
Adaptive Selective Verification
Sanjeev Khanna and Santosh S. Venkatesh, University of Pennsylvania

Omid Fatemieh, Fariba Khan, and Carl A. Gunter, University of Illinois Urbana-Champaign

Abstract—We consider Denial of Service (DoS) attacks within
the province of a shared channel model in which attack rates
may be large but are bounded and client request rates vary
within fixed bounds. In this setting it is shown that the clients
can respond effectively to an attack by using bandwidth as
a payment scheme and time-out windows to adaptively boost
request rates. The server will be able to process client requests
with high probability while pruning out most of the attack
by selective random sampling. Our protocol, which we call
Adaptive Selective Verification (ASV) is shown to be efficient in
terms of bandwidth consumption using both a theoretical model
and network simulations. It differs from previously-investigated
adaptive mechanisms for bandwidth-based payment by requiring
very limited state on the server.

I. INTRODUCTION

Denial of service (DoS) attacks are a growing concern as
they continue to pose an elevated threat to the reliability of the
Internet. Such attacks can occur at all levels in the protocol
stack and threaten both routers and hosts. Many attacks aim
to deplete scarce resources (e.g. CPU, memory, disk) by
generating illegitimate requests from one or many, possibly
compromised, attacker-controlled hosts [16], [2], [5], [6],
[3], [4]. The time required to process these requests degrades
the service to available clients to an unacceptable degree
or forces costly over-provisioning by the service provider.
Instances of potentially vulnerable services include IKE key
exchanges for gateway security association setup [13], legacy
and digitally-signed DNS services [10], large file retrievals
from web servers, computationally expensive query processing
at database front-ends, and the capability allocator in network
architectures that aim to handle DoS attacks by issuing capa-
bilities to clients [24], [25].

A variety of counter-measures have been proposed to ad-
dress these problems. Currency-based mechanisms are ones in
which a server under attack demands some type of payment
from clients in order to raise the bar for provoking work
by the server beyond the capacity of the attacker. Classic
currency examples in this context are money [15] and CPU
cycles [23], [7], [9]. Our focus in this paper is on recent work
that has proven the effectiveness of bandwidth as currency. In
order to get service, the clients are encouraged to spend more
bandwidth by either sending repeated requests from which
the server selectively verifies (processes) some [11], [19], or
dummy bytes on a separate channel to enable a bandwidth
auction [22]. Currency-based mechanisms impose a cost on
the system, particularly on the clients, so it is desirable to have
adaptive counter-measures that are deployed dynamically and
proportionally to blunt attacks at minimal cost. [22] describes
how to do this for auction-based bandwidth payments but

the proposed solution potentially requires significant server
state such as tens of thousands of TCP sessions. The selective
verification algorithm in [11], [19] requires almost no server
state, but does not include any mechanism for adaptation.

In this paper we introduce Adaptive Selective Verification
(ASV) which is a distributed adaptive mechanism for thwart-
ing attackers’ efforts to deny service to legitimate clients
based on selective verification. Our scheme uses bandwidth as
currency but the level of protection employed by the clients
dynamically adjusts to the current level of attack. At a high
level, the clients exponentially ramp-up the number of requests
they send in consecutive time-windows, up to a threshold.
The server implements a reservoir-based random sampling to
effectively sample from a sequence of incoming packets using
bounded space. This enables adaptive bandwidth payments
with server state whose size remains small and constant regard-
less of the actions of the attacker. While the protocol itself is
both natural and simple, analyzing its performance turns out to
be a rather intricate task. A primary contribution of this work
is a novel theoretical analysis of ASV whereby we evaluate
its performance as compared to an “omniscient” protocol in
which all attack parameters are instantaneously made known
to all clients as well as the server. Surprisingly, we show that
ASV closely approximates the performance of this omniscient
protocol. The performance is measured in terms of success
probability of each client, and the total bandwidth consumed
by the clients. We also perform a simulation evaluation of
the adaptive selective verification protocol with the aim of
understanding its performance in practice. Besides validating
our theoretical guarantees, our simulations show that under a
time-varying attack, the performance of ASV protocol adjusts
quickly to the prevailing attack parameters.

The rest of the paper is organized as follows. In Section II
we position and compare this work against related work.
Section III details our modeling of the client and attacker
behavior. In Sections IV, V, and VI we introduce basic and
extended versions of our protocol along with their theoretical
analyses. Section VII presents our experimental simulations
and finally Section VIII concludes the paper.

II. RELATED WORK

Protection mechanisms that assure availability remain a
difficult challenge for the Internet. Attacks can come from
many sources in Distributed DoS (DDoS) or from a single
source where spoofed addresses create the appearance of a
DDoS attack. They can occur at link, network, transport,
or application layers. They can be sudden and dramatic or
gradual and subtle. Intentional attacks, aimed at disabling

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00 © 2008 IEEE 1202

Internet

Client

Client

Client

Attacker

Attacker

Server

Attacker

Fig. 1. Selective Verification

services, are easy to confuse with mis-configuration errors or
heavy legitimate use. Most network protocols were designed
without DoS protection and are vulnerable by design. This
rich collection of attack vectors combines with various options
for what can be changed to effect a counter-measure. For
instance, is it possible to involve the routers or do solutions
need to work exclusively at hosts? Is it possible to change
packet formats and protocols or must these be handled in
a transparent manner? Can one assume the attackers have
limited knowledge of network state (such as eavesdropping on
packets) or must they be assumed to have global knowledge?
Solutions vary according to the types of attacks envisioned
and these options for counter-measures. For instance, there
are trace-back methods [18], [20] to find attackers so action
can be taken to cut them off, and filter mechanisms to rate-
limit of remove the attack traffic from the network [14], [12],
[17]. There are capability-based mechanisms to allow parties
that can prove their legitimacy to gain priority or to limit the
impact of unproven parties [24], [25]. And there are currency-
based schemes that aim to limit attackers by making them
sacrifice a valuable resource like money or CPU cycles in
order to get access to server resources [15], [23], [9], [7].

Perhaps the most counter-intuitive currency-based strategy
is the use of bandwidth as payment. In such a scheme,
clients use additional bandwidth to get access. The idea is
that attackers are using all of the bandwidth available to them
(or the maximum bandwidth they can afford to use without
being detected by other mechanisms) to execute an attack,
whereas legitimate clients are using only the resources they
require to accomplish their less-demanding objectives. Hence
legitimate clients have bandwidth to spare and can use this fact
to differentiate themselves from attackers. This strategy was
introduced in [11] in the context of authenticated broadcast and
extended to general Internet protocols in [22]. At least two
general strategies are possible. Selective verification allows
clients to send extra requests and the server selects from these
probabilistically. The idea is illustrated in Figure 1 where
attacker and client requests are mixed together and filtered
before being addressed by the server. Bandwidth auctions
allow clients to build credit by sending bytes to an accounting
system and the server takes requests from clients that have

built the most credit. Bandwidth auctions provide a natural
adaptive mechanism since clients send packets until they are
serviced and, if the attack is modest, this occurs quickly so
little bandwidth is wasted. On the other hand, this entails po-
tentially significant requirements for accounting state whereas
selective verification is essentially stateless. Since [11] does
not propose any adaptive approach to selective verification, it
remains an open question whether there is a good adaptive,
stateless bandwidth payment scheme.

There are several works that address adaptive measures
for DoS protection in other contexts. [27] provides ideas
that are effective for filter schemes, although it is unclear
how they can be applied to bandwidth payments. [21] shows
how to use information available in the application layer to
identify and differentiate between low and high utility clients
to provide better service to more valuable customers. The
solution requires more feedback from the application than
selective verification and is more applicable to scenarios where
the clients have a history of interactions with the server.
[23] shows how to provide adaptation for client puzzles.
Because of the nature of the client puzzle schemes, where
the cost factor of the defense on the server is minimal, the
proposal mainly focuses on cost minimization for the clients.
However bandwidth payment schemes must account for costs
to the server and network as well as the client. Finally, [26]
proposes an adaptive solution for installing router throttles
in the network. The main focus of the proposed approach
is on network flooding attacks and router-based distributed
defense against them, but it shares many of the same high-
level adaptation concerns as bandwidth payment.

III. THE SETTING

Consider the following one-round client-server protocol.
The first step of the protocol is an REQ packet from a client C
to the server S. In response, the server sends back an ACK to
the client. Each client employs a time-out window of duration
T determined by the worst case expected round-trip delay
between the clients and the server: if after transmission of
an REQ a client does not receive an ACK within T seconds
he assumes that the attempt has failed. The parameter T is
known to the clients as well as the server.

It will be convenient to partition time into a sequence of
windows W1, W2, . . . , each of duration T . We suppose that
the server S can process requests at a rate of S REQ packets
per second so that the number of requests that it can process in
any given window is ST . In any given window W, new clients
arrive at a rate of R(W) = ρ(W)S clients per second. The
client request factor ρ(W) = R(W)/S determines the fraction
of the server’s computational bandwidth that is required to
process new clients in the window W. We suppose that the
client request factors are uniformly bounded away from both
zero and one, 0 < ρmin ≤ ρ(W) ≤ ρmax ≤ 1, for some fixed
ρmin, ρmax in the unit interval. We are particularly interested
in the situation where ρmax " 1 as it may reasonably be
expected that REQ requests are typically small packets with

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1203

most of the server capacity dedicated to servicing the bulk of
the communication to follow.

We will assume that a diffuse, distributed, denial of service
attack A on the server takes the form of a potentially time-
varying flood of spurious REQ packets aimed at overwhelming
the server’s capacity to process new REQs. We suppose that,
in any given window W, the attack A sends spurious REQs
at a rate of A(W) = α(W)S packets per second. The attack
factor α(W) = A(W)/S determines the excess computational
bandwidth that will be required of the server to process the
illegitimate requests in window W. In keeping with the guiding
philosophy of the shared channel model that was articulated
by the authors to model DoS attacks [11], we assume that
the attack factors are uniformly bounded, 0 ≤ α(W) ≤ αmax,
for some fixed αmax, though the upper bound on the attack
factors may be very large. Clearly, when α(W) > 1 the attack
prima facie overwhelms the server’s capacity to process all
requests and, abeyant a protocol to handle overflows, there
is the potential for the successful execution of a DoS attack.
Our interest is in the particular case where αmax " 1 and
the attack can occur on a scale much larger than the available
server computational bandwidth.

In order to focus on the DDoS attack at the receiver, in
the next two sections we idealize the situation and assume
that REQ and ACK packets are transmitted instantaneously,
the round-trip delay occasioned solely by processing time
at the server, and that no REQ or ACK packets are lost in
transmission. Packet drops at the server are then occasioned
only because the arriving request stream from clients and
attackers combined exceeds the server’s computational band-
width. Thus, if ρmax + αmax > 1 then it cannot be guaranteed
that an individual client’s REQ will be processed by the
server. If αmax " 1 it is in principle then possible to almost
completely throttle the clients of service and effect a successful
DoS attack.

In the sequel, logarithms are to base e. Long proofs are
eliminated due to space constraints and will appear in the full
version of the paper.

IV. THE OMNISCIENT PROTOCOL

Consider any time-out window W. Suppose that 0 < ρ =
ρ(W) < 1 and 0 < α = α(W) denote the client request
factor and the attack factor, respectively, over the window W.
If clients and server clairvoyantly know ρ and α then it is
easy for them to thwart the DDoS attack using a modicum of
repetition combined with selective randomized sampling at the
server. This simple, if unrealistic, situation is worth analyzing
as it provides benchmarks for more realistic situations.

OMNISCIENT CLIENT PROTOCOL: Given α and ρ, each
new client in a given window W transmits #α/ρ$ copies of
the REQ packet in that window. Clients who do not receive an
ACK from the server within T seconds leave never to return.

OMNISCIENT SERVER PROTOCOL: Given α and ρ, the
server accepts an arriving REQ packet in the window W,

independently of other arriving packets, with probability

p =
1

α + ρ
⌈

α
ρ

⌉

and discards it with probability q = 1 − p. The server sends
out an ACK for each accepted REQ.

The total number of REQs transmitted by clients in window
W is

⌈
α
ρ

⌉
ρST . It follows that, for any given window W, the

cumulative mean transmission bandwidth consumed by client
REQs in the omniscient client-server protocol is approximately
αS packets per second. As the number of attack packets
received in this window is αST , the total number of REQs
received by the server during window W is given by

N = N(W) =
⌈

α
ρ

⌉
ρST + αST =

(
α + ρ

⌈
α
ρ

⌉)
ST.

Accordingly, the expected number of packets processed by the
server in window W is given by pN = ST so that the server
processes REQs at its rate of S packets per second.

THEOREM 1 (OMNISCIENT CONNECTION CONFIDENCE)
Suppose 0 < δ < 1 is a given confidence parameter. If

ρmax ≤ 1

−2 log δ
(1)

then the probability that a given client has an REQ accepted
is at least 1 − δ under the omniscient client-server protocol.

Proof: A given client C transmits #α/ρ$ REQs in a
window W. The probability that each of these REQs is
discarded by the server is given by

Q := q!α/ρ" ≤ e−1/2ρ ≤ e−1/2ρmax ≤ δ (2)

in view of the elementary inequality 1 − x ≤ e−x.
Thus, for all sufficiently small client request factors ρmax,

the omniscient client-server DDoS protocol accepts REQs
from all but a small fraction of at most δ of all clients at
a cost in transmission bandwidth of (about) αS client packets
per second.

V. THE ADAPTIVE PROTOCOL

The assumption in the omniscient client-server protocol that
clients are continuously aware of the client request factor and
the attack factor current in each window is clearly unrealis-
tic, especially given the distributed and—until connection is
established—as yet unknown location and legitimacy of the
clients and, more critically, the ability of the attack to vary
rates continuously and unpredictably. Designing a protocol for
the worst-case attack is, of course, possible, but unnecessar-
ily congests the network during periods when the attack is
quiescent or at low levels. Our goal, hence, is to design a
client-server DDoS protocol which adapts to the behavior of
the attack A without clients having access to explicit current
information about the nature and intensity of the attack.

In view of our experience with the omniscient protocol,
on the client side we are led to seek a replicating protocol
where the replication rate used by the clients should ideally
be proportional to the current attack factor (and inversely

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1204

proportional to the current request factor though this is likely
to be under better regulation). While the client does not have
direct access to this information, he can infer the state of the
attack indirectly based on whether he receives an ACK or not
in response to REQ(s) sent in the previous window. The failure
to receive an ACK in response to transmitted REQ(s) can be
construed provisionally as evidence of an attack in progress
and the client can then ramp up his replication rate in an effort
to counter current attack conditions. Experience with doubling
algorithms (or, on the flip side, exponential back-off in TCP
protocols) suggests that it would be profitable to have the
replication rate grow exponentially with repeated connection
failures (up to a worst-case maximum).

On the server side, a more detailed picture about current
conditions can be directly obtained from the ensemble of
packets arriving in each time-out window. The server can now
very simply maintain the advertised service rate by reservoir
sampling to generate a random sample of the sequentially ar-
riving packets. The randomized sampling of incoming packets
helps obviate timing attacks or the exercise of other overt
control by the adversary over the decision making process at
the server, while the adaptive changes in sampling rates that
reservoir sampling accords allows the server to respond to
changes in attack factors across windows while staying within
the budgeted service bandwidth. These considerations lead to
the following adaptive client-server protocol.

Adaptive Client Protocol: Given ρmax, αmax, and T , after
each unsuccessful attempt the client adaptively increases the
number of REQs sent in the succeeding time-out window up
to a maximum number specified by the given parameters.

C1. [Initialize replication count.] Set j ← 0 and J ←⌈
log

(
αmax
ρmax

)/
log(2)

⌉
.

C2. [Double replication.] Send 2j REQ packets to the
server.

C3. [Time-out.] If no ACK packet is received within T
seconds, set j ← j+1; if an ACK packet is received,
exit the initiation protocol and proceed to the next
phase of communication.

C4. [Iterate till exit condition.] If j ≤ J, go back to step
C2; else exit without communicating with the server.

Adaptive Server Protocol: The server performs reservoir
sampling on incoming REQ packets during each time-out
window. Given S and T , the server processes a random subset
of the arriving REQs at a rate not exceeding S packets per
second.

S1. [Initialize window count.] Set k ← 1.
S2. [Form reservoir.] Store the first "ST# REQ packets

arriving in window Wk in a reservoir. If time-out
expires without filling the reservoir, go to step S4.
Else, set REQ packet count to j ← "ST# + 1.

S3. [Randomly sample incoming packets.] If there is an
incoming REQ numbered j, accept it for placement
into the reservoir with probability "ST#/j and discard
it with probability 1−"ST#/j. If the REQ is accepted
for placement in the reservoir, discard an REQ from

the reservoir uniformly at random and replace it with
the accepted packet. Set j ← j + 1 and iterate until
the time-out window expires.

S4. [Time-out] Accept the packets in the reservoir and
send out an ACK for each accepted REQ.

S5. [Iterate.] Empty the reservoir, set k ← k+1, and go
back to step S2.

We have streamlined the protocols to focus on the critical
ideas. In particular, we adopt the convenient fiction that step
S4 in the server protocol occurs instantaneously. Thus, there
is no gap in time between the expiration of a time-out window
expires and the identification of the random subset of packets
that is accepted by the server over that window. The reservoir
sampling procedure is due to Fan, Muller, and Rezucha [8]
and guarantees that if N REQ packets arrive in a given time-
out window and N > ST , the server accepts a subset of size
ST REQ packets uniformly at random from the N packets,
and discards the remaining packets.

We call the quantity

J =
⌈
log

(
αmax
ρmax

)/
log(2)

⌉
(3)

the retrial span of a client. In the event that the attack is
launched at maximum severity, a client can replicate packets
over a period of J windows until he achieves a maximum
replication rate of αmax/ρmax matched to the peak attack.

Blocking Probabilities: Our results say that each client
succeeds in establishing a connection with essentially the same
confidence guarantee as in the omniscient case at the expense
of some added delay.

THEOREM 2 (ASV CONNECTION CONFIDENCE) Suppose
0 < δ < 1 is a given confidence parameter. If

ρmax ≤ 1

−5 log δ
(4)

then the probability that a given client has a REQ accepted
within JT seconds is at least 1 − δ under the adaptive client-
server protocol.

Note that the bound on ρmax as given in inequality (4) differs
from the one in inequality (1) by only a small constant factor.

The theorem above can be proved using the following two
lemmas. We omit the proofs of these lemmas due to space
considerations. Let us say that a client is in generation g with
respect to window W if it initiated the protocol g windows in
advance of W.

LEMMA 1 (TRAFFIC BOUND) The total number of REQs, le-
gitimate and illegitimate, received by the server during any
window W can be bounded by

N(W) ≤ 5αmaxST. (5)

The uniform bound on the number of packets that can be
received during any window allows us to bound the probability
that a client repeatedly fails to establish a connection with the
server.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1205

LEMMA 2 (BLOCKING PROBABILITY) The probability that a
client C in generation g with respect to a window W fails to
establish a connection with the server by the end of W is
bounded by

Qg(W) ≤ exp
(

−2gST

N(W)

)

for each 0 ≤ g ≤ J.

If we set g = J and bound N(W) by (5) using the Traffic
Bound Lemma 1, we obtain a bound for the probability Q(C)
(with a hopefully transparent abuse of notation in the reuse of
Q) that C fails to make a connection and leaves the protocol
(that is to say, the blocking probability for C). In particular,
the Blocking Probability Lemma 2 shows that.

Q(C) ≤ exp
(

−2J

5αmax

)
. (6)

Noting that 2J ≥ αmax/ρmax, the ASV Connection Confidence
Theorem 2 follows.

This analysis is essentially tight for our protocol as can be
seen by consideration of the setting where the attack factor is
α = αmax in every window, the request factors satisfy ρmax =
ρ, and α/ρ = 2κ for some integer κ. In this case, with high
probability each client would have to wait for κT seconds to
consummate a connection.

Bandwidth Considerations: The Traffic Bound Lemma
shows that if the attack factor is maintained at αmax then
the cumulative mean transmission bandwidth consumed by
client REQs is O(αmaxS) packets per second. The estimate is
rather pessimistic, however, and we anticipate that the adaptive
protocol does much better in periods of lulls in attack.

The key idea is provided by the Blocking Probability
Lemma which shows that the probability that a client is
blocked decreases very rapidly with generation; for moderate
attacks, any given client is likely to be accepted by the server
well before the end of his retrial span J; indeed, he is likely to
form a connection within J + log(ρmax)/2 log(2) generations.
(Bear in mind that ρmax < 1 so that log(ρmax) < 0.) This
suggests that there is relatively little client traffic build up due
to unconsummated connections near the end of the retrial span.
It follows that the upper bound on traffic given by (5) may
be much too generous in periods where attack rates are low.
We claim that, indeed, the transmission bandwidth required
by clients in the adaptive protocol is essentially of the same
order as that commandeered in the omniscient protocol.

In order to present the results as compactly as possible, in
the sequel we shall assume that the maximum client request
rate satisfies ρmax = O

(
1/ log(αmax)2

)
. (We refer the reader

to the long version of the paper for general statements of
the results and proofs.) We may also assume, without loss
of generality, that αmax is at least 1 as the problem admits a
trivial statement otherwise.

We formalize the intuition that client requests are typ-
ically accepted relatively quickly by considering succes-
sive windows forming generational slices of width λ :=⌈
− log(ρmax)/2 log(2)

⌉
windows. For any window W, we

call the swath of σ := #log(αmax)/(λ − 1) log(2)$ windows
preceding it the segment preceding W and denote it S(W).
Let α = α(W) denote the largest attack factor of any window
in the segment S(W).

THEOREM 3 Under the stated conditions on the client and
attack rates, the expected cumulative transmission bandwidth
consumed by client REQs in window W under the adaptive
client-server protocol is bounded by O(αST).

We have opted to present slightly conservative bounds on
the client request factors to keep the theorem statement as
uncluttered as possible to permit easy comparison with the
omniscient strategy. The range of validity of the client request
factors may be expanded at the cost of increased algebraic
tedium. The proof of this theorem entails a recursive pruning
of unabsorbed generations and is somewhat involved. We defer
it to the full paper in view of space considerations.

For comparative purposes, one observes that if the attack
factor in a given window is α, omniscient clients aware of
both the current attack and request factors will occupy a
bandwidth of αS REQs per second. The adaptive protocol
achieves essentially this order working from tabula rasa with
no specific state knowledge. The simulations of Section VII
provide additional confirmation of the stability and efficiency
of the ASV protocol.

Since σ = O
(
log(αmax)

/
log(1

ρmax
)
)

we obtain the following
general theorem as a corollary of Theorem 3.

THEOREM 4 (ASV BANDWIDTH) The expected bandwidth
consumption of the adaptive client-server protocol is only
O

(
log(αmax)/ log(1

ρmax
)
)

times larger than the bandwidth con-
sumed by the omniscient selective verification protocol.

It is worthwhile to contrast this bound with a non-adaptive
approach that stays in the high protection mode at all times.
The bandwidth consumed by such an approach can be O(αmax)
times larger than the bandwidth consumed by the omniscient
selective verification protocol. Thus the adaptive scheme can
improve the bandwidth consumption exponentially.

VI. EXTENSIONS

In this section we focus on extending the basic adaptive
protocol from two aspects. First, we identify and address
two concerns with respect to the practical deployment of
the protocol. Specifically these relate to the possibility of an
unreliable server and network. Second, we elaborate on the
ways by which the clients and the server could use the protocol
in a more flexible and cost-effective fashion. Specifically we
consider regulation of bandwidth devoted to ASV by the server
and client, respectively.

Suppose that a server being protected by ASV goes down.
Under the current ASV protocol, this would cause a flood
of requests from the clients, which would only aggravate the
situation. It would be desirable to avoid this unwanted side-
effect of the protocol. A potential solution is for the server to
provide a special type of ACK, DACKs (Drop ACK) at step
S3 in Section V for every request it receives but is not able to

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1206

process. DACKs serve as an encouragement mechanism which
communicates a “please retry more aggressively” message to
the clients. A client in round i (which sends 2i requests), waits
for the server’s ACK or DACK(s) before moving to round
i + 1. He quits upon receipt of an ACK; else, if he receives
any DACK in T time units, he moves on to the next round;
failing these two possibilities, he quits. In addition, in order
to obstruct the opportunity of creating smurf-type attacks [1],
the clients can put a nonce (as a weak authenticator) in each
of their REQs, and expect the server to return it in DACKs.

We have so far assumed that the network is reliable. But,
what if the network is lossy (e.g. due to congestion) and REQs
and/or server responses are sometimes dropped? This could
result in undesirable scenarios such as a client quitting under
perception of a down server. A potential solution is to modify
the client’s protocol as follows. If no DACK is received for K
consecutive packets sent by the client, he quits. This check is
only performed at the beginning of each round. Therefore,
if the path from a client to the server experiences a drop
rate of d, this modification reduces the probability of a client
incorrectly quitting to the order of dK. In addition, this can
serve as a crude congestion control mechanism, particularly
if K is set to low values. We do not consider this addition a
full-fledged congestion control mechanism. In particular, we
intentionally do not want the clients to be overly reactive to
low-rate packet drops, since this would easily make them back
off and provide an opportunity for the attackers to build an
advantage. However, if due to a network link attack (which is
out of the scope of this work), or any other reason there exists
heavy congestion in the network, it would be desirable for
ASV clients to back off and not further flood the network. We
believe by properly setting the value of K, the above mentioned
effect could be achieved. We experimentally investigate the
effect of network congestion on ASV in Section VII.

We can also envision situations in which a server that uses
ASV for protection would be interested in devoting less band-
width to the ASV process. For instance, consider a number
of co-located services that share bandwidth. Under certain
circumstances, it may not be economical for one service to
consume too much bandwidth just to prevent denial-of-service
attacks. Another example could be a server that would prefer
to reduce the ASV bandwidth consumption in favor of having
more bandwidth available for a period of heavy bulk transfers.
Concerns of this type may be addressed by having the server
inform the clients not to send too much traffic. However,
this comes at the cost of a potential degradation in service
guarantees to the legitimate clients. Translated to our protocol,
this means that the server provides clients with a new retrial
span J when it is desired that the clients reduce bandwidth
consumption.

Consider a function F : r !→ (BW, SuccProb) where r is a
candidate retrial span, BW is an upper-bound on bandwidth
consumption, and SuccProb is the expected probability that
each client succeeds in getting a request served. Now, consider
a utility function U

(
(BW, SuccProb), P

)
which takes these

bandwidth consumption and success probabilities together

with a system priorities input P, and outputs the expected
utility for the system as a value between 0 and 1. P is a generic
input for system parameters that encode the current priorities
and constraints of the system such as the ones discussed
above: The goal is to pick a retrial span that maximizes
the utility of the system. The new J calculated below is
communicated to the clients to be used as their retrial span:
J = arg maxr

{
U

(
F(r), P

)}
.

Suppose the server has successfully communicated the value
of the retrial span J to the clients. In simple words, J is the
maximum bandwidth (price) that the server is willing to accept
from each legitimate client. However, what if the client is
not willing to spend this much bandwidth to get service? We
use a client cost-benefit analysis inspired by [23] to formulate
this problem. Suppose each client has a valuation function V
indicating the value of receiving the service in some units (for
simplicity dollars). Also suppose that the client knows a non-
decreasing success function that maps the retrial span r of the
client to the probability of succeeding in getting service when
the server is heavily loaded. Such a function could be obtained
from the server through DACKs. Based on this the client can
compute its retrial span as in [23]. On the other hand, there
could be a client that is willing to send the required number of
repeated requests, but its low bandwidth connection does not
allow it to. Suppose that at a round i its connection allows it
to send (in a single window) only 2i

f packets for some integer
f ≥ 1. It is easy to verify that if the client continues to send
2i

f packets, in O(f) windows it will succeed with the same
probability as if it sent 2i packets in a single window (provided
that neither the attack rate nor the client traffic changes).

VII. EXPERIMENTAL EVALUATION

To measure the effectiveness of the proposed adaptive
mechanism, we perform several network simulations. The
simulations provide an opportunity to test the full protocol
in settings that reflect the real world situations more closely.
Specifically, the simulations aim to evaluate the effectiveness
of the adaptive scheme against its non-adaptive counterparts
and verify the accuracy of our analytical results. In addition,
we study ASV’s behavior in the presence of network conges-
tion, as well as its effect on TCP-based cross traffic.

Simulation Setup: The simulations are performed using
the NS-2 network simulator for the topology shown in Fig-
ure 2. The topology shown is dynamic in the sense that, in
each simulation scenario, the number of clients increases with
time. Every second, 50 new clients join the topology and
start sending REQs toward the server. Each client that joins
the topology needs to get one REQ served. The number of
attackers can range between 1 and 100 to represent different
attack rates. Each attacker constantly issues 400 REQs/s. So,
depending on the number of attackers for each scenario, the
attack rate would range between 400 and 40, 000 REQs/s. S,
the number of requests that the server can process in a second,
is set to 600. Translated into our notation αmax = 66, and
ρ = ρmax = 0.08. RTT is 60ms and T is set to 0.4s. REQs are
200 bytes, and server DACKs and ACKS are 50 and 200 bytes,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1207

50 clients join every sec

1~100 attackers

Server S
bottleneck

10 ~100 Mbps, 10 ms

512 Kbps, 10ms

1 Mbps, 10ms
Other servers

Server S2

TCP client C

Fig. 2. Simulation topology.

respectively. All the communications are over UDP unless
otherwise noted. In most of the experiments, the capacity of
the bottleneck link is over-provisioned to 100Mbps to avoid
any network congestion. However, in particular experiments,
we reduce this capacity and create network congestions as
needed. The arrival times of the clients and attackers, as well
as the inter-packet intervals for attackers are randomized in
order to avoid any undesirable deterministic pattern. Given
the parameters above, based on the theoretical guidelines in
Section V, the retrial span J should be set to 10. We performed
separate experiments (not reported in this paper) using J = 10
which easily verify the theorems in that section. In view of
practical cost-benefit considerations outlined in Section VI, we
present here experiments for a retrial span of J = 7.

Comparing Adaptive and Non-Adaptive: In order to eval-
uate ASV against its non-adaptive counterparts, we implement
three different client behaviors and compare them against
each other in various attack conditions (solid line topology
in Figure 2). The three client behaviors are:

• Naive: Send one REQ every T seconds. Quit if an ACK
is received or JT seconds pass.

• Aggressive (Non-Adaptive): Send 2J REQs. Quit if an
ACK is received or JT seconds pass.

• ASV: Implement ASV for one REQ (which means for a
maximum of JT seconds).

Each experiment is performed with one type of client and a
fixed average attack rate for 30 seconds which proves to be
sufficiently long for the system to stabilize. The results are
obtained by changing attack rates across different simulation
runs.

Figure 3 shows the ratio of clients that succeed in getting
one REQ served against different attack levels. Figure 4
illustrates the expected time to service for clients that succeed
in getting service. And finally, the aggregate bandwidth con-
sumption from legitimate client REQs is depicted in Figure 5.
We only report on the client bandwidth overhead since in
each scenario, the number of REQs issued by attackers (and
therefore the respective bandwidth consumption) is fixed and
the same across all three cases. Client bandwidth consumption
numbers are used to compare the bandwidth overhead (cost)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 30 40 50 60 70 80 90 100

Cl
ie

nt
 S

uc
ce

ss
 R

at
io

No. of Attackers

ASV
Aggressive
Naive

Fig. 3. The ratio of the successful clients to all clients (1500 in 30s) vs.
attack rate.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 30 40 50 60 70 80 90 100

Av
er

ag
e

Ti
m

e
to

 S
er

vi
ce

 (s
)

No. of Attackers

ASV
Aggressive
Naive

Fig. 4. Average time to service (for clients that succeed in getting service)
vs. attack rate.

introduced by each of the three client behaviors.
It can be immediately concluded from Figures 3 and 5

that ASV outperforms the Aggressive scheme in terms of
success ratio and bandwidth consumption. This proves the
effectiveness of the adaptation strategy in raising the costs
(bandwidth) in accordance with the attack rate. As expected,
the average time to service is lower for Aggressive, however,

0

2

4

6

8

10

0 5 10 15 20 30 40 50 60 70 80 90 100

A
gg

re
ga

te
 C

lie
nt

 B
W

 U
sa

ge
 (M

bp
s)

No. of Attackers

ASV
Aggressive
Naive

Fig. 5. The aggregate bandwidth consumption for all the clients vs. attack
rate.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1208

given the ASV’s benefits in terms of success probability and
bandwidth consumption, service latencies of at most 2.3s for
the fiercest attacks should be considered an acceptable trade-
off. The Naive clients, as expected, suffer serious failure rates,
which underscores the effectiveness of ASV. The results also
quantify the overhead of ASV, which is a factor of 16 in terms
of bandwidth, and 1.5 in terms of service latency in the worst
attack scenarios.

Pulse and Variable Rate Attacks: In each of the previous
experiments the attack rate was fixed during the simulation.
Here, we explore the effect of varying attack rates on clients
that implement ASV. In the first set of experiments we subject
the system to pulse attacks. In these experiments we observe
the system’s behavior under a 5 second no-attack period,
followed by 10 seconds of heavy (but fixed rate) attack,
and another 10 seconds with no attack. We performed this
experiment for 25, 50, and 100 attackers. The detailed results
are omitted due to space constraints. However, the most
important outcome is that in all three scenarios, in less than
two seconds the system fully adapts itself to attack conditions,
i.e. success ratio, time to service, and bandwidth consumption
numbers converge to the corresponding values in Figures 3, 4,
and 5. In addition, after the attack stops, the system recovers
to its pre-attack conditions in less than two seconds.

To better understand the effect of highly variable-rate at-
tacks we simulate 45 seconds of variable rate attacks, preceded
and followed by 5 second periods with no attack. The number
of attackers changes and is !exp(r)" where r is a floating point
number chosen at random from [0, ln(100)) each second. The
results are depicted in Figure 6.

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50

Time (s)

No. of Attackers / 100 Aggregate Client BW Usage (Mbps) Time to Service * 3 (s)

Fig. 6. The effect of 45 seconds of variable rate attacks on success ratio and
aggregate client bandwidth consumption. Success ratio for clients is always 1.
Note that clients joining the system between times i and i+1 are represented
in front of Time =i.

These experiments show how quickly the system adapts
and then recovers to the pre-attack pattern in the presence of
pulse attacks. This significantly reduces the attackers’ ability to
disrupt the operation (and bandwidth consumption) of multiple
ASV protected servers’ at the same time by attacking them
in rotation. The variable rate attack experiments (Figure 6)
show how ASV preserves success ratio, time to service, and
bandwidth consumption within reasonable bounds.

Lossy Network: So far, we assumed links are over-
provisioned, and thus there is no packet loss in the network.
In order to assess the effect of a lossy network, we make the
bottleneck link drop packets at different rates. The experiments
are performed for K = 3 and K = 7 with 50 attackers present.
In brief, in both cases, for drop rates of up to 30%, there
is almost no quitting and client bandwidth consumption stays
approximately fixed. However, for network drop rates of 40%
to 80%, the quit ratio ranges from 0.08 to 0.71 for K = 3,
and from 0.01 to 0.32 for K = 7. The corresponding client
bandwidth consumption ranges from 4.26Mbps to 1.04Mbps,
and 4.62Mbps to 4.08Mbps respectively.

Even though enforcing a cap on the maximum number of
outstanding REQs (with no DACK) is not meant to be a
full-fledged congestion control mechanism, it would still be
desirable for the ASV clients to react to very serious network
congestions by backing off (please refer to Section VI for
details). Additional simulations that we do not report here for
lack of space provide evidence that if (for any reason) clients
face heavy congestion in the network, they eventually react
and stop aggravating the situation.

