
Disjoint Set Union with Randomized Linking

Ashish Goel∗ Sanjeev Khanna† Daniel H. Larkin‡ Robert E. Tarjan§

Abstract

A classic result in the analysis of data structures is that
path compression with linking by rank solves the dis-
joint set union problem in almost-constant amortized
time per operation. Recent experiments suggest that in
practice, a näıve linking method works just as well if
not better than linking by rank, in spite of being theo-
retically inferior. How can this be? We prove that ran-
domized linking is asymptotically as efficient as linking
by rank. This result provides theory that matches the
experiments, which implicitly do randomized linking as
a result of the way the input instances are generated.

1 Disjoint Set Union via Compressed Trees

The disjoint set union problem, also called the union-
find problem, is to maintain a collection of disjoint
sets, each with a distinguished root element, under
an intermixed sequence of the following two kinds of
operations:

Find (x): Return the root of the set containing
element x.

Unite (x, y): If elements x and y are in the same
set, return false; otherwise, form the union of the sets
containing x and y (destroying the old sets), choose a
root for the new set, and return true.

Initially each set is a singleton, whose only element
is its root. In each Unite, the implementation is free to
choose the root of the new set. Information associated
with a set can be stored in its root.

The compressed tree solution to this problem [6]
represents each set by a rooted tree whose nodes are
the elements of the set and whose root is the root of

∗Department of Management Science and Engineering, Stan-
ford University. Research supported in part by NSF grant 0904325

and the DARPA GRAPHS and XDATA programs. Email:

ashishg@stanford.edu
†Department of Computer and Information Science, Uni-

versity of Pennsylvania, Philadelphia, PA 19104. Email:

sanjeev@cis.upenn.edu. Supported in part by National Science
Foundation grants CCF-1116961 and IIS-0904314.
‡Princeton University Department of Computer Science.

Email: dhlarkin@cs.princeton.edu.
§Princeton University Department of Computer Science and

MSR SVC. Email: ret@cs.princeton.edu. Research of Daniel

H. Larkin and Robert E. Tarjan at Princeton University partially
supported by NSF grant CCF-0832797.

the set. Each node x has a pointer x.p to its parent;
each root points to itself. To do Find (x), follow parent
pointers from x until reaching a node u pointing to itself.
The path of ancestors from x to u is the Find path.
To do Unite (x, y), first compute u = Find (x) and
v = Find (y). If u = v, return false; otherwise, make
one of u and v the parent of the other (thereby making
the new parent the root of the new set), and return
true.

By exploiting the flexibility inherent in this solu-
tion, one can significantly improve its efficiency. The
implementation is free to restructure the trees, as long
as it preserves the node set of each tree. One way to
gain efficiency is to do path compaction: during a Find,
replace the parent of one or more nodes along the Find
path by a node farther along the path. The most dras-
tic form of compaction is compression, attributed by
Knuth [9] to Alan Tritter: during Find (x), make the
root of the tree containing x the parent of every node on
the Find path. Compression requires two passes over
the Find path, one to find the root, the other to update
parents. One can do both passes bottom-up (from x to
the root). Or, one can do the first pass bottom-up and
the second top-down using recursion.

Alternatives to compression include two one-pass
methods: splitting [18, 19], which for every ancestor y
of x replaces the parent of y by its grandparent, and
halving [18, 19], which for every other ancestor y of x
replaces the parent of y by its grandparent. Both of
these methods do less compaction than does compres-
sion. See the appendix for pseudocode implementing
Find with compression, splitting, and halving.

A second way to gain efficiency is to choose the
root of each new tree carefully, using a linking rule.
The baseline for comparison is näıve linking, which
during Unite (x, y) chooses Find (x) as the new root.
A rule with similar efficiency is linking by index [6],
which requires that the elements be totally ordered and
which chooses as the new root the larger of Find (x)
and Find (y). Two better rules are linking by size, at-
tributed by Knuth [9] to M. D. McIlroy, which chooses as
the new root the root of the old tree having more nodes,
breaking a tie arbitrarily; and linking by rank [17], which
chooses as the new root the root of the old tree having
greater height, ignoring any compaction and breaking a



tie arbitrarily. The implementation of linking by size or
rank requires storing the number of nodes or the height,
respectively, in the root.

In some applications of disjoint set union, only the
sets must be maintained, not additional information
such as set names. A notable example is Kruskal’s
minimum spanning tree algorithm [11], which maintains
the vertex sets of connected components using Unite
operations. In such applications there is an additional
way to speed up each Unite: interleave the two Find
operations, and stop when one of them finishes. One can
alternate steps along the two paths, or use an ordering
to determine the interleaving. Two methods that use
the latter idea are early linking by index, analogous to
linking by index, and early linking by rank, analogous
to linking by rank, both described below. There is
no similar way to do early linking by size: this would
require increasing the size of the new root; but this root,
which would be returned by the second Find to finish, is
in general not yet reached when the first Find finishes.
For the same reason, early linking by index or rank
cannot be used if the roots store additional information
about the sets.

Early linking by index requires that the elements
be totally ordered. It does Unite (x, y) by traversing
the Find paths from x and y concurrently, proceeding
at each step from the node with the smaller parent. If
it reaches two nodes with the same parent, it returns
false; if it reaches a root, it makes this root a child of
the parent of the current node on the other Find path
(thereby preserving increasing order along Find paths
and making the not-yet-found root the root of the new
tree) and returns true.

Early linking by rank is like early linking by index
except that it uses ranks to maintain a total order
along each Find path. This produces an extra case in
the implementation: if the Find operations reach two
different roots of the same rank, one becomes the parent
of the other, and the rank of the new parent increases
by one.

One can combine any type of path compaction with
any of the linking rules. In a Unite that does early
linking by index or rank, compaction proceeds only as
far as the two Find paths are traversed. Instead of
compacting these paths individually, one can instead
splice them together: when taking a step from a node
on one Find path, replace its parent by the parent of the
current node on the other path. Splicing applies only to
the pairs of Find operations within Unite operations;
another kind of compaction must be done during any
Find that occurs outside of a Unite. Dijkstra [4]
attributes to M. Rem the method of early linking by
index with splicing; an implementation appears in the

appendix. Tarjan and van Leeuwen [17] invented the
method of early linking by rank with splicing; see their
paper for an implementation.

What is the theoretical efficiency of these meth-
ods? Tarjan [16] showed that with linking by size
and compression, the worst-case total time for m op-
erations on sets containing a total of n elements is
O (mα (lg n,m/n)). Here lg is the base-two logarithm
and α is a functional inverse of Ackermann’s func-
tion defined in Section 3, which grows very slowly
and is constant for all practical purposes. (In partic-
ular, α (n,m/n) = α (lg n,m/n) + O (1).) Tarjan and
van Leeuwen [17] extended Tarjan’s work to show that
the asymptotic efficiency depends only on the kind of
linking done, not on the kind of compaction (as long
as every Find path is compacted): with näıve link-
ing, linking by index, or early linking by index, the

worst-case total time is O
(
m logm/n+2 n

)
; with link-

ing by rank or size or early linking by rank, the to-
tal time is O (mα (lg n,m/n)). Fredman and Saks [5]
showed that in the cell probe computation model any
algorithm that solves the disjoint union problem takes
Ω (mα (lg n,m/n)) total time. Thus all the methods that
use linking by size or rank are asymptotically optimal.

