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ABSTRACT

We study the problem of enumerating substrings that are common amongst genomes that
share evolutionary descent. For example, one might want to enumerate all identical (there-
fore conserved) substrings that are shared between all mammals and not found in non-
mammals. Such collection of substrings may be used to identify conserved subsequences
or to construct sets of identifying substrings for branches of a phylogenetic tree. For two
disjoint sets of genomes on a phylogenetic tree, a substring is called a tag if it is found in all
of the genomes of one set and none of the genomes of the other set. We present a near-linear
time algorithm that finds all tags in a given phylogeny; and a sublinear space algorithm (at
the expense of running time) that is more suited for very large data sets. Under a stochastic
model of evolution, we show that a simple process of tag-generation essentially captures
all possible ways of generating tags. We use this insight to develop a faster tag discovery
algorithm with a small chance of error. However, since tags are not guaranteed to exist in a
given data set, we generalize the notion of a tag from a single substring to a set of substrings.
We present a linear programming-based approach for finding approximate generalized tag
sets. Finally, we use our tag enumeration algorithm to analyze a phylogeny containing 57

whole microbial genomes. We find tags for all nodes in the phylogeny except the root for
which we find generalized tag sets.

Key words: design and analysis of algorithms, phylogenetically informative substring, phylogeny,
stochastic analysis, suffix tree.

1. INTRODUCTION

GENOMES ARE RELATED to each other by evolutionary descent. Thus, two genomes share sequence
identities in regions that have not experienced mutational changes; i.e., the genomes share common

subsequences. While common subsequences can also arise by chance, sufficiently long common sequences
are homologous (identity by descent) with high probability. The pattern of common subsequences in a set of
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genomes can be informative for reconstructing the evolutionary history of the genomes. Furthermore, since
stabilizing selection for important functions can suppress fixed mutational differences between genomes,
long common subsequences can be indicative of important biological function. This hypothesis has been
extensively used in comparative genomics to scan genomes for novel putatively functional sequences
(Bejerano et al., 2004, 2005; Siepel et al., 2005).

Typical approaches for obtaining such subsequences involve extensive pairwise comparison of sequences
using BLAST-like approaches along with additional modifications. Alternatively, one can use a dictionary-
based approach, scanning the genomes for presence of common k-mers (which is also the base approach
for BLAST heuristics). The presence and absence of such k-mers can be also used to identify unlabeled
genomes or reconstruct the evolutionary history. Detection of particular k-mers can be experimentally
implemented using oligonucleotide microarrays leading to a laboratory genome identification device.

For detecting functionally important common subsequences or for identifying unlabeled genomes, it is
important that k is sufficiently large to ensure homologous presence with high probability. However, the
required address space increases exponentially with k. Furthermore, not all patterns of k-mer presence are
informative for detecting common subsequences. If the phylogenetic relationship of the genomes is known,
then the phylogeny can become a guide to delineating the most informative common subsequences. For
any given branch of the tree, there will be substrings common to all genomes on one side of the branch
and not present on the other side. For example, there will be a collection of common substrings unique
to the mammalian lineage of the Vertebrates. Such substrings will be parts of larger subsequences that are
conserved in the mammalian genomes; and, such substrings will be indicators of mammalian genomes.
If we had an enumeration of all such informative common substrings, we can apply the information to
efficiently detect conserved subsequences or to an experimental detection protocol to identify unlabeled
genomes. In this paper, we describe a procedure to efficiently enumerate all such informative common
substrings (which we call “sequence tags”) with respect to a guide phylogeny. In particular, here we explore
the application to the construction of an identification oligonucleotide detection array, which can be applied
to high-throughput genome identification and reconstructing the tree of life.

More specifically, given complete genomes for a set of organisms S and the binary phylogenetic tree
that describes their evolution, we would like to be able to detect all discriminating oligo tags. We will say
that a substring t is discriminating at some node u of the phylogeny if all genomes under one branch of u
contain t while none of the genomes under any other branch of u contains t . Thus, a set of discriminating
tags, or simply tags, for all the nodes of a phylogeny allows us to place a genome that is not necessarily

sequenced in the phylogeny by a series of binary decisions starting from the root. This procedure can
be implemented experimentally as a microarray hybridization assay, enabling a rapid determination of
the position of an unidentified organism in a predetermined phylogeny or classification. It is noteworthy
that heuristic construction of short sequence tags has been used before for identification and classification
(Amann and Ludwig, 2000), but no algorithm has been presented for data driven tag design.

Our results

! We first present an efficient algorithm for enumerating substrings common to the extant sequences under
every node of a given phylogeny. The algorithm runs in linear time and space.

! We use our common-substrings algorithm to develop a near-linear time algorithm for generating the
discriminating substrings for every node of the phylogeny. Specifically, if S is the set of given genomes,
the discriminating-substrings algorithm runs in time O.njS j log jS j/ where n is the average length of
the genomes. This improves the analysis of Angelov et al. (2006) and an earlier bound of O.njS j2/
given in Angelov et al. (2004).

! Even though all the above algorithms require linear space, due to physical memory limitations they
may be impractical for analyzing very large genomic data sets. We therefore give a sublinear space
algorithm for finding all discriminating substrings (or all common substrings). The space complexity of
the algorithm is O.n=d/ and its running time is O.dnjS j2/ assuming each genome size is O.n/. The
tradeoff between the time and space complexities is controlled by the parameter d .

! We demonstrate the existence of tags in the prokaryotes data set of Wolf et al. (2002). The genomes
represented in the data set span two of the three recognized domains of life. We find that either left or
right tags exist for all nodes of the phylogeny except the root.
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! Motivated by our results on the microbial genomes, we study the potential application to arbitrary scale
phylogenetic problems using the Jukes-Cantor model of molecular evolution (Jukes and Cantor, 1969).
We assume that the given species set S is generated according to this model. We first analyze the case
where the phylogeny is a balanced binary tree with a uniform probability of change on all its edges. We

show that in this setting, if t is a tag that discriminates a set S 0 of species from set NS 0, then w.h.p. that

increases with the number of species—probability " 1= .1 C O.ln.n/=jS j//—t is present in the common

ancestor of S 0 (occurs early in the evolution) and is absent from the common ancestor of NS 0 (is absent

from the beginning). Our study of the stochastic model allows us to design faster algorithms for tag
generation with small error. Even when we allow arbitrary binary trees, we show that this probability
is " 1=2.

! As observed in our experiments and subsequent analysis, tags are not guaranteed to exist in a given
data set. We consider a relaxed notion of tags to deal with such a scenario. Given a partition .S 0; NS 0/ of
species, we say that a set T of tags is an .˛; ˇ/-generalized tag set for some ˛ > ˇ, if every species in S 0

contains at least an ˛ fraction of the strings in T and every species in NS 0 contains at most a ˇ fraction of
them. Clearly, such a tag set can still be used to decide whether a genome belongs to S 0 or to NS 0. We show
that the problem of computing generalized tag sets may be viewed as a set cover problem with certain
“coverage” constraints. We also show that this generalization of tags is both NP-hard and LOGSNP–hard
when .˛; ˇ/ D .2

3
; 1

3
/. However, if jT j D !.log m/, a simple linear programming based approach can

be used to compute approximate generalized tag sets. As an example, we find .2
3
; 1

3
/-generalized tag

sets for the root of the prokaryotes phylogeny (where we did not find tags).

2. PRELIMINARIES

Formally, the problems we consider are the following:

Hierarchical common substring problem (HCS)

Input: A set of strings S D fs1; : : : ; smg drawn from a bounded-size alphabet with total length
Pm

iD1 jsi j # nm, where n denotes the average length of the strings; and an m-leaf binary tree P whose
leaves are labeled s1; : : : ; sm sequentially from left to right.

Goal: For all u 2 P , find the set of (right-)maximal substrings common to the strings in Su, where Su

is the set of all the input strings in the subtree rooted at u.

A substring t common to a set of strings is right-maximal if for any non-empty string ˛, t˛ is no longer
a common substring, i.e., t is not a proper prefix of a common substring. The substring t is maximal
if it is not a substring of another common substring. Given a set of strings, (right-)maximal common
substrings compactly encode all common substrings. Here, we focus on finding right-maximal common
substrings. The obtained result generalizes to maximal substrings in a straightforward manner (Gusfield,
1997; Angelov et al., 2004).

Discriminating substrings. A substring t is said to be a discriminating substring or a tag for a node
u in a phylogeny if all strings under one branch of u contain t while none of the strings under the other
branch contain t . The input to the discriminating substring problem is the same as that for the first problem.

Discriminating substring problem

Input: A set of strings S and a binary tree P .
Goal: Find sets Du for all nodes u 2 P , such that Du contains all discriminating substrings for u.

We will also need the notion of a generalized tag set.

