Ti for each Si such that E [fSi

(Ti)] is large (here, the randomness is only on
realizations of Ti). This step is quite similar to solving the non-adaptive submodular maximization
problem with knapsack constraint for which we design a new algorithm based on an adaptation of
Wolsey’s LP [44] (see Theorem 2 and discussion before that for more details and comparison with
existing results). This allows us to bound the cost of each set Ti by O(E [cost(OPT)]). The final
(ordered) set returned by this algorithm is then T := T1 ∪ . . . ∪ TΨ. The ordering within items of
T does not matter.

The main step of this argument is however to bound the value of Ψ, i.e., the number of samples,
by O(Q). This step is done by bounding the total contribution of sets T1, . . . ,TΨ on their own,
i.e., E [f(T1 ∪ . . . ∪ TΨ)] independent of the set S. The intuition is that if we choose, say T1, with
respect to some realization S of S, but T1 does not have a marginal contribution to most realizations
S′ of S, then this means that by picking another set T2, the set T1 ∪ T2 needs to have a coverage
larger than both T1 and T2. As a result, if we repeat this process sufficiently many times, we should
eventually be able to increase E [fS(T)], simply because otherwise f(T) > Q, a contradiction.

We now use this primitive to design our non-adaptive algorithm as follows: we keep adding
set of items to the ordering using the primitive above in iterative phases. In each phase p, we run
the above primitive multiple times to find a set Sp with E [Q− f(Sp) | Ep−1] = o(1), where Ep−1 is
the event that the realization of items picked in previous phases of the algorithm did not cover Q
entirely. We further bound the cost of the set Sp with the expected cost of OPT conditioned on
the event Ep−1, i.e., E [cost(OPT) | Ep−1]. Notice that this quantity can potentially be much larger
than the expected cost of OPT. However, since the probability that in the permutation returned
by the non-adaptive algorithm, we ever need to realize the sets in Sp is bounded by Pr (Ep−1), we
can pay for the cost of these sets in expectation. By repeating these phases, we can reduce the
probability of not covering Q exponentially fast and finalize the proof.

We then extend this algorithm to an r-round adaptive algorithm for any r ≥ 1. For simplicity,
let us only mention the extension to 2 rounds (extending to r is then straightforward). We spend the
first round to find a (ordered) set S with f(S) ≥ Q−√Q with high probability for any realizations
S of S. We extend our main primitive above to ensure that if E [Q− f(S)] ≥ √Q, then we can
find a set T with E [fS(T)] = Ω(1) · E [Q− f(S)] and cost(T) = Õ(

√
Q) · E [cost(OPT)] (as opposed

to O(Q) in the original statement). This is achieved by the fact that when the deficit Q − f(S)
is sufficiently large then the rate of coverage per cost is higher, as opposed to when the deficit
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Q− f(S) is very small. Precisely, we exploit the fact that the gap of Q− f(S) is sufficiently large to
reach the contradiction in the original argument with only O(

√
Q) sets T1,T2, . . .. We then run the

previous algorithm using this primitive by setting the threshold τ1 = Q−√Q. In the next round,
we simply run our previous algorithm on the function fS(·) where S is the realization in the first
round. As fS(·) has maximum value at most O(

√
Q), by the previous argument we only need to

pay Õ(
√
Q) times expected cost of OPT, hence our total cost is Õ(

√
Q) ·E [cost(OPT)]. Extending

this approach to r-round algorithms is now straightforward using similar ideas as the thresholding
greedy algorithm for set cover (see, e.g. [18]).

3.2 Lower Bound on Adaptivity Gap

We prove our lower bound for the stochastic set cover problem, a special case of stochastic submod-
ular cover problem (see Example 1.1). Let us first sketch our lower bound for two round algorithms.
Let S := {U1, . . . , Uk} be a collection of k = poly(n) sets to be determined later (recall that n is
the size of the universe U we aim to cover). Consider the following instance of stochastic set cover:
there exists a single stochastic set T which realizes to one set chosen uniformly at random from sets
U1, . . . , Uk, i.e., complements of the sets in S. We further have k additional stochastic sets where
Ti realizes to Ui \ {e} for e chosen uniformly at random from Ui. Finally, for any element e ∈ U ,
we have a set Te with only one realization which is the singleton set {e} (i.e., Te always covers e).

Consider first the following adaptive strategy: pick T in the first round and see its realization,
say, Ui. Pick Ti in the second round and see its realization, say Ui \{e}. Pick Te in the third round.
This collection of sets is (U \ Ui) ∪ (Ui \ {e}) ∪ ({e}) = U , hence it is a feasible cover. As such, in
only 3 rounds of adaptivity, we were able to find a solution with cost only 3.

A two-round algorithm is however one round short of following the above strategy. One approach
to remedy this would be try to make a “shortcut” by picking more than one sets in each round of
this process, e.g., pick the set Ti also in the first round. However, it is easy to see that as long as
we do not pick Ω(k) sets in the first round, or Ω(|Ui|) sets in the second round, we have a small
chance of making such a shortcut. We are not done yet as it is possible that the algorithm covers
the universe using entirely different sets (i.e., do not follow this strategy). To ensure that cannot
help either, we need the sets in U1, . . . , Uk to have “minimal” intersection; this in turns limits the
size of each set Ui and hence the eventual lower bound we obtain using this argument.

We design a family of instances that allows us to extend the above argument to r-round adaptive
algorithms. We construct these instances using the edifice set-system of Chakrabarti and Wirth [15]
that poses a “near laminar” property, i.e., any two sets are either subset-superset of one another
or have “minimal” intersection. We remark that this set-system was originally introduced by [15]
for designing multi-pass streaming lower bounds for the set cover problem. While the instances
we create in this work are similar to the instances of [15], the proof of our lower bound is entirely
different (lower bound of [15] is proven using a reduction in communication complexity).

4 The Non-Adaptive Selection Algorithm

We introduce a key primitive of our approach in this section for solving the following task: Suppose
we have already chosen a subset S ⊆ X of items but we are not aware of the realization of these
items; our goal is to non-adaptively add another set T to S to increase its expected coverage.
Formally, given any monotone submodular function g : 2E→N+, let Qg := g(E) be the required
coverage on g. Also, for any realization S of S, we use ∆(S) := Qg − g(S) to refer to the deficit
in covering Qg, and denote by ∆ := E [∆(S)] the expected deficit of set S. Our goal is now to add
(still non-adaptively) a “low-cost” (compared to adaptive OPT) set T to S to decrease the expected
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deficit. It is easy to see that such a primitive would be helpful for finding sets with “large” coverage
non-adaptively and iteratively, by starting from the empty-set and use this primitive to reduce the
deficit further by picking another set and then repeat the process starting from this set.

Let us start by giving an example which shows some of the difficulty of this task.

Example 4.1. Consider an instance of stochastic set cover: there exists a single set, say X1

which realizes to U \{e∗} for an element e∗ chosen uniformly at random from U and n singleton
sets X2, · · ·Xn+1, each covering a unique element in U . If we have already chosen X1, and want
to chose more sets in order to decrease the expected deficit, then it is easy to see that even
though the cost of OPT is only 2, no collection of o(n) sets can decrease the expected deficit
by one. This should be contrasted with the non-stochastic setting in which there always exists
a single set that reduces a deficit of ∆ by ∆/cost(OPT).

We are now ready to state our main result in this section.

Theorem 1. Let X be a collection of items, and let g be any monotone submodular function
such that g(X) = Qg for every realization X of X. Let S ⊆ X be any subset of items and define
∆ := E [Qg − g(S)]. Given any parameter α ≥ Qg/∆, there is a randomized non-adaptive algorithm
that outputs a set T ⊆ X \ S such that cost of T is O(α) · E [cost(OPT)] in expectation over the
randomness of the algorithm and E [Qg − g(S ∪ T)] ≤ 5∆/6 over the randomness of the algorithm
and realizations of S and T. Here OPT is an optimal fully-adaptive algorithm for the stochastic
submodular cover problem with the function g6.

