
Provenance Views for Module Privacy

Susan B. Davidson
University of Pennsylvania

Philadelphia, PA, USA
susan@cis.upenn.edu

Sanjeev Khanna
University of Pennsylvania

Philadelphia, PA, USA
sanjeev@cis.upenn.edu

Tova Milo
Tel Aviv University

Tel Aviv, Israel
milo@cs.tau.ac.il

Debmalya Panigrahi
CSAIL, MIT

Massachusetts, MA, USA
debmalya@mit.edu

Sudeepa Roy
University of Pennsylvania

Philadelphia, PA, USA
sudeepa@cis.upenn.edu

ABSTRACT
Scientific workflow systems increasingly store provenance in-
formation about the module executions used to produce a
data item, as well as the parameter settings and intermedi-
ate data items passed between module executions. However,
authors/owners of workflows may wish to keep some of this
information confidential. In particular, a module may be
proprietary, and users should not be able to infer its behav-
ior by seeing mappings between all data inputs and outputs.
The problem we address in this paper is the following:

Given a workflow, abstractly modeled by a relation R, a
privacy requirement Γ and costs associated with data. The
owner of the workflow decides which data (attributes) to
hide, and provides the user with a view R′ which is the pro-
jection of R over attributes which have not been hidden.
The goal is to minimize the cost of hidden data while guar-
anteeing that individual modules are Γ-private. We call this
the Secure-View problem. We formally define the problem,
study its complexity, and offer algorithmic solutions.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security, in-
tegrity, and protection; H.2.8 [Database Management]:
Database applications—Scientific databases

General Terms
Algorithms, Theory

Keywords
workflows, provenance, privacy, approximation

1. INTRODUCTION
The importance of data provenance has been widely rec-

ognized. In the context of scientific workflows, systems such
as myGrid/Taverna [19], Kepler [4], and VisTrails [10] now

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’11, June 13–15, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0660-7/11/06 ...$10.00.

capture and store provenance information, and a standard
for provenance representation called the Open Provenance
Model (OPM) [17] has been designed. By maintaining in-
formation about the module executions (processing steps)
used to produce a data item, as well as the parameter set-
tings and intermediate data items passed between module
executions, the validity and reliability of data can be better
understood and results be made reproducible.

However, authors/owners of workflows may wish to keep
some of this provenance information private. For example,
intermediate data within an execution may contain sensitive
information, such as the social security number, a medical
record, or financial information about an individual. Al-
though users with the appropriate level of access may be
allowed to see such confidential data, making it available to
all users is an unacceptable breach of privacy. Beyond data
privacy, a module itself may be proprietary, and hiding its
description may not be enough: users without the appro-
priate level of access should not be able to infer its func-
tionality by observing all inputs and outputs of the module.
Finally, details of how certain modules in the workflow are
connected may be proprietary, and therefore showing how
data is passed between modules may reveal too much of the
structure of the workflow. There is thus an inherent trade-
off between the utility of provenance information and the
privacy guarantees that authors/owners desire.

While data privacy was studied in the context of statis-
tical databases and ideas related to structural privacy were
dealt with in the context of workflow views, module privacy
has not been addressed yet. Given the importance of the
issue [7], this paper therefore focuses on the problem of pre-
serving the privacy of module functionality, i.e. the mapping
between input and output values produced by the module
(rather than the actual algorithm that implements it).
Abstracting the workflow models in [19, 4, 10], we con-

sider a module to be a finite relation which takes a set I of
input data (attributes), produces a set O of output data (at-
tributes), and satisfies the functional dependency I −→ O.
A row in this relation represents one execution of the mod-
ule. In a workflow, n such data processing modules are
connected in a directed acyclic multigraph (network), and
jointly produce a set of final outputs from a set of initial
inputs. Each module receives input data from one or more
modules, or from the initial external input, and sends output
data to one or more modules, or produces the final output.
Thus a workflow can be thought of as a relation which is

175

the input-output join of the constituent module relations.
Each row in this relation represents a workflow execution,
and captures the provenance of data that is produced during
that execution. We call this the provenance relation.
To ensure the privacy of module functionality, we extend

the notion of !-diversity [15] to our network setting1: A
module with functionality m in a workflow is said to be Γ-
private if for every input x, the actual value of the output
m(x) is indistinguishable from Γ − 1 other possible values
w.r.t. the visible data values in the provenance relation.
This is achieved by carefully selecting a subset of data items
and hiding those values in all executions of the workflow –
i.e. by showing the user a view of the provenance relation for
the workflow in which the selected data items (attributes)
are hidden. Γ-privacy of a module ensures that even with
arbitrary computational power and access to the view for all
possible executions of workflow, an adversary can not guess
the correct value of m(x) with probability > 1

Γ .
Identical privacy guarantees can be achieved by hiding

different subsets of data. To reflect the fact that some data
may be more valuable to the user than other data, we assign
a cost to each data item in the workflow, which indicates the
utility lost to the user when the data value is hidden. It is
important to note that, due to data sharing (i.e. computed
data items that are passed as input to more than one module
in the workflow), hiding some data can be used to guarantee
privacy for more than one module in the network.
The problem we address in this paper is the following: We

are given a workflow, abstractly modeled by a relation R, a
privacy requirement Γ and costs associated with data. An
instance of R represents the set of workflow executions that
have been run. The owner of the workflow decides which
attributes to hide, and provides the user with a view R′

which is the projection of R over the visible attributes. The
goal is to minimize the cost of hidden data while guaranteeing
that individual modules are Γ-private. We call this the
secure-view problem. We formally define the problem, study
its complexity, and offer algorithmic solutions.

Contributions. Our first contribution is to formalize
the notion of Γ-privacy of a private module when it is a
standalone entity (standalone privacy) as well as when it
is a component of a workflow interacting with other mod-
ules (workflow privacy). For standalone modules, we then
analyze the computational and communication complexity
of obtaining a minimal cost set of input/output data items
to hide such that the remaining, visible attributes guaran-
tee Γ-privacy (a safe subset). We call this the standalone
secure-view problem.
Our second set of contributions is to study workflows in

which all modules are private, i.e. modules for which the
user has no a priori knowledge and whose behavior must
be hidden. For such all-private workflows, we analyze the
complexity of finding a minimum cost set of data items in
the workflow, as a whole, to hide such that the remaining
visible attributes guarantee Γ-privacy for all modules. We
call this the workflow secure-view problem. Although the
privacy of a module within a workflow is inherently linked
to the workflow topology and functionality of other modules,
we are able to show that guaranteeing workflow secure-views
in this setting essentially reduces to implementing the stan-

1In the Related Work, we discuss why a stronger notion of
privacy, like differential privacy, is not suitable here.

dalone privacy requirements for each module. We then study
two variants of the workflow secure-view problem, one in
which module privacy is specified in terms of attribute sets
(set constraints) and one in which module privacy is speci-
fied in terms of input/output cardinalities (cardinality con-
straints). Both variants are easily shown to be NP-hard, and
we give poly-time approximation algorithms for these prob-
lems. While the cardinality constraints version has an linear-
programming-based O(log n)-approximation algorithm, the
set constraints version is much harder to approximate. How-
ever, both variants becomes more tractable when the work-
flow has bounded data sharing, i.e. when a data item acts
as input to a small number of modules. In this case a con-
stant factor approximation is possible, although the problem
remains NP-hard even without any data sharing

Our third set of contributions is in general workflows, i.e
workflows which contain private modules as well as mod-
ules whose behavior is known (public modules). Here we
show that ensuring standalone privacy of private modules
no longer guarantees their workflow privacy. However, by
making some of the public modules private (privatization)
we can attain workflow privacy of all private modules in the
workflow. Since privatization has a cost, the optimization
problem, becomes much harder: Even without data sharing
the problem is Ω(log n)-hard to approximate. However, for
both all-private and general workflows, there is an LP-based
!max-approximation algorithm, where !max is the length of
longest requirement list for any module.

Related Work. Workflow privacy has been considered in
[6, 12, 11]. In [6], the authors discuss a framework to out-
put a partial view of a workflow that conforms to a given set
of access permissions on the connections between modules
and data on input/output ports. The problem of ensuring
the lawful use of data according to specified privacy policies
has been considered in [12, 11]. The focus of the work is
a policy language for specifying relationships among data
and module sets, and their properties relevant to privacy.
Although all these papers address workflow privacy, the pri-
vacy notions are somewhat informal and no guarantees on
the quality of the solution are provided in terms of privacy
and utility. Furthermore, our work is the first, to our knowl-
edge, to address module privacy rather than data privacy.

Secure provenance for workflows has been studied in [14,
5, 13]. The goal is to ensure that provenance information
has not been forged or corrupted, and a variety of crypto-
graphic and trusted computing techniques are proposed. In
contrast, we assume that provenance information has not
been corrupted, and focus on ensuring module privacy.