Later work simplified and slightly improved the
analysis that produces the inverse-Ackermann-function
upper bound. Kozen [10] gave a simplified version of the
Tarjan-van Leeuwen analysis for linking by rank with
compression. Kaplan, Shafrir, and Tarjan [8] improved
Kozen’s analysis to give a local amortized bound, in
which the time for Find (x) depends only on the number
of elements in the current set containing x, rather than
on n. Alstrup, Gørtz, Rauhe, Thorup, and Zwick [3]
simplified this analysis and made it into a potential-
based argument. All these results bound the total
length of Find paths by counting parent changes using
a bottom-up approach. Seidel and Sharir [13] used a
top-down approach to obtain the same global bounds
as Tarjan and van Leeuwen.

But what happens in practice? The most recent
and most comprehensive experiments were done by
Ali Patwary, Blair, and Manne [2]. They tested the
algorithms described above, and others, on instances
derived from running Kruskal’s algorithm on several
families of graphs. In this application, the only Find
operations are those within Unite operations. A main
conclusion of their study is that linking by index and
early linking by index perform at least as well and often
better than linking by rank or size and early linking by
rank, in spite of the theoretical superiority of the latter
methods.

We provide theoretical support for this conclusion.
We analyze randomized linking and randomized early



linking, which are linking by index and early linking by
index with the elements ordered uniformly at random.
These are in effect the linking methods used in the
experiments of Ali Patwary et al. on at least two of
their three data sets, which contained graphs generated
at random. The third data set contained “real-world”
graphs, which may well have had their vertices given
in random order. (Their paper is silent on this issue.)
We show that with any kind of compaction, both
randomized linking and early randomized linking take
O (mα (lg n,m/n)) expected time. Since the lower bound
of Fredman and Saks applies to randomized algorithms
as well as deterministic ones, this bound is tight to
within a constant factor. We conclude that in a setting
in which the instances are independent of the identities
of the nodes, the added complexity of maintaining
ranks or sizes does not produce improved asymptotic
efficiency.

The remainder of our paper contains five sections
and an appendix. We begin in Section 2 by defining
node ranks for randomized linking and randomized early
linking and establishing properties of these ranks. In
Section 3 we use the results of Section 2 in combination
with a known analysis of linking by rank to analyze
randomized linking and randomized early linking with
compression. In section 4 we extend the analysis of
Section 3 to splitting and halving. In Section 5 we
analyze randomized early linking with splicing. We
conclude in Section 6 with some brief remarks and open
problems. The appendix contains implementations of
the compaction methods we analyze.

2 Ranks for Randomized Linking

To analyze randomized linking and randomized early
linking, we define a rank for each node and extend one
of the known analyses of linking by rank. A natural
approach is to let the rank of a node be its height
in the forest built by the Unite operations, ignoring
compactions. This idea leads to a successful analysis of
all the methods except randomized early linking with
splicing. The problem with splicing is that heights
are not necessarily monotonic in the node order, and
a splice can make a smaller-height node the parent of
a larger-height one. To avoid this problem, we use an
alternative definition of rank that is monotonic in the
node numbers. This allows us to successfully analyze
all the methods.

Assume that the elements are permuted uniformly
at random, numbered from 1 to n in permutation order,
and identified by number. For each element x from 1 to
n, let the rank x.r of x be blg nc−blg (n− x+ 1)c. Thus
the rank of n is blg nc, the rank of n − 2 and n − 1 is
blg nc − 1, the rank of n− 6 through n− 3 is blg nc − 2,

and so on. We use these ranks in the analysis only:
they do not affect the execution of the set operations,
and they remain fixed throughout the execution. The
ranks have three crucial properties, all immediate from
the definition: (i) if x < y, then x.r ≤ y.r; (ii) the
number of elements of rank k is at most n/2k; and (iii)
for any x, at least half the elements greater than x have
ranks strictly greater than x.r.

To bound the time of a sequence of set operations,
we count the number of parent changes caused by
compaction: the total time of the operations is at most
a constant times this number plus O (1) per Find.
The known analyses of linking by rank rely on two
facts: ranks strictly increase along each Find path,
and compression, splitting, and halving replace parents
by ancestors. (Splicing has a more complicated effect
that we study in Section 5.) With randomized linking
or randomized early linking, property (i) implies that
ranks increase along each Find path, but not necessarily
strictly. We need to bound the expected number of
rank ties. Suppose the set operations are done using
randomized linking or randomized early linking, but
with no compaction. We shall prove that for every node
x, the expected number of proper ancestors of x having
the same rank as x after all the unites are done is at
most two.

Let x be any node, and let σ be the sequence of
Unite operations that build the final set containing x,
ignoring any Unite operations that return false. Each
successive Unite in σ combines the set containing x
with another set of arbitrary size. It is especially easy
to analyze the ancestors of x produced by σ if each
successive unite adds only a single element to the set
containing x: either the new element becomes the root,
and hence an ancestor of x, or the old root remains the
root, and the new element becomes a non-ancestor of
x. To handle the general case, we transform it into the
case of adding one element at a time. To do this we
reorder σ into a sequence σ (x) of σ that depends on
x but not on the random numbering, and that adds
elements to the set containing x one-at-a-time. We
analyze the ancestors of x produced by σ (x) and relate
them to those produced by σ: with randomized linking
the ancestors of x produced by σ are a subset of those
produced by σ (x), and with randomized early linking
the ancestors of x produced by σ are exactly those
produced by σ (x).

The sequence σ (x) is σ reordered so that each suc-
cessive Unite adds a new element to the set containing
x, with ties broken by order in σ. We develop a recursive
characterization of σ (x) below. Let x0 = x, x1, x2, . . .
be the successive vertices added by σ (x) to the set con-
taining x. We call xj a prefix maximum if xi < xj for



i < j.

Lemma 2.1. If σ (x) is done using randomized linking
or randomized early linking with no compaction, the
ancestors of x are exactly the prefix maxima among the
xj.

Proof. For any j, the root of the tree built by the first j
Uniteoperations in σ (x) is the maximum xi such that
i ≤ j, which is a prefix maximum. Conversely, if xj is a
prefix maximum, it will be the root of the tree built by
the first j Unite operations in σ (x).

Let Unite (y, z) be the last Unite in σ, and let σ′

be σ with this Unite deleted. Let S1 containing y and
S2 containing z be the two sets built by σ′, and let σ1
and σ2 be the subsequences of σ′ that build S1 and S2,
respectively.

Lemma 2.2. If x is in S1, σ (x) is σ1 (x) followed by
Unite (y, z) followed by σ2 (x); if u is in S2, σ (x) is
σ2 (x) followed by Unite (y, z) followed by σ1 (y).