The goal in Theorem 1, is to select a set of items that can decrease the deficit of a typical
realization S of S (i.e., the expected deficit). In order to do so, we first design a non-adaptive
algorithm that finds a low-cost set that can decrease the deficit of a particular realization S of
S. This step is closely related to solving a stochastic submodular maximization problem subject
to a knapsack constraint. Indeed, when costs of all the items are the same, i.e., when we want
to minimize the number of items in the solution, one can use the algorithm of [4] (with some
small modification) for stochastic submodular maximization subject to cardinality constraint for
this purpose. Also, when the random variables Xi’s have binary realizations, i.e. take only two
possible values, then one can use the algorithm of [30] for this purpose. However, we are not
aware of a solution for the knapsack constraint of the problem in its general form with the bounds
required in our algorithms, and hence we present an algorithm for this task as well. The main
step of our argument is however on how to use this algorithm to prove Theorem 1, i.e., move from
per-realization guarantee, to the expectation guarantee.

4.1 A Non-Adaptive Algorithm for Increasing Expected Coverage

We start by presenting a non-adaptive algorithm that picks a low-cost (compared to the expected
cost of OPT) set of items deterministically, while achieving a constant factor of coverage of OPT.
For any set A ⊆ [m], i.e., the set of indices of stochastic items, and any realization X of X, we
define XA := {xi | i ∈ A}, i.e, the realization of all items corresponding to indices in A.

Theorem 2. There exists a non-adaptive algorithm that takes as input a set of items X, a monotone
submodular function f , and a parameter Q̃ such that f(X) = Q̃ for any realization X of X, and
outputs a set A ⊆ [m] such that (i) cost(XA) ≤ 3 · E [cost(OPT)] and (ii) EXA∼X [f(XA)] ≥ Q̃/3.

6Throughout this paper we will abuse notation by refering to an optimal fully-adaptive algorithm for different
problem instances using the same notation OPT. The specific problem instance will be clear from context.
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Here, OPT is the optimum adaptive algorithm for submodular cover on X with function f and
parameter Q = Q̃.

As argued before, Theorem 2 can be interpreted as an algorithm for submodular maximization
subject to knapsack constraint.

To prove Theorem 2, we design a simple greedy algorithm (similar to the greedy algorithm for
submodular maximization) and analyze it using a linear programming (LP) relaxation in the spirit
of Wolsey’s LP [44] defined in the following section.

Extension of Wolsey’s LP for Stochastic Submodular Cover

Let us define the function F : 2[m]→N+ as follows: for any A ⊆ [m],

F (A) := E
XA∼X

[f(XA)] . (1)

As we assume in the lemma statement that Q̃ := EX∼X[f(X)], we have F ([m]) = Q̃ as well.
For any B ⊆ [m], we further define the marginal contribution function FB : 2[m]→N+ where
FB(A) := F (A ∪B)− F (B) for all A ⊆ [m] \B. The following proposition is straightforward.

Proposition 4.1. Function F is a monotone submodular function.

Proof. F is a convex combination of submodular functions, one for each realization of X.

We will use a linear programming (LP) relaxation in the spirit of Wolsey’s LP [44] for the
submodular cover problem (when applied to the function F ). Consider the following linear pro-
gramming relaxation:

P = min
y∈[0,1]m

m∑

i=1

ci · yi

s.t.
∑

i∈[m]\A

FA(i) · yi ≥ Q̃− 2F (A), ∀A ⊆ [m] (2)

The difference between LP (2) and Wolsey’s LP is in RHS of the constraint which is Q̃−F (A)
in case Wolsey’s LP. In the non-stochastic setting, one can prove that Wolsey’s LP lower bounds
the value of optimum submodular cover for function F . To extend this result to the stochastic case
(for the function f) however, it suffices to modify the constraint as in LP (2), as we prove in the
following lemma.

Lemma 4.2. The cost of an optimal adaptive algorithm OPT for submodular cover on function f
is lower bounded by the optimal cost P of LP (2), i.e. P ≤ E [cost(OPT)].

Proof. For a realization X of X and any i ∈ [m], define an indicator random variable wi(X) that
takes value 1 iff OPT chooses Xi on the realization X, i.e.

wi(X) = 1[Xi ∈ OPT(X)].

Let wi be the probability that OPT chooses Xi, i.e.,

wi = Pr
X∼X

(wi(X) = 1) = E [wi(X)] .
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We have that,

E [cost(OPT)] = E
X

[
m∑

i=1

1[Xi ∈ OPT(X)] · ci
]
=

m∑

i=1

wi · ci .

In the following, we prove that w := (w1, . . . , wm) is a feasible solution to LP (2), which by above
equation would immediately imply that P ≤ E [cost(OPT)].

Clearly w ∈ [0, 1]m, so it suffices to prove that the constraint holds for any set A ⊆ [m]. The
main step in doing so is the following claim.

Claim 4.3. For any set A ⊆ [m], and any two realizations X and X ′ of X:

f(XA) + f(X ′
A) +

∑

i∈[m]\A

fX′
A
(xi) · wi(X) ≥ Q̃.

Proof. Recall that we assume f(X) = Q̃ always, and hence f(OPT(X)) = Q̃ as well. Moreover, for
any i ∈ OPT(X), wi(X) = 1 and for i ∈ [m] \ OPT(X), wi(X) = 0. We further define the sets:

B := OPT(X) ∩A and C := OPT(X) \B.

We have,

f(XA) + f(X ′
A) +

∑

i∈[m]\A

fX′
A
(xi) · wi(X) = f(XA) + f(X ′

A) +
∑

xi∈C

fX′
A
(xi)

≥
Fact 2.1

f(XA) + f(X ′
A ∪ C) (by submodularity)

≥ f(XB) + f(XC) (by monotonicity as XB ⊆ XA)

= f(XB ∪XC) = Q̃,
(by submodularity and since XB ∪XC = OPT(X))

which finalizes the proof. Claim 4.3

Fix any set A ⊆ [m]. We first take an expectation over all realizations of X in LHS of Claim 4.3:

Q̃ ≤
Claim 4.3

E
X

[
f(XA) + f(X ′

A) +
∑

i∈[m]\A

fX′
A
(xi) · wi(X)

]

= E
X
[f(XA)] + f(X ′

A) +
∑

i∈[m]\A

E
X

[
fX′

A
(xi) · wi(X)

]

= E
X
[f(XA)] + f(X ′

A) +
∑

i∈[m]\A

E
X

[
fX′

A
(xi)

]
· E
X
[wi(X)] ,

as random variables fX′
A
(Xi) and wi(X) are independent since the choice of Xi by OPT is independent

of what Xi realizes to. We further point out that EX [f(XA)] in the RHS of last equation above is
equal to F (A) by definition in Eq (1) and EX [wi(X)] = wi.

We further take an expectation over all realizations of X ′ in the RHS above:

Q̃ ≤ E
X′

[
F (A) + f(X ′

A) +
∑

i∈[m]\A

E
X

[
fX′

A
(xi)

]
· wi

]
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=
Eq (1)

F (A) + F (A) +
∑

i∈[m]\A

E
X′

E
X

[
fX′

A
(xi)

]
· wi

= 2 · F (A) +
∑

i∈[m]\A

FA(i) · wi ,

as FA(i) = EX′ EX [f(X ′
A ∪Xi)− f(X ′

A)]. Rewriting the above equation, we obtain that the con-
straint associated with set A is satisfied by w. This concludes the proof that w is a feasible solution.

Lemma 4.2

The Non-Adaptive-Greedy Algorithm

We now design an algorithm, namely non-adapt-greedy, based on “the greedy algorithm” (for
submodular optimization) applied to the function F in the last section and then use LP (2) to
analyze it. We emphasize that the use of the LP is only in the analysis and not in the algorithm.

non-adapt-greedy(X, f, Q̃). Given a monotone submodular function f , the set of stochastic
items X, and a parameter Q̃ = f(X) for all X, outputs a set A of (indices of) stochastic items.

1. Initialize: Set A← ∅ and F be the function associated to f in Eq (1).

2. While F (A) < Q̃/3 do:

(a) Let j∗ ← argmaxj∈[m] FA(j)/cj .

(b) Update A← A ∪ {j∗}.

3. Output: A.

It is clear that the set A output by non-adapt-greedy achieves EXA
[f(XA)] = F (A) ≥ Q̃/3

(as F ([m]) = Q̃, the termination condition would always be satisfied eventually). We will now
bound the cost paid by the greedy algorithm in terms of the optimal value P of LP (2).