In [16], the authors study information disclosure in data
exchange, where given a set of public views, the goal is to
decide if they reveal any information about a private view.
This does not directly apply to our problem, where the pri-
vate elements are the (x,m(x)) relations. For example, if all
x values are shown without showing any of the m(x) values
for a module m, then information is revealed in their setting
but not in our setting.2

Privacy-preserving data mining has received considerable
attention (see surveys [2, 22]). The goal is to hide individ-
ual data attributes while retaining the suitability of data for
mining patterns. For example, the technique of anonymiz-

2In contrast, it can be shown that showing all m(x) values
while hiding the x’s, may reveal information in our setting.

176

ing data makes each record indistinguishable from a large
enough set of other records in certain identifying attributes [21,
15]. Privacy preserving approaches were studied for social
networks [3, 20] auditing queries [18] and in other contexts.
Our notion of standalonemodule privacy is close to that of !-
diversity [15], in which the values of non-sensitive attributes
are generalized so that, for every such generalization, there
are at least ! different values of sensitive attributes. We
extend this work in two ways: First, we place modules (re-
lations) in a network of modules, which significantly compli-
cates the problem, Second, we analyze the complexity of at-
taining standalone as well as workflow privacy of modules.
Another widely used technique is that of data perturba-

tion where some noise (usually random) is added to the the
output of a query or to the underlying database. This tech-
nique is often used in statistical databases, where a query
computes some aggregate function over the dataset [8] and
the goal is to preserve the privacy of data elements. In con-
trast, in our setting the private elements are (x,m(x)) pairs
for a private module m and the queries are select-project-
join style queries over the provenance relation rather than
aggregate queries.
Privacy in statistical databases is typically quantified us-

ing differential privacy, which requires that the output dis-
tribution is almost invariant to the inclusion of any par-
ticular record (see survey [9] and the references therein).
Although this is an extremely strong notion of privacy, no
deterministic algorithm can guarantee differential privacy.
Since provenance is used to ensure reproducibility of experi-
ments (and therefore data values must be accurate), adding
random noise to provenance information may render it use-
less. Thus standard mechanisms for differential privacy are
unsuitable for our purpose. Our approach of outputting a
safe view allows the user to know the name of all data items
and the exact values of data that is visible. The user also
does not lose any utility in terms of connections in the work-
flow, and can infer exactly which module produced which
visible data item or whether two visible data items depend
on each other.

Organization. Section 2 defines our workflow model and
formalizes the notions of Γ-privacy of a module, both when
it is standalone and when it appears in a workflow. The
secure-view problem for standalone module privacy is stud-
ied in Section 3. Section 4 then studies the problem for
workflows consisting only of private modules, whereas Sec-
tion 5 generalizes the results to general workflows consisting
of both public and private modules. Finally we conclude
and discuss directions for future work in Section 6.

2. PRELIMINARIES
We start by introducing some notation and formalizing

our notion of privacy. We first consider the privacy of a sin-
gle module, which we call standalone module privacy. Then
we consider privacy when modules are connected in a work-
flow, which we call workflow module privacy.

2.1 Modules and Relations
We model a module m with a set I of input variables and

a set O of (computed) output variables as a relation R over
a set of attributes A = I ∪ O that satisfies the functional
dependency I → O. In other words, I serves as a (not
necessarily minimal) key for R. We assume that I ∩ O = ∅

and will refer to I as the input attributes of R and to O as
its output attributes.
We assume that the values of each attribute a ∈ A come

from a finite but arbitrarily large domain ∆a, and let Dom =∏
a∈I ∆a and Range =

∏
a∈O ∆a denote the domain and

range of the module m respectively. The relation R thus
represents the (possibly partial) function m : Dom → Range
and tuples in R describe executions of m, namely for every
t ∈ R, πO(t) = m(πI(t)). We overload the standard no-
tation for projection, πA(R), and use it for a tuple t ∈ R.
Thus πA(t), for a set A of attributes, denotes the projection
of t to the attributes in A.

Example 1. Figure 1 shows a simple workflow involving
three modules m1,m2,m3 with boolean input and output at-
tributes; we will return to it shortly and focus for now on the
top module m1. Module m1 takes as input two data items,
a1 and a2, and computes a3 = a1∨a2, a4 = ¬(a1∧a2) and
a5 = ¬(a1⊕a2). (The symbol ⊕ denotes XOR). The rela-
tional representation (functionality) of module m1 is shown
in Figure 1a as relation R1, with the functional dependency
a1a2 −→ a3a4a5. For clarity, we have added I (input) and
O (output) above the attribute names to indicate their role.

I O
a1 a2 a3 a4 a5

0 0 0 1 1
0 1 1 1 0
1 0 1 1 0
1 1 1 0 1

(a) R1: Functionality of m1

a1 a2 a3 a4 a5 a6 a7

0 0 0 1 1 1 0
0 1 1 1 0 0 1
1 0 1 1 0 0 1
1 1 1 0 1 1 1

(b) R: Workflow executions

I ∩ V O ∩ V
a1 a3 a5

0 0 1
0 1 0
1 1 0
1 1 1

(c)RV =πV (R1)

Figure 1: Module and workflow executions as relations

2.2 Standalone Module Privacy
Our approach to ensuring standalone module privacy, for

a module represented by the relation R, will be to hide a
carefully chosen subset of R’s attributes. In other words, we
will project R on a restricted subset V of attributes (called
the visible attributes of R), allowing users access only to the
view RV = πV (R). The remaining, non visible, attributes
of R are called hidden attributes.
We distinguish below two types of modules. (1) Public

modules whose behavior is fully known to users when the
name of the module is revealed. Here users have a priori
knowledge about the full content of R and, even if given only
the view RV , they are able to fully (and exactly) reconstruct
R. Examples include reformatting or sorting modules. (2)
Private modules where such a priori knowledge does not ex-
ist, even if the name of the module is revealed. Here, the
only information available to users, on the module’s behav-

177

ior, is the one given by RV . Examples include proprietary
software, e.g. a genetic disorder susceptibility module3.
Given a view (projected relation) RV of a private module

m, the possible worlds of m are all the possible full relations
(over the same schema as R) that are consistent with RV

w.r.t the visible attributes. Formally,

Definition 1. Let m be a private module with a corre-
sponding relation R, having input and output attributes I
and O, resp., and let V ⊆ I ∪O. The set of possible worlds
for R w.r.t. V , denoted Worlds(R, V), consist of all relations
R′ over the same schema as R that satisfy the functional de-
pendency I → O and where πV (R′) = πV (R).

Example 2. Returning to module m1, suppose the visi-
ble attributes are V = {a1, a3, a5} resulting in the view RV

in Figure 1c. For clarity, we have added I ∩ V (visible in-
put) and O ∩ V (visible output) above the attribute names
to indicate their role. Naturally, R1 ∈ Worlds(R1, V). Fig-
ure 2 shows four additional sample relations R1

1, R
2
1, R

3
1, R

4
1

in Worlds(R1, V), such that ∀i ∈ [1, 4],πV (Ri
1) = πV (R1) =

RV . (Overall there are sixty four relations in Worlds(R1, V)).

a1 a2 a3 a4 a5

0 0 0 0 1
0 1 1 0 0
1 0 1 0 0
1 1 1 0 1

(a) R1
1

a1 a2 a3 a4 a5

0 0 0 1 1
0 1 1 1 0
1 0 1 0 0
1 1 1 0 1

(b) R2
1

a1 a2 a3 a4 a5

0 0 1 0 0
0 1 0 0 1
1 0 1 0 0
1 1 1 0 1

(c) R3
1

a1 a2 a3 a4 a5

0 0 1 1 0
0 1 0 1 1
1 0 1 0 0
1 1 1 0 1

(d) R4
1

Figure 2: Ri
1 ∈ Worlds(R1, V), i ∈ [1, 4]

To guarantee privacy of a module m, the view RV should
ensure some level of uncertainly w.r.t the value of the output
m(πI(t)), for tuples t ∈ R. To define this, we introduce the
notion of Γ-standalone-privacy, for a given parameter Γ ≥ 1.
Informally, RV is Γ-standalone-private if for every t ∈ R,
the possible worlds Worlds(R, V) contain at least Γ distinct
output values that could be the result of m(πI(t)).

Definition 2. Let m be a private module with a corre-
sponding relation R having input and output attributes I and
O resp. Then m is Γ-standalone-private w.r.t a set of visible
attributes V , if for every tuple x ∈ πI(R), |Outx,m| ≥ Γ,
where Outx,m = {y | ∃R′ ∈ Worlds(R, V), ∃t′ ∈ R′ s.t x =
πI(t

′) ∧ y = πO(t
′)}.

If m is Γ-standalone-private w.r.t. V , then we will call V
a safe subset for m and Γ.

Γ-standalone-privacy implies that for any input the ad-
versary cannot guess m’s output with probability > 1

Γ , even
if the module is executed an arbitrary number of times.

3We discuss in Section 6 how partial prior knowledge can be
handled by our approach.