.˛; ˇ/-generalized tag set. Given a partition .S 0; NS 0/ of species, we say that a set T of tags is an
.˛; ˇ/-generalized tag set for some ˛ > ˇ, if every species in S 0 contains at least an ˛ fraction of the
strings in T and every species in NS 0 contains at most a ˇ fraction of them.
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Suffix trees. Suffix trees, introduced in Weiner (1973), play a central role in our algorithms. A suffix
tree T of a string s is a trie-like data structure that represents all suffixes of s. We adopt the following
definitions from Gusfield (1997). The path-label of a node v in T is the string formed by following the
path from the root to v. The path-labels of the jsj leaves of T spell out the suffixes of s, and the path-labels
of internal nodes spell out substrings of s. Furthermore, the suffix tree ensures that there is a unique path
from the root, not necessarily ending at an internal node, that represents each substring of s. We also say
that the path-label of node v is the string corresponding to v in the tree.

The algorithms we present are based on generalized suffix trees (Gusfield, 1997). A generalized suffix
tree extends the idea of a suffix tree for a string to a suffix tree for a set of strings. Conceptually, it can
be built by appending a unique terminating marker to each string, then concatenating all the strings and
building a suffix tree for the resultant string. The tree is post-processed so that each path-label of a leaf in
the tree spells a suffix of one of the strings in the set and, hence, is terminated with that string’s unique
marker.

Proposition 1 (McCreight, 1976; Ukkonen, 1995). Given a string of length n drawn from a bounded-

size alphabet, we can construct its suffix tree in O.n/ time and space.

3. THE HIERARCHICAL COMMON SUBSTRING PROBLEM

Long common substrings among genomes can be indicative of important biological functions. In this
section we give a linear time/linear space algorithm that enumerates substrings common to all sequences
under every node of a given binary phylogeny. This is a significant improvement over naively running the
linear time common substrings algorithm of Hui (1992) for every node of the phylogeny. By carefully
merging sets of common substrings along the nodes of the phylogeny and eliminating redundancies we
are able to achieve the desired running time. Note that for a given node, there may be quadratically many
substrings common to its child sequences. The algorithm will therefore list all right-maximal common
substrings. Such substrings efficiently encode all common substrings. The formal problem description is
given in Section 2. We start with two definitions.

Definition 1. Let C be a collection of nodes of a suffix tree. A node p 2 C is said to be redundant if

its path-label is empty or it is the prefix of some other node in C .

Definition 2. For a tree T , let o.v/ be the postorder index of node v 2 T .

Algorithm HCS. We preprocess the input as follows: (a) Build a generalized suffix tree T for the
strings in S by using two copies of every si 2 S , each with a unique terminating marker: s1#1a s1#1b

! ! !
sm#masm#mb

; (b) Process T so that lowest common ancestor (lca) queries can be answered in constant
time; and, (c) Label the nodes of T with their postorder index.

1. For each node u 2 P , build a list Cu of nodes in T with the following properties:
(P1) A substring t is common to the strings in Su if and only if t is a prefix of the path-label of a

node in Cu.
(P2) The elements of Cu are sorted based on their postorder index.
(P3) No element p of Cu is redundant.
The lists are built bottom-up starting with the leaves of P :
(a) For each leaf u 2 P , since jSuj D 1, compute Cu by removing the redundant suffixes of s 2 Su.
(b) For each internal node u 2 P , let l.u/ and r.u/ be the left and right children of u respectively.

We compute Cu D Cl.u/ u Cr.u/, where

A u B D fp D lca.a; b/ W a 2 A; b 2 B; p not redundantg :

2. For each u 2 P , output Cu.
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Analysis. The time and space complexities of the preprocessing phase are O.nm/ (see Proposition 1)
(Harel and Tarjan, 1984; Schieber and Vishkin, 1988). We note that the tree T is obtained by concatenating
two copies of each input string terminated with different end markers. This ensures that each suffix of
an input string terminates at an internal node of T and simplifies our presentation. The construction is
only conceptual and the above property can be emulated using the standard generalized suffix tree method
where each string appears only once.

We now analyze Step 1. The lists Cu for the leaves of P are first simultaneously built in Step 1(a) by
performing a postorder walk on T . Assuming Su D fsi g, node p ¤ root.T / is appended to list Cu if it
has an outgoing edge labeled “#ia .” Suffix tree properties guarantee that Cu will consist of all of the jsi j
suffixes of si . Since the list was constructed via a postorder walk on T , it will also possess P2. Property
P3 is obtained by scanning each list from left to right and removing redundant nodes. Observe that if p
is an ancestor of q, then p is an ancestor of all q0 satisfying o.q/ ! o.q0/ ! o.p/. Hence, we can remove
redundancies from each Cu in time linear in jsi j by examining only adjacent entries in the list. Since every
substring of si is a prefix of some suffix of si , and we removed only redundant suffixes, Cu possesses P1.
We obtain the following lemma.

Lemma 1. Cu possesses properties P1, P2, and P3 for each leaf u 2 P .

We now show how to compute the lists Cu for the internal nodes of P . We first show that the operation
u as defined in Step 1(b) preserves P1.

Lemma 2. Let u 2 P be the parent of l.u/ and r.u/. If Cl.u/ and Cr.u/ possess P1, then Cu D
Cl.u/ u Cr.u/ also possesses P1.

Proof. The string t is a common substring to the strings in Su if and only if t is common to the strings
in Sl.u/ and Sr.u/. This is equivalent to the existence of p 2 Cl.u/ and q 2 Cr.u/ such that t is a prefix of
the path-labels of both p and q. That is, t is a prefix of the path-label of lca.p; q/ as required.

For each internal node u 2 P , we construct a merged sorted list Yu containing all the elements of Cl.u/

and Cr.u/ with repetitions. Let src.a/ be the source list of node a 2 Yu. When computing Cl.u/ u Cr.u/,
the following lemma allows us to only consider the lca of consecutive nodes in Yu whose sources are
different.

Lemma 3. If a; a0; b; b0 2 T satisfy o.a0/ ! o.a/ ! o.b/ ! o.b0/, then lca.a0; b0/ is an ancestor of

lca.a; b/.

Proof. By postorder properties, lca.a0; b0/ is an ancestor of both a and b so it is an ancestor of
lca.a; b/.

Let a; a0; b; b0 2 Yu, where o.a0/ ! o.a/ ! o.b/ ! o.b0/. If src.a/ ¤ src.b/ and src.a0/ ¤ src.b0/, then,
since lca.a0; b0/ is an ancestor of lca.a; b/, the former is redundant. This suggests the following procedure
for computing the list Cu starting from the empty list. Suppose at step i 2 f1; : : : ; jYuj " 1g, a D YuŒi !
and b D YuŒi C 1!: If src.a/ D src.b/, proceed to next step; else, let p0 D lca.a; b/. If p0 D root.T / then
we discard it and proceed to the next step. In order to avoid redundancies before appending p0 to Cu, we
compute lca.p; p0/ where p is the last node appended to Cu. If lca.p; p0/ D p0 we discard p0, and if
lca.p; p0/ D p we replace p with p0.

Each step of the above procedure requires constant time. Hence, since jYuj ! jCl.u/j C jCr.u/j, the
procedure runs in O.jCl.u/j C jCr.u/j/ time. The next lemma shows the correctness of the procedure.

Lemma 4. For an internal node u 2 P , the above procedure correctly computes Cu D Cl.u/ u Cr.u/.

Furthermore, the list Cu is sorted and jCuj ! minfjCl.u/j; jCr.u/jg.
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Proof. Since the above procedure performs all necessary lca computations, we only need to show that
it maintains P2 and P3 for the resulting list. The proof for properties P2 and P3 proceeds by induction on
the steps of the procedure. Let u be an internal node of P . After the first step, jCuj ! 1, and Cu trivially
possesses P2 and P3. Now assume that the two properties are maintained for all i < k. We prove that they
also hold for i D k. Let p be the last node appended to Cu, and let p0 be the newly computed node. Note
that, by the inductive hypothesis, o.p/ " o.q/, 8q 2 Cu. We proceed by cases.

1. o.p0/ " o.p/ and p0 is an ancestor of p. Then, p0 is redundant and we do not append to Cu.
2. o.p0/ > o.p/ and p0 is not an ancestor of p. Then, by appending p0 to Cu, Cu remains sorted and

none of the nodes in Cu will be redundant. Assume, for contradiction, there is a node q such that
o.q/ < o.p/ and p0 is an ancestor of q. Then p0 is also an ancestor of p; a contradiction.

3. o.p0/ < o.p/ and p is an ancestor of p0. Then, p is redundant and is removed from the list. We now
show that Cu will remain sorted after adding p0. Assume it is not. Then, there exists q 2 Cu such that
o.p0/ < o.q/ < o.p/. It follows that p is also an ancestor of q; a contradiction. Finally, since p0 is
descendant of p, by the inductive hypothesis, it cannot be an ancestor of any other node in Cu.

4. o.p0/ < o.p/ and p is not an ancestor of p0. This case is impossible. Assume o.p0/ < o.p/ and p is
not an ancestor of p0, and let p D lca.a; b/ and p0 D lca.a0; b0/ where a; a0; b; b0 2 Yu. Since p0 is
generated at a later stage than p, it follows that o.p/ > o.p0/ " maxfo.a0/; o.b0/g " maxfo.a/; o.b/g.
But then p is an ancestor of p0; a contradiction.

Finally, jCuj ! jCl.u/j since !q; q0 2 Cu, q ¤ q0 where q and q0 are ancestors of the same node in
Cl.u/. If they were, one would be redundant. Since P3 ensures that Cu has no redundant nodes, we have
that jCuj ! jCl.u/j. Similarly, we have jCuj ! jCr.u/j.

We are now ready to state the following theorem.

Theorem 1. The Hierarchical Common Substring Problem can be solved in O.nm/ time and O.nm/
space.

Proof. The correctness of the algorithm follows from Lemmas 1, 2, 3, and 4. The time and space
requirements for Step 1(a) are bounded by O.nm/ C

P

jsi j D O.nm/ since to compute all lists Cu

when u is a leaf of P we need to walk T once, and postprocess each list in time proportional to jsi j.
For Step 1(b), we need time and space proportional to

P

internal u jCuj. From Lemma 4, we have jCuj !
minfjCl.u/j; jCr.u/jg for all internal nodes u 2 P . Hence, jCuj ! jCvj where v is the rightmost leaf of u’s
left subtree; therefore since each leaf node accounts for at most one internal node,

X

internal u

jCuj !
X

leaf v

jCvj ! nm:

The theorem follows.

4. THE DISCRIMINATING SUBSTRING PROBLEM

In this section, we will use the phylogeny for extracting the most informative substrings common to the
child sequences of every node in the phylogeny. Suppose we know that a sequence belongs to a certain
subtree of the phylogeny that is rooted at u. We wish to know whether the sequence belongs to the left or
right branch of u. If we knew the substrings common to the left subtree of u but not present in the right
subtree (or vice versa), then we would know to which of the two subtrees the sequence belongs. Hence for
a given node, the substrings that are common to its children but not present in the children of its sibling
are more informative than only the common ones. Below we show two methods with certain tradeoffs for
finding such discriminating substrings or tags, for every node in the phylogeny. It is easy to see that the set
of tags obtained by selecting a tag from each node on a root-leaf path uniquely distinguishes the sequence

at the leaf from all other sequences in the phylogeny.
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4.1. A near-linear time algorithm

The HCS algorithm finds all common substrings for each node in P . The common substrings are encoded
as the prefixes of the path-labels of the nodes in Cu for each u 2 P . However, these substrings may not
be discriminating. That is, the prefix of the path-label of a node p 2 Cl.u/ (symmetrically Cr.u/) may also
be a substring of one of the strings in Sr.u/ (Sl.u/). The following algorithm finds for each node in Cl.u/

its longest path-label prefix that is not discriminating.

Algorithm. Let Cu for all u 2 P be the output of the HCS algorithm and let T be the computed suffix
tree.

1. For each u 2 P , build a list Au of nodes in T with the following properties:
(P4) A string t is a substring of a string in Su if and only if t is a prefix of the path-label of a node

in Au.
(P5) The elements of Au are sorted based on their postorder index.
The lists are built bottom-up starting from the leaves of P :
(a) For each leaf node u 2 P , Au D Cu.
(b) For each internal node u 2 P n froot.P /g, compute Au D Al.u/ [ Ar.u/.

2. For each internal node u 2 P , compute the set of discriminating substrings encoded with Du, where,

Du D

(

.p; w/ W p 2 Cl.u/; o.p/ < o.w/; w D lca

 

p; arg min
q2Ar.u/

Œo.lca.p; q//!

!)

:

In the above expression for Du, w is the node in the suffix tree whose path-label is the longest proper
prefix of the path-label of p that is present in some string in the right subtree of u. For all q 2 Ar.u/,
arg minq2Ar.u/

Œo.lca.p; q//! finds the q that has the deepest lowest common ancestor with p, i.e., the q
whose path-label shares the longest prefix with that of p. The condition o.p/ < o.w/ guarantees that the
least common ancestor found is a proper ancestor to p.

Analysis. We first show how each Du encodes all discriminating substrings for u 2 P .

Lemma 5. A string t is discriminating for an internal node u 2 P if and only if 9.p; w/ 2 Du such

that the path-label of w is a proper prefix of t and t is a prefix of the path-label of p.

Proof. (if) Let .p; w/ 2 Du, and suppose t is a string such that the path-label of w is a proper prefix
of t and t is a prefix of the path-label of p. By P1, t is a common substring of the strings in Sl.u/. Assume
for contradiction that t is a substring of some string in Sr.u/. Then, by P4, 9q 2 Ar.u/ such that t is a
prefix of the path-label of q. But then, since w is a proper prefix of t , it is a proper prefix of the path-labels
of both p and q. Hence, o.w/ > o.lca.p; q//; a contradiction.

(only-if) Suppose t is a discriminating string for u. Then, 9p 2 Cl.u/ such that t is a prefix of the
path-label of p, and, by P4, !q 2 Ar .u/ such that t is a prefix of the path-label of q. Hence, the path-label

of w D lca
!

p; arg minq2Ar.u/
Œo.lca.p; q//!

"

is a proper prefix of t .

The next corollary, following from the definition of Du and Lemma 3, will allow us to efficiently
compute w as defined in Du for a given p 2 Cl.u/.

Corollary 1. Given p 2 Cl.u/ . Let q0; q00 2 Ar.u/ be such that

q0 D arg max
q2Ar.u/Wo.q/!o.p/

Œo.q/!; q00 D arg min
q2Ar.u/Wo.q/>o.p/

Œo.q/!:

If there is no such q0 (resp. q00), we set q0 D q00 (resp. q00 D q0). Let

w D arg min
q2flca.q0;p/;lca.q00;p/g

Œo.q/!:

Then, .p; w/ 2 Du if and only if o.p/ < o.w/, or equivalently, lca.q0; p/ ¤ p.
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We next show how to compute the lists Au for the internal nodes of P . Note that for a leaf u 2 P ,
since jSuj D 1 and Cu is sorted, Au D Cu trivially possesses both P4 and P5. Furthermore, for an internal
node u 2 P , the union operation maintains P4. Now merging two sorted lists of sizes N and M , with
M ! N , requires at least dlog

!

NCM
N

"

e D ‚.M log N
M

/ comparisons to distinguish among the
!

NCM
N

"

possible placements of the elements of the larger list in the output. We can use the results of Brown and
Tarjan (1980, 1979) and Pugh (1990), for example, to match this lower bound. The analysis assumes that
the Au lists are represented as linked-level 2-3 trees (Brown and Tarjan, 1980). Conversion of these lists
to 2-3 trees for the leaves is direct since they are sorted.

Lemma 6. The lists Au, for all u 2 P , can be computed in O.nm log m/ time.

Proof. For the purpose of analysis we assume that the elements in the sets Au for the leaf nodes of
P are all distinct, i.e., jAroot.P /j D

P

leaf u jAuj D O.nm/. Therefore these elements define an universe of
elements, call it U , and Au " U , for all u 2 P . Furthermore, note that an element a 2 Au, where u is a
leaf of P , occurs only in lists Av , where v is an ancestor of u.

Given an internal node u 2 P , let Su (resp. Lu) be the smaller (resp. larger) list of Al.u/ and Ar.u/

breaking ties arbitrarily and define xu D jLuj=jSuj. Since at each internal node, we merge the smaller list
(Su) into the larger one (Lu), the running time to compute the lists Au’s is proportional to

X

internal u

jSuj logxu:

We obtain a bound on the above quantity in terms of n and m by bounding the contribution of each
element of U to the running time. That is, consider an element a 2 U —for each node u such that a 2 Su,
we can charge the element a, O.log xu/ credits to the running time. We compute the total charge to all
elements of U as follows.

Given a leaf node u 2 P , let Xu be the set of ancestral nodes of u in P such that Au " Sv and jSvj # n
for all v 2 Xu. (Note that the size of Sv only increases as the distance between v and root.P / decreases.)
Let w 2 Xu be the closest node to u. Since jAvj # jSvj.xv C 1/ # jSvjxv, we have jSw j

Q

v2Xu
xv !

jAroot.P /j ! nm; hence
Q

v2Xu
xv ! m. Therefore, the contribution of each element a 2 Au to the running

time with respect to Xu is proportional to

X

v2Xu

log xv D log

0

@

Y

v2Xu

xv

1

A ! log m:

Therefore, each element a 2 U contributes at most O.log m/ to the running time of all merges where
jSuj # n. Since jU j D O.nm/, the total contribution is O.nm log m/.

Now, consider a node u where jSuj < n. Since jLuj ! nm, it takes O.jSuj log nm
jSuj

/ D O.n log m/ time
to compute the list Au. Since there are at most m $ 1 internal nodes, the total contribution of such merges
to the running time is O.nm log m/. The lemma follows.

Now, we can compute Du for an internal node u 2 P by finding the position of each p 2 Cl.u/ in the
sorted Ar.u/, determining its immediate neighbors q0 and q00, and computing w as in Corollary 1. If we
consider the elements of Cl.u/ in their sorted order, then by Brown and Tarjan (1980), and since jAr.u/j D
O.nm/, finding the positions of all the elements of Cl.u/ in Ar.u/ takes O

!

jCl.u/j log.nm=jCl.u/ j/
"

time.
Moreover, finding the neighbors of each one of these elements takes constant time. This leads to the
following lemma.