Proof. Assume x is in S1; the argument is symmetric
if x is in S2. The Unite operations in σ1 have both
inputs in S1, and the Unite operations in σ2 have both
inputs in S2. In the construction of σ (x) according to its
definition, if some Unite in σ1 has not yet been selected,
there will be an unselected Unite in σ1 that adds a
new element to the set containing x. Such a Unite will
be selected before Unite (y, z) by the tie-breaking rule.
Once all the Unite operations in σ1 have been selected,
Unite (y, z) will be selected. Since no Unite in σ2 has
a vertex in S1 as an input, the Unite operations in σ2
will be selected in the order they occur in σ2 (z).

Lemma 2.3. Let T and T (x), respectively, be the trees
built by executing σ and σ (x) using randomized linking.
Then every ancestor of x in T is an ancestor of x in
T (x).

Proof. The proof is by induction on the length of σ
using Lemma 2.2. Assume x is in S1; the argument
is symmetric if x is in S2. Let T1 and T1 (x) be the trees
built by σ1 and σ1 (x), respectively. Let v and w be the
largest elements in S1 and S2, respectively. If v > w,
the ancestors of x in T are exactly the same as in T1,
so the lemma holds. If v < w, the ancestors of x in T
are w and those in T1. In this case w is maximum in T ,
hence a prefix maximum in σ (x), and hence an ancestor
of x in T (x) by Lemma 2.1, so the lemma holds in this
case also. By the induction hypothesis every ancestor
of x in T1 is an ancestor of x in T1 (x).

Lemma 2.4. Let T and T (x), respectively, be the trees
built by executing σ and σ (x) using randomized early
linking. Then the proper ancestors of x are the same in
T and T (x).

Proof. The proof is by induction on the length of σ
but is more complicated than the proof of Lemma 2.3.
Assume x is in S1; the argument is symmetric if x is
in S2. Let T1, T2, T1 (x), and T2 (z) be the trees built
by σ1, σ2, σ1 (x), and σ2 (z), respectively. Let v be
the largest element in S1. The ancestors of x in T are
exactly the ancestors of x in T1, plus the ancestors of z in
T2 that are greater than v. By the induction hypothesis,
these are exactly the ancestors of x in T1 (x), plus the
ancestors of z in T2 (z) that are greater than v. Recall
that x0, x1, . . . is the sequence of elements added to the
set containing x by σ (x). Let z = xk. By Lemma 2.2,
xk, xk+1, . . . is the sequence of elements added by σ2 (z)
as it builds T2 (z). By Lemma 2.1, the ancestors of
x in T1 (x) are the prefix maxima in x0, x1, . . . , xk−1,
and the ancestors of z in T2 (z) are the prefix maxima
in xk, xk+1, . . .. Among the latter, those greater than
v are exactly the ones that are also prefix maxima in
x0, x1, . . .. The lemma follows.

Theorem 2.1. With randomized linking or randomized
early linking but no compaction, the expected number of
proper ancestors of x of the same rank as x in the final
forest is at most two.

Proof. By Lemmas 2.3 and 2.4 it suffices to bound the
expected number of ancestors of x having the same rank
as x in the tree built by σ (x). By Lemma 2.1 these are
exactly the prefix maxima of x0, x1, . . . that are of the
same rank as x, all of which precede the first prefix
maximum (if any) of rank greater than that of x. Let
k > 0 be such that if i < k, xi has rank at most that of x,
and let xj be maximum among x0, x1, . . . , xk−1. Since
the definition of σ (x) is independent of the random
numbering, every element greater than xj is equally
likely to be xk. (This need not be true for elements
less than xk, but that is irrelevant to our argument.)
Property (iii) implies that, given that xk is a prefix
maximum, the conditional probability that the rank of
xk is greater than that of xj is at least 1/2. Thus each
successive prefix maximum has probability at least 1/2 of
having greater rank than x. It follows that the expected
number of proper ancestors of x of the same rank as x
is at most

∑∞
i=1

i/2i = 2. (Node x is an ancestor but
not a proper ancestor of itself.)

We conclude this section by bounding the expected
rank of the root of a tree as a function of the tree
size. This allows us to bound the time of Find (x) by



a function of the size of the current set containing x
rather than by a function of n.

Theorem 2.2. Consider a tree of k nodes built by a
sequence of Unite operations using randomized linking
or randomized early linking. The expected rank of the
root is O (log k) .

Proof. A crude argument suffices. The root is maximum
among the k nodes of the tree. Property (ii) implies
that for any j > lg k, the probability that some node
in the tree has rank greater than j is at most k/2j. It
follows that the expected rank of the root is at most∑∞

j=dlg ke
(j+1)k/2j = O (log k).

3 Analysis of Compression

Now we are ready to extend an existing analysis of
linking by rank to apply to randomized linking and
randomized early linking. To obtain the tightest, most
general results, we extend the analysis of Tarjan and van
Leeuwen [17]: as far as we can tell, Kozen’s analysis [10]
and the later ones based on it [3, 8] are not flexible
enough to handle splicing, and the top-down approach
of Seidel and Sharir [13] does not give a local bound for
any type of compaction.

Consider a sequence of m intermixed Unite and
Find operations on sets containing a total of n elements,
such that every element is an input to at least one
operation. (Other elements can be deleted without
affecting any of the operations.) For ease in stating time
bounds we assume n ≥ 2, which implies m ≥ n/2 ≥ 1.
Let d = m/n > 0. Assume the operations are done
using randomized linking or randomized early linking
with some form of compaction.

For purposes of the analysis only, we assume as
in Tarjan’s original paper [14] that all links are done
before all compactions. More precisely, all the Unite
operations are done first, in their original order but
with no compaction, and then the compactions are
done on the resulting trees. This does not affect the
parent changes done by the compactions, and it slightly
simplifies the analysis. We count the parent changes
done by the compactions: if there are h nodes on a
Find path, a compression or split changes at least h−2
parents, a halving changes at least bh/2c−1, and a splice
of two Find paths having a total of h nodes changes
at least h − 3 parents. Thus the total time of the set
operations is O (m) plus O (1) per parent change.

In our analysis we use the potential method of
amortized analysis [14]. We assign to each state of the
data structure a real-valued potential. We define the
amortized cost of an operation to be its actual cost plus
the change in potential it causes. Then the total cost of
a sequence of operations is the sum of their amortized

costs plus the initial potential minus the final potential.
In all our uses of this technique, the potential is always
non-negative, so the total cost of the operations is at
most the sum of their amortized costs plus the initial
potential. Also, the change in potential caused by a
compaction is non-positive. Furthermore the potential
of the data structure is the sum of the potentials of its
nodes.

We define the node potentials using Ackermann’s
function and several auxiliary functions. We use a clas-
sical definition of this function: even though Seidel and
Sharir [13] showed that one can use a more rapidly grow-
ing function, this changes only the additive constant in
the inverse function.

