
Sublinear Algorithms for Hierarchical Clustering

Arpit Agarwal∗ Sanjeev Khanna† Huan Li† Prathamesh Patil†

June 16, 2022

Abstract

Hierarchical clustering over graphs is a fundamental task in data mining and machine learn-
ing with applications in many domains including phylogenetics, social network analysis, and
information retrieval. Specifically, we consider the recently popularized objective function for
hierarchical clustering due to Dasgupta [1], namely, minimum cost hierarchical partitioning. Pre-
vious algorithms for (approximately) minimizing this objective function require linear time/space
complexity. In many applications the underlying graph can be massive in size making it com-
putationally challenging to process the graph even using a linear time/space algorithm. As a
result, there is a strong interest in designing algorithms that can perform global computation
using only sublinear resources (space, time, and communication). The focus of this work is to
study hierarchical clustering for massive graphs under three well-studied models of sublinear
computation which focus on space, time, and communication, respectively, as the primary
resources to optimize: (1) (dynamic) streaming model where edges are presented as a stream, (2)
query model where the graph is queried using neighbor and degree queries, (3) massively parallel
computation (MPC) model where the edges of the graph are partitioned over several machines
connected via a communication channel.

We design sublinear algorithms for hierarchical clustering in all three models above. At the
heart of our algorithmic results is a view of the objective in terms of cuts in the graph, which
allows us to use a relaxed notion of cut sparsifiers to do hierarchical clustering while introducing
only a small distortion in the objective function. Our main algorithmic contributions are then to
show how cut sparsifiers of the desired form can be efficiently constructed in the query model and
the MPC model. We complement our algorithmic results by establishing nearly matching lower
bounds that rule out the possibility of designing algorithms with better performance guarantees
in each of these models.

∗Columbia University. email: arpit.agarwal@columbia.edu
†University of Pennsylvania. email: {sanjeev,huanli,pprath}@cis.upenn.edu. Research supported in part by

NSF awards CCF-1763514, CCF-1934876, and CCF-2008304.

ar
X

iv
:2

20
6.

07
63

3v
1

 [
cs

.D
S]

 1
5

Ju
n

20
22

Contents

1 Introduction 1
1.1 Overview of Algorithmic Results . 2
1.2 Overview of Lower Bounds . 6
1.3 Related Work . 8
1.4 Implications to Other HC Cost Functions . 9

2 Notation and Preliminaries 10

3 Hierarchical Clustering using (ε, δ)-Cut Sparsification 11

4 Sublinear Space Algorithms in the Streaming Model 16

5 Sublinear Time Algorithms in the Query Model 16
5.1 A Sublinear Time (ε, δ)-Cut Sparsification Algorithm for Unweighted Graphs 18
5.2 Extension to Weighted Graphs . 21

6 Sublinear Communication Algorithms under MPC Model 25
6.1 A 2-Round Õ(n) Communication Algorithm . 25
6.2 A 1-Round Õ(n4/3) Communication Algorithm . 26

7 Tight Query Lower Bounds for Õ(1)-approximation 29
7.1 Lower bound for m between n3/2 and n2 . 30
7.2 Lower bound for m between n and n3/2 . 31

8 A One-Round MPC Lower Bound for Õ(1)-approximation 37
8.1 A Lower Bound in the Two-Party Communication Model 40

9 Conclusions and Future Directions 43

1 Introduction
Hierarchical clustering (HC) is a popular unsupervised learning method for organizing data into a
dendrogram (rooted tree). It can be viewed as clustering datapoints at multiple levels of granularity
simultaneously, with each leaf of the tree corresponding to a datapoint and each internal node of the
tree corresponding to a cluster consisting of its descendent leaves. Much of the technical development
of HC originated in the field of phylogenetics, where the motivation was to organize the different
species into an evolutionary tree based on genomic similarities [2]. Since then, this tool has seen
widespread use in data analysis for a variety of domains ranging from social networks, information
retrieval, financial markets [3, 4, 5] amongst many others.
Due to its popularity, HC has been extensively studied and several algorithms have been proposed.
The most prominent amongst these are bottom-up agglomerative algorithms such as average linkage,
single linkage, complete linkage etc. (see Chapter 14 in [6]). However, despite these advances on the
algorithmic front, very few formal guarantees were known for their performance, primarily owing to
a historic lack of a well defined objective function. Therefore, the study of HC was largely empirical
in nature for a long time.
A part of this issue was recently resolved, when [1] proposed an objective function for similarity-
based HC. This has since sparked interest in both the theoretical computer science as well as
machine learning communities, for designing algorithms with provable guarantees for this objective
[7, 8, 9, 10, 11]. The formal description is as follows: given as input a weighted undirected graph
G = (V,E,w) with n vertices (datapoints) and m edges with positive edge weights corresponding to
pairwise similarities between its endpoints, the objective is to find a hierarchy T over leaf nodes
corresponding to the vertices V that minimizes the cost function

costG(T) :=
∑
{i,j}∈E

wij · |Tij | , (1)

where Tij is the subtree rooted at the least-common ancestor of i, j in T and |Tij | is the number
of descendent leaves in Tij . Intuitively, costG(T) incentivizes cutting heavy edges at lower levels in
T , thereby placing more similar datapoints closer together. This objective has been shown to have
several desirable properties, including one that guarantees an optimal tree which is binary [1].
This minimization objective however, turns out to be NP-hard. Consequently, [1] and other subsequent
work explored this objective from an approximation algorithms perspective [12, 7, 8, 9, 10, 11].
The best known polynomial time approximation is O(

√
log n) which is achieved by the recursive

sparsest cut (RSC) algorithm [1, 7, 10]. It is also known that no constant factor polynomial time
approximation is possible for this objective under the small-set expansion (SSE) hypothesis [7].
In this paper, we study the above minimization objective for HC in the context of massive graphs.
While the currently known best algorithm can be considered “efficient” in the classical sense, i.e.
requires polynomial space and time1, this complexity can be prohibitive in many modern applications
of HC that deal with staggering volumes of data. For example, current social networks contain
billions of edges which imposes serious limits on their storage and processing. Therefore, alternative
models of computation need to be considered in the context of such massive graphs. In this work, we
consider three widely-studied models, each aimed at optimizing a different fundamental resource: (i)
the (dynamic) streaming model [15] for space efficiency, where the edges are presented in a stream, (ii)
the general graph (query) model [16] for time efficiency, where the edges can be accessed via degree

1We also note that a near-linear (in the number of edges) time implementation of RSC can be obtained by plugging
a recent breakthrough result for fast max-flow computation [13] into the balanced separator approximation algorithm
in [14].

1

Table 1: Summary of Results. Each row gives an upper and lower bound on the resource
(space/time/communication) required for Õ(1)-approximation in the corresponding model.

Setting/Parameters Upper Bound Lower Bound

Streaming Model
1-pass Õ(n), Result 2 Ω(n), trivial

(Sublinear Space)

Query Model 1 < ζ ≤ 4/3 Õ(nζ), Result 4 Ω(nζ−o(1)), Result 8

(Sublinear Time) 4/3 < ζ ≤ 3/2 Õ(n4−2ζ), Result 4 Ω(n4−2ζ−o(1)), Result 8

Edges m = Θ(nζ) in G 3/2 ≤ ζ < 2 Õ(n), Result 4 Ω(n), Result 8

MPC Model 1-round Õ(n4/3), Result 6 Ω(n4/3−o(1)), Result 9

(Sublinear Communication) 2-round Õ(n), Result 5 Ω(n), trivial

and neighbour queries, and (iii) the massively parallel computation model (MPC) for communication
efficiency, where the edges are partitioned across multiple machines connected together through a
communication channel. The focus of our work is the following fundamental question:
Can we design sublinear (in the number of edges) algorithms for hierarchical clustering in each of
these massive-graph computation models?
We provide an almost complete resolution to this question by providing matching upper and lower
bounds for sublinear algorithms in all three canonical models of computation discussed above.

Remark 1. When studying graph problems in the sublinear setting, one can consider an even more
constrained setting where the available resource is o(n), i.e. sublinear in the number of vertices.
However, we are interested in actually finding a hierarchical clustering of the data, the writing of
which takes Ω(n) time and space (and in MPC, Ω(n) machine memory). Since in most practical
settings, the bottleneck is often the edges in the graph rather than the vertices, we believe it makes
more sense for us to consider sublinearity only in the edge parameter, i.e. m, in all three models.

We now provide an overview of our results (See Table 1 for a summary). Here and throughout
the paper, we use Õ(·) to suppress multiplicative O(logc n) factors for constant c. We first give an
overview of our algorithmic results in Section 1.1, and then give an overview of our lower bound
results in Section 1.2.

1.1 Overview of Algorithmic Results

We begin by presenting our algorithmic results for the three models of computation, which at their
core, are all based on the same meta-algorithm which follows from a new structural view of the
minimization objective defined in Eq. (1) in terms of global cuts in the input graph.

1.1.1 A Meta-Algorithm for Sublinear-Resource Hierarchical Clustering

In their paper, [1] showed that costG(T) can be viewed in two equivalent ways, the first being the
one defined earlier in Eq. (1), and the other in terms of the splits induced by the internal nodes in
the hierarchy: given a hierarchy T with each internal node corresponding to a binary split2 where

2This is without loss of generality since there always exists an optimal hierarchy that is binary.

2

some subset of vertices S ⊆ V of the input graph is partitioned into two pieces (S`, Sr), then

costG(T) :=
∑

splits S→(S`,Sr) in T

|S| · wG(S`, Sr),

where for any disjoint subsets S, T ⊂ V , wG(S, T) is the total weight of the edges in G going between
S and T . At this point, one might be tempted to think that if we could somehow construct a sparse
representation of G such that the weights wG(S, T) are approximately preserved for any disjoint
S, T ⊂ V , then the cost of every hierarchy would also be approximately preserved. Following this,
we could run any desired offline algorithm on this representation with improved efficiency due to its
sparsity without much loss in the quality of its solution. Unfortunately, this is just wishful thinking
as such a representation can easily be shown to require Ω(m) time and space3. Our first contribution
is to show there is in fact a third equivalent view of this same objective function in terms of global
cuts in G, and the above alternate formulation serves as our starting point.
This result follows from two critical observations, the first of which is given any two disjoint S, T ⊂ V ,
we can compute wG(S, T) exactly as wG(S, T) = (1/2) · (wG(S, S) + wG(T, T)− wG(S ∪ T, S ∪ T)).
We could stop here as the quantities on the right are all graph cuts, and it is well known [17] that
one can construct a Õ(n) sized sparsifier that approximately preserves all graph cuts. Unfortunately,
the distortion in wG(S, T) can be very large depending on the quantities on the right, and the
cumulative error in costG(T) blows up with the depth of the tree which is even worse. Here is the
second observation: the negative term wG(S ∪ T, S ∪ T) that internal node S contributes to the cost
also appears as a positive term in its parent’s contribution to the cost. We can pass this term as a
discount in its parent’s contribution to the cost, which after cascading gives a third view of Eq. (1).

costG(T) :=
1

2
·

 ∑
splits S→(S`,Sr) in T

(
|Sr| · wG(S`, S`) + |S`| · wG(Sr, Sr)

)
+
∑
v∈V

wG({v}, {v})

 ,

which is a linear combination of graph cuts. This gives a strong blackbox reduction to cut-sparsifiers;
preserving graph cuts to a (1± ε) factor also preserves the cost of all hierarchies to a (1± ε) factor.
However, we are not done yet, as cut-sparsifiers cannot be computed efficiently in certain models
of computation; for instance, they necessarily require Ω(m) queries to the underlying graph. We
therefore introduce a weaker notion of sparsification that, for any cut (S, S), allows for an additive
error of δmin{|S|, |S|} in addition to the usual multiplicative error of (1± ε) (see Definition 1). We
term this generalization an (ε, δ)-cut sparsifier. A similar notion was also proposed in an earlier work
by [18], which unfortunately does not work here (see Section 5.1 for details). Our next result then
shows that the distortion in the cost of any hierarchy under this weaker sparsifier is also bounded.

Result 1. Given any weighted graph G, an (ε, δ)-cut sparsifier of G preserves the cost of any tree T
up to a multiplicative (1± ε) factor, and an additive O(δn2) factor.

Therefore, supposing we could lower bound the cost of the optimal hierarchical clustering by some
quantity C, we could then construct this weaker sparsifier with a sufficiently small additive error
δ = εC/n2. The above result would then imply morally the same result as that achieved by traditional
cut-sparsifiers: preserving graph cuts in this ε, δ sense for a sufficiently small δ also preserves the
cost of all hierarchies upto a (1± ε) factor. Our final key result exactly establishes such a general

3Given such a sparsifier, by setting S = {u} and T = {v}, one can recover whether or not edge (u, v) is present in
G for any u, v ∈ V .

3

purpose lower bound on the cost of any hierarchical clustering in a graph, which can be efficiently
estimated in all models of computation we consider.
This chain of ideas results in the following meta-algorithm for sublinear HC given any parameter
ε > 0 and model of computation: Compute the lower bound on the cost of an optimal HC which
establishes the tolerable additive error in our (ε, δ) sparsifier, following which we efficiently (in
the resources to be optimized) compute the said sparsifier. We finally run any φ-approximate HC
algorithm, which is guaranteed to find a (1 + ε)φ-approximate HC tree. Our subsequent results give
sublinear constructions of these (ε, δ)-cut sparsifiers in each of the three models of computation.

1.1.2 Sublinear Space Algorithms in the (Dynamic) Streaming Model

We first consider the dynamic streaming model for sublinear space algorithms, where the edges in
the input graph are presented in an arbitrarily ordered stream of edge insertions and deletions. Our
upper bound here is a direct consequence of Result 1 used in conjunction with [19], a seminal result
that showed an (ε, 0)-cut sparsifier can be constructed in Õ(ε−2n) space and a single pass in this
setting.

Result 2. There exists a single-pass, Õ(n) space, streaming algorithm that given any weighted graph
G presented in a dynamic stream, w.h.p. finds a (1 + o(1)) · φ-approximate HC of G.

In the above result, as well as throughout the paper, φ denotes the approximation ratio of any
desired offline algorithm for hierarchical clustering. For example, if allowed unbounded computation
time, we have φ = 1; given polynomial time, the current best algorithm [7] gives φ = O(

√
log n).

We assume this abstraction as any improvement in the approximation ratio here automatically
implies an identical improvement in our upper bounds. Moreover, w.h.p. means “with probability
1− 1/poly(n)”.
As outlined in our meta-algorithm, instantiating the offline algorithm with RSC with the input
graph being the sparsifier gives us a polynomial time, Õ(n) space, single-pass dynamic streaming
algorithm with approximation ratio O(

√
log n) as a corollary. This result is formalized in Section 4.

1.1.3 Sublinear Time Algorithms in the Query Model

We next consider the general graph model [16] for sublinear time algorithms, where the input graph
can be accessed via two4 types of queries: (i) degree queries: given u ∈ V , returns degree du, and (ii)
neighbour queries: given u ∈ V , i ≤ du, returns the i-th neighbour of u. Note that this model can be
easily implemented using an adjacency array representation of the graph (See Section 5 for a more
detailed discussion). We first present the result for unweighted graphs, where it is easier to see the
key intuition. Our main result in this model is a sublinear time construction of an (ε, δ)-sparsifier.

Result 3. There exists an algorithm that given query access to any unweighted graph G, and any
parameters ε, δ ∈ (0, 1], can find an (ε, δ)-cut sparsifier of G w.h.p. in Õ(n/(ε2δ)) time.

Our algorithm is based on a simple yet elegant idea (which builds upon a slightly different idea
proposed in [18]; see Section 5.1 for a detailed discussion): if we embed a constant-degree expander
with edge weights δ in an unweighted graph (with unit edge weights), then the effective resistance of
every edge in the resulting composite graph is tightly bound in terms of the effective degrees of its
incident vertices; the effective degree of a vertex is a weighted sum of its degree in the input graph
and its degree in the expander. We can then leverage the effective resistance sampling scheme of

4This query model also allows a third type of queries: pair queries which answer whether an edge (u, v) exists or
not. However, we do not need these queries in our algorithm.

4

[20] to construct an (ε, 0)-cut sparsifier of this composite graph, which then is deterministically an
(ε, δ)-cut sparsifier of the input graph with the sources of error being the usual multiplicative ε term
due to sparsification itself, and the (small) additive δ term due to the (few) extra edges introduced
by the expander. We can construct constant degree graphs that are expanders with high probability
in sublinear time, and we show that there is an efficient rejection sampling scheme for sampling
edges according to their effective resistances, giving the above result: an (ε, δ)-cut sparsifier with
Õ(n/(ε2δ)) edges in the same amount of time and queries. Moreover, the queries are completely
non-adaptive assuming prior knowledge of vertex degrees. This construction of (ε, δ)-cut sparsifiers
in conjunction with Result 1 then gives our sublinear time upper bound in this model.

Result 4. There exists an algorithm that given query access to any unweighted graph G with
m = Θ(nζ) for ζ ∈ [0, 2], can find a (1+o(1))·φ-approximate HC of G w.h.p. using Õ(g(n, ζ)) queries,
where g(n, ζ) ≤ n4/3 is given by g(n, ζ) = max{n, nζ} when ζ ∈ [0, 4/3], g(n, ζ) = max{n, n4−2ζ}
when ζ ∈ (4/3, 2]. Moreover, given any (arbitrarily small) constant τ > 0, the algorithm can find an
O(
√

log n)-approximate HC of G w.h.p. in Õ(g(n, ζ) + n1+τ) time.

It is interesting to observe that the query complexity g(n, ζ) reduces as the graph becomes denser.
This is because the cost of the optimal HC increases with the density of the input graph, which
allows us to tolerate a larger additive error in our cut sparsifier, thereby making it sparser. In
Section 1.2 we also discuss lower bounds showing that this query complexity is also the best possible
for any Õ(1)-approximate algorithm. The sublinear time claim in Result 4 is implied by results
from [14] and [13] . Specifically, [14] showed that, for any constant τ ∈ (0, 1/2), sparsest cuts and
balanced separators can be approximated to within O(

√
log n) in Õ(m) time plus Õ(nτ) maximum

flow computations on graphs with Õ(n) edges, and [13] showed that a maximum flow on a graph of
m edges can be computed in O(m1+o(1)) time. These two combined with the fact that our sparsifier
contains just Õ(g(n, ζ)) edges give us the desired running time bound. This result is formalized in
Section 5.
We generalize the above result in Section 5.2 to weighted graphs by grouping edges according to
geometrically increasing weights and constructing (ε, δ)-cut sparsifiers for each weight class, and get
an algorithm with essentially the same worst case performance and O(log n) rounds of adaptivity.

1.1.4 Sublinear Communication Algorithms in the MPC model

Lastly, we consider the MPC model [21, 22] for sublinear communication, which is a common
abstraction of many MapReduce-style computational frameworks. Here, the edges in the input graph
are partitioned across several machines that communicate with each other in synchronous rounds.
Each machine has memory sublinear in m, with its total communication bounded by its memory. A
more detailed description of this model is given in Section 6.
Our first result is a 2-round MPC algorithm that uses Õ(n) memory per machine. In our algorithm,
we leverage a construction of (ε, 0)-cut sparsifiers due to [19] using Õ(1) random linear sketches per
vertex in the graph. We show that 2 rounds are sufficient to construct these linear sketches for each
vertex– the first round is used to construct partial sketches using local edges and the second round
is used to aggregate these partial sketches into complete sketches for each vertex. This construction
of (ε, 0)-cut sparsifiers in conjunction with Result 1 gives us the following result.

Result 5. There exists an MPC algorithm that given any weighted graph G with edges partitioned
across machines with Õ(n) memory and access to public randomness, can find a (1 + o(1)) · φ-
approximate HC of G w.h.p. on a designated machine in 2 rounds of MPC.

Our second result is a 1-round MPC algorithm that solves this problem for unweighted graphs using

5

machines with Θ̃(n4/3) memory. The execution of our algorithm depends on the density of the
underlying graph. If m ≤ n5/3, then we can again use the result from [19] by constructing local linear
sketches on each machine and sending them to a coordinator who can aggregate them. Note that we
only require 1 round in this case as the number of machines is ≤ n1/3, and hence, we only need to
communicate Õ(n1/3) sketches per vertex which is within our memory budget. If m > n5/3, we show
that the cost of the optimal hierarchy is sufficiently large such that a coarse (ε, δ)-cut sparsifier of
size Õ(n4/3) obtained by randomly subsampling edges will suffice. As a consequence, each machine
can subsample its edges independently and send these Õ(n4/3) edges to the coordinator. We now
summarize this 1-round result below.

Result 6. There exists an MPC algorithm that given any unweighted graph G with edges partitioned
across machines with Õ(n4/3) memory and access to public randomness, can find a (1 + o(1)) · φ-
approximate HC of G w.h.p. on a designated machine in 1 round of MPC.

In the next section, we discuss a 1-round lower bound for MPC which shows that n4/3−o(1) memory
per machine is needed by any Õ(1)-approximate algorithm on unweighted graphs.

1.2 Overview of Lower Bounds

First note that in the (dynamic) streaming model, since our goal is for the algorithm to output a
hierarchical clustering tree, we necessarily need Ω(n) space. Thus our Õ(n) space dynamic streaming
algorithm that obtains a (1 + o(1))-approximation is nearly optimal. We then show that in the other
two models of computation, our algorithms are also essentially the best possible.

1.2.1 Lower bounds in the Query Model

Note that the query complexity bound of our sublinear time algorithm is always at most Õ(n4/3),
where the worst-case input is an unweighted graph with about m ≈ n4/3 edges. We note that our
algorithm obtains an O(

√
log n)-approximation and (i) is completely non-adaptive on unweighted

graphs assuming prior knowledge of vertex degrees, and has O(log n) rounds of adaptivity on weighted
graphs; (ii) only uses degree queries and neighbor queries (no pair queries needed, see Footnote 4).
We then show that n4/3−o(1) queries are indeed necessary for obtaining any Õ(1)-approximation even
in unweighted graphs and given unlimited adaptivity and access to pair queries.

Result 7. Let A be a randomized algorithm that, on any input unweighted graph with Θ(n4/3)
edges, outputs with high probability a polylog(n)-approximate hierarchical clustering tree. Then A
necessarily uses at least n4/3−o(1) queries.

We briefly describe the family of hard graph instances that we use to prove this result. Roughly,
a graph from such a family is generated by first taking a union of n2/3 vertex-disjoint cliques of
size n1/3 each, and then connecting them by a random “perfect matching”. More specifically, we
treat each clique as a supernode, and generate a perfect matching between these n2/3 supernodes
uniformly at random. Then if the ith clique is matched to the jth clique in the perfect matching, we
will add about no(1) edges between these two cliques, which are also chosen in a random manner.
We show that, in order to output a good hierarchical clustering solution, it is necessary to discover
a non-trivial portion of the edges that we add between the cliques, even though their number is
relatively tiny compared to those within, and the latter task provably requires n4/3−o(1) queries.
While this plan looks intuitive, one has to be careful about not leaking information about the “perfect
matching” between the cliques from the vertex degrees, which an algorithm knows a priori (or can
otherwise acquire using O(n) non-adaptive degree queries). In particular, once the inter-clique edges

6

are added, one could tell that the vertices with degree higher than n1/3 − 1 are those participating
in the perfect matching. Note that there are only n2/3+o(1) such vertices in total, and each of them
has degree at most O(n1/3). As a result, by probing all neighbors of these vertices, one can easily
find all the inter-clique edges using n1+o(1) neighbor queries.
Our way around this issue is to also delete certain edges within the cliques based on what inter-clique
edges we have added, so as to ensure that each vertex has the exact same degree of n1/3 − 1. This
of course further complicates things as it increases the correlation between the edge slots — for
instance, whenever an edge between a matched pair of cliques is revealed to the algorithm, missing
edges within each clique are no longer independent. Consequently, our proof for this lower bound
turns out to be considerably involved; we refer the reader to Section 7.2 for more details.
Result 7 shows that the worst-case query complexity of our algorithm is nearly optimal. Note that,
however, for unweighted graphs, our algorithm also obtains improved query/time complexity when
m is far from n4/3. It is then natural to ask — are these improvements also the best possible? We
answer this question in the affirmative. In particular, we show that one can push further the ideas
we discussed above to get a tight query lower bound for every graph density. We summarize these
lower bounds below. Note in particular that, for m = Θ(n2), as we will show later, any hierarchical
clustering achieves an O(1)-approximation, thus trivially 0 queries are sufficient.

Result 8. Let ζ ∈ [0, 2] be any constant. Let A be a randomized algorithm that, on any input
unweighted graph with Θ(nζ) edges, outputs with high probability a polylog(n)-approximate HC. Then
A necessarily uses at least Ω(g(n, ζ)) queries, where g(n, ζ) = max{n, nζ−o(1)} when ζ ∈ [0, 4/3],
g(n, ζ) = max{n, n4−2ζ−o(1)} when ζ ∈ (4/3, 2), and g(n, ζ) = 0 when ζ = 2.

A formal version of this result is given in Section 7.

1.2.2 Lower bounds in the MPC Model

As our goal is for some machine to output a good hierarchical clustering tree, Ω(n) memory per
machine is necessary. Indeed, our 2-round MPC algorithm obtains a (1 + o(1))-approximation for
weighted graphs using a nearly optimal memory of Õ(n) per machine (Result 5).
To show that the number of rounds of our algorithm is also optimal, we prove that a superlinear (in
particular, n4/3−o(1)) memory per machine is necessary for any 1-round MPC algorithm in which
some machine outputs with high probability a polylog(n)-approximate hierarchical clustering tree.
Moreover, in our lower bound instance, the total memory of all machines is ≈ m, which means that
the input is split across fewest possible machines. We specifically prove the following result:

Result 9. Let P be any 1-round protocol in the MPC model where each machine has memory
O(n4/3−ε) for any constant ε > 0. Then at the end of the protocol P , no machine can output a
polylog(n)-hierarchical clustering tree with probability better than o(1).

Note that this lower bound matches our upper bound result in Result 6. Our family of hard instances
is roughly defined as follows. Let α ≈ 2/3, β ≈ 1/3 be certain constants. A graph G of 2n vertices
from such a family consists of two vertex-disjoint parts, each supported on n vertices. The first part
is supported on vertices V1 and is a union of vertex-disjoint bi-cliques of size nα; the second part
is supported on vertices V2 and is in turn a union of vertex-disjoint bi-cliques of size nβ, where we
have |V1| = |V2| = n. We will also permute the vertex labels of G uniformly at random. See Figure 1
for an illustrative example of such a graph G.
We first show that in order to output a good hierarchical clustering solution, it is necessary to discover
(almost) the exact clique structures of the vertex-induced subgraphs G[V1], G[V2], for otherwise a

7

G[V1] :

G[V2] :

1

Figure 1: An illustrative example of an input graph G, where G[V1] is a union of two bi-cliques of
size 8 each, and G[V2] is a union of four bi-cliques of size 4 each. Here G[V1] can be tiled using two
edge-disjoint subgraphs each isomorphic to G[V2], which are the subgraph induced by edges within
the four red frames, and the subgraph induced by edges within the four blue frames. So no machine
can tell locally whether it was given the red subgraph, the blue subgraph, or G[V2].

balanced cut has non-trivial probability of cutting too many edges within the cliques. Then as an
adversary, our strategy is to hide G[V2], which has significantly fewer edges than G[V1], by splitting
G across multiple machines. To this end, we observe that G[V1] can be tiled using edge-disjoint
subgraphs G1, . . . , Gt that are each isomorphic to G[V2] (see Figure 1). This suggests that we could
give G[V2] to a uniformly random machine, and then give each Gi to one of the other machines.
Note that, crucially, each machine’s input follows the exact same distribution, namely a union of bi-
cliques of size nβ with vertex labels permuted uniformly at random, although the input distributions
of different machines are correlated. As a result, each machine individually has no information
whether its input graph is G[V2] or just a subgraph Gi of G[V1]. Therefore, each machine has to
send a message to the coordinator such that, if its input graph happens to be G[V2], the coordinator
will be able to recover the clique structures with high probability.
Since the coordinator can only receive a total message size bounded by its machine memory, by
choosing suitable values of α, β, each machine on average can only send a message of size o(n). Now
the problem effectively becomes a one-way, two party communication problem, where Alice is given
G[V2] and needs to send Bob a single message so that Bob can recover the clique structures with
high probability. We then conclude the proof by showing that this two-party problem requires Ω(n)
communication. We refer the reader to Section 8 for more details.

1.3 Related Work

The work of Dasgupta [1] is the starting point of our work. [1] defined the objective function for
hierarchical clustering, namely minimum cost hierarchical partitioning, that we study in this paper.
They showed that the resulting problem is NP-hard and the recursive sparsest-cut algorithm achieves
an O(φ log n) approximation, where φ = O(

√
log n) is the current best poly-time approximation

for sparsest-cut. [12] improved this approximation factor to O(log n) using an LP-based algorithm.
[10, 7] showed that the recursive sparsest cut algorithm of [1] in-fact achieves an O(φ) approximation.
[12] and [7] also showed that no polynomial time algorithm can achieve constant factor approximation
under the small set expansion (SSE) hypothesis. [10, 23] showed that by imposing certain probabilistic

8

or structural assumptions on the graph, one can circumvent this constant factor inapproximability.
There has also been work on maximization objectives for hierarchical clustering. [24] considered a
“dual” version of the Dasgupta objective: where the goal is to maximize the revenue n

∑
e∈E we −

costG(T). While the optimal values for both objectives are achieved by the same solution, this
objective behaves very differently from an approximation perspective. [10] considered a setting where
the edge weights correspond to dissimilarities rather than similarities and the goal is to maximize
the dissimilarity-based objective costG(T). [24] and [10] both study the average-linkage algorithm
and show that it achieves approximation factors of 1/3 and 2/3, respectively. [9] provided algorithms
with slightly better approximation factors of 1/3 + δ and 2/3 + δ, respectively. [25] improved the
approximation factor to 0.4246 for the dual objective in [24], which was later improved to 0.585 by
[11]. Very recently, [26] improved the approximation to 0.71604 for the dissimilarity objective of [10].
Several other variations of this basic setup have been considered. For example, [8] have considered
this problem in the presence of structural constraints. [27, 28, 29] considered a setting where vertices
are embedded in a metric space and the similarity/dissimilarity between two vertices is given by
their distances. The most relevant to our work amongst these is [29] which considered this metric
embedded hierarchical clustering problem in a streaming setting. However, the stream in their
setting is composed of vertices while edge weights can be directly inferred using distances between
vertices; whereas the stream in our streaming setting is composed of edges while vertices are already
known. Moreover, their study is only limited to the streaming setting. There has also been work on
designing faster/parallel agglomerative algorithms such as single-linkage, average-linkage etc. [30, 31].
However, these algorithms are not known to achieve a good approximation factor for Dasgupta’s
objective, which is the main focus of our paper. [32] studied the hierarchical clustering problem in
an MPC setting. However, their work only considered the maximization objectives [24, 10], while
our work is primarily focussed on the minimization objective of [1].
Recent Independent work: Very recently and independent of our work, [33] considered the
problem of hierarchical clustering under Dasgupta’s objective in the streaming model. The primary
focus of their work is on studying the space complexity of hierarchical clustering in this setting,
including the space needed for finding approximate or exact hierarchy, as well as estimating the
value of optimal hierarchy (or "clusterability" of input) in o(n) or even polylog(n) space. Similar to
our algorithmic results in the streaming setting, [33] gives a single-pass, Õ(n) memory streaming
algorithm for finding an approximate clustering using cut sparsification as the key technical ingredient.
However, their algorithm needs to restrict the solution space to only balanced trees, and as a result,
is only able to achieve an O(φ) approximation guarantee in contrast to the stronger (1 + o(1)) · φ
approximation that we achieve for the streaming setting. Their streaming algorithm further implies
a 2-round MPC algorithm that achieves an O(φ) approximation guarantee using Õ(n) machine
memory, which is again slightly weaker than the (1 + o(1)) · φ approximation that we achieve for
the same. [33] do not show any communication lower bounds in the MPC model. Moreover, their
work does not consider the sublinear time setting and their results cannot be easily adapted to this
setting.

1.4 Implications to Other HC Cost Functions

As noted in the previous section, two maximization objectives for hierarchical clustering were
proposed subsequent to the work of [1]: (1) the revenue objective [24] for similarity-based HC which
is a “dual” of costG(T), (2) the dissimilarity objective [10] where the edges correspond to pairwise
dissimilarities and the objective is the same as costG(T). While strictly outside the scope of this
paper, we briefly discuss the implications of our work for these two objectives in the sublinear-resource
regime.

9

We begin by noting a sharp contrast in the difficulty of achieving a “good” solution for the minimization
objective [1], and the two maximization objectives described above. In fact, it is possible to achieve
a O(1) approximation to both maximization objectives non-adaptively ; a random binary hierarchy,
in expectation, is a 1/3 approximation of the optimal revenue [24], and is a 2/3 approximation of
the optimal dissimilarity objective [10], constructing which requires no knowledge of the input graph.
On the other hand, it is not hard to see that one would achieve an arbitrarily bad approximation of
the minimization objective unless something non-trivial was learned about the input graph.
That said, one might still question whether it is possible to match the solution quality of a given
ψ-approximate offline algorithm for the maximization objectives in the models of computation
we consider. We answer this in the affirmative for at least the dissimilarity objective of [10]; our
structural decomposition of the cost function and its subsequent implications carry over identically.
In particular for this cost function, our results imply (1− o(1))ψ-approximate algorithms for HC
in weighted graphs that use (i) a single-pass and Õ(n) space in the dynamic streaming model, (ii)
Õ(n4/3) queries5 in the general graph (query) model, (iii) 2-rounds and Õ(n) communication in the
MPC model, and (iv) 1-round and Õ(n4/3) communication (unweighted graphs) in the MPC model.
Unfortunately, we cannot say the same for the revenue objective of [24], as the additive constant in
the revenue can introduce large distortions in the revenue if we were to use our cut-sparsification
techniques alone. Therefore, we might not be able to say much about the revenues of hierarchies
computed on these sparse representations of the input graph, and leave it as a subject of future
work.

Organization. The rest of the paper is structured as follows. In Section 2 we set up notation and
present some preliminaries. In Section 3 we present our meta algorithm that finds a hierarchical
clustering using (ε, δ)-cut sparsification. In Section 4 we present our streaming algorithms for HC.
In Section 5 we present our sublinear time algorithms for HC. In Section 6 we present our MPC
algorithms for HC. In Sections 7 and 8 we present our lower bounds for the query model and MPC
model respectively. In Section 9 we give a conclusion and propose some future directions.

2 Notation and Preliminaries
We use the notation G = (V,E) to represent unweighted graphs, and G = (V,E,w) for weighted
graphs. We use lowercase letters u, v to refer to vertices in V , and given a vertex v, we use dG(v) to
refer to its degree in graph G. We use capital letters S, T to represent subsets of vertices, and given
a vertex set S ⊂ V , we use |S| to refer to its cardinality, S := V \ S to refer to its complement, and
G[S] to refer to the subgraph of G induced by vertex set S. Furthermore, given two disjoint vertex
sets S, T , we use wG(S, T) :=

∑
(u,v)∈E:u∈S,v∈T w(u, v) to represent the total weight of the edges in

graph G with one endpoint in S and the other in T . In the case of an unweighted graph, this is
equivalent to the number of edges going from S to T . For ease of notation, we use wG(S) := wG(S, S),
and when the implied graph is clear from context, we to refer to the weight of an edge e ∈ E in that
graph.
Given a graph G = (V,E), we use T to refer to a hierarchical clustering (tree) of the vertex set V ,
and costG(T) to refer to the cost of this clustering in graph G. Without loss of generality, we restrict
our attention to just full binary hierarchical clustering trees, since the optimal tree is binary [1].
Any internal node S of a hierarchical clustering tree corresponds to a binary split (S`, Sr) (the left
and right children of S in T) of the set of leaves in the subtree rooted at S. With some overload of

5As of now, we can only give a sublinear query algorithm for this objective. Our result still implies a (1− o(1))ψ-
approximation result in sublinear time, if we were given a ψ-approximate, Õ(m) time offline algorithm. However, we
are not aware of such an algorithm for this objective.

10

notation, we let S represent both, the internal node of the clustering tree as well as the set of leaves
S ⊆ V in the subtree rooted at internal node S. Furthermore, since (the leaves in the subtree rooted
at) an internal node S can correspond to an arbitrary subset of V , we use the term split to refer to a
partition (S`, Sr) of S to disambiguate it from cuts, which are a partition of the entire vertex set V .
Recall that φ is used to denote the approximation ratio of any desired offline algorithm for hierarchical
clustering. For example, if allowed unbounded computation time, we have φ = 1; given polynomial
time, the current best algorithm [7] gives φ = O(

√
log n). We assume this abstraction as any

improvement in the approximation ratio here automatically implies an identical improvement in our
upper bounds.
We conclude the preliminaries by presenting two useful facts from [1]; the first is an equivalent
reformulation of the similarity based hierarchical clustering cost function defined earlier in the
introduction, and the second is the cost of any hierarchical clustering in an unweighted clique.

Fact 1. The hierarchical clustering cost of any tree T with each internal node S corresponding to a
binary split (S`, Sr) of the subset S ⊆ V of vertices is equivalent to the sum

costG(T) =
∑

splits S→(S`,Sr) in T

|S| · wG(S`, Sr) .

Fact 2. The cost of any hierarchical clustering in an unweighted n-vertex clique is (n3 − n)/3.

3 Hierarchical Clustering using (ε, δ)-Cut Sparsification
In this section, we shall present the key insight behind all our results: the hierarchical clustering
cost function can equivalently be viewed as a linear combination of global cuts in the graph. As a
consequence, approximately preserving cuts in the graph also approximately preserves the cost of
hierarchies in the graph, effectively reducing the sublinear-resource hierarchical clustering problem
to a cut-sparsification problem. However, there are some hard lower bounds that refute an efficient
(sublinear) computation of traditional cut-sparsifiers in certain models of interest. Therefore, we
begin by introducing a weaker notion of cut sparsification, which we call (ε, δ)-cut sparsification.

Definition 1 ((ε, δ)-cut sparsifier). Given a weighted graph G = (V,E,w) and parameters ε, δ ≥ 0,
we say that a weighted graph G̃ = (V, Ẽ, w̃) is an (ε, δ)-cut sparsifier of G if for all cuts S ⊂ V ,

(1− ε)wG(S) ≤ w
G̃

(S) ≤ (1 + ε)wG(S) + δmin{|S|, |S|}

The above is a generalization of the usual notion of cut-sparsifiers (which are (ε, 0)-cut sparsifiers as
per the above definition) that allows for an additive error in addition to the usual multiplicative
error in any cut of the graph. A variant of this idea has been proposed before under the term
probabilistic (ε, δ)-spectral sparsifiers in [18] which was similarly motivated by designing sublinear
time algorithms for (single) cut problems on unweighted graphs. However, as the name might suggest,
the key difference between the prior work and ours is that the above bounds on the cut-values hold
only in expectation (or any given constant probability) for any fixed cut in the former. Due to this
limitation, we cannot use this previous work in a blackbox, and new ideas are needed.
We now show that for any two graphs that are close in this ε, δ sense, the cost of any hierarchy
in these two graphs is also close as a function of these parameters, effectively allowing the use of
(ε, δ)-cut sparsifiers in a blackbox.

11

Lemma 1. Given any input weighted graph G = (V,E,w) on n vertices, and an (ε, δ)-cut sparsifier
G̃ of G, then for any hierarchy T over the vertex set V , we have

(1− ε)costG(T) ≤ cost
G̃

(T) ≤ (1 + ε)costG(T) +
n(n+ 1)δ

2
.

Therefore, running a φ-approximate hierarchical clustering oracle A with input as the sparsifier G̃
with ε ≤ 1/2 produces a hierarchical clustering TA whose cost in G is at most

costG(TA) ≤ (1 + 4ε)φ · costG(T ∗) + n(n+ 1)δφ,

where T ∗ is an optimal hierarchical clustering of G.

Proof. Consider any graph H (not necessarily G or G̃) over vertex set V . Given any hierarchy T
over the vertex set V , let S0 be the root node with left and right children S0

` , S
0
r , respectively. Then

we have the the cost of this hierarchy in H is given by

costH(T) =
∑

S→(S`,Sr)∈T

|S| · wH(S`, Sr)

= |S0| · wH(S0
` , S

0
r) +

∑
S→(S`,Sr)∈T ,S 6=S0

|S| · wH(S`, Sr).

Now observe that since the split at the root S0 is a partition of the entire vertex set V into
S0
` , S

0
r , we have wH(S0

` , S
0
r) = wH(S0

`) = wH(S0
r). Furthermore, observe that for any split of

S, S` ∪ Sr = S, and therefore, we can represent the total weight of the edges crossing the split
wH(S`, Sr) = (1/2) · (wH(S`) + wH(Sr)− wH(S)). Therefore,

costH(T) =
|S0|

2
(wH(S0

`) + wH(S0
r)) +

∑
S→(S`,Sr)∈T ,S 6=S0

|S|
2

(wH(S`) + wH(Sr)− wH(S))

=
∑

S→(S`,Sr)∈T

(
|S| − |S`|

2
wH(S`) +

|S| − |Sr|
2

wH(Sr)

)
+
∑
v∈V

1

2
wH(v)

=
1

2
·

 ∑
S→(S`,Sr)∈T

(|Sr| · wH(S`) + |S`| · wH(Sr)) +
∑
v∈V

wH(v)

 ,

Therefore, the hierarchical clustering cost function can equivalently be represented as a non-negative
weighted sum of cuts in a graph. We shall now use this reformulation of the clustering cost function
to bound the error in the cost of any hierarchy T over a graph G and its (ε, δ)-sparsifier G̃ as a
function of the error in the cuts in these two graphs, which is parameterized by ε, δ. Our claimed
lower bound is easy to see since for every cut (S, S), w

G̃
(S) ≥ (1− ε)wG(S), and therefore,

cost
G̃

(T) ≥ (1− ε)
2

·

 ∑
S→(S`,Sr)∈T

(|Sr| · wG(S`) + |S`| · wG(Sr)) +
∑
v∈V

wG(v)

 = (1− ε)costG(T).

12

To show the upper bound, we have

cost
G̃

(T) ≤ (1 + ε)

2
·

 ∑
S→(S`,Sr)∈T

(|Sr| · wG(S`) + |S`| · wG(Sr)) +
∑
v∈V

wG(v)


+
δ

2
·

 ∑
S→(S`,Sr)∈T

(
|Sr| ·min{|S`|, |S`|}+ |S`| ·min{|Sr|, |Sr|}

)
+ n


≤ (1 + ε)costG(T) + δ ·

n
2

+
∑

S→(S`,Sr)∈T

|S`| · |Sr|

 .

Finally, we claim that for any binary hierarchical clustering tree T over n vertices (leaves),

∑
S→(S`,Sr)∈T

|S`| · |Sr| ≤
n2

2

We shall prove this claim by induction on the number of leaves of T . The base case is easy to see,
which is a binary tree on 2 leaves. Assuming this claim holds for all binary trees on n′ < n leaves,
consider any binary tree T with n leaves. Suppose the split at the root partitions the set of n leaves
S0 into sets S0

` and S0
r . Let T`, Tr be the subtrees of T rooted at S0

` , S
0
r , respectively. Then we have∑

S→(S`,Sr)∈T

|S`| · |Sr| = |S0
` | · |S0

r |+
∑

S→(S`,Sr)∈T`

|S`| · |Sr|+
∑

S→(S`,Sr)∈Tr

|S`| · |Sr|.

Since both |S0
` |, |S0

r | < n, applying our induction hypothesis on the subtrees T`, Tr gives us that

∑
S→(S`,Sr)∈T`

|S`| · |Sr| ≤
|S0
` |2

2
, and

∑
S→(S`,Sr)∈Tr

|S`| · |Sr| ≤
|S0
r |2

2
.

Substituting these bounds on the above sum proves our claim as∑
S→(S`,Sr)∈T

|S`| · |Sr| ≤ |S0
` | · |S0

r |+
|S0
` |2 + |S0

r |2

2
=
|S0
` + S0

r |2

2
=
|S0|2

2
=
n2

2
.

Finally, observe that the φ-approximate hierarchical clustering oracle on input G̃ finds a tree TA
such that

cost
G̃

(TA) ≤ φ · cost
G̃

(T), ∀ hierarchies T . (2)

Applying the above bound with T = T ∗, an optimal hierarchical clustering of G gives us that

(1− ε)costG(TA)
Lem 1
≤ cost

G̃
(TA)

Eq 2
≤ φ · cost

G̃
(T ∗)

Lem 1
≤ (1 + ε)φ · costG(T ∗) +

n(n+ 1)δφ

2
.

Therefore, for ε ≤ 1/2, we have that

costG(TA) ≤ 1 + ε

1− ε
φ · costG(T ∗) +

n(n+ 1)

2(1− ε)
δφ ≤ (1 + 4ε)φ · costG(T ∗) + n(n+ 1)δφ.

13

The above result shows that these weaker cut sparsifiers also approximately preserve the cost of
any hierarchical clustering, but only up to an additive O(δn2) factor. Therefore, supposing we
could efficiently estimate a lower bound opt on the cost of an optimal hierarchical clustering in
a graph G, we could then set the additive error δ = εopt/n2, giving us that any φ-approximate
hierarchical clustering for G̃ is a (1 + 5ε)φ-approximate hierarchical clustering for G. This implies
that hierarchical clustering is effectively equivalent to efficiently computing an (ε, δ)-cut sparsifier
with a sufficiently small additive error δ.
The following result fills in the final missing link in our chain of ideas by establishing a general-purpose
lower bound on the cost of any hierarchical clustering in an unweighted graph as a function of the
number of vertices and edges in the graph.

Lemma 2. Let G be any unweighted graph on n vertices and m edges. Then the cost of any
hierarchical clustering in G is at least 4m2/(3n).

Proof. Given any unweighted graph G = (V,E) over n vertices and m edges, fix any hierarchy T of
the vertices V . In order to lower bound the cost of T , we shall iteratively modify the “base graph”
graph G by moving edges, strictly reducing the cost of T with each modification such that the
final graph has a structure that makes the hierarchical clustering cost of T easy to analyze. In
particular, the final graph would be such that each connected component is either a clique or two
cliques connected together by some number of edges.
This is done as follows: given any hierarchy T of V , we perform a level order traversal over the
internal nodes of T , and at each node S, we modify the graph by pushing edges crossing the split
(S`, Sr) down to lower level splits. Formally, let S1, · · · , Sn−1 be a level-order traversal over internal
nodes of T . We denote by Gt = (V,Et) the modified graph after visiting internal node St, with
G0 = G. Given Gt, we visit St+1 and modify the graph as follows: if the subgraphs Gt[St+1

`], Gt[St+1
`]

induced by vertex sets St+1
` , St+1

r respectively, are both cliques, then Gt+1 = Gt; else move a maximal
number of (arbitrary) edges crossing the split (St+1

` , St+1
r) to any (arbitrary) edge slots that are

available in subgraphs Gt[St+1
`], Gt[St+1

r] until either (a) the split (St+1
` , St+1

r) has no more edges
going across in which case the two subgraphs become disconnected, or (b) both of the subgraphs
become cliques with the edges remaining going across these cliques. We call the resulting graph
Gt+1. Observe that the cost of T in Gt+1 is at most the cost of T in Gt.
Let the final graph obtained after this traversal be Gn−1. It is easy to see that Gn−1 is a collection
of connected components, with each connected component being either a clique or two cliques with
edges going across them, and that costGn−1(T) ≤ costG(T). In this graph Gn−1, (1) let k1, . . . , kr
be the cliques, with kj being the number of vertices in clique j, and (2) let t1, . . . ts be the connected
components that are two cliques connecting by edges, where each ti = {ki,1, ki,2, ci} with ki,1, ki,2
being the number of vertices in the two cliques of component ti, and ci < ki,1 · ki,2 being the number
of edges going across the two cliques. Then the cost of T on Gn−1 is given by

costGn−1(T) =
r∑
j=1

k3
j − kj

3
+

s∑
i=1

(
k3
i,1 − ki,1

3
+
k3
i,2 − ki,2

3
+ (ki,1 + ki,2)ci

)
, (3)

which follows by construction of Gn−1 and Fact 2. We also observe that

n =

r∑
j=1

kj +

s∑
i=1

(ki,1 + ki,2), and

m =

r∑
j=1

(
kj
2

)
+

s∑
i=1

((
ki,1
2

)
+

(
ki,2
2

)
+ ci

)
.

(4)

14

With these three observations, we shall now prove our claimed lower bound. We have that

m2 =

 r∑
j=1

(
kj
2

)
+

s∑
i=1

((
ki,1
2

)
+

(
ki,2
2

)
+ ci

)2

=

 r∑
j=1

k
1/2
j

[
k
−1/2
j

(
kj
2

)]
+

s∑
i=1

k
1/2
i,1

[
k
−1/2
i,1

((
ki,1
2

)
+
ci
2

)]
+

s∑
i=1

k
1/2
i,2

[
k
−1/2
i,2

((
ki,2
2

)
+
ci
2

)]2

(a)

≤

 r∑
j=1

kj +

s∑
i=1

ki,1 +

s∑
i=1

ki,2

 r∑
j=1

1

kj

(
kj
2

)2

+

s∑
i=1

1

ki,1

((
ki,1
2

)
+
ci
2

)2

+

s∑
i=1

1

ki,2

((
ki,2
2

)
+
ci
2

)2


(b)
=
n

4

 r∑
j=1

kj(kj − 1)2 +

s∑
i=1

(
ki,1(ki,1 − 1)2 + ki,2(ki,2 − 1)2 + 2ci(ki,1 + ki,2 − 2) + c2

i (k
−1
i,1 + k−1

i,2)
)

(c)
<
n

4

 r∑
j=1

kj(kj − 1)2 +

s∑
i=1

(
ki,1(ki,1 − 1)2 + ki,2(ki,2 − 1)2 + 3ci(ki,1 + ki,2)

)
<

3n

4

 r∑
j=1

kj(kj − 1)(kj + 1)

3
+

s∑
i=1

(
ki,1(ki,1 − 1)(ki,1 + 1)

3
+
ki,2(ki,2 − 1)(ki,2 + 1)

3
+ ci(ki,1 + ki,2)

)
(d)
=

3n

4
costGn−1(T),

where (a) follows by Cauchy-Schwarz inequality, (b) follows by Eq. (4), (c) follows by observing
ci < ki,1 ·ki,2 due to which c2

i (k
−1
i,1 +k−1

i,2) < ci(ki,1 +ki,2), and (d) follows from the cost of hierarchical
clustering T in Gn−1 established in Eq. (3). Therefore, we have that

4m2

3n
< costGn−1(T) ≤ costG(T),

for any hierarchical clustering T in any graph G on n vertices and m edges.

We conclude this section with a remark about one particular instantiation of a φ-approximation oracle
for hierarchical clustering. Specifically, [10] showed that the recursive sparsest cut algorithm, i.e.
recursively splitting the vertices using either the uniform sparsest cut or the balanced cut (sparsest
cut that breaks the graph into two roughly equal parts) in the subgraph induced by the vertices, is
a 6.75γ-approximation to hierarchical clustering given access to a γ-approximation algorithm for
sparsest cut or balanced cut. The best known polynomial time approximation for either is O(

√
log n),

a celebrated result due to [34]. These results in combination give us the following corollary.

Corollary 1. Given any input weighted graph G = (V,E) on n vertices, and an (ε, δ)-cut sparsifier
G̃ of G for any constant 0 ≤ ε ≤ 1/2 and a sufficiently small 0 ≤ δ, there exists a polynomial time
algorithm that given sparsifier G̃ as the input, finds a hierarchical clustering T whose cost in G is at
most O(

√
log n) · costG(T ∗), where T ∗ is the optimal hierarchical clustering in G.

In the following sections, we use this idea of constructing (ε, δ)-cut sparsifiers in three well-studied
models for sublinear computation: the streaming model for sublinear space, the query model for
sublinear time, and the MPC model for sublinear communication.

15

4 Sublinear Space Algorithms in the Streaming Model
We first consider the space bounded setting in the dynamic streaming model, where the input graph
is presented as an arbitrary sequence of edge insertions and deletions. The objective is to compute a
good hierarchical clustering of the input graph given O(n polylog(n)) memory, which is sublinear in
the number of edges in the graph (referred to as a semi-streaming setting). The following theorem
describes the main result of this setting.

Theorem 1. Given any weighted graph G = (V,E,w) with n vertices and the edges of the graph
presented in a dynamic stream, a parameter 0 < ε ≤ 1/2, and a φ-approximation oracle for hierarchical
clustering, there exists a single-pass semi-streaming algorithm that finds a (1 + ε)φ-approximate
hierarchical clustering of G with high probability using Õ(ε−2n) space.

This result is a direct consequence of Lemma 1 and known results [35, 19] for constructing an
(ε, 0)-cut sparsifiers in single-pass dynamic streams using polynomial time and Õ(ε−2n) space. Lastly,
Corollary 1 gives us a complete polynomial time single-pass semi-streaming algorithm that finds an
Õ(1)-approximate hierarchical clustering of the input graph in Õ(n) space in a dynamic stream.

5 Sublinear Time Algorithms in the Query Model
We now move our attention to the bounded time setting in the general graph (query) model [16],
where the input graph is accessible via the following two6 queries: (a) Degree queries: given v ∈ V ,
returns the degree dG(v), and (b) Neighbour queries: given v ∈ V , i ≤ dG(v), returns the ith

neighbour of v (neighbours are ordered arbitrarily). The objective is to compute a good hierarchical
clustering of the input graph in time and queries sublinear in the number of edges in the graph.
This problem becomes substantially more interesting in this setting, as finding an (ε, 0)-cut sparsifier
necessarily takes linear Ω(n + m) queries. Therefore, the key to achieving such a result crucially
depends upon being able to efficiently construct these weaker (ε, δ)-cut sparsifiers with a small
additive error δ, which is the backbone of our sublinear time result. For simplicity, we begin by
presenting our result for unweighted graphs, and then extend it to weighted graphs in subsection 5.2.

Theorem 2. Given any unweighted graph G = (V,E) with n vertices and m = αn4/3 edges accessible
via queries in the general graph model, and any parameter 0 < ε ≤ 1/2, there exists an algorithm that

(a) given a φ-approximate hierarchical clustering oracle, finds a (1 + ε)φ-approximate hierarchical
clustering of G with high probability using f(n, α, ε) queries, and

(b) given any arbitrarily small parameter 0 < τ < 1/2, finds an O(
√
τ−1 log n)-approximate

hierarchical clustering of G with high probability using Õ(f(n, α, ε) + n1+τ) time and queries,
where

f(n, α, ε) =

{
O
(
αn4/3

)
α < 1

Õ
(
ε−3(α−2n4/3 + n)

)
α ≥ 1.

6As mentioned earlier, this model further allows for a third type of queries: (c) Pair queries: given u, v ∈ V , returns
whether (u, v) ∈ E. This is equivalent to assuming the query oracle having internal access to both, an adjacency list
representation (for degree and neighbour queries) as well as an adjacency matrix representation (for pair queries) of
the input graph. However, our algorithm does not need pair queries, which further strengthens our algorithmic result
in this model.

16

Note that unlike the sublinear space and communication settings, we cannot directly give a sublinear
time (1+ε)φ-approximation guarantee here; even though the rest of our algorithm (that constructs the
(ε, δ)-cut sparsifier) has a sublinear time and query complexity, the running time of the φ-approximate
hierarchical clustering oracle to which we are given access can be arbitrarily large7. Therefore in
this setting, we give a two-part result - the first is a sublinear query, (1 + ε)φ-approximation result,
and the second is a sublinear time and query, O(

√
log n)-approximation result, which follows from

a specific sublinear time implementation of a φ-approximate hierarchical clustering oracle with
φ = O(

√
log n).

The query (and time) complexity in the above result is linear in the number of edges for sparse
graphs with fewer than n 3

√
n edges, decays as Õ(α−2n4/3) for moderately dense graphs when the

number of edges is in the range n 3
√
n and n

√
n, and is Õ(n) for dense graphs with more than n

√
n

edges. As we will see in our lower bounds, this complexity is essentially optimal for achieving a
Õ(1)-approximation in each of these three regimes.

Proof of Theorem 2. The proof of both parts of Theorem 2 relies on (ε, δ)-cut sparsifiers, which
we show in Theorem 3, can be constructed with high probability in Õ(ε−2δ−1n) time and queries.
Assuming this construction, the sublinear query, (1 + ε)φ-approximation claim (Theorem 2 (a)) is
relatively straightforward to see: we first determine the number of edges m = αn4/3 in the input
graph by performing n degree queries. If the graph is sufficiently sparse (m ≤ n4/3), then we
simply read the entire graph, which takes O(m) neighbour queries. If not, then the lower bound
established in Lemma 2 implies that the cost opt of any hierarchical clustering in the input graph
is at least α2n5/3. As a consequence, the additive error δ = εopt/n2 ≥ εα2n−1/3 we can tolerate
in our (ε, δ)-sparsifier is also relatively large. Such a sparsifier can then be constructed with high
probability in Õ(ε−3 max{α−2n4/3, n}) time and queries. The rest of the proof follows directly by
Lemma 1, since the φ-approximate hierarchical clustering oracle uses only the (ε, δ)-cut sparsifier as
input, and therefore, makes no additional queries to the input graph.
To prove the sublinear time, O(

√
τ−1 log n)-approximation claim (Theorem 2 (b)) where τ ∈ (0, 1/2)

is any arbitrarily small parameter, we complement the above proof with an instantiation of a
sublinear time, φ-approximate hierarchical clustering oracle with φ = O(

√
τ−1 log n). As discussed

in Corollary 1, this essentially reduces to a sublinear time, O(
√
τ−1 log n)-approximation algorithm

for balanced cuts (also called balanced separators in the literature). However, the algorithm of [34]
cannot be used here due to its quadratic running time. Therefore, we instead refer to another result
of [14] that achieves O(

√
τ−1 log n)-approximation for balanced separators by reducing this problem

to Õ(nτ) single-commodity max-flow computations for any given τ ∈ (0, 1/2). While [14] could
only achieve this in Õ(m+ n3/2+τ) time, the bottleneck being the Õ(m3/2) time flow-computation
algorithm of [36] (with the sparsification result of [17] being used to improve this complexity to
Õ(n3/2)), we can leverage a very recent breakthrough [13] that gives an Õ(m1+o(1)) algorithm for
exact single-commodity max-flows. This improves the running time of the algorithm of [14] from
Õ(m+ n3/2+τ) to Õ(m+ n1+τ) without any loss in the approximation factor. Since our (ε, δ)-cut
sparsifier G̃ is very sparse with f(n, α, ε) edges, we can find a O(

√
τ−1 log n)-approximate balanced

separator in G̃ in sublinear Õ(f(n, α, ε) + n1+τ)-time, for any given τ ∈ (0, 1/2). Although we use
this subroutine repeatedly (at each split of the graph until we are left with singleton vertices), observe
that at any level of the hierarchical clustering tree, the splits at that level together form a disjoint
partition of G̃. Now let the set of all internal nodes (splits) of the resultant hierarchical clustering
tree at level i ∈ [d] be Si, where d is the depth of the tree. Furthermore, for any internal node S

7Our sublinear query result more generally implies faster algorithms for hierarchical clustering without much loss
in solution quality.

17

in this tree, let mS be the number of edges in the subgraph G̃[S] induced by the set of vertices S.
Therefore, the running time of the recursive sparsest cut algorithm on G̃ with the aforementioned
O(
√
τ−1 log n)-approximate oracle for balanced separators is given by

Õ

∑
i∈[d]

∑
S∈Si

(mS + |S|1+τ)

 ≤ Õ
∑
i∈[d]

f(n, α, ε) + n1+τ

 .

Finally, observe that since the splits in the tree are balanced, i.e. a split S → (S`, Sr) is such that
min{|S`|, |Sr|} ≥ |S|/3, the depth of this hierarchical clustering tree produced d = O(log n), which
gives the total running time of the recursive sparsest cut algorithm on G̃ as Õ(f(n, α, ε) + n1+τ),
proving our sublinear time claim.

We shall now present our sublinear time construction of (ε, δ)-cut sparsifiers for unweighted graphs.

5.1 A Sublinear Time (ε, δ)-Cut Sparsification Algorithm for Unweighted Graphs

Theorem 3. There exists an algorithm that given a query access to an unweighted graph G = (V,E)
and parameters 0 < δ ≤ 1, 0 < ε ≤ 1/2, can find a (ε, δ)-cut sparsifier of G with high probability in
Õ(nδ−1ε−2) time and queries.

Our (ε, δ)-cut sparsifier construction broadly builds upon ideas developed in [18] for probabilistic
spectral sparsifiers. At a high level, to achieve an additive error of δ, we embed a constant-degree
expander Gx = (V,Ex) with edge weights δ ≤ 1 on all n vertices in the input graph G = (V,E). This
trick gives a tight (and very friendly) bound on the effective resistance of every edge in the resultant
composite graph H = (V,E ∪ Ex, w), which is a weighted graph with edge set consisting of the
union of edges E in the input graph G, each having weight 1, and edges Ex in the constant-degree
expander Gx, each with weight δ (edges in E ∩ Ex are assumed to be two parallel edges, one with
weight 1 and the other with weight δ). This is useful as it allows for efficient sparsification of this
composite graph using effective resistance sampling of [20], with the sources of error being the usual
multiplicative error due to sparsification itself, and a small additive error due to the few extra edges
introduced by the expander. There are several well known Õ(n) time constructions of constant
degree expanders, for example, a random d-regular graph is an expander with high probability [37].
This roughly outlines the sparsification algorithm and proof of the above theorem.
A similar idea was used in [18], with the key difference being that they embed an unweighted constant
degree expander in a random δn subset of vertices. Since the set of vertices where the expander is
embedded is random, it is easy to see why this gives a small additive error in expectation for any
fixed cut, but could be very large for some cuts in the graph. Our construction on the other hand
provides a sparsifier with stronger guarantees that hold for every cut. As outlined above, we start
by showing that the effective resistance of any edge (u, v) ∈ E ∪ Ex is tightly bounded.

Lemma 3. Given parameter δ ∈ (0, 1), and a composite graph H = (V,E ∪Ex, w) where G = (V,E)
is an arbitrary input graph with edges of weight 1, and Gx = (V,Ex) is a constant-degree expander
graph with edges of weight δ, then for any edge (u, v) ∈ E ∪ Ex, we have

1

2

(
1

dG(u) + δdGx(u)
+

1

dE(v) + δdGx(v)

)
≤ RH(u, v)

≤ O
(

log n

δ

(
1

dG(u) + δdGx(u)
+

1

dE(v) + δdGx(v)

))
,

where RH(u, v) is the effective resistance of edge (u, v) in graph H, and for any vertex u ∈ V ,
dG(u), dGx(u) are the degrees of vertex u in graphs G and Gx, respectively.

18

Proof. For any edge (u, v) ∈ E∪Ex, let us assume without loss of generality that k := dH(u) ≤ dH(v).
The proof of our upper bound on the effective resistance RH(u, v) relies on a basic property of
expander graphs: there are Ω(k) edge-disjoint paths, each of length at most O(log n) connecting u
to v. Since each edge on these paths has weight at least δ, by Rayleigh’s monotonicity principle, the
effective resistance between (u, v) can be no more than a graph containing exactly k edge-disjoint
paths, each of length O(log n) with each edge on this path having resistance 1/δ, which gives us that

RH(u, v) ≤ O
(

log n

δk

)
≤ O

(
log n

δ

(
1

dH(u)
+

1

dH(v)

))
≤ O

(
log n

δ

(
1

dG(u) + δdGx(u)
+

1

dG(v) + δdGx(v)

))
To show this many edge-disjoint, short paths property of expanders, we consider two possibilities:
either k < n/ log n, in which case let {ui}ki=1 be the neighbours of u, and let {vi}ki=1 be a set of k
neighbours of v, chosen and ordered arbitrarily. Then the well known multicommodity flow result of
[38] already guarantees the existence of these short edge-disjoint paths connecting every ui to vi. In
the case that k ≥ n/ log n, consider the (unweighted) subgraph Hx = (V,Ex ∪ Eu ∪ Ev) induced by
the expander edges Ex and edges Eu, Ev ⊆ E incident on vertices u, v in G, respectively. We first
claim that the min u-v cut in Hx contains at least k/2 edges; let (S, S) be the min u-v cut, with
|S| ≤ n/2 and s ∈ {u, v} being the vertex in S. Furthermore, let ks ≥ k be the number of neighbours
of s, with k′s ≤ ks of them being contained in S. Now there are two possibilities, either (a) k′s < ks/2
in which case the cut (S, S) already contains the ks − k′s ≥ ks/2 edges connecting s to its remaining
neighbours in S, or (b) k′s ≥ ks/2 in which case (S, S) must necessarily cut at least |S| ≥ ks/2 edges
in Ex due to expansion. Therefore, by the (integral) min-cut max-flow theorem, there are at least
k/2 edge-disjoint paths from u to v. Moreover, we claim that at least half of these paths must be
short, specifically, of length O(log n). To see this, observe that graph Hx contains just Cn edges for
some constant C, which follows from that fact that u, v each can have at most n neighbours and
Gx is a constant degree expander. Now let the integral flow which is of size f ≥ k/2 ≥ n/(2 log n)
be routed along arbitrary edge-disjoint paths P1, . . . , Pf . It is easy to see why at least f/2 of these
paths must be of length at most 2C log n, because otherwise, the number of edges contained in just
the long paths alone would exceed (f/2) · (2C log n) > Cn, the total number of edges in Hx which is
a contradiction. Therefore, there are at least k/4 edge disjoint paths between u, v in Hx ⊆ H, each
of length O(log n).
Now to prove the lower bound on the effective resistance of any edge (u, v) ∈ E∪Ex, we add an extra
vertex w and replace the edge (u, v) with two edges (u,w) and (w, v), each with weight/capacitance
2wuv (doing this twice if edge (u, v) ∈ E ∩ Ex, once for the edge (u, v) with wuv = 1 and again for
the edge with wuv = δ). We then apply Rayleigh’s monotonicity principle by shorting all vertices
other than u, v in the graph, which gives us that

RH(u, v) ≥ 1

dG(u) + δdGx(u) + wuv
+

1

dG(v) + δdGx(v) + wuv

≥ 1

2

(
1

dG(u) + δdGx(u)
+

1

dG(v) + δdGx(v)

)
,

where the final inequality follows from the fact that wuv < mins∈{u,v}{dG(s) + δdGx(s)}, which
proves our claimed lower bound.

This tight bound of the order (dG(u) + δdGx(u))−1 + (dG(v) + δdGx(v))−1 on the effective resistances
directly allows us to apply the effective resistance sampling scheme of [20] outlined in Algorithm 1 to

19

construct a spectral sparsifier of H, which is even stronger than the simple cut sparsifier we require.
The following theorem then establishes the properties of the resulting sparsifier G̃.

Algorithm 1 Sparsify
Input. Weighted graph G = (V,E,w), edge sampling probabilities p such that

∑
e∈E pe = 1,

repetitions q.
Output. Sparsifier G̃ = (V, Ẽ, w̃).
for t = 1, . . . , q do
Sample a random edge e ∈ E according to p. Add e to Ẽ (if it does not already exist) and
increase its weight w̃e by we/(qpe).

end for

Theorem 4 (Theorem 1 + Corollary 6 of [20]). Given any weighted graph G = (V,E,w) on n
vertices with Laplacian L, let Ze be numbers satisfying Ze ≥ Re/α for some α ≥ 1 and

∑
e∈E weZe ≤∑

e∈E weRe. Then given any parameter 0 ≤ ε ≤ 1, the subroutine Sparsify(G, p, q) with sampling
probabilities pe = weZe/(

∑
e∈E weZe) and q = Cn log n/ε2 for some sufficiently large constant C

returns a graph G̃ whose Laplacian L̃, with high probability, satisfies

∀x ∈ Rn (1− ε
√
α)x>Lx ≤ x>L̃x ≤ (1 + ε

√
α)x>Lx.

From the effective resistance bound established in Lemma 3, it is easy to see that sampling edges
with parameter Zuv = (dG(u) + δdGx(u))−1/2 + (dG(v) + δdGx(v))−1/2 satisfies the condition in
Theorem 4 with α = O(log n/δ) for the graph H = (V,E ∪ Ex, w). Given this choice of parameters
Ze, it is easy to see that

∑
e∈E∪Ex weZe = n/2, which gives us that the sampling probability for any

edge e ∈ E ∪ Ex is given by

pe =
we
n

(
1

dG(u) + δdGx(u)
+

1

dG(v) + δdGx(v)

)
, (5)

for which there is a very simple sublinear time rejection sampling scheme given query access to G:
sample a uniformly at random vertex u ∈ V , and toss a coin with bias dG(u)/(dG(u) + δdGx(u))
(degree query). If heads, sample a uniformly at random edge incident on u in G (neighbour query).
Otherwise, sample a uniformly at random edge incident on u in Gx. The complete algorithm is given
below.

Algorithm 2 (ε, δ)-Sparsify
Input. Unweighted graph G = (V,E), parameters 0 < δ ≤ 1, 0 < ε ≤ 1.
Output. Sparsifier G̃ = (V, Ẽ, w̃).
Construct a constant degree expander Gx = (V,Ex).
Let H = (V,E ∪Ex, w) be the composite weighted graph with edge weights we = 1 for e ∈ E and
we = δ for e ∈ Ex.
Set ε′ = ε

√
δ/(C1 log n) for a sufficiently large constant C1, repetitions q = C2n log n/(ε′)2 for a

sufficiently large constant C2.
Set sampling probabilities p, where for each edge e ∈ E ∪ Ex, pe is as defined in Eq. (5).
Sparsifier G̃ = Sparsify(H, p, q)

It is easy to see that the above algorithm produces a graph G̃ withO(n log n/(ε′)2) = O(n log2 n/(δε2))
edges, and runs in time O(n log n/(ε′)2) = O(n log2 n/(δε2)). We shall now prove that G̃ is an (ε, δ)-
sparsifier of G as claimed in Theorem 3.

20

Proof of Theorem 3. We start by observing that Theorem 4, by restricting to vectors x ∈ {0, 1}n
(corresponding to partitions of V) and choice of ε′ = ε

√
δ/(C1 log n) with a sufficiently large constant

C1, implies that with high probability, the sparsifier G̃ produced by Algorithm 2 is such that

∀S ⊂ V, (1− ε)wH(S) ≤ w
G̃

(S) ≤ (1 + ε)wH(S). (6)

Now observe that for any cut (S, S) in the composite graph H,

wG(S) ≤ wH(S) = wG(S) + wGx(S) ≤ wG(S) + δΘ(min{|S|, |S|}),

where the final inequality follows by observing that the weight of any edge e ∈ Ex is δ, and since
the degree of any vertex in Gx is Θ(1), the number of edges in Gx that cross any cut (S, S) is
Θ(min{|S|, |S|}). Combining the above bounds with Eq. (6) gives us the (ε, δ)-cut sparsification
guarantees for G̃ as

∀S ⊂ V, (1− ε)wG(S) ≤ w
G̃

(S) ≤ (1 + ε)wG(S) + Θ(δ) ·min{|S|, |S|}.

5.2 Extension to Weighted Graphs

In this section, we extend our sublinear time results to weighted graphs G = (V,E,w), where
edges e ∈ E take weights 1 ≤ we ≤W , where W is an upper bound on the maximum edge weight.
Since there is no universally accepted query model for weighted graphs, we propose the following
generalization where the algorithm can make (a) Degree queries: given v ∈ V , returns the degree
dG(v), and (b) Neighbour queries: given v ∈ V , i ≤ dG(v), returns both the ith neighbour of v
and the connecting edge weight, with the additional constraint that the neighbours are ordered by
increasing edge weights (neighbours connected by equal weight edges are ordered arbitrarily). Note
that this generalization reduces to the general graph model when all edge weights are equal. The
following theorem describes our upper bound in this more general setting.

Theorem 5. Let G = (V,E,w) be any weighted graph with n vertices and edge weights taking values
in a bounded range [1,W]. Given any parameter 0 < ε ≤ 1/3, let mi = αin

4/3 be the number of
edges in G with weights in the interval [(1 + ε)i−1, (1 + ε)i). Then given query access to G, there
exists an algorithm that

(a) given a φ-approximate hierarchical clustering oracle, finds a (1 + ε)φ-approximate hierarchical
clustering of G with high probability using Õ

(
(ε−1 logW) · (n+ maxi f(n, αi, ε))

)
queries, and

(b) given any arbitrarily small parameter 0 < τ < 1/2, finds an O(
√
τ−1 log n)-approximate hierar-

chical clustering of G with high probability using Õ
(
n1+τ + (ε−1 logW) · (n+ maxi f(n, αi, ε))

)
time and queries, where

f(n, α, ε) =

{
O
(
αn4/3

)
α < 1

Õ
(
ε−3(α−2n4/3 + n)

)
α ≥ 1.

Before discussing this result, one might naturally ask whether this stricter requirement of ordering
neighbours by weight is really necessary or whether it is possible to achieve a similar result for
arbitrary or even random orderings. Towards the end of this section, we will show that this is
unfortunately necessary; without the ordering constraint, no non-trivial approximation for hierarchical

21

clustering is possible unless a constant fraction of the edges in the graph are queried, and this holds
even if we were to additionally allow pair queries: given u, v ∈ V , return whether (u, v) ∈ E (and
edge weight wuv if affirmative).
At a high level, our sublinear time upper bound for weighted graphs is morally the same as
that achieved in the unweighted case, with a O(ε−1 logW) hit to query and time complexity.
Algorithmically, we build upon the ideas developed for the unweighted case. We begin by partitioning
the edge set E of the input graph G = (V,E,w) into weight classes, where the ith weight class
consists of all edges Ei with weights in the interval [(1 + ε)i−1, (1 + ε)i). By construction, there are
log(1+ε)W ≤ 2ε−1 logW weight classes in total, with the edge sets {Ei}

log(1+ε)W

i=1 being a disjoint
partition of E. We then approximately sparsify each unweighted subgraph G′i = (V,Ei) using our
sublinear time (ε, δ)-Sparsify routine outlined in the previous section, and scale up all the edge
weights of the resultant sparsifier G̃′i by the maximum edge weight Wi = (1 + ε)i of that class. Since
for every weight class i, the weights of all the edges Ei in that class are within a (1 + ε) factor
of each other, the resultant scaled sparsifier G̃i is a good approximate sparsifier for the weighted
subgraph Gi = (V,Ei, w). Finally, since the input graph G = (V,E,w) is partitioned into subgraphs
Gi = (V,Ei, w), the sum of the scaled sparsifiers G̃i is a good sparsifier for the input graph. Given
this sparsifier, the proof of (both claims of) Theorem 5 then follows identically as that of Theorem 2.
An important point to note here is that we do not need to explicitly construct the subgraphs G′i
corresponding to each of the weight classes i ∈ [log1+εW] (which would naively take O(m) time)
as our (ε, δ)-sparsification subroutine only requires query access to G′i. This is easy to do in Õ(n)
time for any weight class assuming the edges incident on vertices are sorted by weights. For any
weight class i and any vertex v, the set of edges incident on v in subgraph Gi lie in the range of
indices [xi−1(v), xi(v)− 1] where for any weight class j ∈ [log1+εW], vertex u ∈ V , xj(u) is the first
occurrence of an edge incident on u with weight at least (1 + ε)j . Both indices xi(v), xi−1(v) can be
found in O(log n) time and queries using binary search; the degree dG′i(v) = xi(v)− xi−1(v), and
the jth neighbour of v in G′i is simply the (xi−1(v) + j − 1)th neighbour of v in G. Therefore, the
total time and query complexity of setting up query access to G′i is O(n log n). We now present a
formal proof of Theorem 5, which is achieved by Algorithm 3.

Proof of Theorem 5. As with the analysis for unweighted graphs, we begin by establishing a lower
bound on the cost of any hierarchical clustering for weighted graphs. Given any weighted graph
G = (V,E,w) and a parameter 0 < ε ≤ 1/3, we begin by partitioning the edge set into weight classes,
where the ith weight class consists of all edges Ei with weights in the interval [(1 + ε)i−1, (1 + ε)i).
Therefore, we have that the clustering cost of any hierarchy T on the weighted graph G is

costG(T) =

log(1+ε)W∑
i=1

costGi(T) ≥
log(1+ε)W∑

i=1

(1 + ε)i−1costG′i(T)
Lem 2
≥

log(1+ε)W∑
i=1

Wi · |Ei|2

n
, (7)

where the first inequality follows from the fact that the clustering cost function is monotone in edge
weights, and every edge in Gi = (V,Ei, w) has weight at least (1+ ε)i−1. We now claim that for every
weight class i, the scaled sparsifier G̃i is a (O(ε), O(Wiδi))-sparsifier of the subgraph Gi = (V,Ei, w).
To see the lower bound, observe that for any cut (S, S)

w
G̃i

(S) = Wi · wG̃′i(S)
Thm 3
≥ Wi · (1− ε)wG′i(S) ≥ (1− ε)wGi(S), (8)

where the final inequality follows from the fact that every edge in Gi has weight at most Wi. To see

22

Algorithm 3 Weighted Sparsify
Input. Weighted graph G = (V,E,w), parameter 0 < ε ≤ 1/3.
Output. Sparsifier G̃ = (V, Ẽ, w̃).
For every vertex v ∈ V , x0(v) = 1
for i = 1, . . . , log(1+ε)W do
For every vertex v ∈ V , binary search for xi(v), the first occurrence of an edge incident on v
with weight at least (1 + ε)i.
Establish query access to G′i ← (V,Ei), where Ei := {e ∈ E : (1 + ε)i−1 ≤ we < (1 + ε)i} using
{(xi−1(v), xi(v))}v∈V . Let |Ei| = mi = αin

4/3.
if αi ≤ 1 then

Read Gi = (V,Ei, w) entirely, and let this graph be G̃i.
else
Set additive error δi ← ε ·min{α2

i /n
1/3, 1}, and Wi = (1 + ε)i.

G̃′i ← (ε, δi)-Sparsify(G′i), where G̃
′
i = (V, Ẽi, w̃

′
i)

Construct sparsifier G̃i = (V, Ẽi, w̃i = Wi · w̃′i) with edge weights scaled by Wi.
end if

end for
G̃ = G̃1 + . . .+ G̃log(1+ε)W

the upper bound, observe that for any cut (S, S),

w
G̃i

(S) = Wi · wG̃′i(S)
Thm 3
≤ Wi · (1 + ε)wG′i(S) +O(Wiδi) ·min{|S|, |S|}

≤ (1 + ε)2wGi(S) +O(Wiδi) ·min{|S|, |S|}
≤ (1 + 3ε)wGi(S) +O(Wiδi) ·min{|S|, |S|},

(9)

where the second inequality follows from the fact that every edge in Gi has weight at least Wi/(1 + ε).
Since we have that the edge set E = E1 + . . . + Elog(1+ε)W , this directly gives us that the scaled
sparsifier returned G̃ = G̃1 + . . .+ G̃log(1+ε)W is a (O(ε), O(

∑
iWiδi))-cut sparsifier of G, where for

any cut (S, S),

(1− ε)wG(S)
Eq. 8
≤ w

G̃
(S)

Eq. 9
≤ (1 + 3ε)wG(S) +O

log(1+ε)W∑
i=1

Wiδi

 ·min{|S|, |S|}. (10)

By choice of each δi ≤ ε|Ei|2/n3, we further have that

log(1+ε)W∑
i=1

Wiδi ≤
ε

n2

log(1+ε)W∑
i=1

Wi ·
|Ei|2

n

Eqn 7
≤ ε

n2
· costG(T), ∀ hierarchies T .

Given this guarantee, the bound on the hierarchical clustering cost claimed in Theorem 5 (a) follows
by a straightforward application of Lemma 1.
To complete this proof, the last thing we need to verify is the time and query complexity of
Algorithm 3. We shall break down the complexity of this algorithm across the weight classes
i ∈ [log1+εW]. As described earlier, for any weight class i, establishing query access to the subgraph
G′i = (V,Ei) requires at most Õ(n) time. Let |Ei| = αin

4/3 be the number of edges in this subgraph.

23

In the case αi ≤ 1, this subgraph is sufficiently sparse and Gi is read entirely which takes O(αin
4/3)

time and queries. Otherwise (αi > 1), in which case it is sparsified in Õ(ε−3 max{α−2
i n4/3, n}) time

and queries as established in Theorem 3. Therefore, the total complexity of processing a weight class
i is Õ(n+ f(n, αi, ε)), where f(n, α, ε) = Õ(αn4/3) if α ≤ 1, and Õ(ε−3 max{α−2n4/3, n}) otherwise.
Since there are O(ε−1 logW) weight classes in total, Algorithm 3 runs in time Õ(ε−1n logW +∑

i f(n, αi, ε)) ≤ Õ((ε−1 logW) · (n+ maxi f(n, αi, ε)).

Lastly, for any given parameter τ ∈ (0, 1/2), the sublinear time, O(
√
τ−1 log n)-approximation

claim (Theorem 5 (b)) follows by the same φ-approximate hierarchical clustering oracle construction
described in the proof of Theorem 2 combined with the fact that our (ε, δ)-cut sparsifier for the
weighted graph G now contains Õ((ε−1 logW) ·maxi f(n, αi, ε)) edges.

5.2.1 Necessity of Ordering Neighbours by Weight

We conclude this section by showing that the assumption that the adjacency list of each vertex u
orders the neighbours of u by weight, is in fact necessary. Otherwise, no non-trivial approximation
for hierarchical clustering is possible even when one is allowed to query a constant fraction of edges
in the graph. We shall naturally consider only sufficiently dense graphs with Ω(n4/3) edges. While
this isn’t strictly necessary for our example, our upper (and lower) bounds allow us to simply read
the entire graph otherwise, rendering the sparse regime uninteresting. While this is straightforward
to see when the upper limit on edge weights W = poly(n) is large, we can even show this for a
relatively small W = n1+ε for any constant ε > 0. The example is as follows: consider an input
graph G = (V,E1 ∪E2, w) with n vertices, and an edge set of size m consisting of the union of two
Erdős-Renyi random graphs, where E1 ∼ Gn,p for any p > n−2/3 with all edges having weight 1 and
E2 ∼ Gn,1/3n with all edges having weight W = n1+ε for some constant ε > 0. We can assume that
edges in both E1 and E2 are given the larger weight.
We shall first establish an upper bound on the cost of the optimal hierarchical clustering in G, which
we claim is at most nm+O(nW log n). To prove this, we shall use the fact that with probability at
least 1− 1/n, (a) the subgraph G2 = (V,E2) is a union of connected components, each either a tree
or a unicyclic component, and (b) the degree of every vertex in G2 is at most 3. The former is well
known in the random graph literature, [39] and the latter follows from Bernstein’s concentration
inequality. Therefore, hierarchical clustering that first separates the different connected components
of G2, following which each connected component is partitioned recursively using a balanced sparsest
cut, i.e. the sparsest cut with a constant fraction of the remaining vertices on either side of the cut,
will achieve a cost of at most O(nW log n). The remaining edges in E1, regardless of how they are
arranged can cumulatively add no more than n|E1| to the cost of this hierarchical clustering.
Now consider any (randomized) algorithm that performs at most 2m/9 neighbour and pair queries
in total, and let T be the hierarchical clustering returned by this algorithm. Consider a balanced
cut (S, S) in this tree, i.e. an internal node S with min{|S|, |S|} ≥ n/3. Since the number of queries
made is bounded by 2m/9, there necessarily are at least 2n2/9− 2m/9 ≥ n2/9 unqueried edge pairs
from the cut (S, S). Furthermore, there are at least m− 2m/9 = 7m/9 unqueried edges in G. For
every unqueried edge, there is at least a constant (n2/9)/

(
n
2

)
≥ 2/9 probability that it realized

into an edge slot from the cut (S, S̄), and then at least a 1/(3n) marginal probability that it came
from E2. Therefore in expectation, there are at least (7m/9) · (2/9) · (1/3n) ≥ m/(18n) edges from
G2, each having weight W that go across the cut (S, S̄). Since |S| ≥ n/3, the contribution of each
heavy edge to the cost of T is at least n/3 ·W , and therefore, the expected cost of T is at least
(m/18n) · (n/3) ·W = mW/54 due to these heavy edges alone. Note that this argument holds even

24

if the neighbours of every vertex are ordered randomly.
Now by comparing the cost of the optimal clustering, which is at most nm+O(nW log n), to the
expected cost of the hierarchical clustering produced by an algorithm that makes at most 2m/9
queries, which is Ω(mW), it is easy to see that the approximation ratio in expectation is Ω(nε) when
W = n1+ε and m ≥ n1+ε log n.

6 Sublinear Communication Algorithms under MPC Model
Finally, we consider the bounded communication setting in the massively parallel computation (MPC)
model of [21], where the edge set of the input graph is partitioned across several machines which
are inter-connected via a communication network. The communication proceeds in synchronous
rounds. During each round of communication, any machine can send any information to an arbitrary
subset of other machines. However, the total number of bits a machine is allowed to send or receive
is limited by the memory of the machine. Between two successive rounds, each machine is allowed
to perform an arbitrary computation over their inputs and any other bits received in the previous
rounds. At the end, a machine designated as the coordinator is required to output a solution based
on its initial input and the communication it receives. The objective is to study the trade-off between
the number of rounds and communication required by each machine, or as alternatively stated,
minimize the number of rounds given a fixed communication budget for each machine. Note that
the communication budget of each machine is same as the memory given to the machine.

6.1 A 2-Round Õ(n) Communication Algorithm

We first give a 2 round algorithm that requires Õ(n) communication per machine. The following is
the main result of this section.

Theorem 6. There exists a randomized MPC algorithm that, given a weighted graph G = (V,E,w)
over n vertices where edge weights are O(poly(n)), and a φ-approximate hierarchical clustering oracle,
can compute with high probability a (1 + ε)φ-approximate hierarchical of G in 2 rounds using Õ(ε−2n)
communication per machine and access to public randomness.

In order to prove this theorem we will utilize a result from [19] for constructing (ε, 0)-cut sparsifiers
using linear graph sketches. Given L : Rd → Rd′ and x ∈ Rd, we say that L(x) is a sketch of x. In
order to sketch a graph, we represent each vertex in the graph using a

(
n
2

)
-dimensional vector and

then compute a sketch for each vertex. Let the vertices in the graph be indexed as 1, · · · , n. For
each i ∈ [n], we will define a vector x(i) ∈ {−1, 0, 1}(

n
2) as follows: we first compute a matrix M of

size n× n with

Mij =


−1 (i, j) ∈ E and i < j

+1 (i, j) ∈ E and i > j

0 otherwise
.

The vector xi is then obtained by flattening M after removing all the diagonal entries. The following
theorem summarizes the result of [19] for computing cut-sparsifiers using linear sketches.

Theorem 7 ([19]). For any ε > 0, there exists a (random) linear function L : R(n2) → RO(ε−2poly logn)

such that, given any graph G = (V,E,w) over n vertices with edge weights that are O(poly(n)), a
(ε, 0)-cut sparsifier can be constructed with high probability using the sketches L(x(1)), · · · , L(x(n)) of
each vertex. Moreover, each of these sketches can by computed using O(ε−2poly log n) space given
access to fully independent random hash functions.

25

Note that an important property of this sketch is that it is linear, which means that (partial)
independently computed sketches L(x(i,1)), · · · , L(x(i,t)) for a vertex i can be added together to get a
sketch L(x(i)) = L(x(i,1)) + · · ·+ L(x(i,t)). We will now use this result for computing a cut-sparsifier
using 2 rounds of MPC computation. We will use the same construction of linear sketches for each
vertex as in this result.

2-round MPC Algorithm:

1. Input: Parameter ε ∈ (0, 1/2], graph G = (V,E,w) such that edges are partitioned over k
machines.

2. Let each machine be responsible for constructing the sketch for n/k (arbitrarily chosen) vertices.

3. Divide the weights into O(log n) weight classes similar to [19].

4. Each machine locally constructs a (random) linear sketch of size O(ε−2poly log n) for each
vertex and weight class. Each machine computes the sketches according to the same function
L using Theorem 7 by computing the same random hash functions through public randomness.

5. Round 1: Each machine sends its local linear sketches of a vertex to the machine that is
responsible for this vertex.

6. For each weight class, each machine constructs the linear sketches for each of its responsible
vertices by adding the corresponding partial linear sketches.

7. Round 2: Each machine sends its n/k linear sketches to the coordinator.

8. The coordinator constructs a (ε, 0)-cut sparsifier using the algorithm of [19] and outputs a
ψ-approximate hierarchical clustering over the cut sparsifier.

The above pseudo-code outlines the 2-round algorithm for hierarchical clustering in the MPC model.
Here, we arbitrarily partition vertices into k sets of size (n/k) each, and designate each machine
to be responsible for constructing the sketch for n/k (arbitrarily chosen) vertices. Since, the edges
are partitioned over k machines, a given machine might not have all the edges incident on a vertex.
Hence, in the first round each machine will locally construct a linear sketch for each vertex based
on its edges. Note that each machine will construct linear sketches using the same function L by
sampling the same random hash functions. Then each machine sends their local linear sketches for
each vertex to the responsible machines. Each machine can send Õ(ε−2n) bits in total as the sketch
of each vertex is of size O(ε−2poly log n). Moreover, each machine can receive Õ(ε−2n) bits as it
can receive at most Õ(ε−2n/k) bits from k − 1 other machines. Each machine then constructs the
linear sketches for its vertices by adding the corresponding sketches. Note that these sketches are
valid due to linearity and the fact that the random hash functions are shared across all machines.
Finally, each machine will send its sketches to the coordinator. The coordinator will then compute a
cut sparsifier using these sketches and run a φ-approximate hierarchical clustering algorithm over
the sparsified graph. Using Theorem 7 and Lemma 1, we can easily argue that the coordinator’s
hierarchical clustering will be (1 +O(ε)) · φ-approximate with high probability.

6.2 A 1-Round Õ(n4/3) Communication Algorithm

We next consider the possibility of computing a good hierarchical clustering in just a single round
in the MPC model. However, as we will show in Section 8, computing in one round requires
Ω(n4/3) communication (and hence, machine memory) requirement, even for unweighted graphs. In

26

this setting, give a 1-round Õ(n4/3) communication MPC algorithm for hierarchical clustering of
unweighted graphs assuming knowledge of the number of edges in the input graph, and the number
of machines being bounded by m/n4/3.

Theorem 8. There exists a randomized MPC algorithm that, given an unweighted graph G = (V,E)
over n vertices and m edges, a parameter 0 < ε ≤ 1/2, and a φ-approximate hierarchical clustering
oracle, can compute with high probability a (1 + ε)φ-approximate hierarchical clustering of G in 1
round using Õ(ε−2n4/3) communication per machine and k ≤ m/n4/3machines with access to public
randomness.

The following pseudo-code outlines the 1-round algorithm.

1-round MPC Algorithm:

1. Input: Parameter ε ∈ (0, 1/2], graph G = (V,E) with m edges such that edges are partitioned
over k ≤ m/n4/3 machines each with memory Ω̃(ε−2n4/3).

2. If m = βn4/3 for β ≥ n1/3 then

(a) Each machine samples its each of its local edges independently with probability p =
C(ε2β)−1 log n for some sufficiently large constant C and sends all the sampled edges
with weight 1/p to the coordinator.

(b) Let δ := m2/n3 = β2/n1/3, and let H = (V,Eh, wh) be the weighted graph induced by the
sampled edges received from all machines. The coordinator constructs a constant degree
expander Gx = (V,Ex, wx) with all edges having weight εδ, and embeds this weighted
expander in H. Let G̃ = (V,Eh ∪ Ex, wh + wx) be the resultant composite graph.

(c) The coordinator runs a φ-approximate hierarchical clustering on G̃ and returns the answer.

3. Else if m = αn for α < n2/3 then

(a) Each machine computes a (random) linear sketch of size O(ε−2poly log n) for all vertices
using the local edges. Each machine computes the sketches according to the same
function L using Theorem 7 by computing the same random hash functions through
public randomness.

(b) Each machine sends its local linear sketches to the coordinator.

(c) The coordinator adds the partial linear sketches corresponding to each vertex to get one
linear sketch per vertex. It then runs the algorithm of [19] for computing a (ε, 0)-cut
sparsifier. Finally, it runs a φ-approximate hierarchical clustering over the cut sparsifier
and returns the answer.

The execution of the above algorithm is divided into two cases based on the number of edges in the
graph. We analyze these two cases separately below.
Analysis for Case 1: We first observe that in this case, since the total number of edges in the
graph G that is distributed across all machines is βn4/3, and each machine samples its local edges
with probability p = C(ε2β)−1 log n, the total number of edges sampled across all machine, and
therefore, the total communication to the coordinator is Õ(ε−2n4/3).
We shall now bound the cost of the hierarchical clustering returned by our scheme. We begin by
lower bounding the cost of any hierarchical clustering T of G, which by Lemma 2 is at least β2n5/3,
which implies that δ := β2/n1/3 ≤ costG(T)/n2 for any hierarchy T . We shall argue that in the

27

weighted sampled graph H = (V,Eh, wh) received by the coordinator, with probability at least
1− 1/poly(n), the weight of any cut (S, S) is such that

(1− ε)wG(S)− εδmin{|S|, |S|} ≤ wH(S) ≤ (1 + ε)wG(S) + εδmin{|S|, |S|}. (11)

Assuming this bound, it is relatively straightforward to prove that running the φ-approximate
hierarchical clustering algorithm on the composite graph G̃ = (V,Eh ∪Ex, wh + wx) would produce
a (1 +O(ε))φ-approximate clustering. This follows by observing that the composite graph G̃ is an
(ε,Θ(εδ))-sparsifier of the input graph G, as the weight of any cut (S, S) in G̃ is

(1− ε)wG(S) ≤ w
G̃

(S) = wH(S) + wGx(S) ≤ (1 + ε)wG(S) + Θ(εδ) min{|S|, |S|},

where both inequalities follow by substituting the bounds in Eq. (11), and observing that for any
cut (S, S), the weight wGx(S) = εδ ·Θ(min{|S|, |S|}) due to expansion and choice of edge weights in
Gx. This guarantee together with Lemma 1 proves our claimed bound on the cost of the hierarchical
clustering computed by our algorithm.
We shall now prove the bounds claimed in Eq. (11). Consider any cut (S, S), and let us assume
that |S| = k ≤ n/2. Let ES be the edges that cross the cut (S, S) in graph G. For every edge
e ∈ ES , we define a random variable Xe that is Bernoulli with parameter p = C(ε2β)−1 log n,
taking value 1 if edge e is sampled. Therefore, the weight of this cut in H is the random variable
wH(S) = p−1

∑
e∈ES Xe. We shall now bound the probability of the bad event where the value of

this cut wH(S) > (1 + ε)wG(S) + εδk as

Pr(wH(S) > (1 + ε)wG(S) + εδk) = Pr

∑
e∈ES

Xe > (1 + ε)E[wG(S)] + εδpk


= Pr

∑
e∈ES

(Xe − p) > εE[wG(S)] + εδpk


= Pr

∑
e∈ES

Ye > εE[wG(S)] + εδpk

 ,

where for any edge e ∈ ES , random variable Ye = Xe − p is such that E[Ye] = 0, |Ye| ≤ 1− p, and
E[Y 2

e] = p(1− p). Therefore, by Bernstein’s inequality,

Pr

∑
e∈ES

Ye > εE(wG(S)) + εδpk

 ≤ exp

(
− 3

2(1− p)
· ε2 (E[wG(S)] + δpk)2

(3 + ε)E[wG(S)] + εδpk

)
. (12)

Now there are two cases, either the cut (S, S) is such that (a) E[wG(S)] ≥ δpk or (b) E[wG(S)] < δpk.
In the first case, we have the upper bound in Eq. (12) is at most

Pr

∑
e∈ES

Ye > εE(wG(S)) + εδpk

 ≤ exp

(
− 3ε2 E[wG(S)]

2(1− p)(4 + ε)

)

≤ exp

(
− 3ε2δpk

2(1− p)(4 + ε)

)
(a)

≤ exp

(
− 3Cβk log n

2(1− p)(4 + ε)n1/3

)
(b)

≤ exp
(
−C ′k log n

)
,

28

where C ′ is a constant, with (a) following by choice of p and δ, and (b) following by observing that
β ≥ n1/3. In the second case, we have the upper bound in Eq. (12) is at most

Pr

∑
e∈ES

Ye > εE(wG(S)) + εδpk

 ≤ exp

(
− 3ε2δpk

2(1− p)(3 + 2ε)

)
(a)

≤ exp
(
−C ′k log n

)
,

where (a) follows by the same calculation as the previous case. Therefore, by taking a union bound
over all cuts (S, S) with |S| = k ≤ n/2, we have that

Pr(∃ S : |S| = k, and wH(S) > (1+ε)wG(S)+εδk) ≤
(
n

k

)
exp

(
−C ′k log n

)
≤ exp

(
−(C ′ − 1)k log n

)
,

and therefore, a union bound over all choices of 1 ≤ k ≤ n/2 gives us that for a sufficiently large
constant C, with probability at least 1− 1/poly(n), we have for all cuts (S, S)

wH(S) ≤ (1 + ε)wG(S) + εδmin{|S|, |S|}.

Following an identical analysis for Ye = p−Xe gives us that with probability at least 1− 1/poly(n),
we have for all cuts (S, S)

wH(S) ≥ (1− ε)wG(S)− εδmin{|S|, |S|},

proving the bound claimed in Eq. (11), completing the analysis for this case where β ≥ n1/3.
Analysis for Case 2: In this case the number of edges in the graph is at most n5/3. Since the
memory of each machine is Ω̃(ε−2n4/3), the number of machines can be at most n1/3. Each machine
constructs linear sketches over its input and sends these to the coordinator similar to the 2-round
algorithm in Section 6.1. Note that the total communication is at most n1/3× Õ(ε−2n) = Õ(ε−2n4/3)
as each machine can only send Õ(ε−2n) bits to the coordinator. The coordinator then adds all the
sketches corresponding to each vertex and computes a cut sparsifier using the algorithm of [19].
Using Theorem 7, we can again argue that these linear sketches are such that one can recover a
(ε, 0)-cut sparsifier with high probability. The claimed bound on the cost of the hierarchical clustering
recovered then follows by a direct application of Lemma 1.

7 Tight Query Lower Bounds for Õ(1)-approximation
We note that, for unweighted graphs, our sublinear time algorithm requires only 2 rounds of adaptive
queries, where the first round only needs to query vertex degrees. Thus if one assumes prior knowledge
of vertex degrees, our algorithm is in fact non-adaptive. For weighted graphs, our algorithm requires
at most O(log n) rounds of adaptive queries due to the binary searches. In any case, our algorithm
makes at most Õ(n4/3) queries, where the worst-case input is an unweighted graph of about ≈ n4/3

edges.
We now show that, in a sharp contrast, even with unlimited adaptivity, our algorithm’s query
complexity is essentially the best possible for any randomized algorithm that computes a polylog(n)-
approximate hierarchical clustering tree with high probability. In particular, we establish below tight
query lower bounds when the input is an unweighted graph with m = Θ(nζ) edges for any constant
ζ ∈ [0, 2]. By plugging in ζ = 4/3 in Case 4, we get a matching lower bound for the worst-case
input graph.

Case 1: ζ = 2. Any binary hierarchical clustering tree has cost O(n3) (Fact 2), and by Lemma 2,
the optimal cost is at least Ω(n3). Thus trivially 0 queries are sufficient for O(1)-
approximation.

29

Case 2: ζ ∈ [0, 1]. It is not hard to show an Ω(n) query lower bound even for o(n)-approximation.
Specifically, consider using a random matching of size Θ(nζ) as a hard distribution,
whose optimal hierarchical clustering cost is Θ(nζ). However, any o(n)-query algorithm
can only discover an o(1)-fraction of the matching edges, and with an Ω(1) fraction of
the matching edges having high entropy, any balanced cut of the graph has nontrivial
probability of cutting Ω(nζ) matching edges, incurring a cost of Ω(n1+ζ).

On the algorithmic side, one can simply probe all edges with O(n) queries and then run
any hierarchical clustering algorithm on the entire graph. Thus the query complexity for
Õ(1)-approximation is settled at Θ(n).

Case 3: ζ ∈ [3/2, 2). One can show an Ω(n) query lower bound for Õ(1)-approximation, by
considering an input graph obtained by randomly permuting the vertices of a union of
vertex-disjoint cliques. We include a proof of this lower bound in Section 7.1.

On the algorithmic side, our sublinear time algorithm obtains anO(
√

log n)-approximation
using Õ(n) queries in this case, which is nearly optimal.

Case 4: ζ ∈ (1, 3/2). Let γ := ζ − 1 ∈ (0, 1/2). Our sublinear time algorithm obtains an
O(
√

log n)-approximation using Õ(nmin{1+γ,2−2γ}) queries. We show in Section 7.2 that
this is nearly optimal even for Õ(1)-approximation.

7.1 Lower bound for m between n3/2 and n2

Theorem 9 (Lower bound for m between n3/2 and n2). Let γ ∈ [1/2, 1) be an arbitrary constant.
Let A be a randomized algorithm that, on an input unweighted graph G = (V,E) with |V | = n and
|E| = Θ(n1+γ), outputs a polylog(n)-approximate hierarchical clustering tree with probability Ω(1).
Then A necessarily uses Ω(n) queries.

We will show that there exists a distribution D over graphs with n vertices and Θ(n1+γ) edges, on
which no deterministic algorithm using o(n) queries can output a polylog(n)-approximate hierarchical
clustering tree with probability ≥ .99. This coupled with Yao’s minimax principle [40] will prove
Theorem 9.
We define D such that a graph G ∼ D is generated by first taking a union of n1−γ vertex-disjoint
cliques of size nγ , and then permuting the n vertices uniformly at random. More formally, we first
pick a uniformly random permutation π : [n] → [n], and then let G be a union of vertex-disjoint
cliques C1, . . . , Cn1−γ each of size nγ such that Ci is supported on vertices

Si := {π((i− 1)nγ + 1), . . . , π(inγ)} .

By Fact 2, we know that the optimal hierarchical clustering cost of each clique is O(n3γ). Therefore,
summing this cost over all cliques, we have:

Proposition 1. The optimal hierarchical clustering tree of G has cost O(n1+2γ).

We now describe a process that interacts with any given deterministic algorithm A using o(n) queries
while generating a uniformly random permutation π : [n] → [n] along with its inverse function
π−1 : [n] → [n]. Specifically, we will generate π, π−1 by realizing them entry by entry adaptively
based on the queries made be the algorithm. Thus, when realizing an entry of π or π−1, we will
always do so by conditioning on their already realized entries. Also note that since the degree of
each vertex is the same (namely nγ − 1), we will give the degree information to A for free at the
start. The process then proceeds by the following two principles:

30

Principle 1: Upon a pair query between i, j, realize π−1(i), π−1(j) and then answer the query
accordingly.

Principle 2: Upon a neighbor query about the `th neighbor of i, first realize π−1(i). Let k be
such that the `th neighbor of i is π(k). Then realize π(k) and answer the query
accordingly.

Clearly, each query triggers the realization of O(1) entries of π and π−1. Thus, after A terminates,
the number of realized entries of π and π−1 is at most o(n). Let U ⊂ [n] with |U | ≥ (1−o(1))n be the
set of indices whose π values are not realized, and similarly let W ⊂ [n] with |W | = |U | ≥ (1−o(1))n
be the set of indices whose π−1 values are not realized.
Let T be the hierarchical clustering tree output by A, which we suppose for the sake of contradiction
is polylog(n)-approximate. We first make T a full binary tree such that the bi-partition of each
internal node is [1/3, 2/3]-balanced, during which we increase the cost of the tree by at most an O(1)
factor. We next consider the bi-partition of the root, which is a cut (S, S̄) with |S| ∈ [n/3, 2n/3].
Let S′ := S ∩W and T ′ := S̄ ∩W , and thus (S′, T ′) is a bi-partition of W . Since |W | ≥ (1− o(1))n,
we have |S′| ∈ [|W |/6, 5|W |/6]. Since also |U | ≥ (1− o(1))n, we have that for at least Ω(1) fraction
of the cliques Ci’s (which are supported on Si’s), we have

| {(i− 1)nγ + 1, . . . , inγ} ∩ U | ≥ nγ/2.

For each such clique Ci, the number of edges within Ci that are across (S′, T ′) is Ω(n2γ) with
high probability. Therefore, the size of the cut (S, S̄) is at least Ω(n1+γ) with high probability.
This means that the cost of T is at least Ω(n2+γ), which together with γ < 1 contradicts T being
polylog(n)-approximate.

7.2 Lower bound for m between n and n3/2

Theorem 10 (Lower bound for m between n and n3/2). Let γ ∈ (0, 1/2) be an arbitrary constant.
Let A be a randomized algorithm that, on an input unweighted graph G = (V,E) with |V | = n and
|E| = Θ(n1+γ), outputs with Ω(1) probability a polylog(n)-approximate hierarchical clustering tree.
Then A necessarily uses at least nmin{1+γ,2−2γ}−o(1) queries.

By Yao’s minimax principle [40], to prove Theorem 10, it suffices to exhibit a hard input distribution
on which every deterministic algorithm using a small number of queries fails with nontrivial probability.
Specifically, we will show that there exists a distribution D over graphs with n vertices and Θ(n1+γ)
edges such that, on an input graph drawn from D, any deterministic algorithm using nmin{1+γ,2−2γ}−δ

queries for any constant δ > 0 can only output a polylog(n)-approximate hierarchical clustering tree
with o(1) probability.

The hard distribution. We start by defining the hard distribution D over graphs with n vertices
and Θ(n1+γ) edges. Roughly speaking, we will generate an input graph G by first taking the union of
a certain number of cliques C1, . . . , Ck of equal size n/k, and then adding some artificially structured
edges between them. We will then show that even the edges between the cliques are relatively tiny
compared to those within, it is necessary to discover them in order to output a good hierarchical
clustering solution.
More specifically, we will decide what edges to add between cliques based on the structure of a
randomly generated “meta graph” H on k supernodes, with supernode i in H representing the clique
Ci. We generate the meta graph H by picking a uniformly random perfect matching between the k

31

supernodes (assuming for simplicity k is even). Then for each matched pair of supernodes i, j in the
meta graph H, we will add between Ci and Cj a random bipartite matching of certain size (note
that this matching is in the actual graph G rather than the meta graph H). Moreover, when adding
the latter matching edges in G, we will also delete some edges inside Ci, Cj to ensure that every
vertex has the exact same degree, so that an algorithm cannot tell which vertices participate in the
meta graph’s perfect matching by only looking at the vertex degrees. We will then show:

1. Any deterministic algorithm using nmin{1+γ,2−2γ}−δ queries for any δ > 0 can only discover an
o(1) fraction of the matching edges in the meta graph H.

2. If Ω(1) fraction of the matching edges have high entropy, an algorithm cannot output a
polylog(n)-approximate hierarchical clustering tree with Ω(1) probability.

We now formally describe how we generate a graph G from D. Let the vertices of G be numbered 1
through n. We divide the vertices into n1−γ groups S1, . . . , Sn1−γ each of size nγ , where

Si := {(i− 1)nγ + 1, . . . , inγ} .

We then generate the edges of G by the process in Figure 2.

1. Generate a meta graph H on supernodes numbered 1, . . . , n1−γ by picking a uniformly random
perfect matching (of size n1−γ/2) between them.

2. Initially, add a clique Ci of size nγ to each vertex group Si, and insert the clique edges into
the adjacency list of G in an arbitrary order.

3. Let t← n
max{0,3γ−1}+ 1√

logn . In what follows, we will add a matching of size 2t between each
matched clique pair.

4. For each matched pair of supernodes i, j in the meta graph H:

(a) Add a uniformly random bipartite matching Mi,j of size 2t between Si and Sj , and let
Ti,j denote the vertices matched by Mi,j (thus |Ti,j ∩ Si| = |Ti,j ∩ Sj | = 2t).

(b) Inside Si (resp. Sj), pick a uniformly random perfect matching of size t between vertices
Ti,j ∩ Si (resp. Ti,j ∩ Sj), and delete its edges from clique Ci (resp. Cj).

(c) Modify the adjacency list of the vertices in G by replacing the edges deleted at Step 4b
with the edges added at Step 4a. This modification is valid because the degree of each
vertex is preserved.

Figure 2: Generation of G ∼ D.

Proposition 2. All vertices in G have degree exactly nγ − 1.

Proposition 3. The optimal hierarchical clustering tree of G has cost O(n1+2γ).

Proof. We will construct a hierarchical clustering tree as follows. At the first level, we divide the
entire vertex set into n1−γ/2 clusters where each cluster is a connected component. This step incurs
zero cost. We then construct a binary hierarchical clustering tree of each cluster arbitrarily. Since
each cluster has 2nγ vertices, the hierarchical clustering tree we construct for it has cost bounded by
O(n3γ) (Fact 2). Summing this upper bound over all n1−γ/2 clusters finishes the proof.

32

Analysis of deterministic algorithms on D. Let A be a deterministic algorithm that makes
nmin{1+γ,2−2γ}−δ queries for some constant δ > 0. Since all vertices have the same degree nγ − 1 in
G, we will give the degree information to A for free at the start. We shall then describe a process
that interacts with the algorithm A while generating a G ∼ D. To that end, we first define the
notion of revealed vertex groups.

Definition 2 (Revealed vertex groups). At any given point of the algorithm, we say a vertex group
Si is revealed by A if at least one of the following is true:

Condition 1: At least n2γ

10000t pair queries involving vertices in Si are made by A.

Condition 2: At least n2γ

10000t neighbor queries on vertices in Si are made by A.

Condition 3: A pair query by A finds a pair u, v ∈ Si not connected by an edge.

Condition 4: A pair query or a neighbor query by A finds a pair u ∈ Si, w /∈ Si connected by an
edge.

We now describe a process that answers queries made by A while adaptively realizing the edge slots
and the adjacency list of G, as well as the perfect matching in the meta graph H. Whenever realizing
a part, we will always do so following the distribution D conditioned on the already realized parts.
This means that if a part is already realized or determined by other realized parts, realizing it again
will not change it. The process proceeds according to the following three principles:

Principle 1: Upon a pair query, realize the corresponding edge slot and answer accordingly.

Principle 2: Upon a neighbor query, realize the corresponding entry of the adjacency list and
answer accordingly.

Principle 3: As soon as a group Si becomes revealed after a query, due to either large query
count or what we have answered by Principle 1 and Principle 2, right away do:

• Realize the supernode j that is matched to i in the meta graph H.
• Realize all edge slots incident on (and hence also all neighbors of) vertices in Si, Sj .

At any given point of this process, we say a vertex group Si is realized if all edge slots incident on
Si are realized. That is, the realized vertex groups are exactly those revealed by A and the ones
matched to them. This in particular implies that a perfect matching has been realized between the
realized vertex groups in the meta graph H, while none of the unrealized vertex group is matched.
As a result, one can show that the queries made so far that involve unrealized vertex groups must
have deterministic answers:

Proposition 4. At any point of the algorithm A, for the queries already made, we have:

• Every pair query between an unrealized vertex group and a realized one discovered no edge.

• Every pair query between two unrealized vertex groups discovered no edge.

• Every pair query within a same unrealized vertex group discovered an edge.

• Every neighbor query on a vertex in an unrealized vertex group found a neighbor within the
same group.

33

In what follows, we will consider the conditional distribution of D on all edge slots incident on
realized vertex groups, which we denote by Drz. Note that G′ ∼ Drz is not necessarily consistent
with the answers we gave to the queries that involve unrealized vertex groups, though these answers
are themselves deterministic by Proposition 4. By definition, a graph G′ ∼ Drz can be generated by
the process in Figure 3.

1. Add the edges incident on the realized vertex groups to G′.

2. Add the perfect matching between the realized vertex groups to the meta graph H.

3. Add a clique Ci of size nγ to each unrealized vertex group Si.

4. For each unrealized vertex group Si:

(a) If supernode i is not matched in the meta graph H, then match i to another uniformly
random unmatched j, and change the edges within Si ∪Sj using Steps 4a-4c in Figure 2.

Figure 3: Generation of G′ ∼ Drz.

Proposition 5. Consider generating G′ ∼ Drz conditioned on that an unrealized Si is matched to
another unrealized Sj in the meta graph H. Then G′[Si ∪ Sj] is consistent with previous answers
with probability at least .998.

Proof. First note that, when changing the edges within Si ∪ Sj at Step 4a in Figure 3, the edges
we delete from Ci (resp. Cj) distribute as a uniformly random matching of size t in Ci (resp. Cj),
and the edges we add between Si, Sj distribute as a uniformly random bipartite matching of size 2t
between Si, Sj , though these distributions are correlated.
Then note that G′[Si ∪ Sj] is not consistent with previous answers only if (i) the slot of an edge we
delete within Si or Sj was queried by A, or (ii) an edge we add between Si, Sj was queried by A.
Since Si, Sj are both unrevealed, they do not satisfy Condition 1 or Condition 2. As a result, we
can bound the probability of G′[Si ∪ Sj] being inconsistent with previous answers via a union bound
by

2 · 2n2γ

10000t
· t(

nγ

2

) +
2n2γ

10000t
· 2t

n2γ
≤ .002,

which proves the proposition.

We show that the number of realized vertex groups can be at most a o(1) fraction of the total.

Proposition 6. Upon termination of the algorithm A, the total number of realized vertex groups
Si’s is bounded by o(n1−γ) with probability at least 1− 1/n4.

34

Proof. The number of vertex groups that satisfy Condition 1 or Condition 2 can be at most

2 ·#queries
n2γ

10000t

=
2nmin{1+γ,2−2γ}−δ

n2γ

10000t

=
20000n

max{0,3γ−1}+ 1√
lognnmin{1+γ,2−2γ}−δ

n2γ
(plugging in the value of t)

=20000n
1−γ+ 1√

logn
−δ

≤n1−γ−Ω(1) ≤ o(n1−γ).

This means that the total number of realized vertex groups that satisfy Condition 1 or Condition
2 and those matched to them is at most o(n1−γ).
We then bound the number of realized vertex groups that do not satisfy Condition 1 or Condition
2 and are not matched to those who satisfy Condition 1 or Condition 2. Each such vertex group
must be (matched to) a revealed one that satisfies Condition 3 or Condition 4. We thus consider
the probability that a query makes an unrealized vertex group satisfy Condition 3 or Condition
4.

• Pair query: If a pair query involves a vertex in an already realized vertex group, then its
answer is already determined and it does not reveal any unrealized groups. Otherwise, if a
pair query only involves unrealized vertex groups, we show that the probability it reveals any
unrealized groups is at most 8t

n2γ . First consider the case that the query is within a single
unrealized group Si. For a G′ ∼ Drz, the probability that this query discovers a non-edge is at
most t

(n
γ

2)
. By Proposition 5, conditioned on Si being matched to another Sj in the meta graph

H, the probability that G′[Si ∪ Sj] is consistent with previous answers is ≥ .99. Therefore,
this query discovers a non-edge with probability ≤ 2t

(n
γ

2)
.

Then consider the case that the query is between two unrealized groups Si, Sj . If Si is not
matched to Sj in the meta graph H, then the pair query does not discover an edge, since there
is no edge between Si, Sj . Otherwise, for a G′ ∼ Drz, conditioned on Si being matched to Sj ,
the pair query discovers an edge with probability 2t

n2γ . By Proposition 5, the probability that
G′[Si ∪ Sj] is consistent with previous answers with probability ≥ .99. Therefore, this query
discovers an edge with probability ≤ 4t

n2γ .

• Neighbor query: Consider a neighbor query on a vertex u in an unrealized vertex group Si.
For a G′ ∼ Drz, the query finds an edge going out of Si with probability t

(n
γ

2)
. By Proposition 5,

conditioned on Si being matched to another Sj in the meta graph H, the probability that
G′[Si ∪ Sj] is consistent with previous answers with probability ≥ .99. Therefore, this query
discovers an outgoing edge with probability ≤ 2t

(n
γ

2)
.

Combining the above, a query makes an unrealized vertex group satisfy Condition 3 or Condition
4 with probability at most 8t

n2γ . Also, by doing so, a query can increase the number of realized vertex
groups by at most 4. As a result, the expected increase in the number of realized groups that do not

35

satisfy Condition 1 or Condition 2 over all queries made by A is at most

4 ·#queries · 8t

n2γ
=

32nmin{1+γ,2−2γ}−δ · t
n2γ

=
32nmin{1+γ,2−2γ}−δn

max{0,3γ−1}+ 1√
logn

n2γ
(plugging in the value of t)

=32n
1−γ+ 1√

logn
−δ

≤n1−γ−Ω(1) ≤ o(n1−γ).

Then the proposition follows by an application of Chernoff bounds.

Suppose we are now at the end of the algorithm A. Let Drz be D conditioned on all edge slots
incident on realized vertex groups, as defined above. Similarly, G′ ∼ Drz is not necessarily consistent
with the answers we gave to A’s queries that involve unrealized vertex groups, albeit these answers
are deterministic by Proposition 4. Also, let aaa denote the answers we gave to all queries made by A,
and let Drz,aaa denote the conditional distribution of Drz on aaa.

Lemma 4. Let (S, S̄) be any fixed cut with |S| ∈ [n/3, 2n/3]. With probability at least 1− 1/n, the
size of the cut (S, S̄) in G′′ ∼ Drz,aaa is at least n2γ+ 1√

logn /107.

Proof. Suppose after A terminates, the number of realized vertex groups is bounded by o(n1−γ),
which by Proposition 6 happens with high probability. Suppose we generate a G′ ∼ Drz using the
process in Figure 3. Consider an Si that is among the first unmatched n1−γ/13 unrealized vertex
groups that we iterate over at Step 4a in Figure 3. We claim that, with probability at least .1 over
the choice of Sj matched to Si and the edges we add between Si, Sj , t/100 of the latter edges are
across the cut (S, S̄).
To prove the claim, note that the number of choices of Sj to be matched to Si is at least 5n1−γ/6.
Let U denote the vertices in these Sj ’s, and thus we have |U | ≥ 5n/6. Define T := S ∩ U and
T ′ := S̄ ∩ U , which satisfy |T |+ |T |′ = |U | and |T | ∈ [|U |/6, 5|U |/6]. Then the expected number of
edge slots between Si, Sj that are across the cut (S, S̄) is given by

1

#j’s

∑
j

|Si ∩ S||Sj ∩ S̄|+ |Si ∩ S̄||Sj ∩ S|

=
1

#j’s
(
|Si ∩ S| · |T ′|+ |Si ∩ S̄| · |T |

)
(moving the summation inside)

≥ 1

n1−γ ·
|U |
6

(
|Si ∩ S|+ |Si ∩ S̄|

)
(as |T |, |T ′| ≥ |U |/6)

≥ 1

n1−γ ·
5n/6

6
· nγ (by |U | ≥ 5n/6)

>.13n2γ .

Then the expected number of edges that we add between Si, Sj that fall in these slots is at least

.13n2γ · 2t

n2γ
= .26t.

Since the number of edges between Si, Sj is 2t, by Markov’s inequality, the number such edges across
the cut (S, S̄) is at least t/100 with probability ≥ .1, as desired.

36

Thus, for a G′ ∈ Drz, in expectation, at least n1−γ/130 of the Si’s satisfy that between Si and the
matched Sj , t/100 edges are across the cut (S, S̄). By a Chernoff bound, with probability at least
1− e−n1−γ/500, the number of such Si’s is at least n1−γ/1300, in which case the cut size of (S, S̄) in
G′ is at least

t

100
· n

1−γ

1300
=130000−1n1−γn

max{0,3γ−1}+ 1√
logn

≥10−7n
2γ+ 1√

logn .

On the other hand, by Proposition 5, G′ is consistent with all answers aaa that we gave to A with
probability at least

.998n
1−γ/2 ≥ e−.0015n1−γ

.

As a result, the cut (S, S̄) in G′′ ∼ Drz,aaa has size at least 10−7n
2γ+ 1√

logn with probability at least
1− e−0.0005n1−γ , which suffices for proving the lemma.

We now conclude this section by proving Theorem 10.

Proof of Theorem 10. Let A be a deterministic algorithm that makes nmin{1+γ,2−2γ}−δ queries for
some constant δ > 0. Suppose for the sake of contradiction, on an input graph G ∼ D, A outputs
with probability Ω(1) a polylog(n)-approximate hierarchical clustering tree. First, we turn this tree
into a full binary tree such that the bi-partition of each internal node is [1/3, 2/3]-balanced, while
increasing the cost by at most an O(1) factor. We then consider the bi-partition of the root, which
is a cut (S, S̄) with |S| ∈ [n/3, 2n/3]. By Lemma 4, conditioned on the answers A got, this cut
has size at least n2γ+ 1√

logn /107 with high probability. However, by Proposition 3, the cost of the
optimal hierarchical clustering tree of G is at most O(n1+2γ). This means that A only obtains an
no(1)-approximation with high probability, a contradiction.

8 A One-Round MPC Lower Bound for Õ(1)-approximation
Theorem 11. Let P be any one-round protocol in the MPC model where each machine has memory
O(n4/3−ε) for any constant ε > 0. Then at the end of the protocol P , no machine can output a
polylog(n)-approximate hierarchical clustering tree with probability better than o(1).

To prove the theorem, we will (i) describe the graph distribution from which we generate an input
graph, (ii) specify how we split the input graph across multiple machines, and (iii) analyze the
performance of any one-round protocol on such input.

The hard graph instance. Let ε ∈ (0, 1/3) be an arbitrary constant. We first define a “base”
graph G of 2n vertices and Θ(n5/3−ε) edges as follows. G consists of two vertex-disjoint parts, each
supported on n vertices:

Part 1: A union of n1/3+ε bipartite cliques, each of size n2/3−ε (with each side having n2/3−ε/2
vertices), supported on vertex set V1 with |V1| = n.

Part 2: A union of n2/3+ε bipartite cliques, each of size n1/3−ε (with each side having n1/3−ε/2
vertices), supported on vertex set V2 with |V2| = n that is disjoint from V1.

We show that the induced subgraph G[V1] can be tiled using edge-disjoint subgraphs that are
isomorphic to G[V2].

37

Proposition 7. The vertex-induced subgraph G[V1] can be decomposed into n1/3 edge-disjoint sub-
graphs G1, . . . ,Gn1/3, each supported on V1 and consisting of n2/3+ε vertex-disjoint bipartite cliques
of size n1/3−ε.

Proof. Consider first arbitrarily partitioning vertices on each side of each bipartite clique in G[V1]
into vertex subsets of size n1/3−ε/2, and then collapsing each vertex subset into a supernode. By
further treating the parallel edges between a same pair of supernodes as a single edge, we have made
G[V1] a union of n1/3+ε bipartite cliques each supported on 2n1/3 supernodes (thus we have 2n2/3+ε

supernodes in total). Note that in this contracted version of G[V1], each perfect matching between
the 2n2/3+ε supernodes correspond to an edge-induced subgraph that is isomorphic to G[V2]. It is
now not hard to show that this contracted version of G[V1] can be decomposed into n1/3 edge-disjoint
perfect matchings, which proves the proposition.

In what follows, we will fix an arbitrary such tiling G1, . . . ,Gn1/3 . We next define a distribution D
such that a graph G ∼ D is generated by permuting the vertices of G uniformly at random. Let
π : [2n]→ [2n] be the permutation we use to generate G. We will then let V1, V2 be, respectively,
V1,V2 under the vertex permutation π. We also use G1, . . . , Gn1/3 to denote G1, . . . ,Gn1/3 under
the vertex permutation π, where the former form an edge-disjoint tiling of G[V1], and each Gi is
isomorphic to G[V2].
The next proposition bounds the optimal hierarchical clustering cost for any input graph G generated
as above.

Proposition 8. The optimal hierarchical clustering tree of G has cost at most O(n7/3−2ε).

Proof. We construct a hierarchical clustering tree by the following steps. At the root of the tree,
we divide the entire vertex set into n1/3+ε + n2/3+ε clusters with each cluster being a connected
component. This incurs zero cost of the tree. We next construct a binary hierarchical clustering tree
of each cluster arbitrarily. If a cluster is a bipartite clique of size n2/3−ε, then we incur a cost of
at most O(n2−3ε) (Fact 2). If a cluster is a bipartite clique of size n1/3−ε, then we incur a cost of
O(n1−3ε). Thus the total cost is O(n2−3ε) · n1/3+ε +O(n1−3ε) · n2/3+ε ≤ O(n7/3−2ε).

TheMPC input distribution. Consider that in the MPCmodel each machine has Θ(n4/3−ε log n)
bits of memory, and there are in total Θ(n1/3) machines. We will give G[V2] to a uniformly random
machine. We then give each of G1, . . . , Gn1/3 to a uniformly random remaining machine, while
ensuring that each machine gets at most one subgraph Gi.
Note that, each machine’s input has exactly the same distribution. Namely, each machine has the
same probability of having a non-empty graph. Moreover, for each machine, conditioned on that it
gets at least one edge, the graph it gets is a union of n2/3+ε bipartite cliques of size n1/3−ε plus n
isolated vertices, with all vertices permuted uniformly at random. However, the input distributions
of different machines are correlated.

Analysis of one-round protocols on the input distribution. We show that for any one-round
protocol P , no machine can output a polylog(n)-approximate hierarchical clustering tree of G with
probability Ω(1). We will do so by a reduction from a two-party one-way communication problem,
which we define next.
We specifically consider the following one-way communication problem in the two-party model, with
players Alice and Bob who have shared randomness. Alice is given as input a graph H on n vertices,
which is obtained by first taking a union of n1−γ bipartite cliques each of size nγ (with each side

38

having nγ/2 vertices), for some constant γ ∈ (0, 1), and then permuting the n vertices uniformly at
random. The goal of this communication problem is as follows:

For Alice to send Bob a single (possibly randomized) message such that, for some constant
δ > 0, Bob can then output with probability Ω(1) a cut (S, S̄) in H with |S| ∈ [n/3, 2n/3]
and size at most O(n1+γ−δ). (?)

We show that this problem requires Ω(n) communication. In particular, we will prove the following
theorem in Section 8.1.

Theorem 12. For any constant γ ∈ (0, 1), Alice needs to send a message of size Ω(n) to achieve
goal (?).

To reduce this two-party communication problem to our MPC problem, we prove the following
lemma.

Lemma 5. Suppose for ε > 0, there exists a one-round protocol P in the MPC model with
Θ(n4/3−ε log n) bits of memory per machine such that, at the end of P , some machine can output a
polylog(n)-approximate hierarchical clustering tree with probability Ω(1). Then there exists a one-way
protocol Q with message size o(n) in the two-party communication model that achieves goal (?) for
γ = 1/3− ε.

Proof. Suppose at the end of protocol P , some machine M∗ can output with probability Ω(1) a
polylog(n)-approximate hierarchical clustering tree. We first show that such a protocol P implies
another protocol P ′ in which M∗ can output a balanced cut of G[V2] with small size.

Claim 1. There is another one-round protocol P ′ in the MPC model in which M∗ can find with
probability ≥ Ω(1) a vertex set S ⊂ V2 such that |S| ∈ [n/3, 2n/3] and the number of edges between
S and V2 \ S in G is at most n4/3−2εpolylog(n).

Proof. P ′ proceeds by first simulating P , and then, in parallel, letting each machineM 6= M∗ sample
its input edges with probability 100 logn

n2/3−ε and send the sampled edges to M∗. With high probability,
the total number of edges that M∗ receives is O(n log n), and each bipartite clique of size n2/3−ε in
G[V1] is connected by the sampled edges. Therefore, by looking at the connected components of size
n2/3−ε in the subsampled graph, M∗ can recover V1, V2 exactly.
M∗ then uses the protocol P to output a hierarchical clustering tree T . We first make T a fully
binary tree without increasing the cost. We then look at an internal node of T corresponding to
a vertex set T such that |T ∩ V2| ∈ [n/3, 2n/3]. One can show that such an internal node exists
by starting at the root of the tree and keeping moving to the child that has a larger intersection
with V2 until finding a desired node. Let S := T ∩ V2. If we consider the edges between S and
V2 \ S in G, each of them incurs a cost of at least |T | ≥ n/3 in T . Since the cost of T is at most
n7/3−2εpolylog(n) with probability Ω(1), the number of edges between S and V2 \S must be bounded
by n4/3−2εpolylog(n) with probability Ω(1), as desired.

We now show how to use the protocol P ′ to construct a one-way protocol Q in the two-party
communication model that achieves goal (?) with γ = 1/3− ε. First note that, since the memory per
machine is Θ(n4/3−ε log n), the total message size received by M∗ is at most Θ(n4/3−ε log n). This
means that, on average, another machine sends a message of size Θ(n1−ε log n) to M∗. For each
machine Mi, let pi be the success probability of P ′ conditioned on that G[V2] is given to machine
Mi. Since P ′ succeeds with probability Ω(1), the average of pi must be Ω(1). Based on the above

39

two observations, by applying Markov’s inequality twice and then a union bound, we have that there
exists a machine Mj 6= M∗ that sends M∗ a message of size O(n1−ε log2 n) and has pj ≥ Ω(1).
The protocol Q proceeds as follows. Upon receiving the input graph, which is a union of n2/3+ε

bipartite cliques of size n1/3−ε, Alice shall treat its vertices as V2 and add n isolated vertices as V1.
Then she uses her shared randomness with Bob to permute the 2n vertices uniformly at random.
Note that now the new graph has the exact same distribution as the input given to machine Mj

in the MPC model conditioned on G[V2] being given to Mj . Alice then uses the same message
generation algorithm as Mj to produce a message and sends it to Bob.
Upon receiving the message from Alice, Bob himself then simulates protocol P ′ for other machines
Mi 6= Mj by generating their inputs conditioned on the realization of V1, V2 and simulating their
message generation algorithms. Finally, Bob runs the recovery algorithm of M∗ to recover a vertex
set S ⊂ V2, which satisfies with probability = pj ≥ Ω(1) that |S| ∈ [n/3, 2n/3] and that the number
of edges between S, V2 \S is at most n4/3−2εpolylog(n) ≤ O(n4/3−1.5ε). This means that the protocol
Q achieves goal (?) for γ = 1/3− ε with message size O(n1−ε log2 n) ≤ o(n).

Lemma 5 and Theorem 12 together rule out any one-round protocol in the MPC model with
O(n4/3−ε) memory per machine for any constant ε > 0, and thus prove Theorem 11.

8.1 A Lower Bound in the Two-Party Communication Model

In this section we prove Theorem 12, which gives a lower bound on the communication needed
to achieve goal (?). We first show that any cut in the input graph H given to Alice that has size
≤ O(n1+γ−Ω(1)) can be made into a cut of size 0 by changing the sides of an o(1) fraction of vertices.

Proposition 9. For any cut (S, S̄) in H with size at most O(n1+γ−δ) for any constant δ > 0, one
can obtain from it another cut of size 0 by switching the sides of at most O(n1−δ) vertices.

Proof. Let us call the bipartite cliques in H C1, . . . , Cn1−γ with Ci supported on vertices Si. For
each i, let si := |Si ∩ S| and ti := |Si ∩ S̄|. Then the number of edges of Ci across the cut (S, S̄) is
at least Ω(1) ·min {si, ti} · nγ . This means that we have

Ω(1) ·
∑
i

min {si, ti} · nγ ≤ O(n1+γ−δ)

which by rearranging gives ∑
i

min {si, ti} ≤ O(n1−δ).

Therefore we can obtain a new cut of size 0 from (S, S̄) by switching the sides of the vertices that
correspond to the summation on the LHS of the above inequality, whose total number is at most
O(n1−δ).

Using the above lemma, we then show that if one can achieve (?) using o(n) communication, then
one can also output a balanced cut with size 0 using o(n) communication.

Lemma 6. If there is a protocol that achieves goal (?) with message size o(n), then there is another
protocol in which Alice sends Bob a message of size o(n), such that Bob can then output with
probability Ω(1) a cut (S′, S̄′) in H with |S′| ∈ [n/6, 5n/6] and size 0.

40

Proof. We will design the second protocol by simulating the first protocol. To this end, let us fix a
protocol P that achieves goal (?) for some δ > 0, which consists of a message generation algorithm A
for Alice and a cut recovery algorithm B for Bob. At the start, Alice runs A to generate a message
M of size o(n). Then, Alice and Bob use their shared randomness to generate sufficiently many
random bits for running B. Alice first runs B given the message M on her own and gets a cut
(S, S̄). If the cut satisfies |S| ∈ [n/3, 2n/3] and has size at most O(n1+γ−δ), then Alice sends Bob
the message M along with a subset U of O(n1−δ) vertices whose switching sides makes cut (S, S̄)
have zero size (existence guaranteed by Proposition 9). Then Bob, upon receiving the message M
and the subset U of vertices, runs the recovery algorithm B using the shared random bits with Alice
and gets the same cut (S, S̄) with |S| ∈ [n/3, 2n/3] as Alice. By switching the sides of vertices in U ,
Bob then gets a cut (S′, S̄′) with |S′| ∈ [n/6, 5n/6] and size 0, as desired.

In light of the above lemma, we now consider another one-way two-party communication problem,
where Alice gets a same input graph H obtained by first taking a union of n1−γ bipartite cliques of
size nγ and then permuting all n vertices uniformly at random, and the goal is

For Alice to send Bob a single (possibly randomized) message such that Bob can output
with probability Ω(1) a cut (S, S̄) in H that satisfies |S| ∈ [n/6, 5n/6] and has size 0.
(??)

We show that it requires Ω(n) communication to achieve (??).

Lemma 7. For any constant γ ∈ (0, 1), Alice needs to send a message of size Ω(n) to achieve goal
(??).

Proof. Let P be a protocol that achieves (??). Then on an input graph H ∼ D, at the end of the
protocol P , Bob outputs with probability Ω(1) a cut (S, S̄) in H with |S| ∈ [n/6, 5n/6] and size 0.
We now analyze the entropy of the distribution D and that of D conditioned on the message M Bob
receives from Alice. First, note that an input graph H can be determined by first dividing the n
vertices into n1−γ groups each of size nγ , and then picking a balanced bi-partition for each group.
Thus the total number of different H’s can be calculated by

N1
def
=

 1

n1−γ !

n1−γ∏
i=1

(
n− (i− 1)nγ

nγ

) · ((nγ

nγ/2

)
/2

)n1−γ

. (13)

Thus the entropy of D is

H(D) = log2N1.

On the other hand, by Fano’s inequality, we have

H(D|M) ≤ H(D|(S, S̄)). (14)

We then do a case analysis to calculate H(D|(S, S̄)):

Case 1: The cut (S, S̄) satisfies |S| ∈ [n/6, 5n/6] and has size 0, which happens with probability
Ω(1). Since the cut (S, S̄) does not cut through any cliques, it must be that S contains

41

entirely |S|/nγ cliques and S̄ contains entirely the remaining |S̄|/nγ cliques. Therefore,
the total number of graphs H that is consistent with this profile is

N2
def
=

 1
|S|
nγ ! |S̄|nγ !

|S|/nγ∏
i=1

(
|S| − (i− 1)nγ

nγ

) |S̄|/nγ∏
j=1

(
|S̄| − (j − 1)nγ

nγ

) · ((nγ

nγ/2

)
/2

)n1−γ

.

Thus the entropy of D conditioned on the cut (S, S̄) is

H(D|(S, S̄)) = log2N2.

We can then calculate the difference between the entropy H(D) and H(D|(S, S̄)) by

H(D)−H(D|(S, S̄))

= log2

N1

N2

= log2

n!

|S|!|S̄|!

|S|
nγ ! |S̄|nγ !

n1−γ !
(plugging in the values of N1, N2)

= log2

(
n

|S|

)(
n1−γ

|S|/nγ

)−1

(rewriting as binomials)

≥ log2

(
n

|S|

)|S|(|S|/nγ
en1−γ

)|S|/nγ
(as

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
for any n, k)

= log2

(
n

|S|

)|S|(1−1/nγ)

e−|S|/n
γ

≥ log2 1.2(n/6)(1−100/nγ) (as |S| ∈ [n/6, 5n/6])
≥Ω(n).

Case 2: The cut (S, S̄) does not satisfy |S| ∈ [n/6, 5n/6] or has nonzero size, which happens with
probability 1− Ω(1). Since conditioning can only reduce entropy, we have

H(D)−H(D|(S, S̄)) ≥ 0.

Combining the above two cases with (14), we have

H(D)−H(D|M) ≥ Ω(n).

On the other hand, by the chain rule, we have

H(D|M) +H(M) = H(D,M) ≥ H(D).

As a result, H(M) ≥ Ω(n), and therefore M must contain Ω(n) bits.

We now prove Theorem 12.

Proof of Theorem 12. Suppose for the sake of contradiction there exists a protocol with message
size o(n) that achieves goal (?). Then by Lemma 6, there also exists a protocol with message size
o(n) that achieves goal (??), contradicting Lemma 7. Therefore Alice needs to send a message of
size Ω(n) in order to achieve goal (?), as desired.

42

9 Conclusions and Future Directions
In this paper, we studied hierarchical clustering problem under Dasgupta’s objective [1] in the regime
of sublinear computational resources. We gave sublinear space, query, and communication algorithms
for finding a (1 + o(1))φ-approximate hierarchical clustering, where φ is the approximation ratio
of any offline algorithm for this problem, and a sublinear time algorithm for finding an O(

√
log n)-

approximate hierarchical clustering. At the core of our sublinear algorithms is a novel meta-algorithm
which first obtains an (ε, δ)-cut sparsifier of the graph and then runs hierarchical clustering algorithm
on the sparsifier. We also proved sharp information-theoretic lower bounds showing that the
performance of all our sublinear algorithms is essentially optimal for any polylog(n)-approximation.
Note that all our algorithms and lower bounds are aimed at finding an explicit hierarchical clustering
tree. Therefore a natural direction for future work is to understand whether we can get even more
efficient sublinear algorithms if we only want to estimate the cost of the optimal hierarchical clustering
to within some small error. We note that a recent work [33] has already studied this question in the
streaming model by proving a number of lower bounds for the optimal cost estimation. However,
this direction remains completely unexplored in the setting of sublinear time (query model) and
sublinear communication (MPC model).

References
[1] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Daniel Wichs and

Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 118–127. ACM, 2016.

[2] Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Botstein. Cluster analysis and display of
genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95(25):14863–14868,
1998.

[3] Frédéric Gilbert, Paolo Simonetto, Faraz Zaidi, Fabien Jourdan, and Romain Bourqui. Communities and
hierarchical structures in dynamic social networks: analysis and visualization. Social Network Analysis
and Mining, 1(2):83–95, 2011.

[4] Pavel Berkhin. A survey of clustering data mining techniques. In Jacob Kogan, Charles K. Nicholas,
and Marc Teboulle, editors, Grouping Multidimensional Data - Recent Advances in Clustering, pages
25–71. Springer, 2006.

[5] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to information retrieval,
volume 39. Cambridge University Press Cambridge, 2008.

[6] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[7] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut and
spreading metrics. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 841–854. SIAM, 2017.

[8] Vaggos Chatziafratis, Rad Niazadeh, and Moses Charikar. Hierarchical clustering with structural
constraints. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 773–782. PMLR, 2018.

[9] Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than average-
linkage. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2291–2304.
SIAM, 2019.

43

[10] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierarchical
clustering: Objective functions and algorithms. J. ACM, 66(4):26:1–26:42, 2019.

[11] Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: A 0.585 revenue approximation.
In Jacob D. Abernethy and Shivani Agarwal, editors, Conference on Learning Theory, COLT 2020,
9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine Learning Research,
pages 153–162. PMLR, 2020.

[12] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. J. Mach. Learn. Res.,
18:88:1–88:35, 2017.

[13] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva.
Maximum flow and minimum-cost flow in almost-linear time. CoRR, abs/2203.00671, 2022.

[14] Jonah Sherman. Breaking the multicommodity flow barrier for o(vlog n)-approximations to sparsest cut.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27,
2009, Atlanta, Georgia, USA, pages 363–372. IEEE Computer Society, 2009.

[15] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph
problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[16] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[17] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time. In Gary L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47–55. ACM, 1996.

[18] Yin Tat Lee. Probabilistic spectral sparsification in sublinear time. CoRR, abs/1401.0085, 2014.

[19] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and
subgraphs. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini, editors, Proceedings of the
31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012,
Scottsdale, AZ, USA, May 20-24, 2012, pages 5–14. ACM, 2012.

[20] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913–1926, 2011.

[21] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query processing. J.
ACM, 64(6):40:1–40:58, 2017.

[22] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel algorithms
for geometric graph problems. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583. ACM, 2014.

[23] Bogdan-Adrian Manghiuc and He Sun. Hierarchical clustering: O(1)-approximation for well-clustered
graphs. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
9278–9289, 2021.

[24] Benjamin Moseley and Joshua R. Wang. Approximation bounds for hierarchical clustering: Average
linkage, bisecting k-means, and local search. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 3094–3103, 2017.

[25] Vaggos Chatziafratis, Grigory Yaroslavtsev, Euiwoong Lee, Konstantin Makarychev, Sara Ahmadian,
Alessandro Epasto, and Mohammad Mahdian. Bisect and conquer: Hierarchical clustering via max-uncut
bisection. In Silvia Chiappa and Roberto Calandra, editors, The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy],
volume 108 of Proceedings of Machine Learning Research, pages 3121–3132. PMLR, 2020.

44

[26] Mirmahdi Rahgoshay and Mohammad R. Salavatipour. Hierarchical clustering: New bounds and
objective. CoRR, abs/2111.06863, 2021.

[27] Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical clustering
for euclidean data. In Kamalika Chaudhuri and Masashi Sugiyama, editors, The 22nd International
Conference on Artificial Intelligence and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa,
Japan, volume 89 of Proceedings of Machine Learning Research, pages 2721–2730. PMLR, 2019.

[28] Benjamin Moseley, Sergei Vassilvitskii, and Yuyan Wang. Hierarchical clustering in general metric spaces
using approximate nearest neighbors. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021,
Virtual Event, volume 130 of Proceedings of Machine Learning Research, pages 2440–2448. PMLR, 2021.

[29] Anand Rajagopalan, Fabio Vitale, Danny Vainstein, Gui Citovsky, Cecilia M. Procopiuc, and Claudio
Gentile. Hierarchical clustering of data streams: Scalable algorithms and approximation guarantees. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pages 8799–8809. PMLR, 2021.

[30] Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness for single-linkage
clustering under lp distances. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 5596–5605. PMLR,
2018.

[31] Laxman Dhulipala, David Eisenstat, Jakub Lacki, Vahab S. Mirrokni, and Jessica Shi. Hierarchical
agglomerative graph clustering in nearly-linear time. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 2676–2686. PMLR, 2021.

[32] MohammadTaghi Hajiaghayi and Marina Knittel. Improved hierarchical clustering on massive datasets
with broad guarantees. arXiv preprint arXiv:2101.04818, 2021.

[33] Sepehr Assadi, Vaggos Chatziafratis, Jakub Lacki, Vahab Mirrokni, and Chen Wang. Hierarchical
clustering in graph streams: Single-pass algorithms and space lower bounds. In Conference on Learning
Theory (COLT) (To Appear, Personal Communication), 2022.

[34] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

[35] Ashish Goel, Michael Kapralov, and Ian Post. Single pass sparsification in the streaming model with
edge deletions. arXiv preprint arXiv:1203.4900, 2012.

[36] Andrew V Goldberg and Satish Rao. Beyond the flow decomposition barrier. Journal of the ACM
(JACM), 45(5):783–797, 1998.

[37] Joel Friedman, Jeff Kahn, and Endre Szemeredi. On the second eigenvalue of random regular graphs. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 587–598, 1989.

[38] Alan M Frieze. Edge-disjoint paths in expander graphs. SIAM Journal on Computing, 30(6):1790–1801,
2001.

[39] Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60, 1960.

[40] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity (extended
abstract). In 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977, pages 222–227. IEEE Computer Society, 1977.

45

	1 Introduction
	1.1 Overview of Algorithmic Results
	1.2 Overview of Lower Bounds
	1.3 Related Work
	1.4 Implications to Other HC Cost Functions

	2 Notation and Preliminaries
	3 Hierarchical Clustering using (,)-Cut Sparsification
	4 Sublinear Space Algorithms in the Streaming Model
	5 Sublinear Time Algorithms in the Query Model
	5.1 A Sublinear Time (,)-Cut Sparsification Algorithm for Unweighted Graphs
	5.2 Extension to Weighted Graphs

	6 Sublinear Communication Algorithms under MPC Model
	6.1 A 2-Round O"0365O(n) Communication Algorithm
	6.2 A 1-Round O"0365O(n4/3) Communication Algorithm

	7 Tight Query Lower Bounds for O"0365O(1)-approximation
	7.1 Lower bound for m between n3/2 and n2
	7.2 Lower bound for m between n and n3/2

	8 A One-Round MPC Lower Bound for O"0365O(1)-approximation
	8.1 A Lower Bound in the Two-Party Communication Model

	9 Conclusions and Future Directions