Example 3. It can be verified that, if V = {a1, a3, a5}
then for all x ∈ πI(R1), |Outx| ≥ 4, so {a1, a3, a5} is safe
for m1 and Γ = 4. As an example, from Figure 2, when
x = (0, 0), Outx,m ⊇ {(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0)}
(hidden attributes are underlined). Also, hiding any two
output attributes from O = {a3, a4, a5} ensures standalone
privacy for Γ = 4, e.g., if V = {a1, a2, a3} (i.e. {a4, a5}
are hidden), then the input (0, 0) can be mapped to one of
(0, 0, 0), (0, 0, 1), (0, 1, 0) and (0, 1, 1); this holds for other as-
signments of input attributes as well. But, V = {a3, a4, a5}
(i.e. when only input attributes are hidden) is not safe for
Γ = 4: for any input x, Outx,m = {(0, 1, 1), (1, 1, 0), (1, 0, 1)},
containing only three possible output tuples.

There may be several safe subsets V for a given module m
and parameter Γ. Some of the corresponding RV views may
be preferable to others, e.g. they provide users with more
useful information, allow to answer more common/critical
user queries, etc. Let V = (I ∪O) \ V denote the attributes
of R that do not belong to the view. If c(V) denotes the
penalty of hiding the attributes in V , a natural goal is to
choose a safe subset V that minimizes c(V). To understand
the difficulty of this problem, we study a version of the prob-
lem where the cost function is additive: each attribute a
has some penalty value c(a) and the penalty of hiding V
is c(V) = Σa∈V c(a). We call this optimization problem the
standalone Secure-View problem and discuss it in Section 3.

2.3 Workflows and Relations
A workflow W consists of a set of modules m1, · · · ,mn,

connected as a DAG (see, for instance, the workflow in Fig-
ure 1). Each module mi has a set Ii of input attributes
and a set Oi of output attributes. We assume that (1) for
each module, its input and output attributes are disjoint, i.e.
Ii ∩ Oi = ∅, (2) the output attributes of distinct modules
are disjoint, namely Oi ∩Oj = ∅, for i ,= j (since each data
item is produced by a unique module), and (3) whenever an
output of a module mi is fed as input to a module mj the
corresponding output and input attributes of mi and mj are
the same. The DAG shape of the workflow guarantees that
these requirements are not contradictory.

We model executions of W as a relation R over the set of
attributes A = ∪n

i=1(Ii ∪Oi), satisfying the set of functional
dependencies F = {Ii → Oi : i ∈ [1, n]}. Each tuple in R
describes an execution of the workflow W . In particular, for
every t ∈ R, and every i ∈ [1, n], πOi(t) = mi(πIi(t)).

Example 4. Returning to the sample workflow in Fig-
ure 1, the input and output attributes of modules m1,m2,m3

respectively are (i) I1 = {a1, a2}, O1 = {a3, a4, a5}, (ii) I2 =
{a3, a4}, O2 = {a6} and (iii) I3 = {a4, a5}, O3 = {a7}. The
underlying functional dependencies in the relation R in Fig-
ure 1b reflect the keys of the constituent modules, e.g. from
m1 we have a1a2 −→ a3a4a5, from m2 we have a3a4 −→ a6,
and from m3 we have a4a5 −→ a7.

Note that the output of a module may be input to several
modules. It is therefore possible that Ii∩Ij ,= ∅ for i ,= j. We
call this data sharing and define the degree of data sharing
in a workflow as follows:

Definition 3. A workflow W is said to have γ-bounded
data sharing if every attribute in W can appear in the left
hand side of at most γ functional dependencies Ii → Oi.

178

In the workflow of our running example, γ = 2. Intu-
itively, if a workflow has γ-bounded data sharing then a
data item can be fed as input to at most γ different mod-
ules. In the following sections we will see the implication of
such a bound on the complexity of the problems studied.

2.4 Workflow Module Privacy
To define privacy in the context of a workflow, we first ex-

tend our notion of possible worlds to a workflow view. Con-
sider the view RV = πV (R) of a workflow relation R. Since
the workflow may contain private as well as public mod-
ules, a possible world for RV is a full relation that not only
agrees with RV on the content of the visible attributes, but
is also consistent w.r.t the expected behavior of the public
modules. In the following definitions, m1, · · · ,mn denote
the modules in the workflow W and F denotes the set of
functional dependencies Ii→Oi, i ∈ [1, n] in the relation R.

Definition 4. The set of possible worlds for the work-
flow relation R w.r.t. V , denoted also Worlds(R, V), con-
sists of all the relations R′ over the same attributes as R
that satisfy the functional dependencies in F and where (1)
πV (R′) = πV (R), and (2) for every public module mi in W
and every tuple t′ ∈ R′, πOi(t

′) = mi(πIi(t
′)).

Note that when a workflow consists only of private mod-
ules, the second constraint does not need to be enforced.
We call these all-private workflows and study them in Sec-
tion 4. We then show in Section 5 that attaining privacy
when public modules are also used is fundamentally harder.
We are now ready to define the notion of Γ-workflow-

privacy, for a given parameter Γ ≥ 1. Informally, a view
RV is Γ-workflow-private if for every tuple t ∈ R, and ev-
ery private module mi in the workflow, the possible worlds
Worlds(R, V) contain at least Γ distinct output values that
could be the result of mi(πIi(t)).

Definition 5. A private module mi in W is Γ-workflow-
private w.r.t a set of visible attributes V , if for every tuple
x ∈ πIi(R), |Outx,W | ≥ Γ, where Outx,W = {y | ∃R′

∈ Worlds(R, V), s.t., ∀t′ ∈ R′ x = πIi(t
′) ⇒ y = πOi(t

′)}.
W is called Γ-private if every private module mi in W

is Γ-workflow-private. If W (resp. mi) is Γ-private (Γ-
workflow-private) w.r.t. V , then we call V a safe subset for
Γ-privacy of W (Γ-workflow-privacy of mi).

For simplicity, in the above definition we assumed that
the privacy requirement of every module mi is the same Γ.
The results and proofs in this paper remain unchanged when
different modules mi have different privacy requirements Γi.
In the rest of the paper, for a set of visible attributes

V ⊆ A, V = A \ V will denote the hidden attributes in the
workflow. The following proposition is easy to verify, which
will be useful later:

Proposition 1. If V is a safe subset for Γ-workflow-
privacy of a module mi in W , then any V ′ such that V ′ ⊆ V
(or, V ′ ⊇ V) also guarantees Γ-workflow-privacy of mi.

As we illustrate later, given a workflow W and a param-
eter Γ there may be several incomparable (in terms of set
inclusion) safe subsets V for Γ-privacy of W . Our goal is to
choose one that minimizes the penalty c(V) = Σa∈V c(a) of

the hidden attributes V . This we call the workflow Secure-
View problem, or simply the Secure-View problem. The
candidates are naturally the maximal, in terms of set inclu-
sion, safe sets V (and correspondingly the minimal V s).

2.5 Complexity Classes and Approximation
In the following sections we will study the Secure-View prob-
lem: minimize cost of the hidden attributes that ensures that
a workflow is Γ-private. We will prove that this problem is
NP-hard even in very restricted cases and study polynomial
time approximation algorithms as well as the hardness of ap-
proximations for different versions of the problem. We will
use the following standard notions of approximation: an al-
gorithm is said to be a µ(n)-approximation algorithm for a
given optimization problem, for some non-decreasing func-
tion µ(n) : N+ → R+, if for every input of size n it outputs a
solution of value at most a multiplicative factor of µ(n) away
from the optimum. An optimization problem is said to be
µ(n)-hard to approximate if a poly-time µ(n)-approximation
algorithm for the problem does not exist under standard
complexity assumptions. In this paper we will use standard
complexity assumptions of the form NP)⊆ DTIME(nf(n)),
where f(n) is a poly-logarithmic or sub-logarithmic function
of n and DTIME represents deterministic time. For exam-
ple, the hardness result in Theorem 5 says that there can-
not be an O(log n)-approximation algorithm unless all prob-
lems in NP have O(nlog logn)-time deterministic exact algo-
rithms. Finally, a problem is said to be APX-hard if there
exists a constant ε > 0 such that a (1 + ε)-approximation
in polynomial time would imply P = NP . If a problem is
APX-hard, then the problem cannot have a PTAS, i.e, a
(1+ ε)-approximation algorithm which runs in poly-time for
all constant ε > 0, unless P = NP .

3. STANDALONE MODULE PRIVACY
We start our study of workflow privacy by considering the

privacy of a standalone module, which is the simplest special
case of a workflow. Hence understanding it is a first step to-
wards understanding the general case. We will also see that
standalone-privacy guarantees of individual modules may be
used as building blocks for attaining workflow privacy.

We analyze below the time complexity of obtaining (mini-
mal cost) guarantees for standalone module privacy. Though
the notion of Γ-standalone-privacy is similar to the well-
known notion of $-diversity [15], to the best of our knowledge
the time complexity of this problem has not been studied.

Optimization problems and parameters. Consider
a standalone module m with input attributes I, output at-
tributes O, and a relation R. Recall that a visible subset of
attributes V is called a safe subset for module m and privacy
requirement Γ, if m is Γ-standalone-private w.r.t. V (see
Definition 2). If each attribute a ∈ I ∪ O has cost c(a), the
standalone Secure-View problem aims to find a safe subset
V s.t. the cost of the hidden attributes, c(V) =

∑
a∈V c(a),

is minimized. The corresponding decision version will take
a cost limit C as an additional input, and decide whether
there exists a safe subset V such that c(V) ≤ C.

One natural way of solving the optimization version of the
standalone Secure-View problem is to consider all possible
subsets V ⊆ I ∪ O, check if V is safe, and return the safe
subset V s.t. c(V) is minimized. This motivates us to define
and study the simpler Safe-View problem, which takes a
subset V as input and decides whether V is a safe subset.
To understand how much of the complexity of the stan-

dalone Secure-View problem comes from the need to con-
sider different subsets of attributes, and what is due to the

179

need to determine the safety of subsets, we study the time
complexity of standalone Secure-View, with and without
access to an oracle for the Safe-View problem, henceforth
called a Safe-View oracle. A Safe-View oracle takes a sub-
set V ⊆ I ∪ O as input and answers whether V is safe. In
the presence of a Safe-View oracle, the time complexity of
the Safe-View problem is mainly due to the number of ora-
cle calls, and hence we study the communication complexity.
Without access to such an oracle, we also study the compu-
tational complexity of this problem.
In our discussion below, k = |I| + |O| denotes the total

number of attributes in the relation R, and N denotes the
number of rows in R (i.e. the number of executions). Then
N ≤

∏
a∈I |∆a| ≤ δ|I| ≤ δk where ∆a is the domain of

attribute a and δ is the maximum domain size of attributes.

3.1 Lower Bounds
We start with lower bounds for the Safe-View problem.

Observe that this also gives lower bounds for the standalone
Secure-View problem without a Safe-View oracle. To see
this, consider a set V of attributes and assume that each
attribute in V has cost > 0 whereas all other attributes
have cost zero. Then Safe-View has a positive answer for V
iff the standalone Secure-View problem has a solution with
cost = 0 (i.e. the one that only hides the attributes V).

Communication complexity of Safe-View . Given a
visible subset V ⊆ I ∪ O, we show that deciding whether
V is safe needs Ω(N) time. Note that just to read the ta-
ble as input takes Ω(N) time. So the lower bound of Ω(N)
does not make sense unless we assume the presence of a data
supplier (we avoid using the term “oracle” to distinguish it
from Safe-View oracle) which supplies the tuples of R on
demand: Given an assignment x of the input attributes I,
the data supplier outputs the value y = m(x) of the output
attributes O. The following theorem shows the Ω(N) com-
munication complexity lower bound in terms of the number
of calls to the data supplier; namely, that (up to a constant
factor) one indeed needs to view the full relation.

Theorem 1. (Safe-View Communication Complexity)
Given a module m, a subset V ⊆ I ∪ O, and a privacy re-
quirement Γ, deciding whether V is safe for m and Γ requires
Ω(N) calls to the data supplier, where N is the number of
tuples in the relation R of m.

Proof Sketch. This theorem is proved by a reduction
from the set-disjointness problem, where Alice and Bob hold
two subsets A and B of a universe U and the goal is decide
whether A ∩ B %= ∅. This problem is known to have Ω(N)
communication complexity where N is the number of ele-
ments in the universe.

Computational Complexity of Safe-View : The above
Ω(N) computation complexity of Safe-View holds when the
relation R is given explicitly tuple by tuple. The following
theorem shows that even when R is described implicitly in a
succinct manner, there cannot be a poly-time (in the number
of attributes) algorithm to decide whether a given subset V
is safe unless P = NP .

Theorem 2. (Safe-View Computational Complexity)
Given a module m with a poly-size (in k= |I|+|O|) descrip-
tion of functionality, a subset V ⊆ I ∪ O, and a privacy
requirement Γ, deciding whether V is safe w.r.t. m and Γ is
co-NP-hard in k.

Proof Sketch. The proof of this theorem works by a
reduction from the UNSAT problem, where given a boolean
CNF formula g on variables x1, · · · , x!, the goal is to decide
whether, for all assignments of the variables, g is not satis-
fied. Here given any assignment of the variables x1, · · · , x!,
g(x1, · · · , x!) can be evaluated in polynomial time, which
simulates the function of the data supplier.

Lower Bound of Standalone Secure-View with a Safe-
View Oracle: Now suppose we have access to a Safe-
View oracle, which takes care of the “hardness” of the Safe-
View problem given in Theorems 1 and 2, in constant time.
The oracle takes a visible subset V ⊆ I ∪ O as input, and
answers whether V is safe for module m and privacy re-
quirement Γ. The following theorem shows that the deci-
sion version of standalone Secure-View remains hard (i.e.
not solvable in poly-time in the number of attributes):

Theorem 3. (Standalone Secure-View Communica-
tion Complexity, with Safe-View oracle) Given a Safe-
View oracle and a cost limit C, deciding whether there exists
a safe subset V ⊆ I ∪ O with cost bounded by C requires
2Ω(k) oracle calls, where k = |I|+ |O|.

Proof Sketch. The proof of this theorem involves a novel
construction of two functions, m1 and m2, on " input at-
tributes and a single output attribute, such that for m1 the
minimum cost of a safe subset is 3!

4 whereas for m2 it is !
2

(C = !
2). In particular, for both m1 and m2, all subsets

of size < !
4 are safe and all other subsets are unsafe, except

that for m2, there is exactly one special subset of size !
2 such

that this subset and all subsets thereof are safe.
We show that for an algorithm using 2o(k) calls, there

always remains at least one special subset of size !
2 that is

consistent with all previous answers to queries. Hence after
2o(k) calls, if the algorithm decides that there is a safe subset
with cost ≤ C, we choose m to be m1; on the other hand, if
it says that there is no such subset, we set m = m2. In both
the cases the answer of the algorithm is wrong which shows
that there cannot be such an algorithm distinguishing these
two cases with 2o(k) calls.

3.2 Upper Bounds
The lower bound results given above show that solving

the standalone Secure-View problem is unlikely in time sub-
exponential in k or sub-linear in N . We now present simple
algorithms for solving the Secure-View and Safe-View prob-
lems, in time exponential in k and polynomial in N .
First note that, with access to a Safe-View oracle, the

standalone Secure-View problem can be easily solved in
O(2k) time, by calling the oracle for all 2k possible subsets
and outputting the safe subset with minimum cost.

Without access to a Safe-View oracle, we first “read” re-
lation R using N data supplier calls. Once R is available,
the simple algorithm sketched below implements the Safe-
View oracle (i.e. tests if a set V of attributes is safe) and
works in time O(2kN2): For a visible subset V , we look at
all possible assignments to the attributes in I \ V . For each
input value we then check if it leads to at least Γ∏

a∈O\V |∆a|

different values of the visible output attributes in O∩V (∆a

is the domain of attribute a). This is a necessary and suf-
ficient condition for guaranteeing Γ privacy: by all possible∏

a∈O\V |∆a| extensions of the output attributes, for each
input, there will be Γ different possible output values.

180

We mention here also that essentially the same algorithms
(with same upper bounds) can be used to output all safe
attribute sets of a standalone module, rather than just one
with minimum cost. Such exhaustive enumeration will be
useful in the following sections.

Remarks. These results indicate that, in the worse case,
finding a minimal-cost safe attribute set for a module may
take time that is exponential in the number of attributes.
Note, however, that the number of attributes of a single
module is typically not large (often less than 10, see [1]),
so the computation is still feasible. Expert knowledge of
module designers, about the module’s behavior and safe at-
tribute sets may also be exploited to speed up the compu-
tation. Furthermore, a given module is often used in many
workflows. For example, sequence comparison modules, like
BLAST or FASTA, are used in many different biological
workflows. We will see that safe subsets for individual mod-
ules can be used as building blocks for attaining privacy for
the full workflow. The effort invested in deriving safe subsets
for a module is thus amortized over all uses.

4. ALL-PRIVATE WORKFLOWS
We are now ready to consider workflows that consist of

several modules. We first consider in this section workflows
where all modules are private (called all-private workflows).
Workflows with a mixture of private and public modules are
then considered in Section 5.
As in Section 3, we want to find a safe visible subset V

with minimum cost s.t. all the modules in the workflow are
Γ-workflow-private w.r.t. V (see Definition 5). One option
is to devise algorithms similar to those described for stan-
dalone modules in the previous section. However, the time
complexity of those algorithms is now exponential in the to-
tal number of attributes of all modules in the workflow which
can be as large as Ω(nk), n being the number of modules
in the workflow and k the maximum number of attributes
of a single module. To avoid the exponential dependency
on n, the number of modules in the workflow,which may be
large [1], and to exploit the safe attribute subsets for stan-
dalone modules, which may have been already computed, we
attempt in this section to assemble workflow privacy guar-
antees out of standalone module guarantees. We first prove,
in Section 4.1, that this is indeed possible. Then, in the
rest of this section, we study the optimization problem of
obtaining a safe view with minimum cost.
Let W be a workflow consisting of modules m1, · · · ,mn,

where Ii, Oi denote the input and output attributes of mi,
i ∈ [1, n], respectively. We use below Ri to denote the re-
lation for the standalone module mi. The relations R =
R1 ! R2 ! · · · ! Rn, with attributes A =

⋃n
1=1(Ii ∪ Oi),

then describes the possible executions of W . Note that the
projection πIi∪Oi(R) of R on Ii ∪Oi is a subset of (but not
necessarily equal to) the standalone module relation Ri.

In this section (and throughout the rest of the paper), for
a set of visible attributes V ⊆ A, V = A \ V will denote the
hidden attributes. Further, Vi = (Ii∪Oi)∩V will denote the
visible attributes for module mi, whereas Vi = (Ii ∪Oi) \ Vi

will denote the hidden attributes for mi, for i ∈ [1, n].

4.1 Standalone-Privacy vs. Workflow-Privacy
We show that if a set of visible attributes guarantees Γ-

standalone-privacy for a module, then if the module is placed

in a workflow where only a subset of those attributes is made
visible, then Γ-workflow-privacy is guaranteed for the mod-
ule in this workflow. In other words, in an all-private work-
flow, hiding the union of the corresponding hidden attributes
of the individual modules guarantees Γ-workflow-privacy for
all of them4. We formalize this next.

Theorem 4. Let W be an all-private workflow with mod-
ules m1, · · · ,mn. Given a parameter Γ ≥ 1, let Vi ⊆ (Ii∪Oi)
be a set of visible attributes w.r.t which mi, i ∈ [1, n], is Γ-
standalone-private. Then the workflow W is Γ-private w.r.t
the set of visible attributes V s.t. V =

⋃n
i=1 Vi.

Before we prove the theorem, recall that Γ-standalone-
privacy of a module mi requires that for every input x to
the module, there are at least Γ potential outputs of x in
the possible worlds Worlds(Ri, Vi) of the standalone mod-
ule relation Ri w.r.t. Vi; similarly, Γ-workflow-privacy of
mi requires at least Γ potential outputs of x in the possi-
ble worlds Worlds(R, V) of the workflow relation R w.r.t.
V . Since R = R1 ! · · · ! Rn, a possible approach to
prove Theorem 4 may be to show that, whenever the hidden
attributes for mi are also hidden in the workflow W , any
relation R′

i ∈ Worlds(Ri, Vi) has a corresponding relation
R′ ∈ Worlds(R, V) s.t. R′

i = πIi∪Oi(R
′). If this would hold,

then for V =
⋃n

i=1 Vi, the set of possible outputs, for any
input tuple x to a module mi, will remain unchanged.

Unfortunately, Proposition 2 below shows that the above
approach fails. Indeed, |Worlds(R, V)| can be significantly
smaller than |Worlds(Ri, Vi)| even for very simple workflows.

Proposition 2. There exist a workflow W with relation
R, a module m1 in W with (standalone) relation R1, and a
set of visible attributes V1 that guarantees both Γ-standalone-
privacy and Γ-workflow-privacy of m1, such that the ratio of
|Worlds(R1, V1)| and |Worlds(R, V1)| is doubly exponential
in the number of attributes of W .

Proof Sketch. To prove the proposition, we construct
a simple workflow with two modules m1,m2 connected as a
chain. Both m1,m2 are one-one functions with k boolean
inputs and k boolean outputs (e.g., assume that m1 is an
identity function, whereas m2 complements each of its k in-
puts). The module m1 gets initial input attributes I1, pro-
duces O1 = I2 which is fed to m2 as input, and m2 produces
final attribute set O2. Let V1 be an arbitrary subset of O1

such that |V1| = logΓ (assume that Γ is a power of 2). It can
be verified that, m1 as a standalone module is Γ-standalone-
private w.r.t. visible attributes V1 and both m1,m2, being
one-one modules, are Γ-workflow-private w.r.t. V1.

We show that the one-one nature of m1 and m2 restricts
the size of Worlds(R, V1) compared to that of Worlds(R1, V1).
Since both m1 and m2 are one-one functions, the workflow
W also computes a one-one function. Hence any relation S
in Worlds(R, V1) has to compute a one-one function as well.
But when m1 was standalone, any function consistent with
V1 could be in Worlds(R1, V1). By a careful computation,
the ratio can be shown to be doubly exponential in k.

Nevertheless, we show below that for every input x of the
module, the set of its possible outputs, in these worlds, is
exactly the same as that in the original (much larger number
of) module worlds. Hence privacy is indeed preserved.
4By Proposition 1, this also means that hiding any superset
of this union would also be safe for the same Γ.

181

Recall thatOutx,mi andOutx,W denote the possible out-
put for an input x to module mi w.r.t. a set of visible
attributes when mi is standalone and in a workflow W re-
spectively (see Definition 2 and Definition 5). The following
lemma will be useful in proving Theorem 4.

Lemma 1. Let mi be a standalone module with relation
Ri, let x be an input to mi, and let Vi ⊆ (Ii ∪ Oi) be a
subset of visible attributes. If y ∈ Outx,mi then there exists
an input x′ ∈ πIi(Ri) to mi with output y′ = mi(x

′) such
that πVi∩Ii(x) = πVi∩Ii(x

′) and πVi∩Oi(y) = πVi∩Oi(y
′).

The proof of Lemma 1 is simple and is in the full version;
instead we illustrate the statement of the lemma with the
module m1 whose relation R1 appears Figure 1a. Its visible
portion (for visible attributes V = {a1, a3, a5}) is given in
Figure 1c. Consider the input x = (0, 0) to m1 and a candi-
date output y = (1, 0, 0) (hidden attributes are underlined).
From Figure 2c, y ∈ Outx,m1 . This is because there ex-
ists x′ = (0, 1), s.t. y′ = m1(x

′) = (1, 1, 0), and, x,x′ and
y,y′ have the same values of the visible (non-underlined)
attributes. Note that y does not need to be the actual out-
put m1(x) on x or even share the same values of the visible
attributes (indeed, m1(x) = (0, 1, 1)).
However, in proving Theorem 4, our main technical tool is

Lemma 2, which states that given a set of visible attributes
Vi of a standalone module mi, the set of possible outputs for
every input x to mi remains unchanged when mi is placed in
an all-private workflow, provided the corresponding hidden
attributes Vi remains hidden in the workflow.

Lemma 2. Consider any module mi and any input x ∈
πIi(R). If y ∈ Outx,mi w.r.t. a set of visible attributes
Vi ⊆ (Ii ∪Oi), then y ∈ Outx,W w.r.t. Vi ∪ (A \ (Ii ∪Oi)).

We fix a module mi, an input x to mi and a candidate
output y ∈ Outx,mi for x w.r.t. visible attributes Vi. For
V = Vi∪(A\(Ii∪Oi)), V = A\V = (Ii∪Oi)\Vi = Vi (since,
Vi ⊆ Ii ∪ Oi ⊆ A). We will show that y ∈ Outx,W w.r.t.
visible attributes V by showing the existence of a possible
world R′ ∈ Worlds(R, V), for V = Vi, s.t. if πIi(t) = x for
some t ∈ R′, then πOi(t) = y.
Two key tools used in the proof of Lemma 2 are tuple

flipping and function flipping. Given a tuple w on a subset
of attributes P ⊆ A, and two tuples p,q on a subset of
attributesQ ⊆ A, flippingw w.r.t. p,q produces a tuple z =
Flipp,q(w) on P as follows: if w shares the same attribute
as well as the same attribute value with p (resp. q), replace
the attribute value by that of q (resp. p), otherwise copy the
attribute value of w to z. Flipping function m w.r.t tuples
p,q produces a function g with the same domain and range
that of m, denoted by Flipm,p,q, where for all input w to g,
g(w) = Flipp,q(m(Flipp,q(w))) (flip the input, apply the
original function m, again flip the output). Next we give a
proof sketch of the lemma.

Proof Sketch of Lemma 2. Consider x,y as given in
the statement of Lemma 2. By Lemma 1, there are two tu-
ples x′,y′ such that πVi∩Ii(x) = πVi∩Ii(x

′) and πVi∩Oi(y) =
πVi∩Oi(y

′). We replace the module sequence 〈m1, · · · ,mn〉
by 〈g1, · · · , gn〉 by defining gj = Flipmj ,p,q, for all j ∈ [1, n],
where p (resp. q) is formed by concatenating x,y (resp.
x′,y′); in this process some modules may remain unchanged.
We show that the relation R′ produced by the join of the
standalone relations of 〈g1, · · · , gn〉 satisfies the properties:

(1) gi(x) = y, in other words, for all tuples t ∈ R′ where
πIi(t) = x, πOi(t) = y; and (2) πV (R) = πV (R′), i.e. the
projections of R and R′ on the visible attribute set are the
same. Since every gj is a function having domain and range
the same as that of mj , R

′ satisfies all functional dependen-
cies Ii → Oi, and therefore R′ ∈ Worlds(R, V). Together,
these two properties show that y ∈ Outx,W .

It is important to note that the assumption of all-private
workflow is crucial in proving Lemma 2 – if some of the
modules mj are public, we can not redefine them to gj (the
projection to the public modules should be unchanged - see
Definition 5) and we may not get a member of Worlds(R, V).
We will return to this point in Section 5 when we consider
workflows with a mixture of private and public modules.

Finally we complete the proof of Theorem 4 using Lemma 2:

Proof of Theorem 4. We are given that each module
mi is Γ-standalone-private w.r.t. Vi, i.e., |Outx,mi | ≥ Γ
for all input x to mi, for all modules mi, i ∈ [1, n] (see
Definition 2). From Lemma 2, this implies that for all input
x to all modules mi, |Outx,W | ≥ Γ w.r.t V ′ = Vi ∪ (A \
(Ii ∪ Oi)). We already argued that, for this choice of V ′,
V ′ = A\V ′ = (Ii ∪Oi)\Vi = Vi. Now, using Proposition 1,
when the visible attributes set V is such that V =

⋃n
i=1 Vi

⊇ Vi = V ′, every module mi is Γ-workflow-private.

4.2 The Secure-View Problem
We have seen above that one can assemble workflow pri-

vacy guarantees out of the standalone module guarantees.
Recall however that each individual module may have sev-
eral possible safe attributes sets (see, e.g., Example 3). As-
sembling different sets naturally lead to solutions with dif-
ferent cost. The following example shows that assembling
optimal (cheapest) safe attributes of the individual modules
may not lead to an optimal safe attributes set for the full
workflow. The key observation is that, due to data sharing,
it may be more cost effective to hide expensive shared at-
tributes rather than cheap non-shared ones (though later we
show that the problem remains NP-hard even without data
sharing).

Example 5. Consider a workflow with n + 2 modules,
m,m1, · · · ,mn,m

′. The module m gets an input data item
a1, with cost 1, and sends as output the same data item, a2,
with cost 1 + ε, ε > 0, to all the mi-s. Each mi then sends
a data item bi to m′ with cost 1. Assume that standalone
privacy is preserved for module m if either its incoming or
outgoing data is hidden and for m′ if any of its incoming
data is hidden. Also assume that standalone privacy is pre-
served for each mi module if either its incoming or its out-
going data is hidden. As standalone modules, m will choose
to hide a1, each mi will choose to hide the outgoing data
item bi, and m′ will choose to hide any of the bi-s. The
union of the optimal solutions for the standalone modules
has cost n+ 1. However, a lowest cost solution for preserv-
ing workflow privacy is to hide a2 and any one of the bi-s.
This assembly of (non optimal) solutions for the individual
modules has cost 2+ ε. In this case, the ratio of the costs of
the union of standalone optimal solutions and the workflow
optimal solution is Ω(n).

This motivates us to define the combinatorial optimization
problem Secure-View (for workflow secure view), which gen-
eralizes the Secure-View problem studied in Section 3. The

182

goal of the Secure-View problem is to choose, for each mod-
ule, a safe set of attributes (among its possible sets of safe
attributes) s.t. together the selected sets yield a minimal
cost safe solution for the workflow. We define this formally
below. In particular, we consider the following two variants
of the problem, trading-off expressibility and succinctness.

Set constraints. The possible safe solutions for a given
module can be given in the form of a list of hidden attribute
sets. Specifically, we assume that we are given, for each mod-

ule mi, i ∈ [1, n], a list of pairs Li = 〈(I1i , O
1
i), (I

2
i , O

2
i) . . .

(I
li
i , O

li
i)〉. Each pair (I

j
i , O

j
i) in the list describes one possi-

ble safe (hidden) solution for mi: I
j
i ⊆ Ii (resp. O

j
i ⊆ Oi) is

the set of input (output) attributes ofmi to be hidden in this
solution. li (the length of the list) is the number of solutions
for mi that are given in the list, and we use below !max to
denote the length of the longest list, i.e. !max = maxn

i=1 !i.
When the input to the Secure-View problem is given in

the above form (with the candidate attribute sets listed ex-
plicitly) we call it the Secure-View problem with set constraints.

Cardinality constraints. Some modules may have many
possible candidate safe attribute sets. Indeed, their number
may be exponential in the number of attributes of the mod-
ule. This is illustrate by the following two simple examples.

Example 6. First observe that in any one-one function
with k boolean inputs and k boolean outputs, hiding any k in-
coming or any k outgoing attributes guarantees 2k-privacy.
Thus listing all such subsets requires a list of length Ω(

(
2k
k

)
) =

Ω(2k). Another example is majority function which takes 2k
boolean inputs and produces 1 if and only if the number of
one-s in the input tuple is ≥ k. Hiding either k + 1 input
bits or the unique output bit guarantee 2-privacy for major-
ity function, but explicitly listing all possible subsets again
leads to exponential length lists.

Note that, in both examples, the actual identity of the
hidden input (resp. output) attributes is not important, as
long as sufficiently many are hidden. Thus rather than ex-
plicitly listing all possible safe sets we could simply say what
combinations of numbers of hidden input and output at-
tributes are safe. This motivates the following variant of the
Secure-View problem, called the Secure-View problem with
cardinality constraints: Here for every module mi we are
given a list of pairs of numbers Li = 〈(α1

i ,β
1
i) . . . (α

li
i ,β

li
i)〉,

s.t. for each pair (αj
i ,β

j
i) in the list, αj

i ≤ |Ii| and βj
i ≤ |Oi|.

The interpretation is that hiding any attribute set of mi

that consists of at least αj
i input attributes and at least βj

i

output attributes, for some j ∈ [1, !i], makes mi safe w.r.t
the remaining visible attributes.
To continue with the above example, the list for the first

module may consists of (k, 0) and (0, k), whereas the list for
the second module consists of (k + 1, 0) and (0, 1).
It is easy to see that, for cardinality constraints, the lists

are of size at most quadratic in the number of attributes of
the given module (unlike the case of set constraints where
the lists could be of exponential length)5. In turn, cardinal-
ity constraints are less expressive than set constraints that
can specify arbitrary attribute sets. This will affect the com-
plexity of the corresponding Secure-View problems.

5In fact, if one assumes that there is no redundancy in the
list, the lists become of at most of linear size.

Problem Statement. Given an input in one of the two
forms, a feasible safe subset V for the workflow, for the ver-
sion with set constraints (resp. cardinality constraints), is

such that for each module mi i ∈ [1, n], V ⊇ (I
j
i ∪O

j
i) (resp.

|V ∩ Ii| ≥ αj
i and |V ∩ Oi| ≥ βj

i) for some j ∈ [1, !i]. The
goal of the Secure-View problem is to find a safe set V where
c(V) is minimized.

4.3 Complexity results
We present below theorems which give approximation al-

gorithms and matching hardness of approximation results
of different versions of the Secure-View problem. The hard-
ness results show that the problem of testing whether the
Secure-View problem (in both variants) has a solution with
cost smaller than a given bound is NP-hard even in the most
restricted case. But we show that certain approximations of
the optimal solution are possible. Theorem 5 and 6 sum-
marize the results for the cardinality and set constraints
versions, respectively. For space constraints we only sketch
the proofs, details appear in the full version of the paper.

Theorem 5. (Cardinality Constraints) There is an
O(log n)-approximation of the Secure-View problem with car-
dinality constraints. Further, this problem is Ω(log n)-hard
to approximate unless NP ⊆ DTIME(nO(log logn)), even if
the maximum list size !max = 1, each data has unit cost,
and the values of αj

i ,β
j
i -s are 0 or 1.

Proof Sketch. The proof of the hardness result in the
above theorem is by a reduction from the set cover prob-
lem. The approximation is obtained by randomized round-
ing a carefully written linear program (LP) relaxation of this
problem. A sketch is given below.

Our algorithm is based on rounding the fractional relax-
ation (called the LP relaxation) of the integer linear program
(IP) for this problem presented in Figure 3.

Minimize
∑

b∈A cbxb subject to

!i∑

j=1

rij ≥ 1 ∀i ∈ [1, n] (1)

∑

b∈Ii

ybij ≥ rijα
j
i ∀i ∈ [1, n], ∀j ∈ [1, "i] (2)

∑

b∈Oi

zbij ≥ rijβ
j
i ∀i ∈ [1, n], ∀j ∈ [1, "i] (3)

!i∑

j=1

ybij ≤ xb, ∀i ∈ [1, n], ∀b ∈ Ii (4)

!i∑

j=1

zbij ≤ xb, ∀i ∈ [1, n], ∀b ∈ Oi (5)

ybij ≤ rij , ∀i ∈ [1, n], ∀j ∈ [1, "i], ∀b ∈ Ii

(6)

zbij ≤ rij , ∀i ∈ [1, n], ∀j ∈ [1, "i], ∀b ∈ Oi

(7)

xb, rij , ybij , zbij ∈ {0, 1} (8)

Figure 3: IP for Secure-View with cardinality constraints

Recall that each module mi has a list Li = {(αj
i ,β

j
i) :

j ∈ [1, !i]}, a feasible solution must ensure that for each
i ∈ [1, n], there exists a j ∈ [1, !i] such that at least αj

i input
data and βj

i output data of mi are hidden.

183

In this IP, xb = 1 if data b is hidden, and rij = 1 if at
least αj

i input data and βj
i output data of module mi are

hidden. Then, ybij = 1 (resp., zbij = 1) if both rij = 1
and xb = 1, i.e. if data b contributes to satisfying the input
requirement αj

i (resp., output requirement βj
i) of module

mi. Let us first verify that the IP indeed solves the Secure-
View problem with cardinality constraints. For each module
mi, constraint (1) ensures that for some j ∈ [1, #i], rij = 1.
In conjunction with constraints (2) and (3), this ensures
that for some j ∈ [1, #i], (i) at least αj

i input data of mi

have ybij = 1 and (ii) at least βj
i output data of mi have

zbij = 1. But, constraint (4) (resp., constraint (5)) requires
that whenever ybij = 1 (resp., zbij = 1), data b be hidden,
i.e. xb = 1, and a cost of cb be added to the objective. Thus
the set of hidden data satisfy the privacy requirement of
each module mi and the value of the objective is the cost of
the hidden data. Note that constraints (6) and (7) are also
satisfied since ybij and zbij are 0 whenever rij = 0. Thus,
the IP represents the Secure-View problem with cardinality
constraints. It can be shown that simpler LP relaxations
of this problem without some of the above constraints lead
to unbounded and Ω(n) integrality gaps showing that an
O(log n)-approximation cannot be obtained from those LP
relaxations (details are in the full version).
We round the fractional solution to the LP relaxation us-

ing Algorithm 1. For each j ∈ [1, #i], let Imin
ij and Omin

ij be

the αj
i input and βj

i output data of mi with minimum cost.
Then, Bmin

i represents Imin
ij ∪Omin

ij of minimum cost.

Algorithm 1 Rounding algorithm of LP relaxation of the
IP given in Figure 3,
Input: An optimal fractional solution {xb|b ∈ A},
Output: A safe subset V for Γ-privacy of W .

1: Initialize B = φ.
2: For each attribute b ∈ A (A is the set of all attributes in

W), include b in B with probability min{1, 16xb log n}.
3: For each module mi whose privacy requirement is not

satisfied by B, add Bmin
i to B.

4: Return V = A \B as the safe visible attribute.

The following lemma shows that step 2 satisfies the pri-
vacy requirement of each module with high probability:

Lemma 3. Let mi be any module in workflow W . Then
with probability at least 1 − 2/n2, there exists a j ∈ [1, #i]
such that |Ihi | ≥ αj

i and |Oh
i | ≥ βj

i .

Proof Sketch. The LP solution returns a probability
distribution on rij , and therefore on the pairs in list Li. Let
p be the index of the median of this distribution when list Li

is ordered by both αj
i and βj

i values, as described above. Our
proof consists of showing that with probability ≥ 1− 2/n2,
|Ihi | ≥ αip and |Oh

i | ≥ βip.
Note that since p is the median, the sum of ybij over all

incoming data of module vi in the LP solution must be at
least αip/2 (from constraint (2)). Further, constraint (6)
ensures that this sum is contributed to by at least αip/2
different input data, and constraint (4) ensures that xb for
any input data b must be at least its contribution to this
sum, i.e.

∑
j ybij . Thus, at least αip/2 different input data

have a large enough value of xb, and randomized rounding
produces a good solution. An identical argument works for
the output data of mi.

Since the above lemma holds for every module, by standard
arguments, the O(log n)-approximation follows.

We next show that the richer expressiveness of set con-
straints increases the complexity of the problem.

Theorem 6. (Set Constraints) The Secure-View prob-
lem with set constraints cannot be approximated to within a
factor of #εmax for some constant ε > 0 (also within a fac-

tor of Ω(2log
1−γ n) for all constant γ > 0) unless NP ⊆

DTIME(npolylog n). The hardness result holds even when
the maximum list size #max is a (sufficiently large) constant,

each data has unit cost, and the subsets I
j
i , O

j
i -s have car-

dinality at most 2. Finally, it is possible to get a factor
#max-approximation in polynomial time.

Proof Sketch. When we are allowed to specify arbi-
trary subsets for individual modules, we can encode a hard
problem like label-cover which is known to have no poly-
logarithmic approximation given standard complexity as-
sumptions. The corresponding approximation is obtained
by an LP rounding algorithm which shows that a good ap-
proximation is still possible when the number of specified
subsets for individual modules is not too large.

The hardness proofs in the above two theorems use exten-
sively data sharing, namely the fact that an output attribute
of a given module may be fed as input to several other mod-
ules. Recall that a workflow is said to have γ-bounded data
sharing if the maximum number of modules which takes a
particular data item as input is bounded by γ. In real life
workflows, the number of modules where a data item is sent
is not very large. The following theorem shows that a better
approximation is possible when this number is bounded.

Theorem 7. (Bounded Data Sharing) There is a
(γ + 1)-approximation algorithm for the Secure-View prob-
lem (with both cardinality and set constraints) when the work-
flow has γ-bounded data sharing. On the other hand, the
cardinality constraint version (and consequently also the set
constraint version) of the problem remain APX-hard even
when there is no data sharing (i.e. γ = 1), each data has
unit cost, the maximum list size #max is 2, and the values of
αj
i ,β

j
i -s are bounded by 3.

Proof Sketch. The APX-hardness in the above theo-
rem is obtained by a reduction from vertex-cover in cubic
graphs. This reduction also shows that the NP-completeness
of this problem does not originate from data-sharing, and the
problem is unlikely to have an exact solution even without
any data sharing. The γ + 1-approximation is obtained by
a greedy algorithm, which chooses the least cost attribute
subsets for individual modules, and outputs the union of all
of them. Since any attribute is produced by a unique mod-
ule and is fed to at most γ modules, in any optimal solution,
a single attribute can be used to satisfy the requirement of
at most γ + 1 modules. This gives a γ + 1-approximation.
Observe that when data sharing is not bounded, γ can be
Ω(n) and this greedy algorithm will not give a good approx-
imation to this problem.

5. PUBLIC MODULES
In the previous section we restricted our attention to work-

flows where all modules are private. In practice, typical

184

workflows use also public modules. Not surprisingly, this
makes privacy harder to accomplish. In particular, we will
see below that it becomes harder to assemble privacy guar-
antees for the full workflow out of those that suffice for com-
ponent modules. Nevertheless a refined variant of Theorem
4 can still be employed.

5.1 Standalone vs. Workflow Privacy (Revisited)
We have shown in Section 4.1 (Theorem 4) that when a

set of hidden attributes guarantees Γ-standalone-privacy for
a private module, then the same set of attributes can be used
to guarantee Γ-workflow-privacy in an all-private network.
Interestingly, this is no longer the case for workflows with
public modules. To see why, consider the following example.

Example 7. Consider a private module m implement-
ing a one-one function with k boolean inputs and k boolean
outputs. Hiding any logΓ input attributes guarantees Γ-
standalone-privacy for m even if all output attributes of m
are visible. However, if m gets all its inputs from a pub-
lic module m′ that computes some constant function (i.e.
∀x,m′(x) = a, for some constant a), then hiding logΓ in-
put attributes no longer guarantees Γ-workflow-privacy of m
– this is because it suffices to look at the (visible) output
attributes of m to know the value m(x) for x = a.
In an analogous manner, hiding any logΓ output attributes

of m, leaving all its input attributes visible, also guarantees
Γ-standalone-privacy of m. But if m sends all its outputs
to another public module m′′ that implements a one-one in-
vertible function, and whose output attributes happen to be
visible, then for any input x to m, m(x) can be immediately
inferred using the inverse function of m′′.

Modules that compute a constant function (or even one-
one invertible function) may not be common in practice.
However, this simple example illustrates where, more gen-
erally, the proof of Theorem 4 (or Lemma 2) fails in the
presence of public modules: when searching for a possible
world that is consistent with the visible attributes, one needs
to ensure that the functions defined by the public modules
remain unchanged. So we no longer have the freedom of
freely changing the values of the hidden input (resp. output)
attributes, if those are supplied by (to) a public module.
One way to overcome this problem is to “privatize” such

problematic public modules, in the sense that the name of
the public module is not revealed to users (either in the
workflow specification or in its execution logs). Here we
assume that once we rename a module the user loses all
knowledge about it (we discuss other possible approaches
in the conclusion). We refer to the public modules whose
identity is hidden (resp. revealed) as hidden (visible) public
modules. Observe that now, since the identity of the hidden
modules is no longer known to the adversary, condition (2)
in Definition 4 no longer needs to be enforced for them, and
a larger set of possible words can be considered. Formally,

Definition 6. (Definition 4 revisited) Let P be a sub-
set of the public modules, and, as before, let V be a set of
the visible attributes. Then, the set of possible worlds for
the relation R w.r.t. V and P , denoted Worlds(R, V, P),
consists of all relations R′ over the same attributes as R
that satisfy the functional dependencies in F and where (1)
πV (R′) = πV (R), and (2) for every public module mi ∈ P
and every tuple t′ ∈ R′, πOi(t

′) = mi(πIi(t
′)).

The notion of Γ-privacy for a workflow W , with both pri-
vate and public modules (w.r.t a set V of visible attributes
and a set P of visible public modules) is now defined as
before (Definition 5), except that the set of possible worlds
that is considered is the refined one from Definition 6 above.
Similarly, if W is Γ-private w.r.t. V and P , then we will call
the pair (V, P) a safe subset for Γ-privacy of W .

We can now show that, by making visible only public mod-
ules whose input and output attribute values need not be
masked, one can obtain a result analogous to Theorem 4.
Namely, assemble the privacy guarantees of the individual
modules to form privacy guarantees for the full workflow.
Wlog., we will assume that m1,m2, · · · ,mK are the private
modules and mK+1, · · · ,mn are the public modules in W .

Theorem 8. Given a parameter Γ ≥ 1, let Vi ⊆ (Ii∪Oi),
i ∈ [1,K], be a set of visible attributes w.r.t which the private
module mi is Γ-standalone-private. Then the workflow W
is Γ-private w.r.t the set of visible attributes V and any set
of visible public modules P ⊆ {mK+1, · · · ,mn}, s.t. V =⋃K

i=1 Vi and all the input and output attributes of modules
in P are visible and belong to V .

Proof Sketch. The proof is similar to that of Thm. 4.
Here analogous to Lemma 2, we can show that, if a public
module mj , j ∈ [K + 1, n] is redefined to gj , then mj is
hidden. In other words, the visible public modules in P are
never redefined and therefore condition (2) in Definition 6
holds.

Example 8. Consider a chain workflow with three mod-
ules m′ → m → m′′, where m′ is a public module computing
a constant function, m is a private module computing a one-
one function and m′′ is another public module computing an
invertible one-one function. If we hide only a subset of the
input attributes of m, m′ should be hidden, thus P = {m′′}.
Similarly, if we hide only a subset of the output attributes of
m, m′′ should be hidden. Finally, if we hide a combination
of input and output attributes, both m′,m′′ should be hidden
and in that case P = φ.

5.2 The Secure-View Problem (Revisited)
The Secure-View optimization problem in general work-

flows is similar to the case of all-private workflows, with
an additional cost due to hiding (privatization) of public
modules: when a public module mj is hidden, the solution
incurs a cost c(mj). Following the notation of visible and
hidden attributes, V and V , we will denote the set of hidden
public modules by P . The total cost due to hidden public
modules is c(P) =

∑
mj∈P c(mj), and the total cost of a

safe solution (V, P) is c(V) + c(P). The definition of the
Secure-View problem, with cardinality and set constraints,
naturally extends to this refined cost function and the goal
is to find a safe solution with minimum cost. This gen-
eralizes the Secure-View problem for all-private workflows
where P = φ (and hence c(P) = 0).

Complexity Results In Section 4.3 we showed that the
Secure-View problem has an O(log n)-approximation in an
all-private workflow even when the lists specifying cardinal-
ity requirements are Ω(n)-long and when the workflow has
arbitrary data sharing. But by a reduction from the label-
cover problem, it can be shown that the cardinality con-

straints version in general workflows is Ω(2log
1−γ n)-hard to

185

approximate (for all constant γ > 0), and thus unlikely to
have any polylogarithmic-approximation. In contrast, the
approximation factor for the set constraints version remains
the same and Theorem 6 still holds for general workflows
by a simple modification to the proof. However, γ-bounded
data sharing no longer give a constant factor approximation
any more for a constant value of γ. By a reduction from
the set-cover problem, it can be shown that the problem is
Ω(log n)-hard to approximate even when the workflow has
no data sharing, and when the maximum size of the re-
quirement lists and the individual cardinality requirements
in them are bounded by 1. Details of these results are de-
ferred to the full version of the paper.

6. CONCLUSIONS
This paper proposes the use of provenance views for pre-

serving the privacy of module functionality in a workflow.
Our model motivates a natural optimization problem, Secure-
View , which seeks to identify the smallest amount of data
that needs to be hidden so that the functionality of every
module is kept private. We give algorithms and hardness
results that characterize the complexity of the problem.
In our analysis, we assume that users have two sources

of knowledge about module functionality: the module name
(identity) and the visible part of the workflow relation. Mod-
ule names are informative for public modules, but the infor-
mation is lost once the module name is hidden/renamed.
Names of private modules are non-informative, and users
know only what is given in the workflow view. However, if
users have some additional prior knowledge about the be-
havior of a private module, we may hide their identity by
renaming them, and then run our algorithms.
Our work suggests several promising directions for future

research. First, a finer privacy analysis may be possible if
one knows what kind of prior knowledge the user has on a
private module, e.g. the distribution of output values for
a specific input value, or knowledge about the types and
names of input/output attributes (certain integers may be
illegal social security numbers, certain character sequences
are more likely to represent gene sequences than others, etc).
Our definitions and algorithms currently assume that all
data values in an attribute domain are equally possible, so
the effect of knowledge of a possibly non-uniform prior distri-
bution on input/output values should be explored. Second,
some additional sources of user knowledge on functionality
of public modules (e.g. types of attributes and connection
with other modules) may prohibit hiding their functionality
using privatization (renaming), and we would like to explore
alternatives to privatization to handle public modules. A
third direction to explore is an alternative model of privacy.
As previously mentioned, standard mechanisms to guarantee
differential privacy (e.g. adding random noise to data val-
ues) do not seem to work for ensuring module privacy w.r.t.
provenance queries, and new mechanisms suitable to our ap-
plication have to be developed. Other natural directions for
future research include considering non-additive cost func-
tions, in which some attribute subsets are more useful than
others, efficiently handling infinite or very large domains of
attributes, and exploring alternate objective functions, such
as maximizing utility of visible data instead of minimizing
the cost of hidden data.

Acknowledgements. S. B. Davidson, S. Khanna and S.
Roy were supported in part by NSF-IIS Award 0803524; T.

Milo was supported in part by NSF-IIS Award 1039376, the
Israel Science Foundation, the US-Israel Binational Science
Foundation and the EU grant MANCOOSI; and D. Pani-
grahi was supported in part by NSF-STC Award 0939370.

7. REFERENCES
[1] www.myexperiment.org.
[2] C. C. Aggarwal and P. S. Yu. Privacy-Preserving Data

Mining: Models and Algorithms. Springer, 2008.
[3] L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore

art thou r3579x?: anonymized social networks, hidden
patterns, and structural steganography. In WWW, pages
181–190, 2007.

[4] S. Bowers and B. Ludäscher. Actor-oriented design of
scientific workflows. In Int. Conf. on Concept. Modeling,
pages 369–384, 2005.

[5] U. Braun, A. Shinnar, and M. Seltzer. Securing provenance.
In USENIX HotSec, pages 1–5, 2008.

[6] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang.
Scientific workflow provenance querying with security
views. In WAIM, pages 349–356, 2008.

[7] S. B. Davidson, S. Khanna, S. Roy, J. Stoyanovich,
V. Tannen, Y. Chen, and T. Milo. Enabling privacy in
provenance-aware workflow systems. In CIDR, 2011.

[8] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[9] C. Dwork. Differential privacy: A survey of results. In
TAMC, pages 1–19, 2008.

[10] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E.
Scheidegger, and H. T. Vo. Managing rapidly-evolving
scientific workflows. In IPAW, pages 10–18, 2006.

[11] Y. Gil, W. K. Cheung, V. Ratnakar, and K. kin Chan. Priv-
acy enforcement in data analysis workflows. In PEAS, 2007.

[12] Y. Gil and C. Fritz. Reasoning about the appropriate use of
private data through computational workflows. In Intelli-
gent Information Privacy Management, pages 69–74, 2010.

[13] R. Hasan, R. Sion, and M. Winslett. Introducing secure
provenance: problems and challenges. In StorageSS, pages
13–18, 2007.

[14] J. Lyle and A. Martin. Trusted computing and provenance:
better together. In TAPP, page 1, 2010.

[15] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. !-diversity: Privacy beyond
k-anonymity. In ICDE, page 24, 2006.

[16] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. In SIGMOD, pages 575–586,
2004.

[17] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers,
and P. Paulson. The open provenance model: An overview.
In IPAW, pages 323–326, 2008.

[18] R. Motwani, S. U. Nabar, and D. Thomas. Auditing sql
queries. In ICDE, pages 287–296, 2008.

[19] T. ‘Oinn et al. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics,
20(1):3045–3054, 2003.

[20] V. Rastogi, M. Hay, G. Miklau, and D. Suciu. Relationship
privacy: output perturbation for queries with joins. In
PODS, pages 107–116, 2009.

[21] L. Sweeney. k-anonymity: a model for protecting privacy.
Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
10(5):557–570, 2002.

[22] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis. State-of-the-art in privacy
preserving data mining. SIGMOD Rec., 33(1):50–57, 2004.

186