Ackermann’s function [1, 12] is a function of two
non-negative integer variables defined recursively as
follows:

A (0, j) = j + 1

A (k, 0) = A (k − 1, 1) if k > 0

A (k, j) = A (k − 1, A (k, j − 1)) if k > 0 and j > 0

It is straightforward to prove by induction that A
is strictly increasing in both arguments, A (k + 1, j) ≥
A (k, j + 1), and A (1, j) = j+2. (As k increases beyond
1, the function A (k, j) rapidly increases: A (2, j) > 2j),
A (3, j) > 2j ,. . . )

The inverse Ackermann function α is defined for
any non-negative integer r and non-negative real num-
ber d by

α (r, d) = min {k > 0|A (k, bdc) > r}

This function is non-decreasing in the first argu-
ment and non-increasing in the second.

The index function b (k, r) is defined for any non-
negative integers k and r by

b (k, r) = min {j ≥ 0|A (k, j) > r}

This function is non-increasing in the first argument
and non-decreasing in the second. Note the similarity
between α and b. We have defined α to be positive and
extended its domain from integers to real values of d
merely to simplify the statement of time bounds.

The level function a (r, s) is defined for any non-
negative integers r ≤ s by

a (r, s) =

min ({α (r, d) + 1} ∪ {k ≤ α (r, d) |A (k, b (k, r)) > s})

Lemma 3.1. If r ≤ s, a (r, s) = 0 if and only if r = s.

Proof. Since A (0, j) = j + 1, b (0, r) = r, which implies
A (0, b (0, r)) = A (0, r) = r + 1. Hence a (r, s) = 0 if
r = s and a (r, s) > 0 if r < s.



For each node x we define a level x.a, an index x.b,
and a count x.c as follows:

x.a = a (x.r, x.p.r)

x.b = b (x.a− 1, x.p.r) if x.a > 0, x.b = 0 otherwise

x.c = x.a× (x.r + 2) + x.b

Lemma 3.2. If x.a ≤ α (x.r, d), then x.b ≤
max {x.r, 1} ≤ x.r + 1.

Proof. If x.a = 0, x.b = 0, so the lemma holds.
Suppose x.a = k > 0. Let j = b (x.a, r). The
definition of x.a implies A (k, j) > s. If j = 0,
then A (k, 0) = A (k − 1, 1) > s. Hence x.b =
min {j ≥ 0|A (k − 1, j) > s} ≤ 1, so the lemma holds.
If j > 0, then A (k, j) = A (k − 1, A (k, j − 1)) > s.
Since j = b (k, r) , A (k, j − 1) ≤ r, which implies
A (k − 1, r) > s. Hence x.b ≤ r, so the lemma holds.

Lemma 3.3. If x.a = α (x.r, d) + 1 = α (x.p.r, d) + 1,
then x.b ≤ d.

Proof. The definition of α implies A (x.a− 1, d) =
A (α (x.p.r, d) , d) > x.p.r. Since x.b =
b (x.a− 1, x.p.r) , x.b ≤ d.

Lemma 3.4. For every node x, x.a and x.c never de-
crease, and x.c increases whenever x.a or x.b changes.
If x.a increases by k, x.c increases by at least k.

Proof. For fixed r, a (r, s) is a non-decreasing function
of s. Since x.r never changes and x.p.r never decreases,
x.a = a (x.r, x.p.r) never decreases. Since x.p.r never
decreases, while x.a is constant x.b never decreases, so
a change in x.b while x.a is constant increases both x.b
and x.c. When x.a increases by k, x.b decreases by at
most x.r+ 1 by Lemma 3.2, so x.c increases by at least
k (x.r + 2)− (x.r + 1) ≥ k.

The next lemma is the key to counting parent
changes. It holds for all types of compaction.

Lemma 3.5. Let x and y be nodes such that x.p.r ≤ y.r
and 0 < x.a = y.a just before a Find that increases x.p
to at least y.p. Then the Find increases x.c.

Proof. Let k = x.a = y.a, j = x.b, and j′ = y.b
just before the Find. The definition of x.a implies
A (k − 1, j) = A (k − 1, b (k − 1, x.p.r)) ≤ x.p.r. The
definition of b implies y.r < A (k − 1, b (k − 1, y.r)) ≤
A (k − 1, b (k − 1, y.p.r)) = A (k − 1, j′). Since x.p.r ≤
y.r, j < j′. Since j′ = min {i ≥ 0|A (k − 1, i) > y.p.r},
the Find increases b (k − 1, x.p.r) to at least j′, by
increasing x.p.r to at least y.p.r. It follows that either
the Find does not change x.a but increases x.b, or it
increases x.a. In either case x.c increases by Lemma 3.4.

Now we are ready to count parent changes.
Let the potential of a node x be the number of
proper ancestors of x of the same rank as x plus
max {0, (α (x.r, d) + 1)× (x.r + 2) + d+ 1− x.c}. Let
the potential of a collection of trees be the sum of the
potentials of their nodes, and let the amortized cost of
a Find be the number of parent changes it makes plus
the change in potential it causes.

Lemma 3.6. The expected initial potential is O (m).

Proof. By Theorem 2.1 the expected sum over all nodes
x of the number of proper ancestors of x of the same
rank as x is at most 2n. Since α (r, d) ≤ r, the sum
over all nodes of the rest of the potential is at most
n (d+ 1) +

∑
r≥0

n(r+1)(r+2)/2r = O (m).

Lemma 3.7. Suppose Find operations are done with
compression. Then the expected amortized cost of
Find (x) is O (α (log k, d)), where k is the number of el-
ements in the current set containing x, or in the smaller
of the two sets combined if the Find is in a Unite done
using randomized eager linking that returns true.

Proof. Consider any Find path. Compression of the
Find path does not increase the potential of any node.
Let v be the last node on the path, and let x be
any node on the path whose parent is changed by the
compression. If x.a = 0, compressing the path causes
x to lose at least one proper ancestor of the same rank,
thereby decreasing its potential. If x.a > 0, α (x.r, d) =
α (x.p.r, d), and there is a node y after x on the path
such that y.a = x.a, compressing the path reduces the
potential of x by at least one by Lemmas 3.2, 3.3,
and 3.5. Thus the compression decreases the potential
of x unless α (x.r, d) < α (x.p.r, d) or x is last on its
level. Since α (x.r, d) ≤ α (x.p.r, d) for every x, at most
α (v.r, d) nodes x have α (x.r, d) < α (x.p.r, d). Since
every node on the path has level at most α (v.r, d) + 1,
at most α (v.r, d) + 2 nodes are last on their level. The
amortized cost of the Find is thus at most 2α (v.r, d)+2.

By Theorem 2.2, the expected value E [v.r] of v.r is
O (log k), where k is the number of elements in the set
containing x, or in the smaller of the two sets combined
if the Find is in a Unite done using randomized eager
linking that returns true. If we extend α (r, d) for
fixed d to a function over non-negative real numbers
r by connecting successively larger values by straight
lines, we obtain a piecewise linear concave function. By
Jensen’s inequality [7], the expected value E [α (v.r, d)]
of α (v.r, d) is at most α (E [v.r] , d) = O (α (log k, d)).

Theorem 3.1. If Find operations are done with com-
pression, the expected total time of the operations is at



most the sum over every Find of O (α (log k, d)), where
k is the number of elements in the current set containing
the element found, or in the smaller of the two sets com-
bined if the Find is in a Unite done using randomized
eager linking that returns true.