Lemma 7. Given the lists Au, for all nodes u 2 P , the lists Du, for all internal nodes u 2 P , can be

computed in O.nm log m/ time.

Proof. The running time to compute the lists Du, for all internal nodes u 2 P , is proportional to

X

internal u

jCl.u/j log.nm=jCl.u/ j/:
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From the proof of Theorem 1, we have that
P

internal u jCl.u/j !
P

u2P jCuj D O.nm/. The running
time is maximized when all of the m"1 lists Cl.u/ are as large as possible and have equal sizes. Therefore,
setting jCl.u/j D O.n/ we obtain the stated running time.

Note that we can simultaneously compute the lists Cu, Au, and Du, for each internal node u 2 P ,
in a bottom-up fashion discarding Al.u/ and Ar.u/ at the end of the computation for each u. Hence, the
total size of the Au lists we store at any point is no more than

P

leaf v Av D O.nm/. Finally, since, by
definition, jDuj ! jCl.u/j, the space required to store Cu and Du for all u 2 P is O.nm/. We, therefore,
obtain the following theorem.

Theorem 2. The Discriminating Substring Problem can be solved in O.nm log m/ time and O.nm/
space.

Example. We illustrate the HCS algorithm and the discriminating substring algorithm presented in the
previous sections through a concrete example. Consider the phylogeny P and the set of strings S given
in Figure 1a. The generalized suffix tree T obtained in the preprocessing phase of the HCS algorithm is
given in Figure 1b. Recall that the tree T has the property that every suffix of an input string terminates
at an internal node of T .

We first describe how the lists Cv in step 1 of the HCS algorithm are computed for all nodes v 2 P .
For the leaf nodes, we have C1 D f1; 7; 12; 15g, C2 D f2; 8; 13g, and C3 D f4; 9; 10; 14g. These lists are
composed of indices from the suffix tree that encode the non-redundant suffixes of strings s1, s2, and s3

respectively. Note that node 6 is not in C2 because it is an ancestor (prefix) of node 2 and therefore it
is redundant. To obtain Cu D C1 u C2, we first compute the union Yu of C1 and C2 maintaining the
source of each element: Yu D f1; 2; 7; 8; 12; 13; 15g; here, underlined elements have C2 as a source list.
Scanning Yu from left to right, we consider adjacent elements with different source lists and their lowest
common ancestors: lca.1; 2/ D 3, lca.2; 7/ D 16, lca.7; 8/ D 9, lca.8; 12/ D 16, lca.12; 13/ D 14, and
lca.13; 15/ D 16. We obtain Cu D f3; 9; 14g by removing redundancies (none in this case) and the root
of the suffix tree (which represents the empty string). The list Cu encodes the common substrings of s1

and s2; i.e., the strings ACG, CG, G, and all of their proper prefixes: AC, A, and C. Similarly, we have
Yr D f3; 4; 9; 9; 10; 14; 14g and Cr D f5; 9; 14g.

The discriminating substrings algorithm then prunes the set of common substrings for each node as
follows. In step 1, the algorithm computes the lists Av for all nodes v 2 P n frg. We have A1 D C1,

FIG. 1. An example phylogeny P with extant species S D fs1; s2; s3g, and their corresponding generalized suffix
tree. (a) The phylogeny P whose leaf nodes are associated with the strings s1 D ACGT, s2 D ACGA, and s3 D ACCG.

Leaf nodes are labeled with 1, 2, and 3, and the internal nodes with u and r (the root). (b) The generalized suffix

tree T for the strings s1, s2, and s3 constructed from s1#1as1#1b
s2#2as2#2b

s3#3a s3#3b
. Leaf nodes (with incoming

edges labeled #1a ; #1b
; #2a ; #2b

; #3a ; #3b
) are omitted for clarity of presentation. Internal nodes are labeled with their

postorder index. The index of the root node is 16.
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A2 D C2, A3 D C3, and Au D C1 [ C2. To reduce the space requirement, once Au is computed, lists A1

and A2 are discarded. Now to compute the discriminating substrings for, say, node r , we need to prune Cu

using A3 to obtain the left tags, and we need to prune C3 using Au to obtain the right tags. The calculations
for the left tags are as follows. For each element of Cu we efficiently find its immediate neighbors in A3.
For node 3, the neighbor is 4; for node 9, the neighbors are 9 and 10; for node 14, the neighbor is 14.
Applying the calculations in Corollary 1, we obtain Du D f.3; 5/g. The pair .3; 5/ encodes all prefixes of
ACG (node 3) that are longer than AC (node 5); i.e., it identifies the single discriminating tag ACG.

4.2. A sublinear space algorithm

The above algorithms are optimal or near optimal in terms of their running times and they require only
linear space. For very large genomes, even linear space might not fit in primary memory. It is important to
further reduce the algorithms’ space requirements for such situations to avoid expensive access to secondary
storage. Intuitively, it seems that we should be able to run the algorithms on chunks of the data at a time
in order to reduce the space complexity. Below we describe such a sublinear space algorithm, with a time-
space tradeoff, for finding all discriminating substrings (or all common substrings). The precise tradeoff
is stated in Theorem 3. The running time of the algorithm will also depend on the underlying structure
of the input phylogeny, specifically its height. Recall that the height of a tree P is equal to the maximum
number of edges on a simple root-leaf path.

In this section, we assume that the maximum genome length is O.n/ where n is the average genome
length. Such an assumption is reasonable when dealing with genome data from relatively close species.
When this condition does not hold, the running time of the stated algorithm increases by an additional
factor proportional to the ratio of the maximum to average genome length in the input.

Algorithm outline and analysis. The algorithm proceeds by considering each node of the phylogeny
P independently. For a node u 2 P , we can find the set of discriminating substrings Du by using the
matching statistics algorithm introduced in Chang and Lawler (1994). Given strings s and s0, the algorithm
computes the length m.s; j; s0/ of the longest substring of s starting at position j in s and matching some
substring of s0. This is done by first constructing the suffix tree for s0 and then walking the tree using s.
The algorithm requires O.js0j/ time and space for the construction of the suffix tree, and O.jsj/ additional
time and space to compute and store m.s; j; s0/ for all j .

Let Su be the union of two disjoint sets Lu and Ru D SunLu where Lu and Ru are the sets of strings
under the two branches of u 2 P . A substring starting at position j of s 2 Lu is discriminating for u if
and only if

min
s02Lu

m.s; j; s0/ ! max
s02Ru

m.s; j; s0/ > 0: (1)

That is, there exists a substring of s starting at j that is common to all strings in Lu and is sufficiently
long so that it does not occur in any string in Ru. If a position j satisfies (1), then a substring t starting
at j such that maxs02Ru m.s; j; s0/ < jt j " mins02Lu m.s; j; s0/ is discriminating. Clearly, all tags are
substrings of s and thus the outlined procedure computes Du. The running time of the algorithm is
P

s02Su
O.jsj C js0j/ D O.nm/ and requires O.maxs02Su js0j/ D O.n/ space. Computing the set of tags

for all nodes of P with tree height h requires O.nmh/ time and O.n/ space matching the running time of
Angelov et al. (2004). By limiting the maximum allowed length of a tag, we can obtain a tradeoff between
the running time and memory required by the algorithm as stated in the following theorem.

Theorem 3. The Discriminating Substring Problem for tags of length O.n=d/, for some threshold

parameter d , 1 " d " n, can be solved in time O.dnmh/ and O.n=d/ space, where h is the height of P .

Proof. We will show the required modifications to the above algorithm in order to include the desired
time-space tradeoff parameter d . Given the length of tags of interest is at most n=d , the algorithm can be
adapted to use O.n=d/ memory and O.dnm/ time to compute the set of all discriminating tags Du for a
node u of P by virtually chopping each input string in O.d/ overlapping segments of length 2n=d . For
a string s 2 Su and an integer i 2 Œ0; jsj=d/, let s.i/ denote the segment that starts at position n

d
i C 1.
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Note that the overlap between consecutive segments s.i/ and s.i C 1/ ensures that each substring of s
with length at most n=d is contained in some segment. Since tags must occur in all strings in Lu, we pick
a representative string s 2 Lu and find tags contained within each of its segments. For a segment s.i/,
we can find all its discriminating tags by computing m.s.i/; j; s0/ D maxs0.k/ m.s.i/; j; s0.k// instead of
m.s; j; s0/ in expression (1) above. Computing m.s.i/; j; s0/ for all positions j in s.i/ takes O.n/ time since
there are O.d/ segments in each string s0 each with length O.n=d/. This implies that the computation of
expression (1) for each s.i/ takes O.nm/ time as there are O.m/ strings in Lu and Ru. Once we process
the current segment of s and produce the tags that are contained within it, we add that segment to the set
Ru to avoid generation of duplicate tags. We then repeat the procedure for the remaining segments of s.
The total running time per node is then O.dnm/ as, again, there are O.d/ segments in s.

Since we need to process only two segments at a time, we need only O.n=d/ space.