Lemma 4.4. cost(XA) ≤ 3P .

To prove Lemma 4.4 we need some definition. Let the sequence of items picked by the greedy
algorithm be j1, j2, j3 · · · , where ji is the index of the item picked in iteration i. Moreover, for any
i, define A<i := {j1, . . . , ji−1}, i.e., the set of items chosen before iteration i. We first prove the
following bound on the ratio of coverage rate to costs in each iteration.

Lemma 4.5. In each iteration i of the non-adaptive greedy algorithm we have,

FA<i
(ji)

cji
≥ Q̃− 2F (A<i)

P
,

where P is the optimal value of LP (2).

Proof. Fix any iteration i. Recall that in each iteration, we pick the item ji ∈ argmaxj∈[m] FA<i
(j)/cj .

Suppose towards a contradiction that in some iteration i:

∀j ∈ [m]
FA<i

(j)

cj
<

Q̃− 2F (A<i)

P
. (3)
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Let y∗ be an optimal solution to LP (2), then by the constraint of the LP for set A<i we have

Q̃− 2F (A<i) ≤
∑

j∈[m]\A<i

FA<i
(j) · y∗j

<
Eq (3)

∑

j∈[m]\A<i

y∗j · cj ·
Q̃− 2F (A<i)

P

≤ Q̃− 2F (A<i)

P
·
∑

j∈[m]

y∗j cj = Q̃− 2F (A<i),

where the last equality is because by definition
∑

j∈[m] y
∗
j cj = P . By above equation, Q̃−2F (A<i) <

Q̃− 2F (A<i), a contradiction. Lemma 4.5

Proof of Lemma 4.4. Fix any iteration i in the algorithm where F (A<i) ≤ Q̃/3. By Lemma 4.5,

FA<i
(ji) ≥

Lemma 4.5
cji ·

Q̃− 2F (A<i)

P
≥ cji ·

Q̃

3P
. (4)

Let k be the first index where FA<k
< Q̃/3 but FA<k+1

≥ Q̃/3 (i.e., the iteration the algorithm

terminates). Note that cost(XA) =
∑k

i=1 cji . We start by bounding the first k−1 terms in cost(XA):

Q̃/3 > F (A<k) =

k−1∑

i=1

FA<i
(ji) ≥

Eq (4)

k−1∑

i=1

cji ·
Q̃

3P

=⇒
k−1∑

i=1

cji < P.

Now consider the last term in cost(A), i.e., cjk . Again, by Lemma 4.5, we have,

cjk ≤
Lemma 4.5

FA<k
(jk) · P

Q̃− 2F (A<k)
≤

(
Q̃− F (A<k)

)
· P

Q̃− 2F (A<k)
≤ 2P,

using the fact that F (A<k) < Q̃/3. As such, cost(XA) ≤ 3P finalizing the proof. Lemma 4.4

Theorem 2 now follows immediately from Lemma 4.4 and Lemma 4.2 as P ≤ E [cost(OPT)].

4.2 Proof of Theorem 1

We use the algorithm in Theorem 2 to present the following algorithm for reducing the expected
deficit of any given set S in Theorem 1.

Select(X, g,S, α). Given a collection of indices X, a monotone submodular function g with
g(X) = Qg for every X ∼ X, collection of items S with expected deficit ∆ = E[Qg − g(S)], picks
a set T of items to decrease the expected deficit.

1. Let Ψ := 6α.

2. For i = 1, · · · ,Ψ do:
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(a) Sample a realization Si ∼ S.

(b) Ti ← non-adapt-greedy(X \ S, gSi
,∆(Si)) (recall that ∆(Si) = Qg − g(Si)).

3. Return all items in the sets T := T1 ∪ T2 · · · ∪ TΨ.

The Select algorithm repeatedly calls the non-adapt-greedy algorithm for samples drawn
from realizations of the set S. By Fact 2.2, for any realization Si of S, gSi

(·) is also a monotone
submodular function. Moreover, by the assumption that g(X) = Qg always, we have that gSi

(X \
Si) = Qg − f(Si) always as well. Hence, the parameters given to function non-adapt-greedy in
Select are valid.

We first bound the expected cost of Select.

Claim 4.6. E [cost(T)] = O(α) · E [cost(OPT)].

Proof. Cost of T is the cost of the sets T1, . . . ,TΨ chosen by non-adapt-greedy on gSi
for each

of the Ψ realizations of S. By Theorem 2, we can bound the cost of each Ti using OPT conditioned
on realization Si for S (as we consider gSi

). As such,

E [cost(T)] =

Ψ∑

i=1

E
Si∼S

[cost(Ti)]

≤
(a)

Ψ∑

i=1

E
Si∼S

[
3 · E

X
[cost(OPT(X)) | S = Si]

]

=
Ψ∑

i=1

3 · E
Si∼S

E
X∼X|Si

[cost(OPT(X))]

= 3Ψ · E
X
[cost(OPT(X))] ,

where the inequality (a) follows from Theorem 2 because even though the OPT used in Theorem 2 is
an optimal algorithm on the problem instance (Q̃,X\S), but the cost of EX [cost(OPT(X)) | S = Si]
can only be larger than the cost of OPT on the instance (Q̃,X \ S). The bound now follow from
the value of Ψ = 6α.

We now prove that the expected deficit of f(S ∪ T) is dropped by at least a ∆/6 factor. The
following lemma is at the heart of the proof.

Lemma 4.7. E [∆(S ∪ T)] ≤ 5∆/6.

Proof. We start by introducing the notation needed in the proof. It is useful to note that the ran-
domness in Ti is due to two sources: (1) the sample Si ∼ S which determines which sets are indexed
by Ti; and (2) the randomness in the realization of the sets indexed by Ti. For any realization
S of S, we use Ti(S) to denote the set Ti chosen (deterministically now by non-adapt-greedy)
conditioned on S = S (this corresponds to “fixing” the first source of randomness above). We use
the notation T≤i to denote the collection T1 ∪ · · · ∪ Ti of sets selected in iterations 1 through i,
and S≤i to denote the tuple of realizations (S1, · · · , Si) (we define T<i and S<i analogously, where
T<1 = S<1 = ∅). We also denote by T≤i(S≤i) the sets selected in iterations 1 to i given S≤i.
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Consider any i ∈ [Ψ]. For a realization Si ∼ S, we are computing non-adapt-greedy on
gSi

with parameter Q̃ = ∆(Si). As such, by Theorem 2, for the set Ti(Si) returned, we have
EX [gSi

(Ti(Si))] ≥ Q̃/3 = ∆(Si)/3. Consequently,

E
Si∼S

E
X
[gSi

(
Ti(Si)

)
] ≥ E

Si∼S
[
∆(Si)

3
] =

∆

3
. (5)

We now use this equation to argue that adding each set Ti can decrease the expected deficit.
Before that, let us briefly touch upon the difficulty in proving this statement and the intuition
behind the proof. In Select, we first pick a realization Si of S and then add “enough” sets to Ti

to (almost) cover the deficit introduced by Si. This corresponds to Eq (5). However, our goal is
to decrease the expected deficit of S (not a deficit of a single realization). As such, the quantity of
interest is in fact the following instead:

E
X
[gS(Ti)] = E

Si∼S
E

S′
i
∼S

E
X

[
gS′

i
(Ti(Si))

]
, (6)

i.e., the marginal contribution of Ti(Si) (chosen by picking a set Si) to a “typical” set S′
i ∼ Si

(not exactly the set Si). The set Ti we picked in this step is not necessarily covering the deficit
introduced by S′

i as well (in the context of the stochastic set cover problem, think of Si and S′
i as

covering a completely different set of elements and Ti being a deterministic set covering U \ Si).
As such, it is not at all clear that picking the set Ti should make “any progress” towards reducing
the expected deficit.

The way we get around this difficulty is to additionally consider the marginal contribution of
the sets T1, . . . ,TΨ to each other. If T1 cannot decrease the expected deficit of most realizations S
chosen from S, then this means that by picking another set T2(S) (for a realization S of S), the set
T1 ∪T2 needs to have a coverage larger than both T1 and T2 individually (in the context of the set
cover problem, since T1 is “useless” in covering deficit created by S, and T2 can cover this deficit,
this means that T1 and T2 should not have many elements in common typically). We formalize
this intuition in the following claim (compare Eq (7) in this claim with Eq (6)).