Proof. The theorem follows immediately from Lem-
mas 3.6 and 3.7.

4 Analysis of Splitting and Halving

The analysis of splitting is like that of compression but
more elaborate. We need a lemma that complements
Lemma 3.5.

Lemma 4.1. Let x and y be nodes such that x < y
and x.a < min {y.a, α (x.r, d) + 1} just before a Find
that increases x.p to at least y.p. Then the Find
increases x.a to at least min {y.a, α (x.r, d) + 1}, and
hence increases x.c by at least min {y.a, α (x.r, d) + 1}−
x.a.

Proof. Let k = y.a. The definition of y.a implies
A (k − 1, b (k − 1, x.r)) ≤ A (k − 1, b (k − 1, y.r)) ≤
y.p.r. It follows that once x.p is at least y.p, x.a ≥
min {y.a, α (x.r, d) + 1}. By Lemma 3.4, x.c increases
by at least as much as x.a.

Let the potential of a node x be its num-
ber of proper ancestors of the same rank plus
2 (max {0, (α (x.r, d) + 1)× (x.r + 2) + d+ 1− x.c}),
let the potential of a collection of trees be the sum of
their node potentials, and let the amortized cost of a
Find be the number of parent changes plus the change
in potential. The expected total initial potential is
O (m) by Lemma 3.6. A split cannot increase the
potential of any node.

Lemma 4.2. Suppose Find operations are done with
splitting. Then the expected amortized cost of Find (x)
is O (α (log k, d)), where k is the number of elements in
the current set containing x, or in the smaller of the
two sets combined if the Find is in a Unite done using
randomized eager linking that returns true.

Proof. Consider any Find path. Let x be any node on
the path other than the last two. Then the split changes
the parent of x. If x.a < min {x.p.a, α (x.r, d) + 1},
splitting the path decreases the potential of x by
at least 2 (min {x.p.a, α (x.r, d) + 1} − x.a) ≥ 1 +
min {x.p.a, α (x.r, d) + 1}−x.a by Lemmas 3.2, 3.3, and
4.1. If x.a = 0, splitting the path decreases the potential
by at least 1, since x loses a proper ancestor of the same
rank. If 0 < x.a = x.p.a and α (x.r, d) = α (x.p.r, d),
splitting the path decreases the potential by at least
2 ≥ 1 by Lemmas 3.2, 3.3, and 3.5.

We claim that in all cases, including those in which
the potential of x does not decrease, the potential of x
decreases by at least

(4.1) 1 + x.p.a− x.a+ 2 (α (x.r, d)− α (x.p.r, d))

Since α (x.r, d) ≤ α (x.p.r, d), this is true if x.p.a <
x.a, because the value of (4.1) is non-positive. It is
also true if x.p.a = x.a, since if α (x.r, d) = α (x.p.r, d),
the value of (4.1) is 1, and if α (x.r, d) < α (x.p.r, d),
the value of (4.1) is non-positive. If x.a < x.p.a ≤
α (x.r, d) + 1, the drop is at least 1 + x.p.a− x.a, which
is at least the value of (4.1). If x.a < α (x.r, d) +
1 < x.p.a, the drop is at least 1 + α (x.r, d) + 1 −
x.a ≥ 1 + x.p.a − x.a + α (x.r, d) + 1 − x.p.a. Since
x.p.a ≤ α (x.p.r, d) + 1, the drop is at least 1 +
x.p.a − x.a + α (x.r, d) − α (x.p.r, d), which is at least
the value of (4.1). The last and most interesting case,
which accounts for the factor of 2 in (4.1), is x.a =
α (x.r, d) + 1 < x.p.a. Since x.p.a ≤ α (x.p.r, d) + 1,
α (x.p.r, d) − α (x.r, d) ≥ max {1, x.p.a− x.a}, so the
value of (4.1) is non-positive.

Now we sum (4.1) over all nodes on the Find path
except the last two. Suppose there are h such nodes,
with u the first and v the parent of the last. (Node v is
next-to-last on the path.) The sum telescopes to

h+ v.a− u.a+ 2 (α (u.r, d)− α (v.r, d))

≥ h+ (v.a− α (v.r, d)− 1)− (u.a− α (u.r, d)− 1) +

α (u.r, d)− α (v.r, d)

≥ h− 2α (v.r, d)− 1

It follows that the amortized cost of the Find is at
most 2α (v.r, d) + 1. The rest of the proof is the same
as the last paragraph of the proof of Lemma 3.7.

Theorem 4.1. If Find operations are done with split-
ting, the expected total time of the operations is at most
the sum over every Find of O (α (log k, d)), where k is
the number of elements in the current set containing the
element found, or in the smaller of the two sets com-
bined if the Find is in a Unite done using randomized
eager linking that returns true.

Proof. The theorem follows immediately from Lem-
mas 3.6 and 4.2.

Theorem 4.2. If Find operations are done with halv-
ing, the expected total time of the operations is at most
the sum over every find of O (α (log k, d)), where k is the
number of elements in the current set containing the el-
ement found, or in the smaller of the two sets combined
if the Find is in a Unite done using randomized eager
linking that returns true.



Proof. Instead of bounding the number of parent
changes, we bound the number of grandparent changes:
after halving a path, each node with a new parent except
the last one also has a new grandparent. We redefine
the level, index, and count of a node x to be x.a′ =
a (x.r, x.p.p.r); x.b′ = b (x.a′ − 1, x.p.p.r) if x.a′ > 0,
x.b′ = 0 otherwise; and x.c′ = x.a′ × (x.r + 2) + x.b′.
We let the potential be the one defined in Section 3,
with the new definitions of level, index, and count. We
define the amortized cost of a Find to be the number of
grandparent changes plus the change in potential. Then
Lemma 4.2 holds for halving by the same proof. The
theorem follows immediately.

5 Analysis of Splicing

Splicing is unlike the other compaction methods in that
the new parent of a node need not be one of its ancestors
in the old tree. But the new grandparent is. Indeed, it
is an old ancestor of the old grandparent. This implies
that even though a node can acquire new ancestors,
it loses at least as many as it gains. Our analysis
of splicing uses this fact, along with all the ideas in
Sections 3 and 4 and one additional property of levels.

In our analysis of splicing we use the following
terminology. We denote by u and v the first nodes on
the two paths to be spliced and by w the last node on
both paths: the paths are from u to w and from v to w,
and w is the nearest common ancestor of u and v in the
tree before the splice. (Recall that we assume the Unite
operations are done first, without any compaction, and
then compactions are done. Thus u and v are in the
same tree when the splice occurs.) The splice sequence
is the sequence formed by merging the two paths in
increasing node order: the first node on the sequence is
u or v and the last is w. We color the nodes on the path
from u to w white and those on the path from v to w
black; w gets both colors.

Lemma 5.1. Suppose Unite operations are done using
early linking by index with splicing. If x is a node on
a spliced pair of paths, then its new grandparent was
an ancestor of its old grandparent in the tree before the
splice.