Remark. Since a tag may occur more than once in a segment, we can further eliminate duplicates
by maintaining the relevant matching statistics information at the nodes of the suffix tree for the current
segment. Then, non-redundant tags can then be output in a bottom-up fashion. Note that the generalized
suffix tree of two strings can be obtained by augmenting the suffix tree of the first sequence (Ukkonen,
1995). This allows for quickly identifying the correspondence between the nodes of the two trees. Therefore,
the modification does not affect the asymptotic time and space requirements.

5. DISCRIMINATING TAGS UNDER A STOCHASTIC MODEL OF EVOLUTION

We now analyze statistical properties of tags using a simplified assumption of molecular evolution.
We make the first steps toward understanding the capability of tags to place new sequences in a given
phylogeny and their application to arbitrary scale phylogenetic problems. We show that there is a primary

mechanism for generating tags which suggests that tags are indicative of shared evolutionary history.
We use the Jukes-Cantor model (Jukes and Cantor, 1969) for our analysis. In this model each position

in the genome evolves independently according to an identical stochastic process where the probability of
a mutation occurring per unit time is given by a parameter !. Further, it is assumed that the probability
! of change is distributed equally between the 3 possible changes at a site. Thus if a site currently
has the nucleotide A, then it has probability !=3 of changing to C , for example, in unit time. When
branching occurs at a node in a phylogeny, then the two branches start with identical sequences but evolve
independently according to the stochastic process. Finally, we assume that the sequence at the root of the
phylogeny is a random sequence of length n. Since we only allow substitutions all genomes will have the
same length. Given the actual time durations between evolutionary events, it is possible to represent the
Jukes-Cantor model by specifying the probabilities of change along each edge in the phylogeny where
these probabilities depend on the time duration represented by the edge (e.g., if an edge is infinitely long,
the probability of change is 3=4).

All of the current phylogeny models are some version of continuous time homogeneous Markov chain
models. From an event point of view, these are all Poisson counting processes with event rates determined as
some function of the model parameters and the different models only determining the marginal probability
of state transitions. For our purposes the main determinants of the tags are where in the trees the events occur
so the analysis on the Jukes-Cantor model should be reflective of the general cases.1 Even with this simple
model, obtaining a closed-form representation of tag length distribution as a function of the probabilities
of change along each edge is a complex task. We therefore start with a simplifying assumption—the
phylogeny is a complete binary tree and the probability of change along each edge is p. We let h be
the height of our tree and label the sequences at its leaves with s1; : : : ; s2h . We label the sequence at the
root with r . We will focus on tags present in the left subtree of the root, which we call left tags. Similar
analysis holds for right tags and for other nodes in the tree. In Section 5.3, we generalize the analysis to
arbitrary binary tree topologies and probabilities of change along the edges.

1Our simulation results can be reviewed at: www.cis.upenn.edu/!angelov/phylogeny/experiments/simulation/.
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5.1. The primary mechanism for generating tags

Given the stochastic model of evolution we show that there is a dominant process by which tags are
generated. We first prove that if the probability of change p along an edge is more than ln.n/=.2h!2k/,
we do not expect tags to be generated. Using this bound on p, we show in Theorem 4 that the primary
mechanism by which a tag t that discriminates a set S 0 of species from set NS 0 arises is one where t is
present in the common ancestor of the species in S 0 and is absent from the common ancestor of those
in NS 0. In particular, if we let T denote the set of all tags and T 0 the set of tags generated by the primary
mechanism, then we show that jT j ! jT 0j.1 C O. ln n

jS 0[ NS 0j
//. Thus the error term decays inversely in the

number of species. We start with the following two lemmas bounding the minimum tag length and the
maximum probability of change p.

Lemma 8. Tags have length greater than .1 " !/ log4 n w.h.p. where 0 < ! < 1.

Proof. Consider a sequence s in the right subtree of r . The sequence s is uniformly distributed since it
evolved from a random sequence under the Jukes-Cantor model. Now let k ! .1 " !/ log4 n and consider
a k-mer t . If we partition s into strings of length k, then the probability that t does not appear in s

is at most .1 " 4!k/n=k ! e
! n!

.1!!/ log4 n . Summing this probability over all possible k-mers, we get that

the probability some k-mer does not appear in s is upper bounded by e
!n!

.1!!/ log4 n C.1!!/ ln n
, which is

negligible.

Lemma 9. If p > 3 ln n
k.2h!2/

, the expected number of tags of length k is < 1.

Proof. The left subtree has 2h!1 leaves. Consider the character at i th position of the leaf s1. The
probability that a leaf sj , j ¤ 1, has the same character at position i is upper bounded by 1 " 2p=3. The
probability that all leaves in the left subtree agree in the i th position is thus bounded by

.1 " 2p=3/k.2h!1!1/ ! exp."2pk.2h!1 " 1/=3/;

which is less than 1=n when p > 3 lnn=.k.2h " 2//.

Henceforth, we will assume that p ! 3 ln.n/=.k.2h " 2//. Let Ai for 1 ! i ! n " k C 1 be the event
that position i in the root sequence, r , is good. Position i is said to be good if the k-mer starting at i in
the left child of r differs from that in the right child. Therefore, PrŒAi D 1" D 1 " .p2=3 C .1 " p/2/k .
If the event Ai results in a tag being generated, we will say that this tag is a type–I tag. The following
theorem shows that type–I tags are dominant.

Theorem 4. Let t be a sequence that either does not occur at the left child of the root or occurs at

the right child of the root. Then the probability that any such t is a left tag is negligible compared to the
probability of type–I tags.

Proof. Suppose that t is a left tag that appears in the i th position of all the sequences at the leaves of
the root’s left subtree. Let tl and tr be the i th k-mers in the root’s left and right children respectively.

First, we will show that PrŒt D tl j t is a left tag"= PrŒt ¤ tl j t is a left tag" # 3=.8p/. We will assume
that when t ¤ tl , the two k-mers differ in exactly one position. (The above ratio only gets better if the
number of differing positions is more than one.) Hence, independent of the value of the i th k-mer in the
root, PrŒt D tl "= PrŒt ¤ tl " # p=3.

The tag t can be generated by two processes, one starting with t D tl and the other starting with t ¤ tl .
In the latter case, consider the position j that causes t to differ from tl , i.e., tl.j / ¤ t.j /. Let E be the set
of maximal edges (closest to the root) such that for each edge e 2 E , the j th position becomes equal to
t.j / for the first time at the node below e. Now let N.i/ be the number of ways of having such i maximal
changes. We know that N.2/ D 1 and N.3/ D 2. In general, N.i/ D 2N.i " 1/ C

Pi!2
j D2 N.j /N.i " j /.
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Hence, the probability that the j th position in every leaf is equal to t.j / is at most
P

i

!p
3

"i
N.i/. Note

that N.i C 1/ is the i th Catalan number Ci (see, for example, Stanley [1999]); therefore,

X

i

#p

3

$i
N.i/ D

p

3

 

X

i

#p

3

$i
Ci ! 1

!

D
1 !

p

1 ! 4p=3 ! 2p=3

2
"

4p2

9
:

The corresponding probability for the case when tl D t is lower bounded by .1 ! p/2h!2, which is the
probability of no changes in the left subtree to the j th position. Assuming t has length !.ln n/ and using

Lemma 9 we find that this lower bound is at least 1=2. Hence, the desired ratio is at least .p=3/ 1=2
4p2=9

D 3
8p .

It remains to show a similar result for the right side; namely, that PrŒt ¤ tr j t is a left tag"= PrŒt D
tr j t is a left tag" D O.2h/. We will start with the assumption that tl D t since we showed that this is
the predominant way for generating left tags. Let p0 be the probability of some change along an edge in
a given k-mer. That is, p0 D 1 ! .1 ! p/k " pk. Now, PrŒt ¤ tr "= PrŒt D tr " # 1 ! ..1 ! p/2 C p2=3/k #
1 ! .1 ! p/k D p0. Using an argument similar to that above, we have that when t D tr , the probability
t does not appear in the sequences at the leaves of the root’s right subtree is at most 4p02. Further, when

t ¤ tr , the probability that the discriminating position is preserved is at least .1!p/2h!2 # 1=2 by making

the same assumption on the length of t . Hence, the desired ratio is at least p0 1=2
4p02 # 1=.8pk/.

Expected number of length k tags. Define Bi for 1 " i " n ! k C 1 to be the event that the i th k-mer
at each leaf of the left subtree agrees with that at the root of the left subtree. A lower bound on PrŒBi D 1"
is obtained when there are no changes in the left subtree. That is,

PrŒBi D 1" # .1 ! p/#fedges in the left subtree of rg"k D .1 ! p/.2h!2/k

One way a type–I tag is generated is if Ai occurs, the k-mer does not change anywhere in the left subtree
and a position that changed due to the occurrence of Ai remained unchanged in the right subtree. Let the
random variable Xi indicate if a type–I tag of length k occurs at position i . Then,

EŒXi " # PrŒAi D 1" PrŒBi D 1".1 ! p/2h!2:

Finally, let the random variable X equal the number of tags of length k. Then, X #
Pn!kC1

iD1 Xi ,
implying that,

EŒX " # .n ! k C 1/EŒXi ":

5.2. A sampling based approach

Consider the phylogeny described above, and suppose event Bi occurred. That is, suppose that the k-mer
starting at position i is common to all the sequences in the left branch of the root. Call this k-mer ti .
Let R D fs2h!1C1; : : : ; s2hg be the set of sequences at the leaves of the right subtree of r . For ti to be
discriminating, it should not occur in any of the sequences in R. Instead of testing the occurrence of ti in
every one of those sequences, we will only test a sample of those sequences. Let M be the sample we
pick. We will consider ti to be a tag if it does not occur in any of the sequences in M. If ti is a tag, then
our test will succeed. However, we need to bound the probability that we err. Specifically, we bound the
ratio of the expected number of false positive tags to the expected number of tags our algorithm produces.