Claim 4.8. Suppose at the start of iteration i the following holds

E
Si∼S

E
S<i∼S

E
X
[gSi

(
T<i(S<i)

)
] <

∆

6
. (7)

Then,

E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]
>

∆

6
.

Proof. By subtracting Eq. (7) from Eq. (5), and using linearity of expectation we get that:

∆

6
< E

Si∼S

E
S<i∼S

E
X
[gSi

(
Ti(Si)

)
− gSi

(
T<i(S<i)

)
]

= E
Si∼S

E
S<i∼S

E
X
[g
(
Ti(Si) ∪ Si

)
− g

(
T<i(S<i) ∪ Si

)
]

≤ E
Si∼S

E
S<i∼S

E
X
[g
(
T≤i(S≤i) ∪ Si

)
− g

(
T<i(S<i) ∪ Si

)
] (by monotonicity)

≤ E
Si∼S

E
S<i∼S

E
X
[g
(
T≤i(S≤i)

)
− g

(
T<i(S<i)

)
] (by submodularity as T<i(S<i) ⊆ T≤i(S≤i))

= E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]
, (8)

finalizing the proof. Claim 4.8
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Suppose towards a contradiction that E [∆(S ∪ T)] > 5∆/6. This implies that,

5∆/6 < E [Qg − g(S ∪ T)] = E [Qg − g(S)− gS(T)]

=⇒ E
S∼S

E
X
[gS(T)] < ∆/6.

By monotonicity of f and since T = T1 ∪ . . . ∪ TΨ, this implies that for all i ∈ [Ψ],

∆/6 > E
S∼S

E
X
[gS(T≤i)] = E

Si∼S
E

S<i∼S
E
X
[gSi

(
T<i(S<i)

)
].

Hence, we can apply Claim 4.8 to obtain that for any i ∈ [Ψ]:

E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]
>

∆

6
.

As such, by linearity of expectation and above equation,

E
S≤Ψ∼S

E
X
[g(T(S≤Ψ))] =

Ψ∑

i=1

E
S≤i∼S

E
X

[
gT<i(S<i)(Ti(Si))

]

> Ψ · ∆
6

= 6α · ∆
6

≥ Qg = E
X
[g(X)].

where the last inequality follows due to the condition that α ≥ Qg/∆. The above is a contradiction
as T ⊆ X and g is monotone. Hence, E [∆(S ∪ T)] ≤ 5∆/6, finalizing the proof. Lemma 4.7

Theorem 1 now follows immediately from Claim 4.6 and Lemma 4.7.

5 Algorithms for the Stochastic Submodular Cover Problem

In this section, we present our main algorithmic result which formalizes Result 1.

Theorem 3. Let E be a ground-set of items, f : 2E → N+ be a monotone submodular function
with Q := f(E), and X := {X1, . . . ,Xm} be a collection of m stochastic items with support in E.
Let ci ∈ [C] be the integer-valued cost of item Xi. For any integer r ≥ 1, there exists an r-round
adaptive algorithm for the stochastic submodular cover problem for function f and items X with
expected cost O(r ·Q1/r · logQ · log(mC)) times the expected cost of the optimal adaptive algorithm.

Theorem 3 immediately implies that the r-round adaptivity gap of the stochastic submodular cover
problem is Õ(Q1/r). The rest of this section is devoted to the proof of Theorem 3.

Overview. The underlying strategy behind our algorithm is as follows: in each round of the
algorithm, reduce the deficit of the currently realized set T chosen in the previous rounds (i.e., the
quantity Q−f(T )) by a factor of roughly Q1/r. This suggests that after r rounds the deficit should
reach zero, hence we obtain a submodular cover. In order to do so, the algorithm needs to specify an
ordering of items without knowing the realizations of these items in advance (i.e., non-adaptively).
This step is itself done by running the algorithm in Theorem 1 over multiple iterative phases to
reduce the deficit without knowing realization of any chosen items in this round. We now present
our algorithm in details, starting with its main component for reducing the deficit in each round.
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5.1 The Reduce Subroutine

Let Tk be the items selected by the r-round adaptive algorithm in rounds up to (and including) k,
and Tk be their realization. In round k, the algorithm creates an ordering of all the available items
and sets a threshold τk := Q−Q(r−k)/r for coverage in this round: after deciding on an ordering of
the items non-adaptively, the algorithm picks items according to this ordering one by one until the
total coverage of the function reaches τk. In this section, we design an algorithm, namely Reduce,
which returns an ordered set S ⊆ X \Tk−1 in round k such that items in S are enough to reach the
coverage threshold for this round with high probability. If there are items that are not included in
S by Reduce, we will simply add them at the end of S in any arbitrary order.

The input to the function Reduce in round k is the set of items X \ Tk−1, and the function
marginal fTk−1

; by Fact 2.2, fTk−1
is also a monotone submodular function. The execution of

Reduce is partitioned over Γ := O(log (mC)) phases, where in each phase, the algorithm picks a
new set of items to be added to the (ordered) set returned by it. The final set of items returned
by Reduce are ordered in increasing order of the phases (with arbitrary ordering in each phase).

For any phase p ∈ [Γ], we define Sp as the ordered set of items selected in phase 1 up to (and
including) p. Let Qk := Q− f(Tk−1); this is the deficit of the set Tk−1 with respect to function f .
For any set S of items, we define the following event Ek(S):

Ek(S) := 1[Qk − fTk−1
(S) ≥ Qk/Q

1/r]. (9)

Intuitively speaking, Ek(S) happens if the set of items S cannot cover most of Qk yet.

In each phase, Reduce makes Λ := O(logQ) calls to Select subroutine (Theorem 1). Each
call in phase p is to increase the coverage of the set Sp−1 to eventually achieve a larger coverage

in Sp. Instead of passing Sp−1 directly to Select, we instead pass the set S̃p−1 := Sp−1 | Ek(Sp−1)
which is a set of items that has the same distribution as Sp−1 conditioned on the event Ek(Sp−1)
(i.e., we only consider such realizations of Sp−1 where Ek(Sp−1) occurs). We show in Claim 5.1 that
the performance of Select remains the same in this case also (simply because in Select we only
access the distribution of input sets by sampling from it and hence we can sample from S̃p−1 instead
of Sp−1). This step is required to ensure that we can indeed achieve a larger coverage with higher
probability across phases as we are “focusing” on realizations that are “bad” in previous phases, i.e.,
cannot cover a large fraction of Qk. Formally, we prove that the Pr (Ek(Sp)) ≤ 1/2 · Pr (Ek(Sp−1)),
hence after Γ = Θ(log (mC)) phases, the probability of this bad event reduces to 1/(mC)O(1) and
we can move on to the next round. We present the pseudo-code of Reduce algorithm below.

Reduce(X, fTk−1
): Given a set X of items and a monotone submodular function fTk−1

, outputs
an ordered set of items S to be used in round k of the r-round adaptive algorithm.

1. Initialize: Set Λ← 12 log(Q), and Γ← 2 log (mC) .

2. Set S0 ← ∅.
3. For phases p = 1, · · · ,Γ do:

(a) Set R0 ← ∅ and let S̃p−1 := Sp−1 | Ek(Sp−1).

(b) For iterations i = 1, · · · ,Λ do:

i. Ri ← Ri−1 ∪ Select(X \ {Ri−1 ∪ Sp−1}, fTk−1
,Ri−1 ∪ S̃p−1, 2Q

1/r).

(c) Sp ← Sp−1 ∪ RΛ.

4. Return the set SΓ, ordered according to the order in which items were added to SΓ.
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Before analyzing Reduce we need the following straightforward extension of Theorem 1.

Claim 5.1 (Extension of Theorem 1). Let fT be any monotone submodular function, for some
T ⊆ E, such that Q′ := Q− f(T ). Let S ⊆ X be any subset of items, and E be an event which is a
function of S and S̃ := S | E. Let ∆ := E[Q′−fT (S̃)], then Select, given parameter α ≥ Q′/∆, and
6α samples from S̃, outputs a set R ⊆ X\S such that cost of R is O(α)·E [cost(OPT)|E ] in expectation

over the randomness of the algorithm and E

[
Q′ − fT (S̃ ∪ R)

]
≤ 5∆/6 over the randomness of the

algorithm and realizations of S̃ and R.

Claim 5.1 can be proven as follows: in Select we only need samples from the distribution S, hence
by sampling from the distribution of S̃ instead we obtain the same result conditioned on event E .
One should be careful though, as the items in S̃ are no longer independent due to the conditioning
on E . However, Select does not require independence between items in S and we can simply use
S̃ instead of S.

We start by bounding the cost of the sets returned by Reduce in each phase. Note that not all
these sets are going to be chosen by the r-round algorithm in round k (as we may cover τk before
reaching these sets and move on to next round) and hence this cost is not a lower bound on cost
of the r-round algorithm.

Claim 5.2. For any p ∈ [Γ], E [cost(Sp \ Sp−1)] = O(Q1/r · logQ) · E[cost(OPT)|Ek(Sp−1)].

Proof. We call Select with the parameter 2Q1/r for O(logQ) iterations. By Claim 5.1, cost of each
iteration of phase p is at most O(Q1/r) times the expected cost of OPT conditioned on Ek(Sp−1).
Hence, total cost of phase p is E[cost(Sp \ Sp−1)] = O(Q1/r · logQ) · E[cost(OPT)|Ek(Sp−1)].

We now prove the main property of the Reduce subroutine, i.e., that the sets returned by it
can cover the required threshold τk with high probability.

Lemma 5.3. Suppose SΓ := Reduce(X, fTk−1
). Then,

Pr(Ek(SΓ)) ≤ 1/(mC)2,

with respect to the randomness of the algorithm and the realizations of SΓ.

Proof. We prove that the probability of the event Ek(Sp) decreases after each phase p by a con-
stant factor. Fix a phase p ∈ [Γ]. For a realization S we define deficit ∆(S) = Qk − fTk−1

(S).
Recall that Ri is the set of items picked up to (and including) iteration i in phase p on calls to
Select with parameter α = 2Q1/r. By Claim 5.1 we know that each iteration reduces the ex-
pected deficit by a constant factor. More formally, fix an Ri−1 selected up to iteration i − 1. If
E [∆(Ri−1 ∪ Sp−1)|Ep−1] ≥ Qk/2Q

1/r , then the condition of Claim 5.1 that α ≥ Q′/∆ is satisfied
with ∆ = E [∆(Ri−1 ∪ Sp−1)|Ep−1], α = 2Q1/r, and Q′ = Qk. We then have

E [∆(Ri ∪ Sp−1)|Ek(Sp−1)]

≤ 5

6
E [∆(Ri−1 ∪ Sp−1)|Ek(Sp−1)] ,

where the above expectation is also over the randomness of the Select subroutine in iteration i,
in addition of the realization of Ri ∪ Sp−1. Now, we will prove that Λ iterations are enough to drop
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the expected deficit below Qk/2Q
1/r. Suppose for a contradiction that this is not the case, i.e. after

Λ iterations we have that

E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] ≥
Qk

2Q1/r
. (10)

Due to the fact that fTk−1
is a monotone function, we have

E[∆(Ri ∪ Sp−1)|Ek(Sp−1)] ≥ E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] ,

for all Ri. Then using Eq. (10) and the above equation, we can observe that the condition of
Claim 5.1 that E [∆(Ri ∪ Sp−1)|Ek(Sp−1)] ≥ Qk/2Q

1/r is satisfied for every Ri. This implies that
after Λ iterations the expected deficit can be written as

E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] ≤
(
5

6

)Λ

· E[∆(Sp−1)|Ek(Sp−1)]

≤
(
5

6

)12 logQ

·Qk (Recall that Λ = 12 logQ)

<
Qk

2Q
≤ Qk

2Q1/r
. (11)

Eq. (10) and Eq. (11) lead to a contradiction. Hence, we will have that

E[∆(Sp)|Ek(Sp−1)] = E[∆(RΛ ∪ Sp−1)|Ek(Sp−1)] <
Qk

2Q1/r
.

where again the expectation is over the randomness of the Select subroutine. Now, using Markov’s
inequality we have that

Pr
(
Ek(Sp)

∣∣∣ Ek(Sp−1)
)
= Pr

(
∆(Sp) ≥

Qk

Q1/r

∣∣∣ Ek(Sp−1)
)
≤ 1

2
, (12)

where the above probability is both with respect to the realizations of Sp and the coins used by the
algorithm to select Sp. Now, we have that

Pr(Ek(SΓ)) = Pr(Ek(S1)) ·ΠΓ
p=2 Pr (Ek(Si) | Ek(Si−1))

≤
Eq (12)

(
1

2

)Γ−1

≤ 1

(mC)2
,

by the choice of Γ = Θ(log (mC)), which proves the desired result. Lemma 5.3

5.2 The r-Round Adaptive Algorithm

We are now ready to present our r-round algorithm which is based on successive applications of
the Reduce subroutine.

r-Round-Adaptive(X, f,Q): Given a set of items X, a monotone submodular function f , and
the desired coverage value Q, outputs a set T such that its realization T is feasible.

1. Initialize: Set T0 ← ∅, T0 ← ∅
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2. For k = 1, 2, · · · , r do:

(a) Set threshold τk ← Q−Q(r−k)/r

(b) T← Reduce(X \ Tk−1, fTk−1
)

(c) Add the remaining items X \ (T ∪ Tk−1) at the end of T in any arbitrary order.

(d) Observe the realizations T ′ of the set of items T′ ⊆ T selected by running through the
ordered set T until a total coverage of τk is reached, i.e. f(Tk−1 ∪ T ′) ≥ τk

(e) Tk ← T′ ∪ Tk−1 and Tk ← T ′ ∪ Tk−1

3. Return Tr with realization Tr as the final answer.

We are now ready to prove Theorem 3 by analyzing the above algorithm. The overall plan is
to bound the cost of each round of the r-round algorithm. In each round the algorithm selects an
ordering returned by a call to Reduce and adds the remaining items at the end of this ordering.
As argued earlier, not all the sets in the ordering are going to be chosen by the r-round algorithm
in round k. We will use Claim 5.2 and Lemma 5.3 to bound the expected cost of the items selected
from the ordering in round k in terms of the expected cost of OPT. In order to do so, we first lower
bound the cost of OPT.

Claim 5.4. For any (possibly randomly chosen) collection S ⊆ X, and any event E which is a
function of S, the expected cost of OPT can be lower bounded as

E[cost(OPT)] ≥ Pr(E) · E[cost(OPT)|E ].

Proof. The expected cost of OPT can be written as

E[cost(OPT)] = Pr(E) · E[cost(OPT)|E ] + Pr(¬E) · E[cost(OPT)|¬E ]
≥ Pr(E) · E[cost(OPT)|E ] .

Note that the above also holds even if the collection S is itself randomly chosen. Lemma 5.4

We now prove the lemma bounding the expected cost of each round of r-Round-Adaptive.
We will define the notation cost(Roundk) to be the total cost of all the items added to the feasible
set in round k. More formally,

cost(Roundk) := cost(Tk \ Tk−1) .

Now, we will provide a bound on E[cost(Roundk)].

Lemma 5.5. For any round k ≤ r, given Tk−1, the expected cost paid by the r-Round-Adaptive

algorithm in round k can bounded as

E[cost(Roundk)|Tk−1] ≤ O(Q1/r log(Q) log(mC)) · E[cost(OPT)|Tk−1] .

Proof. Recall that in round k we call Reduce with parameter fTk−1
= fTk−1

such that Qk =
Q−f(Tk−1). Also, recall that in phase p, Reduce adds items Sp \Sp−1 to the ordering SΓ returned
by it. Using Claim 5.2 we have that

E[cost(Sp \ Sp−1)|Tk−1] = O(Q1/r · logQ) · E[cost(OPT)|Tk−1, Ek(Sp−1)] .
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Also, recall that while running through the ordered set of round k we select items from Sp \ Sp−1

only if the realization is such that the items in Sp−1 are not able to reach the required coverage
threshold τk. More formally, we only pay for the cost of items in Sp \Sp−1 when the event Ek(Sp−1)
occurs. Hence, we will pay the cost of phase p items with probability Pr(Ek(Sp−1)). Also, in the case
that all the items SΓ returned by Reduce are not able to reach the required coverage threshold,
we trivially bound the cost by mC. Since, Qk ≤ Q(r−k+1)/r, this event happens with probability
at most Pr(Ek(SΓ)) which is upper bounded by 1/(mC)2 using Lemma 5.3. Combining all this, we
have that, given Tk−1,

E[cost(Roundk)|Tk−1]

≤
Γ∑

p=1

Pr (Ek(Sp−1)) · E[cost(Sp \ Sp−1)|Tk−1] + Pr (Ek(SΓ)) ·mC

≤
Claim 5.2

Γ∑

p=1

Pr (Ek(Sp−1)) · O
(
Q1/r log(Q)

)
· E[cost(OPT)|Tk−1, Ek(Sp−1)] + Pr (Ek(SΓ)) ·mC

≤
Claim 5.4

O
(
Q1/r log(Q) log(mC)

)
E [cost(OPT)|Tk−1] + Pr (Ek(SΓ)) ·mC

≤
Lemma 5.3

O
(
Q1/r log(Q) log(mC)

)
E [cost(OPT)|Tk−1] +

1

(mC)2
·mC

= O
(
Q1/r log(Q) log(mC)

)
E [cost(OPT)|Tk−1] .

Lemma 5.5

We are now ready to prove Theorem 3 which uses the above lemma to give a combined bound
on the cost of all the rounds.

Proof. (of Theorem 3) We will first divide the cost(r-Round-Adaptive) into the cost of each
round.

E[cost(r-Round-Adaptive)] =

r∑

k=1

E[cost(Roundk)] , (13)

where recall that cost(Roundk) := cost(Tk \ Tk−1) and Tk are the items selected up to (and
including) round k. Let Tk be the realization of Tk. We first need to understand that there are
two sources of randomness– 1) due to the coins used by the algorithm to sample the realizations;
2) due to stochastic nature of items. We will first fix the randomness due to the coins used by
the algorithm for sampling. Once we fix the realization of coins used by the algorithm, the only
randomness in the algorithm is due to the stochastic nature of items. Then for any k ≤ r, given a
fixed realization of coins in rounds up to k − 1, we have

E[cost(Roundk)] ≤
Lemma 5.5

O
(
Q1/r log(Q) log(mC)

)
· E
Tk−1∼Tk−1

E[cost(OPT)|Tk−1]

= O
(
Q1/r log(Q) log(mC)

)
E[cost(OPT)] ,

where the last equality is due to the fact that once we fix the randomness due to coins up to round
k − 1, then the realizations Tk−1 form a partition over the space of all realizations X. Since the
choice of coins was arbitrary, we have that E[cost(Roundk)] ≤ Õ(Q1/r)cost(OPT).
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Then, using Eq. (13) and the above, the total cost can be bounded as

cost(r-Round-Adaptive) = O
(
rQ1/r log(Q) log(mC)

)
E[cost(OPT)] .

Theorem 3

Remark 5.6. We can implement the r-round algorithm in polynomial time as long as the costs
are polynomially bounded, i.e., achieve a pseudo-polynomial time algorithm. Indeed, the only “time
consuming” step of the algorithm is to sample from the conditional distribution S|E for some event
E. This is however is only needed as long as the Pr(E) ≥ 1/(mC)Θ(1). Hence, one can use
rejection sampling with the total running time bounded by poly(QmC) to implement this step. The
probability that we do not get the required number of samples from the event E with Pr(E) ≥ 1/mC
after poly(QmC) trials is negligible, and we can pay for the cost in case this bad event happens.

6 A Lower Bound for r-Round Adaptive Algorithms

In this section, we prove a lower bound on the approximation ratio of any r-round adaptive algo-
rithm for the submodular cover problem and formalize Result 2. We prove this lower bound for the
stochastic set cover problem (see Example 1.1) which is a special case of the stochastic submodular
cover problem.

Theorem 4. For any integer r ≥ 1, any r-round adaptive algorithm for the stochastic set cover
problem on instances with m stochastic sets from a universe of size n elements such that m = nO(r)

has expected cost Ω( 1
r3
· n1/r) times the cost of the optimal adaptive algorithm.

Theorem 4 formalizes Result 2 as by definition, Q = n in the stochastic set cover problem.

Overview. Consider first an instance of the stochastic set cover problem which was used in [26]
for proving a 1-round adaptivity gap. There exists a single stochastic set, say T, which realizes to
U \{e⋆} for e⋆ chosen uniformly at random from U (support of T has n sets). The remaining sets in
this instance are n singleton sets that each deterministically realize to some unique element e ∈ U .
Solving such an instance adaptively with just two sets, and indeed even in two rounds of adaptivity,
is trivial: choose the set T and observe its realization in the first round; next choose the singleton
set that covers e⋆. However, consider any non-adaptive algorithm for this problem: even though it
is obvious that the set T needs to be the first set in the ordering returned by the algorithm, there is
no “good” choice for the ordering of the remaining sets as the algorithm is oblivious to the identity
of e⋆ at this point. It is then fairly easy to see that no matter what ordering the non-adaptive
algorithm chooses, in expectation Ω(n) sets needs to be picked before it could cover e⋆ and hence
the universe U . An adaptivity gap of Ω(n) now follows easily from this argument.

Our main contribution in this section is to design a family of instances in this spirit that allows
us to extend the above argument to r-round adaptive algorithms. Roughly speaking, these instances
are constructed in a way that at the beginning of each round, the algorithm has access to a set
that covers a “large” portion of the remaining universe “randomly”, but since the realization of
this set is not known to the algorithm, unless it picks many more sets, it would not be able to also
cover the “remainder of universe” (left out by the realization of the aforementioned set). Morally
speaking, this corresponds to replacing the set {e⋆} with larger subsets of U in the above argument
and then recurse on each subset individually.

The rest of this section is devoted to the proof of Theorem 4. We start by introducing an
algebraic construction of a set-system, named an edifice, due to Chakrabarti and Wirth [15] and
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use it to introduce a family of “hard” instances for the stochastic set cover problem. We then prove
that any algorithm with limited rounds of adaptivity on these instances necessarily incurs a large
cost compared to the optimal adaptive algorithm and prove Theorem 4.

Edifice Set-System

An edifice over a universe U of n items is a collection of sets in which for any two sets, either one
of them is a subset of the other, or the two sets have a small intersection. Formally:

Definition 1 (Edifice Set-System [15]). For integers k ≤ s ≤ b ≤ d, a (s, b, k, d)-edifice T over
a universe U is a complete d-ary k-level rooted tree together with a collection of associated sets,
satisfying the following properties:

(I) Each vertex v in T is associated with a set Uv ⊆ U such that the set associated to the root of
T is U , and Uu ⊆ Uv if u is a child of v in T .

(II) If v is a leaf of T , then |Uv| = b.

(III) For each leaf u and each node v not an ancestor of u in T , |Uu ∩ Uv| ≤ s.

In this definition, we say that root is at level 1 of the tree and the leaf-vertices are at level k

Edifices are typically interesting when the parameter s is small and parameter b is large com-
pared to the size of the universe, i.e., when we have large sets which are almost disjoint from each
other in a recursive manner suggested by the tree-structure of an edifice. For our purpose, we are
interested in edifices with parameters r = k ≈ s (r is the number of rounds we want to prove
the lower bound for), b ≈ n1/k, and d = nO(1) (n is the number of elements in the universe). The
existence of such edifices follows from the results in [15] (see Theorem 3.5; see also RND-set systems
in [5] for a similar construction), which we summarize in the following proposition.

Proposition 6.1 ( [15]). For infinitely many integers N and any integer k ≥ 1, there exists a
(4k,N, k,N2)-edifice over a universe U of size Nk.

Hard Instances for Stochastic Set Cover

Fix an integer k ≥ 1 and a sufficiently large integer N ≥ k and let U be a universe of size Nk

elements. Define T as any arbitrary (4k,N, k,N2)-edifice over U which is guaranteed to exist by
Proposition 6.1. We define the following family of “hard” instances for stochastic set cover.

Family X
(k): A collection of stochastic sets over universe U using edifice T .

• For any vertex u ∈ T and any element e ∈ U , there exists a dedicated stochastic set Xu

and Xe in X
(k), respectively, defined as follows.

• For any non-leaf vertex u ∈ T with child-vertices v1, . . . , vd, the stochastic set Xu realizes
to one of the sets Tu,v1 , . . . , Tu,vd uniformly at random where Tu,vi := Uu \ Uvi .

• For any leaf vertex u ∈ T with Uu = {e1, . . . , eN} (recall that |Uu| = N be Definition 1),
the stochastic set Xu realizes to one of the sets Tu,e1 , . . . , Tu,eN uniformly at random where
Tu,ei := Uu \ {ei}.

• For any element e ∈ U , Xe deterministically realizes to the singleton set {e}.
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For any realization of X(k), we define the canonical path of the realization as the root-to-leaf
path P = v1, v2, . . . , vk over the vertices of the edifice T as follows:

1. v1 is the root of the tree T .

2. For any 1 < i ≤ k, vi is the child-vertex of vi−1 corresponding to Tvi−1,vi = Xvi−1 .

We have the following simple claim on the cost of the optimal adaptive algorithm on the family
X
(k) for any integer k ≥ 1.

Claim 6.2. For any integer k ≥ 1, the expected cost of OPT on X
(k) is at most k + 1.

Proof. We prove that the following algorithm has expected cost k + 1; clearly optimal adaptive
algorithm can only have a lower expected cost.

Consider the adaptive algorithm that constructs the canonical path of the underlying realization
one vertex at a time: it first chooses v1 which is the root of T and add Xv1 to S. Next, based on
the realization of Xv1 , it can determine the second vertex v2 in the canonical path and adds Xv2

to S. It continues like this until it has added all sets Xv1 , . . . ,Xvk to S where P := v1, . . . , vk is
the canonical path of the realization. Finally, a realization of Xvk for a leaf vk corresponds to a set
Tvk ,e that covers all of Uvk (the set associated with the leaf-vertex vk in the edifice) except for a
single element e. The algorithm then picks the set Xe which deterministically realizes to {e}.

Clearly, the number of stochastic sets picked by this algorithm is k + 1. We argue that these
sets cover the universe U entirely. This is because, Xv1 covers U \Uv2 , Xv2 covers Uv2 \Uv3 , and so
on until Xvk covers Uvk \ {e}. As such, Xv1 ∪ . . . ∪ Xvk covers U \ {e} and picking Xe would cover
the whole universe as Xe always realizes to {e}.

In the remainder of this section, we prove that any (r =)k-round adaptive algorithm for stochas-
tic set cover on X

(k) should incur a cost of roughly n1/k, hence proving Theorem 4. It is worth
remarking that the adaptive algorithm in Claim 6.2 that achieves the cost of k + 1 requires only
k+1 rounds of adaptivity; as such, our results are in fact proving a separation between the cost of
any k-round and k + 1-round adaptive algorithms.

Before we move on to the proof of Theorem 4, we prove the following crucial lemma using
properties of edifice T .

Lemma 6.3. Let Uvk be the set associated to the k-th vertex vk in the canonical path of X(k) in
edifice T and C be any collection of sets in X

(k) \ Xvk . Then
∣∣⋃

T∈C T ∩ Uvk

∣∣ ≤ 4 |C| · k.

Proof. Fix any set T ∈ C. We prove that |T ∩ Uvk | ≤ 4k which would immediately imply the
lemma.

If T is a realization of some set Xe for some element e ∈ U , then |T | = 1 and hence the claim
immediately holds. Hence, suppose that T is a realization of Xv for some vertex v ∈ T .

If v is an ancestor of vk, then T = Uv \ U ′
v where v′ is either another ancestor of vk or it is

equal to vk itself by definition of the canonical path. In either case, by property (I) of edifices in
Definition 1, Uvk ⊆ Uv′ and hence T ∩ Uvk = ∅.

If v is not an ancestor of vk, then T ⊆ Uv as Xv ⊆ Uv and by property (III) of edifices in
Definition 1, |Uv ∩ Vvk | ≤ 4k (here parameter s = 4k) and hence |T ∩ Vvk | ≤ 4k, finalizing the
proof.
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Proof of Theorem 4

Fix any k ≥ 1 and a k-round algorithm A for the stochastic set cover problem on instance X(k). By
Yao’s minimax principle [46], we can assume that A is deterministic. We use S1, . . . ,Sk to denote
the collections of stochastic sets chosen by the algorithm in each of its k adaptivity rounds. We
further use the random variables V1, . . . ,Vk to denote the vertices on the canonical path of X(k)

(note that V1 is always root of the edifice T ).
Let d := N2 denote the number of children any non-leaf vertex has in T . For any i ∈ [k − 1]

we define the following two events:

Event Esmall(i)

The collection Si chosen by A in round i has size |Si| ≤ N/8k.

The event Esmall(i) is only a function of the realizations of first i− 1 sets S1, . . . ,Si−1 chosen by A
in the first i − 1 rounds plus the sets visited in round i and their realizations before reaching the
threshold fixed by the algorithm to stop the round.

Event Ehit(i)

The collection Si chosen by A in round i contains no set Xu where u is a descendant
of vi+1 = Vi+1, i.e., the (i+ 1)-th vertex in the canonical path of X(k)

The event Ehit(i) is also only a function of the realizations of the first i− 1 sets S1, . . . ,Si−1,Si, as
well as V1, . . . ,Vi+1.

The following claim implies that event Esmall(i) is most likely to result in Ehit(i) as well.

Claim 6.4. For any i ∈ [k − 1], Pr (Ehit(i) | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1)) ≥ 1− 1
2k .

Proof. Let v1, . . . , vi be the first i vertices on the canonical path of X(k). By definition of events
Ehit(1), . . . , Ehit(i− 1), and since vi is a descendent of all v1, . . . , vi−1 by definition, we know that no
set Xv belong to S1, . . . ,Si−1 for any descendent v of vi. In particular, Xvi has not been chosen in
S1, . . . ,Si−1 and hence its distribution conditioned on S1, . . . ,Si−1 is still the same distribution as
before. As such, the (i + 1)-vertex of the canonical path of X(k), i.e., vi+1 is still chosen uniformly
at random over the child-vertices of vi, even conditioned on the realizations of S1, . . . ,Si−1. On
the other hand, conditioned on realizations of S1, . . . ,Si−1, the ordering for set Si chosen by A is
determined deterministically. Let S̃ be the set of first N/8k (as in event Esmall(i)) items in Si.

For any j ∈ [|S̃|], we define an indicator random variable Yj ∈ {0, 1} which is 1 iff the j-th set

chosen in S̃ is some Xv for a descendent v of vi+1 (notice that this event is based on the set of items
chosen in S̃ not their realizations). Let u1, . . . , ud be the d child-vertices of vi. We have,

Pr
vi+1

(Yj = 1 | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1)) ≤ 1

d
. (14)

This is simply because only 1/d fraction of descendants of vi are also descendent of vi+1 as T is a

d-ary tree. Define Y =
∑|S̃|

j=1 Yj, i.e., the number of sets chosen from a descendent of vi+1:

Pr (Y ≥ 1 | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1))

≤ E [Y | Esmall(1), . . . , Esmall(i), Ehit(1), . . . , Ehit(i− 1)] (Markov inequality)
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≤
Eq (14)

|S̃|
d
≤ 1

8k
. (as d = N2 and |S̃| ≤ N/8k and N ≥ 1)

Now notice that under event Esmall(i), in the i-th round, we only pick the sets that are in S̃ and
hence under this conditioning, the probability that any descendants of vi+1 belongs to S̃i is at most
1/8k. This concludes the proof.

Define the events Esmall(∗) := Esmall(1), . . . , Esmall(k − 1) and Ehit(∗) := Ehit(1), . . . , Ehit(k − 1).
We now prove that conditioned on these two events, expected cost of A is large, in particular Sk

needs to be large in expectation.

Lemma 6.5. ES1,...,Sk−1
ESk

[|Sk| | S1, . . . , Sk−1, Esmall(∗), Ehit(∗)] = Ω(N/k).

Proof. Fix any S1, . . . , Sk−1 conditioned on events Esmall(∗), Ehit(∗); as argued before, these events
are only a function S1, . . . , Sk−1. We now bound |Sk| in expectation.

Recall that vk is the k-th vertex of the canonical path of X(k) which is a leaf vertex of T . By
event Ehit(∗), we know that Xvk has not been chosen by A in S1, . . . , Sk−1. As such, conditioned
on (S1, . . . , Sk−1, Esmall(∗), Ehit(∗)), the set Xvk still realizes to some set Uvk \ {e⋆} for e⋆ ∈ Uvk

uniformly at random. In particular, for any element e ∈ Uvk ,

Pr
e⋆

(e⋆ = e | S1, . . . , Sk−1, Esmall(∗), Ehit(∗)) =
1

|Uvk |
. (15)

Let Ucov be the set of elements covered in the first k − 1 rounds, i.e., by S1, . . . , Sk−1. Let
U ′
vk

:= Uvk \ Ucov be the set of elements in Uvk which are not covered in the first k − 1 rounds. As
S1, . . . , Sk−1 do not contain Xvk , we can apply Lemma 6.3 and obtain that

∣∣U ′
vk

∣∣ = |Uvk | − |Uvk ∩ Ucov| (16)

≥
Lemma 6.3

|Uvk | −
k−1∑

i=1

|Si| · 2k ≥ N − (N/8k) · 4k (17)

= N/2, (18)

as by event Esmall(∗), |Si| ≤ N/8k for all i ∈ [k − 1].

Conditioned on S1, . . . , Sk−1, the ordering chosen for Sk is fixed. Let τ := N/16k and X1, . . . ,Xτ

be the first τ sets in this ordering. Now consider the element {e⋆} = Uvk \Xvk ; this element is chosen
uniformly at random from Uvk as argued before. We lower bound the probability that the first τ
sets in Sk can cover this element e⋆. Clearly Xvk cannot cover e⋆, hence in the following, without
loss of generality, we assume that X1, . . . ,Xτ do not contain Xvk . This together with Lemma 6.3
implies that |(X1 ∪ . . .Xk) ∩ Uvk | ≤ τ · 4k. We have,

Pr (e⋆ ∈ Ucov ∪ X1 ∪ . . . ∪ Xτ | S1, . . . , Sk−1, Esmall(∗), Ehit(∗)) ≤
Eq (15)

|Ucov|
Uvk

+
|(X1 ∪ . . . ∪ Xk−1) ∩ Uvk |

|Uvk |

≤
Eq (18)

N

2N
+

τ · 4k
N

=
3

4
.

(by choice of τ = N/16k and since |Uvk | = N by Property (II) of edifice in Definition 1)

This means that with probability at least 1/4, Sk needs to pick more than τ sets to cover the
universe U (in particular the element e⋆), hence,

E
Sk

[|Sk| | S1, . . . , Sk−1, Esmall(∗), Ehit(∗)] ≥ τ/4 = Ω(N/k).
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Taking an expectation over S1, . . . , Sk−1 conditioned on Esmall(∗), Ehit(∗) concludes the proof.

We are now ready to finalize the proof.

Lemma 6.6. EX∼X
(k) [A(X)] = Ω(N/k2).

Proof. We can write the expected cost of A as:

E
X∼X

(k)
[A(X)] = E

S1

E
X

[
A(X) | S1

]

= Pr (Esmall(1)) · E
S1

E
X

[
A(X) | S1, Esmall(1)

]

+ (1− Pr (Esmall(1))) · E
S1

E
X

[
A(X) | S1, Esmall(1)

]

≥ Pr (Esmall(1)) · E
S1

E
X

[
A(X) | S1, Esmall(1)

]

+ (1− Pr (Esmall(1))) ·N/8k.

The inequality is by definition of Esmall(1) as this means that |S1| ≥ N/8k. As such, if Pr (Esmall(∗)) ≤
(1 − 1/2k), we are already done as in this case the second term in RHS above is at least (N/8k) ·
(1/2k) = Ω(N/k2). Otherwise,

E
X∼X

(k)
[A(X)] ≥ (1− 1/2k) · E

S1

E
X

[
A(X) | S1, Esmall(1)

]

≥ (1− 1/2k) · Pr (Ehit(1) | Esmall(1)) E
S1

E
X

[
A(X) | S1, Ehit(1), Esmall(1)

]

≥
Claim 6.4

(1− 1/2k)2 · E
S1

E
X

[
A(X) | S1, Ehit(1), Esmall(1)

]
.

We now continue this calculation for the RHS using the sets S2 in second round:

E
S1

E
X

[
A(X) | S1, Ehit(1), Esmall(1)

]

= E
S1

E
S2

E
X

[
A(X) | S2, S1, Ehit(1), Esmall(1)

]

= Pr (Esmall(2) | Ehit(1), Esmall(1)) E
S1

E
S2

E
X

[
A(X) | S2, S1, Esmall(2), Ehit(1), Esmall(1)

]

+ Pr
(
Esmall(2) | Ehit(1), Esmall(1)

)
· E
S1

E
S2

E
X

[
A(X) | S2, S1, Esmall(2), Ehit(1), Esmall(1)

]

Again, if Pr (Esmall(2) | Ehit(1), Esmall(1)) ≤ (1−1/2k), we are already done as in this case the second
term in RHS above is at least Ω(N/k2). Combining this with previous equation, we obtain that
expected cost of A is at least (1 − 1/2k)3 · Ω(N/k2) = Ω(N/k2). Hence, we can assume that
Pr (Esmall(2) | Ehit(1), Esmall(1)) ≥ (1− 1/2k). Using this, and the previous argument we did for the
first round, and by Claim 6.4, we obtain that:

E
X∼X

(k)
[A(X)] ≥

(
1− 1

2k

)4

· E
S1

E
S2

E
X

[
A(X) | S2, S1, Ehit(2), Esmall(2), Ehit(1), Esmall(1)

]
.

We can thus continue this argument until processing the last round, and either we already have
EX∼X

(k) = Ω(N/k2) as for some i ∈ [k−1], Pr (Esmall(i) | 1, . . . , Esmall(i− 1), Ehit(1), . . . , Ehit(i− 1)) ≥
(1− 1/2k), or:

E
X∼X

(k)
[A(X)] ≥

(
1− 1

2k

)2k−2

· E
S1,...,Sk−1

E
X

[
A(X) | S1, . . . , Sk−1, Ehit(∗), Esmall(∗)

]
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≥ Ω(1) · E
S1,...,Sk−1

E
Sk

[|Sk| | S1, . . . , Sk−1, Ehit(∗), Esmall(∗)]

≥
Lemma 6.5

Ω(N/k).

This concludes the proof.

Theorem 4 now follows from Lemma 6.6 and Claim 6.2, by setting r = k and noticing that
N = n1/k in this construction.
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[40] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming: modeling
and theory. SIAM, 2009.

[41] D. B. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as deterministic
optimization. In Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE
Symposium on, pages 228–237. IEEE, 2004.

[42] C. Swamy and D. B. Shmoys. Sampling-based approximation algorithms for multistage
stochastic optimization. SIAM Journal on Computing, 41(4):975–1004, 2012.

[43] L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348–355, 1975.

[44] L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2(4):385–393, 1982.

[45] Y. Yamaguchi and T. Maehara. Stochastic packing integer programs with few queries. In Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, pages 293–310, 2018.

[46] A. C. Yao. Some complexity questions related to distributive computing (preliminary report).
In Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May
2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979.

32


	1 Introduction
	1.1 Problem Statement
	1.2 Our Contributions
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	3 Technical Overview
	3.1 Upper Bound on r-round Adaptivity Gap
	3.2 Lower Bound on Adaptivity Gap

	4 The Non-Adaptive Selection Algorithm
	4.1 A Non-Adaptive Algorithm for Increasing Expected Coverage
	4.2 Proof of Theorem ??

	5 Algorithms for the Stochastic Submodular Cover Problem
	5.1 The Reduce Subroutine
	5.2 The r-Round Adaptive Algorithm

	6 A Lower Bound for r-Round Adaptive Algorithms