Proof. Each node that changes parent gets a new parent
of the opposite color. Hence any node that changes
grandparent gets a grandparent of the same color. If
node x changes grandparent, it also changes parent.
Since its new parent is greater than its old parent, its
new grandparent cannot be its old parent. Thus its new
grandparent is an ancestor of its old grandparent in the
tree before the splice.

Corollary 5.1. If x is a node on a spliced pair of
paths, the number of proper ancestors of x of the same
rank as x does not increase as the result of a splice. If x
and its grandparent have the same rank and x changes
grandparent, its number of proper ancestors of the same
rank strictly decreases.

Proof. If the corollary holds for the old grandparent of
x, then it holds for x by Lemma 5.1. The corollary
follows by induction on the depth of x in the tree before
the splice.

Even though a node that changes parent may
not change grandparent, the set of nodes that change
grandparent is dense in the splice sequence, as the
following lemma shows.

Lemma 5.2. Among any six consecutive nodes in the
splice sequence not including w, at least one has its
grandparent among the six and changes grandparent as
a result of the splice.

Proof. If a node changes parent, its new parent is the
first node of the opposite color following its old parent
in the splice sequence. We prove the lemma by case
analysis. If among the six nodes there are three nodes
of the same color with the last two consecutive, then
the first of these nodes satisfies the lemma, since its new
parent follows its old grandparent in the splice sequence.
This case applies if the last two nodes are the same color,
say white, since then either there are three white nodes
or the second, third, and fourth nodes are black. It also
applies if the fourth and fifth nodes are the same color,
say white: either there are at least three white nodes
or the first, second, and third nodes are black. The
only remaining possibility is that the last three nodes
alternate in color, say white, black, white. In this case
if the third node is white, it satisfies the lemma; and if
it is black, the second node satisfies the lemma whether
it is black or white.

The next lemma gives the additional property of
levels that we need to analyze splicing.

Lemma 5.3. If r ≤ s ≤ t, max {a (r, s) , a (s, t)} ≥
a (r, t).

Proof. Let k = max {a (r, s) , a (s, t)}. Since a (r, t) ≤
α (r, d) + 1, if k ≥ α (r, d) + 1 the lemma holds.
Thus suppose k ≤ α (r, d). By the definition of
a (r, s) , A (k, b (k, r)) > s. By the definition of b (k, s),
b (k, s) ≤ b (k, r). Since α (s, d) ≥ α (r, d), the def-
inition of a (s, t) gives A (k, b (k, s)) > t, which im-
plies A (k, b (k, r)) > t. By the definition of a (r, t),
a (r, t) ≤ k.



Our analysis of randomized early linking with splic-
ing applies to early linking by rank with splicing as
well. Indeed, the analysis becomes simpler because
we do not need to consider nodes of level 0. Tarjan
and van Leeuwen [17] claimed an inverse-Ackermann-
function amortized bound for early linking by rank with
splicing, but they left the proof as an exercise. We pro-
vide full details.

Let the potential of a node x be five times the num-
ber of proper ancestors of x of the same rank as x plus
10 (max {0, (α (x.r, d) + 1)× (x.r + 2) + d+ 1− x.c})+
10 (max {0, (α (x.r, d) + 1)× (x.r + 2) + d+ 1− x.c′}).
Here x.c is as defined in Section 4 and x.c′ is defined as
in Section 4. We call the second and third terms in the
potential of x the parent potential and the grandparent
potential of x, respectively. We use the parent potential
to measure the effect of parent changes and grandparent
potential to measure the effect of grandparent changes
in cases where we cannot use the parent potential. Let
the potential of a collection of trees be the sum of their
node potentials, and let the amortized cost of a splice
be the number of parent changes plus the change in
potential. The expected total initial potential is O (m)
by Lemma 3.6. By Lemma 5.1 and Corollary 5.1 a
splice cannot increase the potential of any node.

Lemma 5.4. Suppose Unite operations are done with
randomized early linking and splicing. Then the expected
amortized cost of a Unite is O (α (log k, d)), where k is
the number of elements in the set containing the found
elements if the Unite returns false, or in the smaller
of the two sets combined if the Unite returns true.

Proof. Consider a splice of two paths, from u and from
v to their nearest common ancestor w. Let its splice
sequence be x1, . . . , xh = w. Let the pseudo-level xi.a

′′

of xi 6= w be xi.a
′′ = a (xi.r, xi+1.r). Since xi+1 ≤ xi.p,

xi.a
′′ ≤ xi.a ≤ xi.a′.
Our plan is to use the idea in the proof of

Lemma 4.2: bound the potential drops of the nodes
along a Find path by amounts whose sum telescopes,
sum the bounds, and use the sum to bound the amor-
tized cost of the Find. A splice sequence consists of two
paths, not just one, however, and not all nodes on the
spliced paths drop in potential by the needed amount.
To analyze splicing, we identify a sufficiently dense sub-
set of nodes whose potential does drop by the needed
amount. We use the pseudo-levels to help identify these
nodes and to produce a sum that telescopes.

We mark a subset of the nodes in the splice se-
quence, by first marking xh−1 and then proceeding
backward along the sequence. Let xi be the most re-
cently marked node. Suppose xi is white; proceed sym-
metrically if it is black. The next node to be marked de-

pends on whether the pseudo-level of xi is positive or 0.
Suppose it is positive. If at most two nodes precede xi,
stop marking nodes. Otherwise, if there is a white node
among the three nodes preceding xi in the sequence, let
y be the last such node (the child of xi), and let x be the
node of maximum pseudo-level among y and any black
nodes between it and xi. If the three nodes preceding xi
are all black, let y be the third node preceding xi, and
let x be the node of maximum pseudo-level in {y, y.p}.
(Node y.p is the node immediately after y in the splice
sequence.) Then y ≤ x ≤ y.p ≤ xi. Mark x.

We bound the potential drop of y by an amount that
depends on x, y and xi. Suppose y is white. Then y.p =
xi. The splice increases y.p to at least xi+1. If y.a =
xi.a

′′ and α (y.r, d) = α (xi.r, d), the splice decreases the
parent potential of y by at least 10 ≥ 5 by Lemmas 3.2,
3.3, and 3.5. If y.a < min {xi.a′′, α (y.r, d) + 1},
the splice decreases the parent potential of y by
at least 10 (min {xi.a′′, α (y.r, d) + 1} − y.a) ≥ 5 +
5 (min {xi.a′′, α (y.r, d) + 1} − y.a) by Lemmas 3.2, 3.3,
and 4.1. An argument like the one in the proof of
Lemma 4.2 shows that the potential drop in all cases is
at least 5 + 5 (xi.a

′′ − y.a) + 10 (α (y.r, d)− α (xi.r, d)).
By Lemma 5.3, y.a ≤ x.a′′, so the drop in the par-
ent potential of x is at least 5 + 5 (xi.a

′′ − x.a′′) +
10 (α (y.r, d)− α (xi.r, d)) = 5 + 5 (xi.a

′′ − x.a′′) +
10 (α (x.r, d)− α (xi.r, d)) + 10 (α (y.r, d)− α (x.r, d)).

The situation is similar if y is black, but the drop
is in the grandparent potential of y. In this case the
splice increases y.p.p from less than xi to at least xi+1.
If y.a′ = xi.a

′′ and α (y.r, d) = α (xi.r, d), the splice de-
creases the grandparent potential of y by at least 10 ≥ 5
by Lemmas 3.2, 3.3, and 3.5, since then α (y.r, d) =
α (y.p.p.r, d). If y.a′ < min {xi.a′′, α (y.r, d) + 1}, the
splice decreases the grandparent potential of y by
at least 10 (min {xi.a′′, α (y.r, d) + 1} − y.a′) ≥ 5 +
5 (min {xi.a′′, α (y.r, d) + 1} − y.a′) by Lemmas 3.2, 3.3,
and 4.1. By Lemma 5.3, y.a′ ≤ x.a′′. By the
argument in the previous paragraph, in all cases
the drop in the grandparent potential of y is at
least 5 + 5 (xi.a

′′ − x.a′′) + 10 (α (x.r, d)− α (xi.r, d)) +
10 (α (y.r, d)− α (x.r, d)).

If the pseudo-level of xi is 0, we choose the next
node to mark in a different way. If xi is preceded in the
splice sequence by at most four nodes, we stop marking
nodes. Otherwise, choose and mark a node x as follows.
If any of the five nodes immediately preceding xi in
the splice sequence has positive pseudo-level, choose
and mark any such node as x. If not, all these nodes
as well as xi have the same rank. Among these six
nodes, choose and mark as x one whose grandparent
is among the six and whose grandparent changes as a
result of the splice. Such a node exists by Lemma 5.2;



by Corollary 5.1, the splice decreases the potential of x
by at least 5.

The choice of x guarantees that, whether or not
x has pseudo-level 0, its potential drops by at least
5 + 5 (xi.a

′′ − x.a′′) + 10 (α (y.r, d)− α (xi.r, d)), since
this value is non-positive if x.a′′ > 0.

At the end of the marking process, at least h/5 − 1
nodes are marked: the last marked node is followed
by one unmarked node, the first marked node is pre-
ceded by at most four unmarked nodes, and there are
at most four unmarked nodes between each pair of
consecutive marked nodes. With each marked node
except xh−1 we have identified a potential drop of
at least 5, minus terms whose sum we shall show is
O (α (w.r, d)). It follows that the amortized cost of the
splice is O (α (w.r, d)). The lemma follows by the argu-
ment in the last paragraph of the proof of Lemma 3.7.

Before summing our bounds on the potential drops,
we need to make sure that we are not double-counting.
A node y of level 0 that contributes a potential drop
changes from unmarked to marked, so it cannot con-
tribute a second time. A node x that contributes a
drop in parent potential changes parent from a node
no greater than the most recently marked node to one
greater than the newly marked node, so it cannot con-
tribute a second time. A node that contributes a drop
in grandparent potential changes grandparent from a
node no greater than the most recently marked node
to one greater than the newly marked node, so it can-
not contribute another drop in grandparent potential,
nor a drop in potential as a node of pseudo-level 0. It
might, however, later contribute a drop in parent po-
tential. But this is not a problem, since the parent and
grandparent potentials of a node are counted separately.

Let the marked nodes in increasing order be
z1, z2, . . . , zj+1; for i ≤ j let yi be the node y chosen
when zi was marked. (If zi has pseudo-level 0, yi = zi.)
The potential drop caused by the splice is at least the
sum over all i ≤ j of

5 + 5 (zi+1.a
′′ − zi.a′′)

+ 10 (α (zi.r, d)− α (zi+1.r, d))

+ 10 (α (yi.r, d)− α (zi.r, d))

(5.2)

If we sum (5.2) over all i ≤ j, the first
term sums to at least h − 10 and the second
and third terms telescope to 5 (zj+1.a

′′ − z1.a′′) +
10 (α (z1.r, d)− α (zj+1.r, d)). An argument like that in
the proof of Lemma 4.2 shows that 5 (zj+1.a

′′ − z1.a′′)+
10 (α (z1.r, d)− α (zj+1.r, d)) ≥ −10α (w.r, d)− 5.

It remains to estimate the sum of the last term.
Each term in the sum is non-positive. Each zi is distinct.
Each yi is either equal to zi or precedes zi in the splice
sequence by one or two positions. Furthermore, if yi

precedes zi by two positions, then yi−1 = zi−1, either
because the pseudo-level of zi is 0 or because the two
nodes following yi in the splice sequence are the same
color, which results in yi−1 = zi−1 being the node
immediately after yi in the sequence. Thus if we drop
each index i such that yi = zi and re-index, zi−1 ≤ yi
for each i > 1. This implies α (zi−1.r, d) ≤ α (yi.r, d),
which further implies that the sum of the third term
over all indices is at least 10α (w.r, d). We conclude
that the amortized cost of the splice is O (α (w.r, d)).

Theorem 5.1. If Unite operations are done using
randomized early linking with splicing, the expected total
time of the Unite operations is at most the sum over
every Unite of O (α (log k, d)), where k is the number
of elements in the set containing the two found elements
if the Unite returns false, or in the smaller of the two
sets combined if the Unite returns true.

Proof. The theorem follows immediately from
Lemma 5.4.

6 Remarks

We have shown that randomized linking with compres-
sion, splitting or halving has an inverse-Ackermann-
function bound on the expected amortized time per
Find, and that this is also true of randomized eager
linking with compression, splitting, halving, or splicing.
All the analyses use essentially the same potential func-
tion, so they are all compatible, which means that one
can use either form of linking for any Unite and any
appropriate form of compaction for any Find and the
inverse-Ackermann function bound will still hold. The
lower bound of Fredman and Saks [5] implies that all
our bounds are tight to within a constant factor.

If all that one wants is a global bound of
O (α (lg n, d)) on the expected amortized time per Find,
one can simplify the analysis. In particular, one can
use the estimate v.r ≤ lg n in the proof of Lem-
mas 3.7 and 4.2, and the estimate w.r ≤ lg n in the
proof of Lemma 5.4, thereby avoiding the use of The-
orem 2.2. Furthermore, one can replace the defini-
tion of the level function by the simpler a (r, s) =
max {k ≥ 0|A (k, b (k, r)) > s}. With this definition of
a, x.a ≤ α (lg n, d) + d + 1. Furthermore if k =
α (lg n, d) + i for some i > 0, x.b ≤ d/2i−1. It fol-
lows that the number of times the index of a ver-
tex of rank r can change without its level changing is
O (rα (lg n, d) + d+ 1), and the number of times its level
can change is at most α (lg n, d)+d+1. This is enough to
obtain the desired bound, and it considerably simplifies
the analysis of splitting, halving, and splicing by elim-
inating the terms involving α in the estimated changes
in node potentials.



One can obtain the results of Sections 3 and 4 with a
simpler definition of levels and indices based on Kozen’s
work [10], namely a (r, s) = min {k ≥ 0|A (k, r) > s},
x.a = a (x.r, x.p.r), and x.b = b (x.a, x.p.r). Lemma 5.4
does not hold for this definition of a, however, only the
weaker inequality max {a (r, s) , a (s, t)} + 1 ≥ a (r, t) if
r ≤ s ≤ t. We have not been able to prove Theorem 5.1
using these definitions; whether this is possible is an
open problem.

In our view, the importance of our work is to show
that in applications in which the instances are such that
linking by index is effectively random linking, one does
not need to use linking by rank or size to obtain inverse-
Ackermann-function behavior. We do not advocate
implementing randomized linking unless one can obtain
it for free, such as when the elements are stored in a
hash table, since linking by rank is simple to implement
and has the same bounds. On the other hand, it is
an interesting theoretical question to ask how much
randomness is needed to obtain our results. We can
show that a poly-logarithmic number of random bits
suffice.

Randomized linking is equivalent to randomized
linking by size: when linking the roots u and v of two
trees containing u.s and v.s nodes, respectively, make u
the parent of v with probability u.s/(u.s+v.s). An even
simpler form of randomized linking is coin-flip linking:
when linking the roots u and v of two trees, make u
the parent of v with probability 1/2. We conjecture
that coin-flip linking, unlike randomized linking, is not
asymptotically optimal, and indeed is asymptotically no
more efficient than näıve linking.

Support for this conjecture comes from considering
the following bad example for näıve linking with path
compression [17]. Let n be a power of 2. By doing
n/2 − 1 Unite operations, each of which combines two
isomorphic trees, build a binomial tree of n/2 nodes.
Now repeat the following two operations n/2 times: link
the existing tree with a tree containing a single node,
which becomes the new root, and then do a Find on
the deepest node in the tree. Each find takes Θ (log n)
time, for a total time of Θ (n log n). A similar example
for coin-flip linking consists of building a binomial tree
B of n/2 nodes and then repeating the following three
steps n/4 times: Unite the existing tree with a new
one-node tree; do this again; do a Find on a node
chosen at random from among the nodes in the original
tree B. Each pair of Unite operations on the average
adds a new root to the current tree. As long as
the depth of the current tree remains bounded by a
polynomial of fixed degree in log n, the expected length
of each Find path is Ω (logn/log logn); if this remains
true throughout the sequence, the expected total time

10 15 20 25

6

8

10

12

14

16

18

lg n

P
a
re

n
t

C
h

a
n

ge
s/
F
in
d

Figure 1: Average parent changes per find as a function
of lg n.

is Ω (n logn/log logn). We conjecture but so far have been
unable to prove that with high probability the tree
depth remains polylogarithmically bounded. Figure 1
shows the result of doing this sequence of operations
for a range of values of n. The data strongly support
the conjecture that the amortized time per find is much
closer to log n than to α (n, 0).

Another direction of work is to see if the idea of
randomized linking can be extended to the problem of
evaluating a function defined on paths in trees subject
to links [15]. In this application, there is no choice in
how to do the links. Nevertheless, we think randomness
can help in this problem.

References

[1] W. Ackermann. Zum hilbertschen aufbau der reellen
zahlen. Mathematische Annalen, 99(1):118133, 1928.

[2] Md. M. Ali Patwary, J. R. S. Blair, and F. Manne.
Experiments on union-find algorithms for the disjoint-
set data structure. In Proc. 9th Annual International
Symposium on Experimental Algorithms, volume 6049
of LNCS, pp. 411-423. Springer, 2010.

[3] S. Alstrup, I. L. Gørtz, T. Rauhe, M. Thorup, and
U. Zwick. Union-find with constant time deletions.
In Proc. 32nd Annual International Colloquium on
Automata, Languages and Programming, volume 3580
of LNCS, pp. 78-89. Springer-Verlag, 2005.

[4] E. W. Dijkstra. A Discipline of Programming. Prentice-
Hall, pp. 161-167, 1976.

[5] M. L. Fredman and M. E. Saks. The cell probe com-
plexity of dynamic data structures. In Proc. 21st An-
nual ACM Symposium on Theory of Computing, pp.
345-354, 1989.



[6] B. A. Galler and M. J. Fisher. An improved equivalence
algorithm, Commun. ACM, 7(5):301-303, 1964.

[7] J. L. W. V. Jensen. Sur les fonctions convexes et les in
égalit és entre les valeurs moyennes. Acta Mathematica,
30(1):175193, 1906.

[8] H. Kaplan, N. Shafrir, and R. E. Tarjan. Union-
find with deletions. In Proc. 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 19-28, 2002.

[9] D. E. Knuth. The Art of Computer Programming,
Volume 1: Fundamental Algorithms, Third Edition.
Addison-Wesley, p. 576, 1997.

[10] D. C. Kozen. The design and analysis of algorithms.
Springer-Verlag, 1992.

[11] J. B. Kruskal. On the Shortest Spanning Subtree of a
Graph and the Traveling Salesman Problem. Proc. of
the American Mathematical Society, 7(1):48-50, 1956.

[12] R. Péter. Rekursive funktionen. Académiai Kiadó,
1951.

[13] R. Seidel and M. Sharir. Top-down analysis of path
compression. SIAM J. Computing, 34(3):515-525, 2005.

[14] R. E. Tarjan. Amortized computational complexity.
SIAM J. on Algebraic Discrete Methods, 6(2):306-318,
1985.

[15] R. E. Tarjan. Applications of path compression on
balanced trees. J. ACM, 26(4):690-715, 1979.

[16] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. J. ACM, 22(2):215-225, 1975.

[17] R. E. Tarjan and J. van Leeuwen. Worst-case analysis
of set union algorithms. J. ACM, 31(2):245-281, 1984.

[18] T. van der Weide. Datastructures: An Axiomatic
Approach and the Use of Binomial Trees in Developing
and Analyzing Algorithms. Mathematisch Centrum,
1980.

[19] J. van Leeuwen and T. van der Weide. Alternative path
compression techniques. Technical Report RUU-CS-77-
3, Rijksuniversiteit Utrecht, 1977.

7 Appendix: Compaction Pseudocode

Algorithms 1 and 2 are iterative and recursive imple-
mentations of find with compression, respectively. Al-
gorithms 3 and 4 are iterative implementations of find
with splitting and find with halving, respectively. Algo-
rithm 5 implements early linking by index with splicing.

Algorithm 1 Iterative Find with Compression

procedure Find(x)
u← x.p
v ← u
while u.p 6= u do

u← u.p

while v 6= u do
x.p← u
x← v
v ← x.p

return u

Algorithm 2 Recursive Find with Compression

procedure Find(x)
if x.p.p 6= x.p then x.p← Find (x.p)

return x.p

Algorithm 3 Iterative Find with Splitting

procedure Find(x)
u← x.p
while u.p 6= u do

x.p← u.p
x← u
u← u.p

return u

Algorithm 4 Iterative Find with Halving

procedure Find(x)
while x.p.p 6= x.p do

x.p← x.p.p
x← x.p

return x.p



Algorithm 5 Unite with Early Linking by Index and
Splicing

procedure Unite(x, y)
u← x
v ← y
while u.p 6= v.p do

if u.p > v.p then
u↔ v

w ← u.p
u.p← v.p
if v = w then

return true
else

u← w
return false