Algorithm. We use the sampling idea to speed up our tag detection algorithm:

1. Run the HCS algorithm to compute Cu for all u in our phylogeny P .
2. For each u 2 P ,

$ Pick a set Mu of sequences from the right subtree of u.
$ For each s 2 Mu, trim Cl.u/ as in Step 2 of the algorithm in Section 4.1.

Assuming M is the sample of maximum size, then the running time of the above algorithm is O.nmjMj/.



714 ANGELOV ET AL.

Sampling error. How well does the sampling based approach work? Even with a sample of constant
size, the probability that we err decreases with the tag size k. Theorem 4 shows that if t occurs at the right
child of the root, then t is not a left tag w.h.p. Hence, assuming that the k-mer t is a left tag at position i ,
we need only consider the case when the right child of the root contains a k-mer t 0 ¤ t at position i . We

do not err when a differentiating bit in t 0 is preserved in the right subtree which is at most .1 ! p/2h!2

implying the following theorem.

Theorem 5. The sampling algorithm errs with probability < 1=2 for k D !.ln n/.

5.3. General tree topologies

We generalize our stochastic analysis to arbitrary binary topologies and probabilities of change along
edges of the phylogeny. Given a phylogeny P with root r , let L (resp. R) be the total length of the edges
in the left (resp. right) subtree of r , and let E be the total length of the two edges incident on r . Recall
that at a given site a nucleotide changes to one of the three remaining nucleotides with a rate of " per
year. Hence, the position i will experience x number of mutations on a branch of length ` with probability
e!!`."`/x =xŠ. Again, we will focus on left tags occurring at homologous sites. The following is the analog
of Lemma 9.

Lemma 10. Let k > $ log4 n where $ < 2 is a constant. If "L >
" log4 n

k
, the expected number of left

tags of length k is less than 1.

Proof. A necessary condition for a left tag of length k to exist at position i is the agreement of all
the i th k-mers at the leaves of the left subtree of r . Clearly, the results of this section hold for right tags
also. Let Ai be the event that the leaves of the left subtree agree at position i . Then,

PrŒAi % " e!!L C
1

3
.1 ! .1 C "L/e!!L/ D OP .Ai /:

The first term of the upper bound OP .Ai / is the probability the i th position will not experience any changes
in the left subtree, while the second term is the probability that it will experience at least two changes that
result in agreement. Note that two or more changes lead to agreement with probability at most 1=3. Since
the left subtree has more than one branch, one change in the subtree cannot result into an agreement. If
. OP .Ai //

k , is bounded from above by 1=n, then .PrŒAi %/
k < 1=n implying that we do not expect any tags.

Hence, we wish to find the range of "L such that

!

OP .Ai /
"k

<
1

n
:

Let $ D
#

log4

#

3e
1Ce

$$!1 ' 1:77. We know that k, the length of the tag, satisfies,

k D c log4 n; (2)

where c > 1. If we restrict c > $, and if "L # $=c, then OP .Ai / " 1=
c
p

4 implying from (2) that
. OP .Ai //

k < 1=n, i.e., we do not expect tags.

Assuming that both left and right tags occur in the given phylogeny, we show that type–I tags constitute
the majority of tags if "E D !.1=k/.

Theorem 6. The probability that a tag t is of type–I is > 1=2 if "E D !.1=k/.

Proof. Suppose both left and right tags exist in the phylogeny P . Consider a left tag t of length k
occurring at position i , and let tl and tr be the i th k-mers in the root’s left and right children respectively.
We show that with probability greater than 1=2, t D tl and t ¤ tr .
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In order to show the desired probability we will show that under certain assumptions on !E ,

PrŒ.t ¤ tl _ t D tr/ ^ t is a left tag"

PrŒt D tl ^ t ¤ tr ^ t is a left tag"
! 1: (3)

We call the k-mer starting at position i of a leaf sequence in the left subtree a possible left tag (p-left tag)
if it is present at the i th position in every leaf of the left subtree. Now let,

R1 D
PrŒt ¤ tl j t is a p-left tag"

PrŒt D tl j t is a p-left tag"
; and

R2 D
PrŒt D tr ^ t is a left tag j t D tl ^ t is a p-left tag"

PrŒt ¤ tr ^ t is a left tag j t D tl ^ t is a p-left tag"
:

Then, in order to show (3), it suffices to show,

1

PrŒt ¤ tr ^ t is a left tag j t D tl ^ t is a p-left tag"
R1 C R2 ! 1: (4)

We will assume that when t ¤ tl , the two k-mers differ in exactly one position. The ratio R1 only gets
better if the number of differing positions is more than one. Hence,

R1 !
.1=3/.1 " e!!L=2/2

e!!L
; and R2 !

e!!Ek.1 " e!!Rk=2/2

.1 " e!!Ek / e!!R
:

Substituting into (4) we obtain

!E # k!1 ln

"

e!!R C .1 " e!!Rk=2/2

e!!R " .1=3/.e!L=2 " 1/2

#

:

The right-hand side of the above lower bound is maximized when !L and !R are maximized. Setting
!L D !R D 1, we get !E # k!1 lnŒ.e!1 C1/=.e!1 " .

p
e "1/2=3/" ' 1:794=k. This lower bound on !E

is a constant factor away from the best possible bound if n # 2. The upper bound on the logarithmic term
is minimum when !L and !R equal their least upper bounds. That is, setting !L D !R D .# log4 n/=k,
we have !E > 0:2=k when evaluated at n D 2.

6. GENERALIZED TAG SETS

The stochastic analysis in Section 5 shows that tags may not always exist even in data sets generated by
stochastic evolutionary processes. When tags are not present, we can relax the definition of discriminating
substrings and still be able to distinguish if a genome comes from a node’s left or right subtree. Recall
that given a partition .S 0; NS 0/ of species, we say that a set T of tags is an .˛; ˇ/-generalized tag set for
some ˛ > ˇ, if every species in S 0 contains at least an ˛ fraction of the strings in T and every species in
NS 0 contains at most a ˇ fraction of them. Hence, given a tag set T , we can determine whether a species

s belongs to S 0 or to NS 0 by counting the number of tags in T which s contains. We next show that the
problem of computing generalized tag sets may be viewed as a set cover problem with certain “coverage”
constraints. W.l.o.g. assume we are computing generalized tag sets at the root.

.˛; ˇ/–Set Cover problem

Input: A universe U D U 0 [ U 00 of m elements and a collection S of subsets of U .
Goal: Find a minimum size subcollection C of S such that each element of U 0 is contained in at least

˛jCj sets in C, and each element of U 00 is contained in at most ˇjCj sets in C.

In the problem definition above, the set U corresponds to the m input strings each of length n, with U 0

and U 00 being the strings in the left and right subtrees of the root of the given phylogeny. Each Si 2 S
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represents the set of strings that share a substring ti drawn from a suitable collection of substrings with
cardinality O.n2m/. In Angelov et al. (2004), it was shown how to efficiently compute and represent the
corresponding sets of all substrings in O.nm2/ time and space with the help of a generalized suffix tree.
A biologically motivated pruning sub-step may be applied to reduce their number (Matveeva et al., 2003).
Note that the pruning should be performed on the input rather than the output since removing elements from
the solution set may decrease its ability to discriminate. We also note that the Discriminating Substring
Problem corresponds to the .1; 0/–Set Cover Problem when the objective is to maximize the size of C

since we find all tags.
The next theorem follows via a reduction from the decision version of Set Cover. In the reduction, the size

of all feasible subcollections C is the same, hence the result holds even for the existence and maximization

versions of the problem. The reduction relies on the construction of a collection Q of subsets of U 00 such

that for each proper subcollection of Q, there is an element that appears in more than .ˇ
˛

/ fraction of

the sets while each element occurs in exactly .ˇ
˛

/ fraction of the sets in Q. By suitably padding Q with
elements of U 0, we are able to show that any feasible solution should include all of Q together with a set
cover of the original instance; thus, we obtain a guarantee on the solution size. For ease of presentation,
the theorem is shown for .˛; ˇ/ D .2=3; 1=3/. The analysis extends in a natural way for rational ˛ and ˇ
such that ˛ D 1 ! ˇ and ˇ D 1=c for a fixed integer c > 2.

Theorem 7. .2
3 ; 1

3 /-Set Cover is NP-hard.

Proof. Let hS; ki be an instance of Set Cover. Let U denote the universe and let a 62 U be an additional
element. We construct a collection S 0 D S [ Q where Q is a collection Q D fQ0; : : : ; Qq!1g of size

q D 2=3
1!2=3

k D 2k. Assume w.l.o.g. that k is a power of 2 and therefore q D 2z for some integer z " 1.

Let U 0 D U [ fag be the set of positive elements and let U 00 with size jU 00j D
Pz

iD1 2i D 2zC1 ! 2 be the
set of negative elements. Collection Q is such that Qi \ U 0 D U [ fag, for i > 0, and Q0 \ U 0 D fag.
Furthermore, each negative element is distributed in exactly q=2 sets of Q such that for each non-empty
proper subcollection Q0 # Q, there is a negative element contained in > jQ0j=2 of the sets of Q0. We
obtain an instance of the .2

3
; 1

3
/-Set Cover problem hS 0; k C qi.

Any solution to the constructed instance must include q0 " 1 sets of Q since a 2 U 0 is only present
in the sets of Q. Thus, any solution has size no more than 3

2
q0. Since for any q0 < q there is a negative

element present in more than q0=2 of the sets of Q0, a feasible solution must include all of Q. Finally,
each element of U is covered by q ! 1 D 2

3 .q C k/ ! 1 sets of Q; therefore, the .2
3 ; 1

3 /-Set Cover instance
is a YES instance if and only if there is a Set Cover of U with at most k sets of S D S 0 n Q.

It remains to show how the negative elements of U 00 are distributed among the sets of Q. Recall that
q D 2z. Denote the negative elements by bij , for 1 $ i $ z and 0 $ j < 2i . For a given i , we add
element bij to sets of Q with indices (Table 1),

j C .2i x C y/ mod q;

for x 2 Œ0; 2z!i /, and y 2 Œ0; 2i!1/. In other words, the element bij is included in sets of Q with indices
that span 2z!i index intervals each of length 2i!1. The offset of the first interval of bij is j and the
distance between the consecutive intervals is equal to 2i!1. Note that each bij is contained in exactly q=2
of the sets.

Claim 1. Let Q be constructed as above. For any non-empty Q0 # Q, there exists a negative element
present in more than jQ0j=2 sets of Q0.

TABLE 1. DISTRIBUTION OF THE NEGATIVE

ELEMENTS IN THE COLLECTION Q OF

THEOREM 7 (FOR z D 2)

Q0 \ U 00 D f b10, b20, b23 }
Q1 \ U 00 D f b11, b20, b21, }

Q2 \ U 00 D f b10, b21, b22, }

Q3 \ U 00 D f b11, b22, b23 }
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Proof. Let q0 D jQ0j. We show by reverse induction on i , 1 ! i ! z; 0 ! j < 2i , that if every
negative element is present in at most bq0=2c sets then Q0 D Q. The inductive hypothesis for i states that
if we pick a set Qp 2 Q0 then we should also pick sets with indices p C2i!1x mod q for x 2 .0; 2z!iC1!.
Therefore at i D 1, we must pick 2z sets, or all of Q.

Hereonafter, all arithmetic on indices is modulo q. For the base case set i D z. It is easy to see that
q0 " 0 .mod 2/. Furthermore, the element bzj , for all j , should be picked in exactly q0=2 sets since the
elements bzj and bz.j C2z!1/ partition the sets of Q (and therefore Q0) into two equal parts. Now look
at the elements bzp and bz.pC1/ where p is the index of a picked set. The interval of indices they span
overlap except for p and p C 2z!1. Since Qp is picked, it follows that QpC2z!1 is also picked in order
bz.pC1/ to be covered by the same number of sets as bzp. Suppose the inductive hypothesis is true for
some i > 1, then we show that it also holds for i # 1 by a similar argument considering the overlapping
intervals of the elements b.i!1/j .

The theorem follows.

Theorem 8. .2
3 ; 1

3 /-Set Cover is LOGSNP-hard.

Proof. We show that the .2
3
; 1

3
/-Set Cover Problem restricted to solutions of size O.log m/ or O.log n/,

where m is the size of the universe and n is the number of sets, is LOGSNP-hard by reduction from
Tournament Dominating Set (Megiddo and Vishkin, 1988; Papadimitriou and Yannakakis, 1996). Given a
tournament and an integer k, the Tournament Dominating Set Problem asks if there is a dominating set of
size at most k. The problem can be restricted to k ! dlog ne—where n is the number of vertices—since
a greedy strategy always returns a solution of size at most dlog ne.

We first show how to encode an instance of the Tournament Dominating Set Problem as a Set Cover
instance which would imply the reduction to the .2

3
; 1

3
/-Set Cover Problem. Let G D .V; E/ be the given

tournament where V D Œn!. Denote by ".i/ the set of vertices dominated by i 2 V . We create a collection
S D fS1; : : : ; Sng over the universe U D V , where Si D ".i/ [ fig. Since our construction of the .2

3
; 1

3
/-

Set cover instance is restricted to k being power of 2 we add a sufficient number of dummy sets to S each
containing a distinct element. We now construct the .2

3
; 1

3
/-Set Cover Instance hS 0; 3k0i as in Theorem 7,

where k0 is a power of 2 and k ! k0 < 2k. Instance hG; ki of the Tournament Dominating Set Problem
is a YES instance if and only if hS 0; 3k0i is a YES instance of the .2

3 ; 1
3 /-Set Cover Problem. Since the

number of sets in S 0 is at most .n C k/ C 2k0 D ‚.n/ and the number of elements (positive and negative)
is at most n C k C 2.k0 # 1/ D ‚.n/, it follows that the .2

3
; 1

3
/-Set Cover Problem restricted to solutions

of size O.log m/ or O.log n/ is LOGSNP-hard.

The .˛; ˇ/–Set Cover problem can be formulated as an Integer Linear Program in a straightforward
manner. When there exists an optimal solution of size #.log m/, standard randomized rounding of the
fractional solution can be used to derive from it an .˛0; ˇ0/-cover where ˛0 $ .1 # $/˛ and ˇ0 ! .1 C $/ˇ
for some small $.

6.1. LP based approach

We describe a natural LP relaxation to the .˛; ˇ/-Set Cover Problem. For each Si 2 S, we introduce a
binary variable xi that is 1 if Si is chosen in the cover, and 0 otherwise. Let jSj D n and jU j D m.

minimize
X

i

xi

subject to
X

i Wa2Si

xi $ ˛
X

i

xi 8a 2 U 0 (5a)

X

i Wb2Si

xi ! ˇ
X

i

xi 8b 2 U 00 (5b)

X

i Wa2Si

xi $ 1 8a 2 U 0 (5c)

xi 2 f0; 1g 8i: (5d)
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The LP relaxation is obtained by substituting the integrality constraint (5d) with 0 ! xi ! 1 for all i .
Theorem 8 shows that we do not know how to find small solutions in polynomial time. Hence, we would
like to ensure that the solution returned by the linear program is of size !.log m/. This can be done by
adding the condition

X

i

xi " k D !.log m/: (5c0)

Since ˛ is a constant that does not depend on m, condition (5c0) subsumes (5c).
A natural idea for rounding an optimal fractional solution is to view the fraction xi as the probability

that set Si 2 S is chosen. Let OPTf D
P

i xi be the size of the optimal fractional solution, and let C be
the collection of sets we choose after the randomized rounding. We wish to show that jCj is very close to
OPTf and that conditions (5a) and (5b) are roughly satisfied. More specifically, we will show (w.h.p.) that
for some 0 < ı < 1,

jjCj # OPTf j ! ıOPTf ; (6a)

8a 2 U 0; jCaj "
.1 # ı/

.1 C ı/
˛jCj; and (6b)

8b 2 U 00; jCbj !
.1 C ı/

.1 # ı/
ˇjCj; (6c)

where Ca and Cb are the collections of chosen sets that cover a 2 U 0 and b 2 U 00 respectively. Note that
condition (5c0) ensures OPTf D k. We will determine the exact value k in the course of the analysis.

Analysis. The expected size of C is,

EŒjCj" D
X

i

PrŒSi is picked" D
X

i

xi D OPTf :

Let # D fjjCj # OPTf j " ıOPTf g be the event that jCj exceeds our desired bound (6a); by the Chernoff-
Hoeffding bound,

PrŒ#" ! Pr
!

jCj " .1 C ı/OPTf " C PrŒjCj < .1 # ı/OPTf

"

D e!ı2k=3 C e!ı2k=2 (7)

Next, in order to compute the probabilities of an element a 2 U 0 being covered by at least an ˛ fraction of
the chosen sets and an element b 2 U 00 being covered by at most ˇjCj sets, we will bound the probabilities
of the bad events:

#a D fjCaj < .1 # ı/˛OPTf g; and #b D fjCbj > .1 C ı/ˇOPTf g;

for all a and b. Note that if #a does not occur for some a and if # does not occur, then

jCaj " .1 # ı/˛OPTf "
.1 # ı/

.1 C ı/
˛jCj

and the bound (6b) will hold for a.
It is clear that EŒCa" " ˛OPTf and EŒCb" ! ˇOPTf . Now, for any a 2 U 0,

PrŒ#a" D PrŒjCaj < .1 # ı/EŒjCaj"" ! e!ı2EŒjCa j!=2 ! e!ı2˛k=2: (8)

Let ı0 D .1Cı/ˇOPTf

EŒjCb j!
# 1. For any b 2 U 00,

PrŒ#b" D PrŒjCbj > .1 C ı0/EŒjCbj"" !

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

exp

#

#.ı0/2EŒjCaj"
.2 C ı0/

$

! e!ıˇk=3 if ı0 " 1

exp

#

#.ı0/2EŒjCaj"
3

$

! e!ı2ˇk=3 otherwise
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where the second case follows from the fact that .ı0/2EŒjCbj! ! ı2ˇOPTf . Since ı < 1,

PrŒ"b! " e!ı2ˇk=3: (9)

Using the Union bound, inequalities (7), (8), and (9) show that the probability of some bad event occurring
is at most

m.e!ı2ˇk=3 C e!ı2˛k=2/ C e!ı2k=3 C e!ı2k=2:

Finally, setting k D 6 log m
ı2˛ˇ

we have that (6a), (6b), and (6c) hold w.h.p. as desired.

Multiset solutions. One caveat of the linear program is that no feasible solution of size k D #.log m/
may exist (even when there exists a small solution). We can overcome this problem if we relax constraint
(5d) further so that for all i , xi can be any non-negative real number. Now if a small solution (of size
O.log m/) exists, the linear program can always scale this solution to satisfy condition (5c0). Again, this
condition will be satisfied tightly, so we have that for all i , xi " k. Hence, in order to perform the
randomized rounding as above, we can create k new variables xij , 1 " j " k, for each xi such that,

xij D xi=k; 8j:

The analysis above now holds; however, the resulting solution C will be a multiset. The number of times
Si is added to C is the number of coins whose outcome is 1 out of the k coins that are flipped with biases
xi1; : : : ; xik . We can think of the multiplicity of Si as the weight of the set Si in the solution.

6.2. Heuristics

The LP approach given above might be impractical when the number of sets induced by candidate
substrings is large. In this section, we briefly outline two natural heuristics that can be used to find
generalized (left) tag sets for a given node which we assume, w.l.o.g., to be the root r of the phylogeny P .

The first approach is to find all substrings that appear in at least an ˛ fraction of the sequences in the
left subtree of r and at most a ˇ fraction of the sequences in the right subtree of r . This can be done in
linear time by slightly modifying the algorithms given in Angelov et al. (2004). We can then sample from
these substrings to construct a generalized tag set T . The hope would be that each substring selected in
T appears in a random subset of the input strings with the above constraints. Then, we expect that each
sequence in the left subtree will contain at least an ˛ fraction of the substrings in T and each sequence in
the right subtree will contain at most a ˇ fraction of the strings in T . Therefore, given a sufficiently large
sample, the set T will be an approximate generalized tag set.

Alternatively, we can construct multiple instances of the discriminating substring problem by taking
independent random samples of an ˛ fraction of the sequences in the left subtree and a .1 # ˇ/ fraction of
the sequences in the right subtree of r . If we find discriminating tags in most of the instances, by taking
one discriminating tag from each instance, we can construct an approximate generalized tag set. In fact,
this is how we obtained the generalized tag sets in Section 7 for the Prokaryotes data set (Table 2). The
running time of the method is also linear assuming that the number of instances is constant.

We note that neither approach is guaranteed to produce a solution, even if one exists, since a generalized
tag set may include substrings that are present in less than ˛ fraction of the left sequences or in more
than ˇ fraction of the right sequences. Consider the following example: Let T D ft1; t2; t3g be a .2

3
; 1

3
/-

generalized tag set for S 0 D fs1; s2; s3g and NS 0 D fs4; s5g. The set T is such that s1 and s2 contain only
t1 and t2, and s3 contains t1 and t3. On the other hand, both s4 and s5 contain t3 but not t1 or t2. Clearly,
T is a generalized tag set even though t3 is present in only one sequence of S 0 and in all sequences of NS 0.

7. EXPERIMENTAL RESULTS

The existence of tags in small (relative to the full genomes) homologous data sets was demonstrated on
the CFTR data set (Thomas et al., 2003) and the RDP-II data set (Maidak et al., 2001) in Angelov et al.
(2004). However, we are interested in finding tags in whole genomes. Further, the existence of tags in
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TABLE 2. LEFT AND RIGHT . 2
3 ; 1

3 /-GENERALIZED

TAG SETS FOR THE ROOT OF THE PROKARYOTES

TREE SHOWN IN WOLF ET AL. (2002)

Left tag set Right tag set

CCGGGATTTGAACC CCAACTGAGCTA

GTTCAAATCCCGGC GTACGAGAGGAC

GGGATTTGAACCCG TGCTTCTAAGCC

Tags in the left (resp. right) tag set have length 14 (resp. 12).

Left tag set: Nine genomes in the left clade contain all 3 left

tags and 2 genomes contain 2 tags, while 3 genomes in the

right clade contain 1 tag from the set and the remaining 43

contain no left tags. Right tag set: 21 genomes in the right

clade contain all right tags and 25 genomes contain 2 of the

tags, while 5 genomes in the left clade contain 1 tag and the

remaining 6 genomes contain no tags.

FIG. 2. Phylogeny of prokaryotes. Here edges do not represent actual distance. (For a detailed tree see Wolf et al.

[2002].)
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FIG. 3. Length (log-scale) distribution of tags and common substrings for two nodes of the prokaryotes phylogeny

of Wolf et al. (2002). The left (right) panel displays discriminating tags present in the left (right) subtree of the
corresponding node. (a) Tags and common substrings for the lowest common ancestor of Ape (Aeropyrum pernix)

and Pho (Pyrococcus horikoshii). (b) Tags and common substrings for the lowest common ancestor of Nos (Nostoc

sp. PCC 7120) and Cac (Clostridium acetobutylicum).

subsequences of a given set of strings does not necessarily imply the existence of tags in the strings. Here
the existence of tags in data sets containing whole genomes is confirmed on the prokaryotes phylogeny
obtained from Wolf et al. (2002).2 The genomes represented in the data set span a broad evolutionary
distance, at the level of one of the three recognized domains of life. But these genomes are also some of
the smallest (1000-fold smaller than the human genome), allowing less sampling space for tags. Thus, they
represent cases on the hard extremes of potential applications. We find left and right tags for all nodes of
the phylogeny except for the root and the lowest common ancestor of Cac (Clostridium acetobutylicum)
and jHp (Helicobacter pylori), where for the latter node only left tags are found. Relaxing the definition of
a tag set as in Section 2, we show two .2

3
; 1

3
/-generalized tag sets for the root as examples. The prokaryotes

phylogeny consists of 57 genomes where the average genome length is roughly 2:75 Mbp and the total
length is about 157 Mbp. There are 11 sequences in the root’s left subtree (Archaea) and 43 sequences
in its right subtree (Bacteria). For convenience, Figure 2 illustrates the structure of the phylogeny (see
Fig. 1 in Wolf et al. [2002]). We implemented the sublinear space algorithm described in Section 4.2 to
find all tags for every node in the tree if they exist. Figure 3a shows both left and right tags for the lowest
common ancestor of Ape (Aeropyrum pernix) and Pho (Pyrococcus horikoshii), and Figure 3b shows the

2Our experimental results can be found at: www.cis.upenn.edu/!angelov/phylogeny.
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tags for lowest common ancestor of Nos (Nostoc sp. PCC 7120) and Cac (Clostridium acetobutylicum).
As mentioned earlier, we did not find tags for the root of the phylogeny. Hence we generated two .2

3
; 1

3
/-

generalized tag sets for the root using a heuristic approach described in Section 6.2. Table 2 displays
those two sets. We also enumerated the common substrings for this phylogeny as shown in Figure 3. As
expected, longer common substrings are also discriminating tags; i.e., the longer the shared substrings,
the more likely they are shared by evolutionary descent (what we call type–I tags in the analysis below).
The experimental data suggests that, at least for this range of diversity, our approach will be successful at
recovering informative substrings.

8. DISCUSSION

The data-driven approach to choosing discriminating oligonucleotide sequences appears to be novel. In
this paper we have described how such sequences can be chosen given a “complete” data set consisting of
a phylogeny where all the input sequences are present at the leaves. In this situation when our algorithms
produce tags we can use them for high-throughput identification of an unlabeled sequence which is known
to be one of the sequences in the input. Each tag found (at any node in the phylogeny) identifies an exactly
conserved sequence shared by a clade. Such conserved segments can be used as seeds (in a BLAST-like
fashion) to identify longer segments with high-similarity multiple alignments. When our algorithm fails
to find tags, or even sufficiently long, shared sequences this is also informative. We learn that there is no
strong conservation of segments within the clade. A natural extension of the problem considered here is
to the situation where our knowledge is less complete. For example, how can one generalize to the case
when the phylogeny is not fully known? If we attempt to place a new sequence in the phylogeny using
the tags to guide us, how good is the placement as a function of the position of the new sequence in the
phylogeny vis a vis the sequences from which the tag set was built? These are some of the directions that
we plan to explore.
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