Effect on TCP Cross Traffic: To measure the effect of
ASV on cross traffic we set up the following simulation sce-
nario. We create a client C that is communicating with a data-
backup server S2, co-located with the ASV-protected server
S behind the bottleneck link. The capacity of the bottleneck
link is set to 10Mbps (see the shaded lines in Figure 2). Client
C is backing up data on S2, and thus uploads data on S2 at
the rate of 512Kbps over TCP. In parallel, we simulate DDoS
attacks on S with a clientele of 50 clients per second (Naive,
and ASV with K = 3). As before, Naive behavior represents a
no-defense base for comparison reasons. The attack rates and
the queueing disciplines used in the bottleneck link vary in
different scenarios. The queueing disciplines in the bottleneck
link are DropTail and Stochastic Fair Queueing (SFQ) with 80
buckets. The amount of data that C can upload to S2 in 30s
in each scenario is plotted in Figure 7.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50

To
ta

l D
at

a
C

U
pl

oa
ds

 to
 S

2
(M

B)

No. of Attackers

ASV, SFQ (80 Buckets)
Naive, SFQ (80 Buckets)
Naive, DropTail
ASV, DropTail

Fig. 7. The amount of data that client C can upload to sever S2 in 30s.
The lines that are close to the horizontal axis represent values in the 7.5KB
to 15KB range.

The figure shows that when TCP cross traffic shares a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1209

bottleneck link with non-congestion controlled traffic from
attackers, it could be seriously throttled. It confirms that unless
the network links around a UDP-based service are highly over-
provisioned and protected against network link attacks, TCP
cross traffic would be seriously harmed in the face of fierce
attacks. In addition we observe that Stochastic Fair Queueing
(SFQ) would provide better guarantees compared to DropTail
only until client C’s traffic is hashed into the same bucket as
attackers packets. This results in C’s traffic being dropped,
which in turn causes it to back-off. However, the main result
of this experiment is that the attack traffic is the major cause
of the TCP client’s suffering, and thus compared to Naive
(which represents no-defense attack-only scenarios) ASV does
not cause any significant extra harm to TCP cross-traffic.

VIII. CONCLUSIONS

In conclusion, ASV advances the state-of-the art in band-
width based DDoS defense mechanisms by introducing a
distributed adaptive solution based on selective verification. In
ASV, the clients exponentially ramp-up the number of requests
they send in consecutive time-windows, up to a threshold.
The server implements a reservoir based random sampling to
effectively sample from a sequence of incoming packets using
bounded space. The novel theoretical analysis of the protocol
proves that the performance of ASV (in terms of client success
probability and bandwidth consumption) closely approximates
an “omniscient” protocol in which all attack parameters are
known to clients and the server. NS-2 network simulations
of the protocol verify and quantify the effectiveness of ASV
against its non-adaptive counterparts and illustrate that under
highly variable-rate attacks, the performance of ASV adjusts
quickly to prevailing attack parameters. In addition, it is shown
that the effect of ASV on internet cross traffic is minimal, and
comparable to that of its naive non-adaptive counterpart, which
represents no-defense attack-only scenarios.

IX. ACKNOWLEDGEMENTS

We thank Michael B. Greenwald, Jose Meseguer, Ravinder
Shankesi, and the anonymous reviewers for their valuable
comments. This work was supported in part by NSF CNS05-
5170 CNS05-09268 CNS05-24695, NSF CNS 07-16421, ONR
N00014-04-1-0562 N00014-02-1-0715, DHS 2006-CS-001-
000001 and a grant from the MacArthur Foundation. The
views expressed are those of the authors only.

REFERENCES

[1] CERT CC. smurf attack. http://www.cert.org/advisories/ca-1998-
01.html.

[2] Two root servers targeted by botnet. PC Advisor (pcadvisor.co.uk),
02/07/2007.

[3] Phish fighters floored by DDoS assault. The Register (theregister.co.uk),
02/20/2007.

[4] Surge in hijacked PC networks. BBC (bbc.co.uk), 03/19/2007.
[5] Telegraph floored by DDoS attack. The Register (theregister.co.uk),

05/22/2007.
[6] FBI busts alleged DDoS mafia. Security Focus (securityfocus.com),

08/26/2004.

[7] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard,
memory-bound functions. ACM Trans. Inter. Tech., 5(2):299–327, 2005.

[8] I. R. C. T. Fan, M. E. Muller. Development of sampling plans by using
sequential (item by item) selection techniques and digital computers. J.
Amer. Statist. Assoc., 57:387–402, 1962.

[9] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for
fighting spam. 2003.

[10] D. Eastlake. RFC: 2535, Domain Name System Security Extensions.
[11] C. A. Gunter, S. Khanna, K. Tan, and S. S. Venkatesh. DoS protection for

reliably authenticated broadcast. In NDSS’04: Network and Distributed
System Security Symposium. The Internet Society, 2004.

[12] C. Jin, H. Wang, and K. G. Shin. Hop-count filtering: an effective
defense against spoofed DDoS traffic. In CCS ’03: Proceedings of the
10th ACM conference on Computer and communications security, pages
30–41, New York, NY, USA, 2003. ACM Press.

[13] E. C. Kaufman. RFC: 4306, Internet Key Exchange (IKEv2) