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We study an optimization problem that arises in the context of data placement in a multimedia
storage system. We are given a collection of M multimedia objects (data objects) that need
to be assigned to a storage system consisting of N disks d1, d2..., dN . We are also given sets
U1, U2, ..., UM such that Ui is the set of clients seeking the ith data object. Each disk dj is
characterized by two parameters, namely, its storage capacity Cj which indicates the maximum
number of data objects that may be assigned to it, and a load capacity Lj which indicates the
maximum number of clients that it can serve. The goal is to find a placement of data objects to
disks and an assignment of clients to disks so as to maximize the total number of clients served,
subject to the capacity constraints of the storage system.

We study this data placement problem for two natural classes of storage systems, namely, ho-
mogeneous and uniform ratio. We show that an algorithm developed by [Shachnai and Tamir,
Algorithmica, 29(3):442–467] for data placement, achieves the best possible absolute bound re-
garding the number of clients that can always be satisfied. We also show how to implement the
algorithm so that it has a running time of O((N + M) log(N + M)). In addition, we design a
polynomial time approximation scheme, solving an open problem posed in the same paper.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Data Placement, Storage Systems, Approximation algorithms

1. INTRODUCTION

We study a data placement problem that arises in the context of multimedia stor-
age systems. In this problem, we are given a collection of M multimedia objects
(data objects) that need to be assigned to a storage system consisting of N disks
d1, d2..., dN . We are also given pairwise disjoint sets U1, U2, ..., UM such that Ui is
the set of clients seeking the ith data object. Each disk dj is characterized by two
parameters, namely, its storage capacity Cj which indicates the maximum number
of data objects that may be assigned to it, and its load capacity Lj which indicates
the maximum number of clients that it can serve. The goal is to find a placement
of data objects to disks and an assignment of clients to disks so as to maximize the
total number of clients served, subject to the capacity constraints of the storage
system.

The data placement problem described above arises naturally in the context of
storage systems for multimedia objects where one seeks to find a placement of
the data objects such as movies on a system of disks. We study our data place-
ment problem for the following two natural types of storage systems. (In Subsec-
tion 1.3 we will indicate how such systems arise by “grouping” together heteroge-
neous disks.)
Homogeneous Storage Systems: In a homogeneous storage system, all disks are iden-
tical. We denote by k and L the storage capacity and the load capacity, respectively,
of each disk and refer to this variant as k-HDP (homogeneous data placement).

Uniform Ratio Storage Systems: In a uniform ratio storage system, the ratio Lj/Cj

of the load to the storage capacity is identical for each disk. We denote by Cmin

and Cmax the minimum and the maximum storage capacity of any disk in such a
system and refer to this variant as URDP (uniform ratio data placement).

In the remainder of this paper, we assume without loss of generality that (i) the
ACM Journal Name, Vol. V, No. N, Month 20YY.
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total number of clients does not exceed the total load capacity, i.e.,
∑M

i=1 |Ui| ≤∑N
j=1 Lj, and (ii) the total number of data objects does not exceed the total storage

capacity, i.e., M ≤
∑N

j=1 Cj .

1.1 Related Work

The data placement problem described above bears some resemblance to the clas-
sical multi-dimensional knapsack problem [Frieze and Clarke 1984; Raghavan 1988;
Chekuri and Khanna 1999]. We can view each disk as a knapsack with a load as well
as a storage dimension, and each client as a unit size item with a color associated
with it. Items have to be packed in knapsacks in such a way that the number of
items in a knapsack does not exceed Lj, its load capacity. Knapsacks will have an
additional color constraint, namely that the total number of distinct colors of items
assigned to it does not exceed Cj its storage capacity. However, in our problem, the
storage dimension of a disk behaves in a non-aggregating manner in that assigning
additional items of an already present color does not increase the load along the
storage dimension. It is this distinguishing aspect of our problem that makes it
difficult to apply known techniques for multi-dimensional packing problems.

Shachnai and Tamir [Shachnai and Tamir 2000a] studied the above data place-
ment problem; they refer to it as the class constrained multiple knapsack problem.
The authors gave an elegant algorithm, called the Sliding-Window algorithm, and
showed that this algorithm packs all items whenever

∑N
j=1 Cj ≥ M + N − 1 for

URDP. An easy corollary of this result is that one can always pack a (1− 1
1+Cmin

)-
fraction of all items for URDP. The authors showed that the problem is NP-hard
when each disk has an arbitrary load capacity, and unit storage. Subsequent to
our work, Shachnai and Tamir [Shachnai and Tamir 2000b] studied a variation of
the data placement problem above where in addition to having a color, each item
u has a size s(u) and a profit p(u) associated with it. For the special case when
s(u) = p(u) for each item, and the total number of different colors (M) is constant,
the authors give a dual approximation scheme whereby for any ϵ > 0, they give a
polynomial time algorithm to obtain a (1− ϵ/4)-approximate solution provided the
load capacity is allowed to be exceeded by a factor of (1 + ϵ).

After the publication of a preliminary version of this paper, some of the results
presented were extended to the case when the data objects do not all have unit size
[Kashyap and Khuller 2003; Shachnai and Tamir 2003].

1.2 Our Results

Our first main result is a tight upper and lower bound on the number of items that
can always be packed for any input instance to homogeneous as well as uniform
ratio storage systems, regardless of the distribution of requests for data objects.
It is worth noting that in the case of arbitrary storage systems no such absolute
bounds are possible.

Theorem 1.1. (Section 3) It is always possible to pack a (1− 1
(1+

√
k)2

)-fraction

of items for any instance of k-HDP, or more generally, a (1− 1
(1+

√
Cmin)2

)-fraction
of items can always be packed for any instance of URDP. Moreover, there exists a
family of instances for which it is infeasible to pack any larger fraction of items.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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The upper bounds above are achieved constructively, by a tight analysis of the
sliding window algorithm of [Shachnai and Tamir 2000a]. A side-result of our proof
technique here is a simple alternate proof of the result that all items can be packed
whenever

∑N
j=1 Cj ≥ M + N − 1.

Our second main result is a polynomial time approximation scheme (PTAS) for
the data placement problem in uniform ratio storage systems, answering an open
question of [Shachnai and Tamir 2000a].

Theorem 1.2. (Section 4) For any fixed ϵ′ > 0, one can obtain in polynomial
time a (1− ϵ′)-approximate solution to the data placement problem for any instance
of URDP.

We also strengthen the NP-hardness results of [Shachnai and Tamir 2000a] by
showing that the data placement problem is NP-hard even for very special cases of
homogeneous storage systems.

Theorem 1.3. (Appendix A) The k-HDP problem is NP-complete for homoge-
neous disks with storage capacity k = 2 and strongly NP-hard for k = 3.

Both reductions above are from NP-hard partitioning problems and illustrate how
item colors can effectively encode large non-uniform sizes arising in the instances
of these partitioning problems, even though each item in our problem is unit size
itself. We also note here that the case k = 1 is easily solvable in polynomial time
using a simple greedy algorithm in which we first pack items of the most popular
color.

Finally, we also study the problem from an empirical perspective. We study
the homogeneous case on instances generated by a Zipf distribution [Knuth 1973]
(this corresponds to measurements performed in [Chervenak 1994] for a movies-on-
demand application) and compare the actual performance of the Sliding-Window
algorithm with the bounds obtained above as well as the bounds in [Shachnai and
Tamir 2000a]. The results of this study are presented in Appendix B (see Figs. 2,
3, 4). We also show how to implement the Sliding-Window algorithm so that it
runs in O((N + M) log(N + M)) steps, improving on the O(NM) implementation
described in [Shachnai and Tamir 2000a].

We next describe in some detail the motivating application for our data placement
problem.

1.3 Motivational Application

Recent advances in high speed networking and compression technologies have made
multimedia services feasible. Take for instance, the video-on-demand(VOD) servers.
The enormous storage and bandwidth requirements of multimedia data necessitates
that such systems have very large disk farms. One viable architecture is a parallel
(or distributed) system with multiple processing nodes in which each node has its
own collection of disks and these nodes are interconnected, e.g., via a high-speed
network.

We note that disks are a particularly interesting resource. Firstly, disks can be
viewed as “multidimensional” resources, the dimensions being storage capacity and
load capacity, where depending on the application one or the other resource can be
the bottleneck. Secondly, all disk resources are not equivalent since a disk’s utility
ACM Journal Name, Vol. V, No. N, Month 20YY.
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is determined by the data stored on it. It is this “partitioning” of resources (based
on data placement) that contributes to some of the difficulties in designing cost-
effective parallel multimedia systems, and I/O systems in general. In a large parallel
VOD system improper data distribution can lead to a situation where requests for
(popular) videos cannot be serviced even when the overall load capacity of the
system is not exhausted because these videos reside on highly loaded nodes, i.e.,
the available load capacity and the necessary data are not on the same node.

One approach to addressing the load imbalance problem is to partition each
video across all the nodes in the system and thus avoid the problem of “splitting
resources”, e.g., as in the staggered striping technique [Berson et al. 1994]. However,
this approach suffers from a number of implementation-related shortcomings that
are detailed in [Chou et al. 2002]. An alternate system is described in [Wolf et al.
1995] where the nodes are connected in a shared-nothing manner [Stonebraker
1986]. Each node j has a finite storage capacity, Cj (in units of continuous media
(CM) objects), as well as a finite load capacity, Lj (in units of CM access streams).
These nodes are constructed by putting together several disks. In fact, in the paper
we will mostly view nodes as “logical disks”. For instance, consider a server that
supports delivery of MPEG-2 video streams where each stream has a bandwidth
requirement of 4 Mbits/s and each corresponding video file is 100 mins long. If
each node in such a server has 20 MBytes/s of load capacity and 36 GB of storage
capacity, then each such node can support Lj = 40 simultaneous MPEG-2 video
streams and store Cj = 12 MPEG-2 videos. In general, different nodes in the
system may differ in their storage and/or load capacities.

In our system each CM object resides on one or more nodes of the system.
The objects may be striped on the intra-node basis but not on the inter-node
basis. Objects that require more than a single node’s load capacity (to support the
corresponding requests) are replicated on multiple nodes. The number of replicas
needed to support requests for a continuous object is a function of the demand.
This should result in a scalable system which can grow on a node by node basis.

The difficulty here is in deciding on: (1) how many copies of each video to keep,
which can be determined by the demand for that video, as in [Wolf et al. 1995], and
(2) how to place the videos on the nodes so as to satisfy the total anticipated demand
for each video within the constraints of the given storage system architecture. It is
these issues that give rise to our data placement problem.

1.4 Organization

We start with an overview of the Sliding-Window algorithm in Section 2. In Sec-
tion 3, we present a tight analysis of the Sliding-Window algorithm to derive the
upper bounds of Theorem 1.1. We also present here a family of instances that
give the matching lower bound. Finally, in Section 4 we present our approximation
schemes for homogeneous as well as uniform ratio storage systems and thus estab-
lish Theorem 1.2. We defer to the Appendix a proof of Theorem 1.3 as well as the
details of implementation issues and our empirical results.

2. SLIDING-WINDOW ALGORITHM

For completeness we describe the algorithm [Shachnai and Tamir 2000a] that applies
to both the homogenous case and the uniform ratio case. Recall that data objects
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can be viewed as colors. Each client is an item with a color. So essentially, we have
groups of items with colors. Let R[i] be number of items of color i. We order the
colors so that R[1] ≤ R[2] ≤ . . . ≤ R[M ].

We keep all the colors in a sorted list in non-decreasing order of the number
of items of that color, denoted by R. The list, R[1], . . . , R[m], 1 ≤ m ≤ M , is
updated during the algorithm. At step j, we assign items to disk dj . For the sake
of notation simplification, R[i] always refers to the number of currently unassigned
items of a particular color (i.e., we do not explicitly indicate the current step j of
the algorithm in this notation). We order the knapsacks in non-decreasing capacity
order, i.e., C1 ≤ C2 ≤ · · · ≤ CN . We assign items and remove from R the colors
that are packed completely, and we move (at most) one partially packed color to its
updated place according to the remaining number of unpacked items of that color.

The assignment of colors to disk dj follows the general rule that we want to
select the first consecutive sequence of Cj or less colors, R[u], . . . , R[v], whose total
number of items either equals to or exceeds the load capacity Lj . We then assign
items of colors R[u], . . . , R[v] to dj . In order to not exceed the load capacity, we will
split the items of the last color R[v]. It could happen that no such sequence of colors
is available, i.e., all colors have relatively few items. In this case, we greedily select
the colors with the largest number of items to fill the current disk. In particular,
the selection procedure is as follows: we first examine R[1], which is the color with
the smallest number of items. If these items exceed the load capacity, we will assign
R[1] to the first disk and re-locate the remaining piece of R[1] (which for R[1] will
always be the beginning of the list). If not, we then examine the total number of
items of R[1] and R[2], and so on until either we find a sequence of at most Cj

colors with a sufficiently large number of items (≥ Lj), or the first Cj colors have
a total number of items < Lj . In the latter case, we go on to examine the next
Cj colors R[2], . . . , R[Cj + 1] and so on, until either we find Cj colors with a total
number of items at least Lj or we are at the end of the list, in which case we simply
select the last sequence of Cj colors which has the greatest total number of items.

We show how to implement the algorithm to run in O((N+M) log(N+M)) steps,
where N is the number of disks and M is the number of colors. Note that this is a
significant improvement on the running time in [Shachnai and Tamir 2000a]. Ap-
pendix B provides the pseudo code for the Sliding-Window algorithm and necessary
data structures realizing the faster implementation.

In this toy example, we consider a storage system that consists of four identical
disks. Each disk has storage capacity of three units and load capacity of 100 units.
There are nine colors that need to be stored in the system. The number of items
for each color is as shown.

We describe how the first disk is packed. Since the disk has storage capacity 3,
we initialize a window of size 3 at the beginning of the list. The total number of
items corresponding to this set of colors is only 60, which is lower than the load
capacity of 100. We then slide the window, and the first subset of 3 colors that have
at least 100 items is the set {D, C, B}. However we only pack 30 items of color B,
and the remaining 60 items are re-inserted into the list at the correct position. In
this example, all the items get packed and nothing is left out (see Fig. 2).
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Item Initial demand
A 130
B 90
C 40
D 30
E 25
F 25
G 25
H 22
I 13

I13 H22 G25 F25 E25 D30 C40 B90 A130

I13 H22 G25 F25 E25 B60 A130

I13 H22 G25B10 A130

I13B10 A77

D
C
B

30
40
30

F
E
B

25
25
50

H
G
A

22
25
53

B
I
A

10
13
77

disk 1

disk 2

disk 3

disk 4

Fig. 1. Storage capacity k=3, Bandwidth L = 100. In addition to producing the layout the sliding
window algorithm finds a mapping of items to disks, which is optimal for the layout computed.

3. ANALYSIS

We first show that the Sliding-Window algorithm guarantees to pack (1− 1
(1+

√
k)2

)
fraction of items in the homogenous case. We assume each disk has load capacity
L and storage capacity k.

Note that if there are some unpacked items, then every disk is filled to the
maximum either on the number of items it can handle or on the number of colors
that can be stored. We will call the former as load saturated and the latter (the
rest) as storage saturated. (Therefore, if a disk is storage saturated, then it still
has some unfilled load capacity.) Denote the number of load-saturated disks and
the number of storage-saturated disks by NL and NS, respectively. It is easy to see
that d1, . . . , dNL are load-saturated disks, and the rest are storage-saturated disks.
Let mj denote the number of colors assigned to disk dj . Obviously for storage-
saturated disks, mj = k. Let c < 1 be the smallest fraction of load to which a

ACM Journal Name, Vol. V, No. N, Month 20YY.
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storage-saturated disk is filled. Note that this disk must store a color with a number
of items of that color being at most c × L/k. (Minimum is at most the average.)
Now every color on the unassigned list has no more than c × L/k remaining items
of that color. Otherwise, the Sliding-Window algorithm would have put this color
on the lightest-loaded disk and increase greedily the total number of packed items.
We define the notion of “splitting a color.” This refers to the situation where only
some of the items of a particular color are packed into the current disk; while the
remaining items are left behind to be considered further by the algorithm. Hence,
the particular color is split and might be packed into multiple disks.

Lemma 3.1. Using the Sliding-Window algorithm, the number of unpacked items
is at most c×L×NL

k .

Proof. The main thing we need to prove is that there are at most NL colors
left after we run the Sliding-Window algorithm. For each left over color we know
that the number of items is at most c×L

k , so the total number of unpacked items is
at most c×L×NL

k .
We examine the number of colors stored in the load-saturated disks. If there is

a load-saturated disk dj with mj < k colors, then there are no colors left when the
algorithm terminates, i.e., all items are packed. This can be explained as follows.
The reason that less than k colors are packed into dj is due to the fact that at step
j

∑mj

i=1 R[i] ≥ L. Since we sort the colors in non-decreasing order of number of
items, at this point any consecutive sequence of k−1 colors in the list has the total
size ≥ L. Since at step j, we “split” at most one color, which is always added to
the beginning of R. At any step t ≥ j we have a guarantee that, for the new list R,∑k

i=1 R[i] ≥ L, unless we have less than k colors. This implies that we fill the disks
to their load capacity until we run out of colors. Hence we can pack all items.

We can now assume that all the load-saturated disks have k colors. The storage-
saturated disks have k colors as well. We start with M ≤ N × k colors. During
the process, we can split at most NL colors, i.e., we can generate at most NL new
“instances” of originally existing colors. This is because only filling disks that are
load-saturated can result in generating new “instances” of colors. So the number
of new “instances” of colors generated is upper bounded by the number of load-
saturated disks. Thus the number of colors left is ≤ M + NL − N × k ≤ NL.

Lemma 3.2. Using the Sliding-Window algorithm, the number of unpacked items
is at most (1 − c) × L × NS.

Proof. At least L×NL+c×L×NS items are packed. Subtracting this quantity
from an upper bound on the total number of items N ×L gives NS ×L+NL×L−
L × NL − c × L × NS . This proves the claim.

Theorem 3.3. The Sliding-Window algorithm guarantees to pack (1− 1
(1+

√
k)2

)
fraction of items in the homogenous case.

Proof. The above two lemmas give us two upper bounds on the number of
unpacked items. The number of unpacked items is at most min( c×L×NL

k , (1 − c) ×
ACM Journal Name, Vol. V, No. N, Month 20YY.
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L × NS). The number of packed items is at least L × NL + c × L × NS . We show
that the ratio of unpacked(U) to packed(S) items is at most

U

S
≤

min( c×L×NL
k , (1 − c) × L × NS)

L × NL + c × L × NS
.

Let y = NL
N and thus NS

N = 1 − y. Simplifying the upper bound for the number of
unpacked to packed items, we obtain

min( cy
k , (1 − c)(1 − y))
y + c(1 − y)

.

This is the same as

min(
cy
k

y + c(1 − y)
,
(1 − c)(1 − y)
y + c(1 − y)

).

We can simplify the two functions to the following

min(
1

k × (1
c + 1−y

y )
,

(1 − c)(1 − y)
1 − (1 − c)(1 − y)

).

The first term is strictly increasing as c or y increases, while the second term is
strictly decreasing as c or y increases. So in order to maximize the expression, the
two terms should be equal, which means

cy

k
= (1 − c)(1 − y).

This gives

y =
1 − c

1 − c + c
k

.

Substituting for y gives us that the upper bound for U
S to be at most

c − c2

k − kc + c2
.

This achieves its maxima when c = (1 − 1
1+

√
k
).

The fraction of all items that are packed is
S

U + S
=

1
1 + U

S

.

Replacing the bound that we derived for c we get that

U

S
≤ 1

k + 2
√

k
.

This yields
S

U + S
≥ 1 − 1

(1 +
√

k)2
.

which proves the claim.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Corollary 3.4. For “uniform ratio” disks, if
∑N

j=1 Cj ≥ M + N − 1, then all
colors can be packed using the Sliding-Window algorithm.

Proof. This is an alternate proof for the claim in [Shachnai and Tamir 2000a].
Our analysis of the algorithm makes the proof simpler.

Let r = Lj

Cj
, denote the uniform ratio. Since the ratios’ Lj

Cj
are uniform, once any

disk becomes storage-saturated, the rest of the disks will be storage-saturated as
well. The main claim we need to prove is that after we fill disk dN−1, we have at
most CN colors left. We will prove this shortly. If dN−1 is storage-saturated, then
we can safely assign the remaining CN colors to dN . If dN−1 is load-saturated,
then all previous disks are load-saturated. Since the total number of items does
not exceed the total load capacity, we will not exceed the load capacity.

We argue that if there is a load-saturated disk dj with mj < Cj , then all the items
will be packed. At this stage, R[ℓ] ≥ Lj

mj
≥ Cj

Cj−1 × r ≥ Ct
Ct−1 × r for all ℓ > mj and

all t ≥ j. Recall that disks are sorted in non-decreasing order of Ci. Thus we have
the following result: at any step t > j,

∑Ct

i=1 R[i] ≥
∑Ct

i=2 R[i] ≥ Ct×r = Lt, and so
all items are packed without sliding the window. Since all load-saturated disks have
Cj colors, after we fill disk dN−1, we have generated at most N −1 new “instances”
of colors. The total number of colors left is ≤ M + N − 1 −

∑N−1
i=1 Ci ≤ CN .

We now extend the above proof to the uniform-ratio case. The motto in the
homogenous case is that the higher the disk’s storage capacity the better the per-
formance of the Sliding-Window algorithm. So in a uniform-ratio system one should
expect the algorithm to do at least as well as in the homogenous case where all disks
assume the smallest disk size in the uniform-ratio system. The following theorem
formally proves this intuition.

Theorem 3.5. Let Cmin denote the minimum capacity of a disk in the uniform
ratio system. The Sliding-Window algorithm guarantees to pack (1 − 1

(1+
√

Cmin)2
)

fraction of the total items.

Proof. Let r = Lj

Cj
for j = 1 . . .N denote the uniform ratio. From the proof

of Corollary 3.4 above, if there is a load-saturated disk dj with mj < Cj , then
all items will be packed. Thus we will focus on the case where for all j we have
mj = Cj . Let ML denote the total number of colors (we count the same colors
in different disks as different multiple colors) in the load-saturated disks 1, . . . , NL,
so ML =

∑NL

j=1 mj =
∑NL

j=1 Cj . Let MS denote the total number of colors in
the storage-saturated disks NL + 1, . . . , N , so MS =

∑N
j=NL+1 mj =

∑N
j=NL+1 Cj .

Again let c be the smallest fraction of load to which a storage-saturated disk is
filled. Thus we have the following similar results:

(1) For each left over color we know that the number of items is at most c × r.
(2) There are at most NL colors left unassigned. We have NL ≤ ML

mmin
= ML

Cmin
.

(3) The number of unpacked items is then at most c × r × ML
Cmin

.
(4) At least r × ML + c × r × MS items are packed.
(5) The number of unpacked items is at most (1 − c) × r × MS .
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Hence the ratio of the unpacked(U) to packed(S) items is at most

U

S
≤

min( c×r×ML
Cmin

, (1 − c) × r × MS)
r × ML + c × r × MS

.

Let y = ML
ML+MS

and thus MS
ML+MS

= 1 − y. Simplifying the upper bound for the
expression, we obtain

U

S
≤

min( cy
Cmin

, (1 − c)(1 − y))
y + c(1 − y)

.

Note that this is the same expression as in Theorem 3.3 for the homogenous system.
Optimizing this expression gives the same bound as in Theorem 3.3 with k replaced
by Cmin. This proves the claim.

3.1 Tight Examples

We now give an example to show that the bound of (1− 1
(1+

√
k)2

) is tight. In other
words, there are instances for which no solution will pack more than (1 − 1

(1+
√

k)2
)

fraction of items.
The trivial case is when k, the storage capacity of a disk, is 1. Consider N = 2

disks, with L = 2, and two colors having 1 and 3 items respectively. A simple check
shows we can pack at most 3 items. Now consider the case where k is a perfect
square and k ≥ 2. Let N , the number of disks, be 1+

√
k, and let L = k+

√
k. There

are
√

k colors with a large number of items each, U1, . . . , U√
k with |Ui| = 2+

√
k for

1 ≤ i ≤
√

k; we will refer to these as “large colors”. And, there are (k−1)(1+
√

k)+1
colors with a small number of items each, U√

k+1, . . . , Uk(1+
√

k) with |Ui| = 1 for√
k + 1 ≤ i ≤ k(1 +

√
k); we will refer to these as “small colors”.

We will show that there are always at least
√

k items that do not get packed. In
this case, the fraction of items that are not packed is at least

√
k

(1+
√

k)(k+
√

k)
which

is exactly 1
(1+

√
k)2

. This proves the claim.

We first consider the
√

k large colors. An unsplit set Ui has all its items packed
in a single disk. A split set Ui has its items packed in several disks. For a disk that
contains at least one large unsplit color, the available load capacity left is at most
k − 2. (Note that after packing one large unsplit color, the available load capacity
is smaller than the storage capacity.) For any of the remaining large color on this
disk with l ≥ 2 items, we can exchange the color with any l (distinct) small colors
in any other disk, while still packing the same number of items. The disk now have
one large unsplit color, and at most k − 2 small colors. We perform such exchange
for each disk containing an unsplit large color. The remaining disks have only large
split colors. In fact, assume that there are exactly p (0 ≤ p ≤

√
k) large colors that

do not get split U1, . . . , Up, with disk di containing Ui.
Now consider the remaining N−p disks; we are left with at least k×N−p(k−1) =

k × (N − p) + p colors, but we only have k × (N − p) storage capacity left. Since
the remaining

√
k − p large colors are all split, this generates an additional

√
k − p

ACM Journal Name, Vol. V, No. N, Month 20YY.
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“instances” of colors. Thus we have at least k × (N − p) + p +
√

k − p colors. This
will create an excess of

√
k items that cannot be packed.

We now extend the above example to the case where k is not necessarily a perfect
square. We show that the targeted bound (1 − 1

(1+
√

k)2
) can be approximated

arbitrarily close by a rational number. Recall the proof of Theorem 3.3, where the
setting of the parameters c = 1− 1

1+
√

k
and y = 1−c

1−c+ c
k

achieves the desired bound.
We will approximate c with a rational number. Let c ≈ p

q , with integers p and q
co-prime. The choice of p and q is arbitrary, and we may pick such p and q so that
p
q closely approximate (1 − 1

1+
√

k
). Substitute c in the expression of y, we know

y = 1−c
1−c+ c

k
= kq−kp

kq−kp+p . From the value of y, we let N = kq−kp+p, so NL = kq−kp

and NS = p. Each small color has exactly Lp
kq items. To simplify matters, we assume

L = kq, so Lp
kq = p. Each large color has exactly kq − kp + 2p items. So it is still

true that the total load of k − 2 small colors and one large color adds up to L. We
have kq − kp large colors and (kq − kp)(k − 1) + pk small colors. With a simple
calculation, we can verify that the total load is exactly kq × (kq − kp + p) = LN ,
and total number of colors is exactly k× (kq− kp+ p) = kN . We aim to show that
at most kq× (kq−kp)+kp×p items can be packed by any algorithm. In this case,
the ratio of unpacked (U) to packed (S) items is at least

(kq − kp)p
kq(kq − kp) + kp(p)

=
(1 − p

q )p
q

k − k · p
q + (p

q )2
.

We first prove a couple of useful lemmas to shape the structure of the optimal
packing.

Lemma 3.6. If all small colors are partially assigned in the packing P, then P
packs no more than kq × (kq − kp) + kp × p items.

Proof. Since originally there are (kq−kp)(k−1)+pk small colors, by the pigeon
hole principle, at least p disks contain k small colors each. Thus the total items
on each of these disks is no more than kp, and the total items packed overall is no
more than (kq − kp)kq + kp × p.

From now on we will only concern ourselves with instances where every optimal
packing has at least one unassigned small color.

Lemma 3.7. There exists an optimal packing of the above instance, such that no
small colors are split.

Proof. Proof by contradiction. Suppose every optimal packing of the above
instance has to split some small colors. Choose the optimal packing that splits the
least number of small colors. Pick any split small color Us in disk dj , for some small
color Us. We modify the packing by assigning all items of Us to dj . If the load
capacity is not violated by such modification, then we are done. We have created a
packing of the same value with one less split small color. If the modification leads
to a total load bigger than L, then we argue that there exists a large color Ul on dj

with more than p items. Otherwise, all colors on dj have no more than p items, a
maximum of k such colors will never exceed the load capacity. We simply truncate
the number of items of Ul assigned to dj , so that the resulting load is exactly L.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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The truncated items can be allocated to where the remaining items of Us were
assigned originally. Again, we have created a packing of the same value with one
less split small color; this proves the claim.

From now on we only concern ourselves with optimal packings, which in addition
to having at least one unassigned small color, do not split any small colors.

Lemma 3.8. There exists an optimal packing of the above instance, such that no
large color is partially assigned to a disk with number of items between (0, p).

Proof. Proof by contradiction. Consider an optimal packing P that packs the
most number of small colors. Assume in P there exist a large color Ul and disk
dj such that there are between (0, p) number of items of color Ul on dj . We have
assumed there is at least one unassigned small color Us. We assign Us completely
to dj , and remove the items of color Ul. If the modification leads to a total load
bigger than L, then we argue that there exists a large color Ul′ ̸= Ul on dj with
more than p items as in Lemma 3.7. We simply truncate the number of items of Ul′

assigned to dj , so that the resulting load is exactly L. Notice that in the created
packing, no small color is split. Now either we have created a packing with one less
unassigned small color, contradicting the choice of P ; or the resulting packing has
no unassigned small color, contradicting the claim that every optimal packing has
at least one unassigned small color.

From now on we only concern ourselves with optimal packings, which in addition
to the properties mentioned earlier, have no large color partially assigned to a disk
with number of items between (0, p).

Lemma 3.9. There exists an optimal packing of the above instance, such that no
large color is partially assigned to a disk with a number of items between (kq−kp+
p, kq − kp + 2p).

Proof. Proof by contradiction. Consider the optimal packing that has the least
number of such color disk pairs. Let Ul be a large color partially assigned to a
disk dj with number of items between (kq − kp + p, kq − kp + 2p). Since there are
less than p items of color Ul left, by the previous lemma, all these remaining items
are unassigned. Besides Ul, there are k − 1 remaining storage spaces, and between
((k − 2)p, (k − 1)p) remaining load spaces. By the previous lemmas, we know that
all colors assigned to dj has at least p items. That means besides Ul, there are
at most (k − 2) remaining colors on dj . We modify the packing by assigning the
remaining items of Ul to dj . If the modification leads to a total load bigger than L,
then we argue that there exists a large color Ul′ ̸= Ul on dj with more than p items.
Otherwise, all remaining colors on dj have no more than p items, a maximum of
k − 2 such colors will never exceed load (k − 2)p, and together with the large color
l will never exceed the load capacity. We simply truncate the number of items of
Ul′ assigned to dj , until either the total load on dj is exactly L, or the items of
Ul′ assigned to dj is exactly p. In the latter case, we find another large color Ul′′

with more than p items on dj and so on. When we terminate, we have assigned Ul

completely to dj , no small colors are split, the number of unassigned small colors
remains the same, no large color is partially assigned to a disk with number of items
between (0, p). So we have created a packing with one less large color partially

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · Golubchik, Khanna, Khuller, Thurimella and Zhu

assigned to a disk with number of items between (kq − kp + p, kq − kp + 2p), a
contradiction to the choice of the initial packing.

When a large color Ul is partially assigned to a disk dj , we may view such
assignment as splitting Ul into two new colors Ul1 and Ul2 , with Ul1 completely
assigned to dj . From the previous two lemmas, w.l.o.g., we may assume that in the
optimal packing, in addition to the properties mentioned before, if a large color Ul

is split for the first time, the resulting two new colors Ul1 and Ul2 each has at least
p items.

Lemma 3.10. Consider the optimal packing P for an instance I with A + a
colors, for some integers A, a > 0. Let mj denote the number of different colors
assigned to disk dj by P. If

∑N
i=1 mj ≤ A, consider the modified instance I ′ with

the A largest colors from I. Then the optimal packing P ′ for I ′ has the same value
as P.

Proof. It is obvious that P ′ has value no more than P . Consider P , there are
no more than A original colors assigned in P . We could easily substitute the colors
included in P with the A largest colors from I, without changing the value of P ,
thus creating a valid packing solution for I ′. This implies P ′ has at least the same
value of P .

Given an optimal packing P for the created instance with the desired properties,
we count the number of large colors that are not split. Let u denote such a number.
So there are exactly kq−kp−u split large colors. We consider an intermediate step
of packing P , where each split large color is split exactly once. We have argued
that the resulting two large colors of any split large color has at least p items, so
now we have an instance with kN + (kq − kp − u) colors, each with at least p
items. We claim that each unsplit large color reduces the storage capacity of the
system by at least one. If a disk contains t large unsplit colors, then the remaining
storage space is seemingly k − t, while the remaining load space is kq − t(kq −
kp + 2p) = (k − 2)p − (t − 1)(kq − kp + 2p) < (k − 2)p − (t − 1)2p = (k − 2t)p.
From Lemma 3.7 and 3.8, we know each color assigned to dj has at least p items,
thus dj has no more than k − 2t + t = k − t colors in P . Overall, with u unsplit
large colors,

∑N
i=1 mj ≤ kN − u. By the previous lemma, in the optimal packing

P , we must discard at least kN + (kq − kp − u) − (kN − u) = kq − kp colors,
each with at least p items. Thus the total number of items packed in P is at most
LN −(kq−kp)p = kq(kq−kp+p)−(kq−kp)p = kq(kq−kp)+kp2. This completes
the discussion when k is not a perfect square.

3.2 Numerical Results

We have implemented the Sliding-Window algorithm and compared its performance
to the theoretical results developed in this section. The details of this comparison
are given in Appendix B. See Figs. 2–4 to see the plots of the fraction of unpacked
items given by our worst case bound, the bound in [Shachnai and Tamir 2000a], as
well as the simulation results.
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3.3 Approximation Ratio

We have established the fact that the Sliding-Window algorithm packs at least
(1 − 1

(1+
√

k)2
) fraction of all items, and this bound is the best possible among all

possible algorithms by establishing instances where no solution can pack a higher
fraction of items. Observe that the Sliding-Window algorithm also achieves a (1−

1
(1+

√
k)2

)-approximation ratio, since the optimal solution can pack all items. In this

section we establish that the (1− 1
(1+

√
k)2

)-approximation bound is tight by showing
an example where the optimal packing packs all items while the Sliding-Window
algorithm only packs (1 − 1

(1+
√

k)2
) fraction of all items.

For simplicity we show here the construction for the case when k is a perfect
square. Let L = (k +

√
k)x and N =

√
k + 1, where x is a large integer to be

determined later. We have (k −
√

k)(
√

k + 1) small colors, each have x items, and√
k(
√

k + 1) large colors of size 2x − 1. The optimal packing puts k −
√

k small
colors and

√
k large colors on each disk, for a total load of (k +

√
k)x −

√
k per

disk, packing all items. Now consider the Sliding-Window algorithm, for the first
disk d1, it tries to find the first k consecutive colors exceeding L items. For the
given instance, it will be k −

√
k − 1 small colors followed by

√
k + 1 large colors.

The Sliding-Window algorithm then splits the last large color into two pieces of size
x +

√
k and x −

√
k − 1, respectively. The first disk is assigned k −

√
k − 1 small

colors,
√

k large colors, and a color of size x +
√

k, for a total of L items. Observe
that the algorithm consumed

√
k + 1 large colors on the first disk d1. It is clear

that same situation arises for disks d2, d3, . . . , d√k. For the last disk, we can best
assign k small colors to it, since all remaining colors have no more than x items
each. Let x → ∞, the ratio of packed (S) to total (S+U) items is

S

S + U
=

√
k(k +

√
k)x + kx

(
√

k + 1)((k +
√

k)x −
√

k)
→

√
k(k +

√
k)x + kx

(
√

k + 1)(k +
√

k)x
= (1 − 1

(1 +
√

k)2
).

3.4 The Assignment Problem

Notice that the Sliding-Window algorithm returns the layout of the color placement,
i.e., we know which color was assigned to which disk as well as a packing of items on
disks. However, we could ignore the detailed item assignment, i.e., how many items
from a color should be assigned to a disk. Observe that given the layout of the
color placement only, one can find the optimal item assignment that maximizes the
total fraction of the items packed via network flow. The reduction is as follows. We
create a graph with the set of colors and disks as vertices, so a vertex represents
either a color or a disk. In addition, we have a source and sink node, s and t,
respectively. The source node s has an edge to a color node Ui with capacity |Ui|.
From each disk node dj there is an edge to t with capacity Lj. There is an edge
with unlimited capacity from a color node Ui to a disk node dj if in the Sliding-
Window solution Ui is partially (or completely) assigned to dj . Clearly, each disk
node dj has at most Cj edges from color nodes. A maximum flow from s to t gives
an optimal assignment of items to disks.

However, we will show that the Sliding-Window algorithm itself returns an opti-
mal assignment of items based on the color placement that it obtains. If all disks
in the Sliding-Window solution are load saturated, then the observation is clearly
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true.

Theorem 3.11. The Sliding-Window algorithm obtains an optimal packing of
items for the layout it creates.

Proof. Since the sliding window algorithm finds an assignment of items to disks
we can observe that it actually corresponds to a valid flow in the flow network
described earlier. We can argue that this flow is actually a max flow in the flow
network and thus optimal. Let f be the flow computed by the Sliding-Window
algorithm and Gf the residual graph with respect to this flow.

The colors that are on the remaining items list when the algorithm terminates
are the ones that have unpacked items. Call this set RI . The corresponding color
nodes Ui have the property that the edge from s to Ui is unsaturated and thus
reachable from s. The disk nodes dj ∈ NS (storage saturated disks) have edges
to t that are not saturated and are the only nodes with edges to t in Gf . We
will argue that there is no path from s to t in Gf , thus proving that the flow is a
maximum flow. (Recall that paths in Gf correspond to augmenting paths in the
flow network.)

Disks in NS have the property that they do not cause splitting of any colors,
since we pack all remaining items corresponding to a color. If a disk caused the
splitting of a color it must be in NL. We will show that each disk node dj reachable
from s in Gf caused the splitting of some color and thus must be in NL. Since only
disks in NS have edges (in Gf ) to t, there is no path in Gf from s to t.

We will prove, by induction on the length of the shortest path from s, that each
disk node dj reachable from s in Gf , caused the splitting of a color which is its
predecessor on the shortest path from s. The base case is for all paths of length
three from s. Any disk node dj adjacent to a node in RI caused the splitting of
the node in RI . This proves the base case. To prove the general case, suppose that
the shortest path from s to dj has length v. Let Ui be the predecessor of dj on
the shortest path and dj′ the predecessor of Ui. By the induction hypothesis, dj′

already has a predecessor that was split due to dj′ . Since each disk splits at most
one color, and ui has edges to dj′ and dj , it must be split due to dj . This proves
the claim.

4. POLYNOMIAL TIME APPROXIMATION SCHEMES

4.1 Homogeneous Storage Systems

We now design an algorithm that for any fixed ϵ′ > 0, gives a (1−ϵ′)-approximation
in polynomial time.

If the error parameter ϵ′ ≥ 1/(1 +
√

k)2, we can simply use the Sliding-Window
algorithm to obtain a (1−ϵ′)-approximation. In the rest of this section, we focus on
the case when ϵ′ < 1/(1+

√
k)2. In other words, k can be assumed to be a constant

when ϵ′ is a fixed constant. We also define a constant ϵ = min( 1
k , 1−(1−ϵ′)1/3). Our

algorithm runs in polynomial time for any fixed k and ϵ and yields a (1−ϵ)3 ≥ (1−ϵ′)
approximation. Our approximation scheme involves the following steps:

(1) First we show that any given input instance can be approximated by another
instance I ′ such that no color in I ′ contains “too many” items.

ACM Journal Name, Vol. V, No. N, Month 20YY.



Approximation Algorithms for Data Placement · 17

(2) Next we show that for any input instance there exists a near-optimal solution
that satisfies certain structural properties concerning how items are assigned
to the disks.

(3) Finally, we give an algorithm that in polynomial time finds the near-optimal so-
lution referred to in step (2) above, provided the input instance is as determined
by step (1) above.

We now describe in detail each of these steps. In what follows, we use OPT(I)
to denote an optimal solution to instance I and α to denote 1/ϵ. Also, for any
solution S, we use |S| to denote the number of items packed by it.

4.1.1 Preprocessing the Input Instance. We say that an instance I is B-bounded
if the size of each color is at most B.

Lemma 4.1. For any instance I, we can construct in polynomial time another
instance I ′ such that

—I ′ is ⌈αL⌉-bounded,
—any solution S′ to I ′ can be mapped to a solution S to I of identical value, and
—|OPT(I ′)| ≥ (1 − ϵ)|OPT(I)|.

Proof. Consider a color Ui in the instance I such that |Ui| > ⌈αL⌉. Replace Ui

with a new set of colors U1
i , U2

i , ..., Us
i where s = ⌈|Ui|/⌈αL⌉⌉, |U1

i | = ... = |Us−1
i | =

⌈αL⌉, and |Us
i | = |Ui|− (s − 1)⌈αL⌉. Repeat this procedure for any color that has

more than ⌈αL⌉ items in I. We now have our instance I ′.
It is easy to see that any feasible solution to I ′ gives a feasible solution of same

value to I; simply replace each color U j
i with Ui.

Now consider a solution S for instance I. We show that it can be mapped to a
solution S′ of size (1 − ϵ)|S| for I ′. If |Ui| ≤ ⌈αL⌉ for 1 ≤ i ≤ M , then clearly S is
also a feasible solution of the same value for I ′. Otherwise, fix a color Ui in I such
that |Ui| > ⌈αL⌉. Label the occurrences of the items of color Ui as 1, 2, ... as we
move from d1 to dN in solution S. Replace the jth occurrence of a color Ui item
with an item of color U l

i where l = ⌈j/⌈αL⌉⌉. The resulting solution may no longer
be a feasible solution for I ′. A disk may now contain items of two different colors,
say U l

i and U l+1
i , in place of a single color Ui and hence the total number of colors

in the disk may become k + 1. We simply discard all the items in any disks where
this event occurs. Repeat this procedure for every color with more than ⌈αL⌉ items
in I. We claim that we have discarded no more than an ϵ-fraction of packed items.
The reason is that we throw away at most L items from a color at a crossover disk
but this event occurs only once in every ⌈αL⌉ occurrences of items packed from a
color. Thus what we discard is at most an ϵ-fraction of what is packed.

4.1.2 Structured Approximate Solutions. Let us call a color Ui small if |Ui| ≤
ϵL/k, and large otherwise. Also, for a given solution, we say that a disk is light if
it contains less than ϵL items, and it is called heavy otherwise. The lemma below
shows that there exists a (1−ϵ)-approximate solution where the interaction between
light disks and large colors, and between heavy disks and small colors, obeys some
nice properties.
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Lemma 4.2. For any instance I, there exists a solution S satisfying the following
properties:

—at most one light disk receives items from any large color.
—a heavy disk is assigned either zero or all items in a small color,
—a heavy disk receive no more than ⌈(1 − ϵ)L⌉ items from large colors, and
—S packs at least (1 − ϵ)OPT(I) items.

Proof. Let nj denote the number of items assigned to the jth disk in the so-
lution OPT(I). Relabel disks 1 through N such that n1 ≥ n2... ≥ nN . Assume
w.l.o.g. that OPT(I) is a lexicographically maximal solution in the sense that
among all optimal solutions, OPT(I) is one that maximizes the sums

∑i
j=1 nj for

each i ∈ [1..N ].
It is easy to see that the first property follows from the maximal property of

OPT(I). To establish that a heavy disk in OPT(I) receives either zero or all items
from a small color in the solution S, we may need to discard some items from the
heavy disks in OPT(I). Let X be the set of heavy disks that contain less than
⌈(1 − ϵ)L⌉ items from large colors. Consider any disk dj ∈ X that receives some
but not all items from a small color Ui. Simply move all items of Ui to dj . Repeat
this process till no disk in X violates this property. Since a small color has at most
ϵL/k items, clearly the capacity of no disk is violated in this process. Finally, for
each of the remaining heavy disk not in X , simply discard any items from small
colors and extra items from large colors, so the resulting load is exactly ⌈(1− ϵ)L⌉.
Clearly, the resulting solution is (1 − ϵ)-approximate.

For a given solution S, a disk is said to be δ-integral w.r.t. a color Ui if it is
assigned β⌈δL⌉ items from Ui, where 0 < δ ≤ 1 and β is a non-negative integer.

Lemma 4.3. Any solution S can be transformed into a solution S′ such that

—each heavy disk in S is (ϵ2/k)-integral in S′ w.r.t. each large color, and
—S′ packs at least (1 − ϵ)|S| items.

Proof. To obtain the solution S′ from S, in each heavy disk, round down the
number of items assigned from any large color to the nearest integral multiple of
⌈(ϵ2/k)L⌉. Then the total number of items discarded from any heavy disk in this
process is at most

k

(⌈
(
ϵ2

k
)L

⌉
− 1

)
≤ k

(
(
ϵ2

k
)L

)
= ϵ(ϵL).

Since each heavy disk contains at least ϵL items, the total number of items discarded
in this process can be bounded by ϵ|S|. Thus S′ satisfies both properties above.

4.1.3 The Approximation Scheme. We start by preprocessing the given input
instance I so as to create an ⌈αL⌉-bounded instance I ′ as described in Lemma 4.1.
We now give an algorithm to find a solution S to I ′ such that S satisfies the
properties described in Lemmas 4.2 and 4.3 and packs the largest number of items.
Clearly,

|S| ≥ (1 − ϵ)2|OPT(I ′)| ≥ (1 − ϵ)3|OPT(I)|.
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Let O be an optimal solution to the instance I ′ that is lexicographically maximal.
Assume w.l.o.g. that we know the number of heavy disks in O, say N ′. Let H
be the set of heavy disks d1 through dN ′ and let L be the remaining disks, dN ′+1

through dN . The algorithm consists of two steps, corresponding to the packing of
items in H and L respectively.

4.1.3.1 Packing items in H:. We first guess a vector ⟨l1, l2, ..., lN ′⟩ such that lj
denotes the number of small colors to be assigned (completely) to a disk dj ∈ H.
Since all disks are identical, we can guess such a vector in O(Nk+1) time by guessing
a compact representation of the following form. We guess a vector ⟨q0, q1, · · · , qk⟩
such that

∑k
i=0 qi = N ′ and qi denotes the number of disks in H that are assigned

i small colors (completely). It is easily seen that any such vector can be mapped to
a vector of the form ⟨l1, l2, ..., lN ′⟩ and vice versa. Now proceeding from 1 through
N ′, we assign to a disk dj the largest size lj small colors that remain.

Next we use a dynamic programming approach moving across the disks from d1

through dN ′ so as to find an optimal (ϵ2/k)-integral solution for packing the largest
number of items from the large colors. For the purpose of this packing, the capacity
of each heavy disk is restricted to be ⌈(1 − ϵ)L⌉ and the number of colors allowed
in disk dj is given by k − lj . Let β = ⌈k/ϵ3⌉ and q = ⌈(ϵ2L)/k⌉. The dynamic
program is based on maintaining a β-tuple v⃗ = ⟨v1, v2, ..., vβ⟩ where vi denotes the
number of large colors that have i · q elements available in them. Proceeding from
i = 1 through N ′, we compute a table entry T [v⃗, i] for each possible state vector v⃗.
The entry indicates the largest number of items that can be packed in the disks d1

through di subject to the constraint that the resulting state vector is v⃗. Since there
are at most Nk colors, total number of state vectors is bounded by (Nk)⌈k/ϵ3⌉,
which is polynomial for any fixed ϵ.

4.1.3.2 Packing items in L:. We know that our solution need not assign items
from a large color to more than one disk in L. Moreover, at most ϵL items from
any large color are packed in a disk in L. So at this stage we can truncate down
the size of each large color to ϵL. By definition, each of the remaining colors has
no more than L

k items, any k of them will underfill a disk. We greedily assign the
colors with the most items to disks in L, so each disk is storage saturated. Clearly,
such an assignment gives a feasible solution of maximum weight. This completes
our approximation scheme.

4.2 Uniform Ratio Storage Systems

We now show how the PTAS above can be extended to the case of uniform ratio
storage systems. If ϵ′ ≥ 1/(1 +

√
Cmin)2 then we can use the Sliding-Window

algorithm to obtain a (1 − ϵ′)-approximation. On the other hand, if Cmin as well
as Cmax are bounded by a constant (parameterized by ϵ′), the approach of the
preceding subsection easily extends to give a PTAS. We will present this extension
later. Define ϵ as before, using Cmax in place of k.

The difficulty thus lies in the case when Cmin is small but Cmax is relatively large.
In other words, our system contains disks of widely varying storage capacities.
We handle this case by showing that every “large” disk can be approximately
represented by a collection of disks with constant storage capacity such that we
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lose at most an ϵ-fraction of items due to this approximate representation. Once
this transformation is made, we again have a case where both Cmin and Cmax are
bounded by a constant.

Lemma 4.4. For any instance I, we can construct in polynomial time another
instance I ′ such that

—Each disk in I ′ has bounded constant storage capacity.
—Any solution S′ to I ′ can be mapped to a solution S to I of identical value, and
—|OPT(I ′)| ≥ (1 − ϵ)|OPT(I)|.

Proof. We create the instance I ′ as follows. Let p be the smallest integer such
that ϵ ≥ 1/(1+

√
p × Cmin)2. For each disk dj with storage capacity Cj > 2p×Cmin,

we decompose it into a collection of ⌊ Cj

pCmin
⌋−1 disks of storage capacity p×Cmin and

one more disk of storage capacity (Cj mod pCmin)+ pCmin. We ensure that disks
have the same uniform ratio. Note that in the new instance, Cmax ≤ 2p × Cmin,
which is a constant.

It’s easy to see that any feasible solution to I ′ gives a feasible solution of same
value to I, since the total storage and load capacity remains the same.

Now consider a solution S for I. For each of the disks dj in I with storage
capacity larger than 2p×Cmin, we set up a URDP instance with the colors assigned
to dj as the set of items, and the collection of the disks representing dj in I ′ as the
set of disks. Since the minimum storage capacity of the disks in the collection is
pCmin, we can run the Sliding-Window algorithm to pack at least (1 − ϵ) fraction
of the items.

We now present a PTAS for the uniform ratio system with bounded storage
capacities. It involves three steps as in the PTAS for the homogeneous system.
Recall r = Lj

Cj
denotes the uniform ratio and α = 1

ϵ . We inherit the notations and
concepts introduced in the previous subsection.

4.2.1 Preprocessing the Input Instance. We preprocess the instance so no color
contains “too many” items.

Lemma 4.5. For any instance I, we can construct in polynomial time another
instance I ′ such that

—I ′ is ⌈αLmax⌉-bounded.
—any solution S′ to I ′ can be mapped to a solution S to I of identical value, and
—|OPT(I ′)| ≥ (1 − ϵ)|OPT(I)|.

Proof. The same proof in Lemma 4.1 works here. In the case that we throw
away some items at a crossover disk, at most Lmax items are lost. But this event
occurs only once in every ⌈αLmax⌉ occurrences of items packed from a color. Thus
what we discard is at most an ϵ-fraction of what is packed.

4.2.2 Structured Approximate Solutions. Let us call a color Ui small if |Ui| ≤ ϵr,
and large otherwise. For a given solution, we say that a disk dj is light if it contains
less than ϵLj items, and it is called heavy otherwise. The lemma below is an analog
of Lemma 4.2.
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Lemma 4.6. For any instance I, there exists a solution S satisfying the following
properties:

—at most one light disk receives items from any large color,
—a heavy disk is assigned either zero or all items in a small color,
—a heavy disk dj receive no more than ⌈(1 − ϵ)Lj⌉ items from large colors, and
—S packs at least (1 − ϵ)OPT(I) items.

Proof. The proof mimics that of lemma 4.2. We relabel the disks in decreasing
order of number of assigned items. A lexicographically maximal solution OPT(I)
satisfies the first property. Let X denote the set of disks with each of its members
dj containing less than ⌈(1 − ϵ)Lj⌉ items from large colors. We completely assign
the partially assigned small colors to disks in X . Afterwards, each disk dj ∈ X
contains no more than Cj small colors. Since a small color has at most ϵr items, dj

contains at most ϵLj items from small colors. Together with less than ⌈(1 − ϵ)Lj⌉
items from large colors, the load capacity of dj is not violated. For each of the
remaining heavy disk dj not in X , simply discard any items from small colors and
extra items from large colors, so the resulting load is exactly ⌈(1 − ϵ)Lj⌉. Clearly,
the resulting solution is (1 − ϵ)-approximate.

For a given solution S, a disk is said to be δ-integral w.r.t. a color Ui if it is
assigned β⌈δr⌉ items from Ui, where 0 < δ ≤ 1 and β is a non-negative integer. Note
that the definition here is different from the previous subsection, though achieves
the same effect.

Lemma 4.7. Any solution S can be transformed into a solution S′ such that

—each heavy disk in S is ϵ2-integral in S′ w.r.t. each large color, and
—S′ packs at least (1 − ϵ)|S| items.

Proof. To obtain the solution S′ from S, in each heavy disk dj , round down
the number of items assigned from any large color to the nearest integral multiple
of ⌈ϵ2r⌉. Then the total number of items discarded from dj in this process is at
most

Cj

(⌈
ϵ2r

⌉
− 1

)
≤ Cj

(
ϵ2r

)
= ϵ(ϵLj).

Since dj contains at least ϵLj items, the total number of items discarded in this
process can be bounded by ϵ|S|. Thus S′ satisfies both properties above.

4.2.3 The Approximation Scheme. We start by preprocessing the given input in-
stance I so as to create an ⌈αLmax⌉-bounded instance I ′ as described in Lemma 4.5.
We now give an algorithm to find a solution S to I ′ such that S satisfies the prop-
erties described in Lemmas 4.6 and 4.7 and packs the largest number of items.
Clearly,

|S| ≥ (1 − ϵ)2|OPT(I ′)| ≥ (1 − ϵ)3|OPT(I)|.

Let O be an optimal solution to the instance I ′ that is lexicographically maximal.
Assume w.l.o.g. that we know the number of heavy disks in O, say N ′. For the
uniform ratio system, we can assume all disks are ordered in decreasing order of
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their storage capacities in the lexicographically maximal solution, and disks d1

through dN ′ are heavy disks (denoted by the set H) and the rest are light disks
(denoted by the set L).

Packing items in H: We first guess a vector ⟨l1, l2, ..., lN ′⟩ such that lj denotes
the number of small colors to be assigned completely to a disk dj ∈ H. Since there
are constant number of disk types, we can guess such a vector in O(NO(C2

max))
time by guessing a compact representation of the following form. We guess a vector
⟨QCmin

0 , QCmin
1 , · · · , QCmax

Cmax
⟩ such that

∑
Qj

i = N ′ and Qj
i denotes the number of

disks with storage capacity j in H that are assigned i small colors (completely). It is
easily seen that any such vector can be mapped to a vector of the form ⟨l1, l2, ..., lN ′⟩
and vice versa. Now proceeding from 1 through N ′, we assign to a disk di the largest
size li small colors that remain.

Next we use the same dynamic program described in the previous section to find
an optimal ϵ2-integral solution for packing the largest number of items from the
large colors. For the purpose of this packing, the capacity of each heavy disk dj is
restricted to be ⌈(1 − ϵ)Lj⌉ and the number of colors allowed is given by Cj − lj .

Packing items in L: We have argued that each large color is assigned to at most
one light disk. So at this stage we can truncate down the size of each large color
to no more than ϵLmax. By definition, ϵ ≤ 1

Cmax
, which suffices for the condition

ϵLmax ≤ Lmax
Cmax

= r. Now the remaining colors each has no more than r items, any
Cj of them will underfill the disk dj . We greedily assign the colors with the most
items to disks in L, so each disk is storage saturated. Clearly, such an assignment
gives a feasible solution of maximum weight. This completes our approximation
scheme for the uniform ratio systems.
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A. NP-HARDNESS PROOF

In this appendix we give our proof of Theorem 1.3. We first define the PARTITION
problem, and then describe a polynomial time reduction from it to the homogeneous
data placement problem.

PARTITION: Given a finite set A, with a size s(a) for each element a ∈ A, is
there a subset A′ ⊆ A such that

∑

a∈A′

s(a) =
∑

a∈A−A′

s(a)?

This remains NP-complete even if we require |A′| = |A|/2 [Garey and Johnson
1979]. Let n = |A|.

Proof. The problem is easily seen to be in NP , since a proposed solution can
be trivially checked in polynomial time.

We now show a polynomial time reduction from PARTITION. Let amax be the
maximum size item. For the reduction, define K = n × C × s(amax) where C is a
large constant. Let L = 3

2K and N = n. So there are n disks with k = 2 (storage
capacity) and a large L value. Let D =

∑n
i=1(K +s(ai)) = n×K+

∑n
i=1 s(ai). Let

M = n + 2, with xi = 1
2K − s(ai) for 1 ≤ i ≤ n and xn+1 = 1

2D and xn+2 = 1
2D.

Note that
∑n+2

i=1 xi =
∑n

i=1 xi + D = 3
2n × K which is exactly NL, the storage

capacity.
We now claim that if there is a solution to the partition problem with |A′| = |A|/2

and with s(A′) = s(A− A′) then there is a way to pack all items into the N disks.
The items are packed as follows. Put xi items of color i in disk i. Disk i now has
space for one new color, and exactly 3

2K − (1
2K − s(ai)) items. This is exactly

K + s(ai). If item ai ∈ A′ then add items of color n + 1 to disk i, otherwise add
items of color n + 2 to disk i. Since each disk can hold two colors, this does not
violate the color. Note that the number of items of color n + 1 that we pack are
exactly

∑
ai∈A′(K + s(ai)) = n

2 ×K + s(A′) = 1
2D. The calculation is identical for

items of color n + 2, and this concludes the proof that all items are packed.
We now argue that if there is a solution to 2-HDP where all items get packed,

then there is a solution to the PARTITION problem. We first claim that if all items
are packed, then items of colors i and j, with 1 ≤ i, j ≤ n cannot be packed into
the same disk. This is the case since: (a) only two colors can be packed in a disk
and hence no other color can go into that disk, and (b) the total capacity used up
by items of color i and j, 1 ≤ i, j ≤ n, would not exceed K, which is much less
than the capacity of the disk. If we cannot saturate the disk to full load capacity,
then we cannot pack all items (since the number of items exactly equals the total
load capacity). If each items of color i is in a distinct disk, then without loss of
generality we pack items of color i in disk i and now we are left with items of only
two colors that we need to split equally between the disks, and each disk can only
take an item of one color, with K + s(ai) items of that color. Since K >> s(ai) we
must pack items of color n + 1 in exactly n/2 disks, and the items of color n + 2 in
the remaining n/2 disks. Let A′ = {ai|items of color n + 1 are packed in disk i}.
As said earlier |A′| = n

2 , and s(A′) = s(A − A′). This completes the proof.
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When k = 3, the problem can be seen to be strongly NP-hard for even the
homogenous case by a simple reduction from 3-PARTITION [Garey and Johnson
1979].

B. THE SLIDING-WINDOW ALGORITHM

Algorithm 1 shows the pseudo code of the Sliding-Window algorithm. HEAD and
TAIL always point to the first and last color in the list, respectively. We’ll actively
update LEFT to points to the first (leftmost) color in the window, according
to the current sorted color list. Likewise RIGHT points to the last (rightmost)
color in the window. In addition, WIDTH denotes the total number of colors
in the currently window, and iter is a temporary pointer variable. PREV(p) and
NEXT (p) are pointer operations that returns a pointer to the color before and
after the color pointed to by p. We use the convention that PREV(HEAD) = nil,
and NEXT (nil) = HEAD. A sliding window for disk dj contains no more than
Cj consecutive colors. SUM denotes the total number of items of all the colors in
the current window.

iter = nil
foreach disk dj, j = 1 . . .N do

RIGHT = iter
SUM = WIDTH = 0
while iter ̸= nil and WIDTH < Cj do /* Initial window */1

SUM+ = R[iter]; + + WIDTH ; iter = PREV(iter)
LEFT = NEXT (iter)
while SUM < Lj and RIGHT ̸= TAIL do /* Sliding window */2

RIGHT = NEXT (RIGHT ); SUM+ = R[RIGHT ]
if WIDTH == Cj then

SUM− = R[LEFT ]; LEFT = NEXT (LEFT )
else

WIDTH + +

iter = PREV(LEFT ) /* Initial RIGHT value for next disk */3

Assign items R[LEFT ] . . .R[RIGHT − 1] to disk dj & delete them from R.
if SUM > Lj then /* Split color if necessary */

Assign items R[RIGHT ]− SUM + Lj to disk dj and delete
R[RIGHT ].
Creating a new color with SUM − Lj items and Insert into R.

else
Assign items R[RIGHT ] to disk dj and delete it from R.

Algorithm 1: Sliding-window

The reason for the improvement over the original O(NM) running time is that
we do not have to start the window of length Cj , from the beginning of the list R
in each step j. We count the colors split as new types of colors. Thus the total
number of colors is upper bounded by O(N + M).

For the while loop noted by 1, the number of iterations is upper bounded by the
total number of colors in the final window, which are deleted from the list later.
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Once a color is deleted from the list, it does not interact with the algorithm any
more. Thus, the total number of executions of the loop is bounded by O(N + M)
as well.

We then count the total number of “window slides” (the while loop noted by
2). Consider step j − 1, we have determined the colors R[LEFT ] . . .R[RIGHT ]
to be placed in knapsack dj−1. Now iter points to the color previous to that of
LEFT (noted by 3). Since the colors are sorted, the window ending with R[iter]
will under-fill disk dj . That’s why the window ending with the color pointed to by
iter should be a safe starting position for the next iteration. Thus in subsequent
“window slides” during step j, the right end of the window extends to a new color
per slide. Thus, the right end of the window will always monotonically move to
the right, consuming a fresh color in each step. Since the total number of colors is
bounded by O(N + M), this upper bounds the total number of “window slides” in
the pseudo code.

To achieve an overall O((N + M) log(N + M)) running time, we need a data
structure that maintains a sorted list of colors, supporting bidirectional traversals
of the list in constant time, plus deletion or addition of a single color in logarithmic
time. One can adapt a balanced binary search tree type data structure to support
the needed operation. For example, a Skip-list [Pugh 1990] or a 2-3 tree [Cormen
et al. 1990] together with a doubly linked list would satisfy the requirement.

Numerical Results

In this appendix we give numerical results of the comparison between the Sliding-
Window algorithm and the theoretical results developed in Section 3. The results
presented here are for the homogeneous case only. For the purposes of this compari-
son we generate the test cases using the Zipf distribution to determine the skewness
in the number of items of each color. The Zipf distribution is defined as follows
[Knuth 1973]:

Prob[item of color i] =
c

i(1−θ)
∀ i = 1, 2, . . . , M and 0 ≤ θ ≤ 1

where c =
1

H(1−θ)
M

and H(1−θ)
M =

M∑

j=1

1
j(1−θ)

where θ determines the degree of skewness. For instance, θ = 1.0 corresponds to the
uniform distribution whereas θ = 0.0 corresponds to the measurements performed
in [Chervenak 1994] (for a movies-on-demand application).

We experimented with different values of θ and computed the percentage of items
that can be packed by the Sliding-Window algorithm as a function of k, the load
capacity of a disk. The results of these experiments are given in Figures 2–4. In all
cases L = 100 and N = 5.

We can draw the following conclusions from these figures:

—the theoretical bound is reasonably tight when the the number of items of each
color is fairly skewed (as in Figures 3 and 4), as is the case in a VOD server, which
is our motivational application; furthermore, the performance of the Sliding-
Window algorithm is very close to the theoretical bound for inputs which are
“similar” to the tight example given in Section 3 (as in Figure 3);
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Fig. 2. θ = 1.0.
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Fig. 3. θ = 0.5.

—the performance of the Sliding-Window algorithm can be significantly better than
the theoretical bound when the number of items of each color is approximately
the same and each disk has a relatively small storage capacity (as in Figure 2);
however, the theoretical bound is reasonably tight for larger values of k (which
again, is reasonable for our motivational application).
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Fig. 4. θ = 0.0.

ACM Journal Name, Vol. V, No. N, Month 20YY.


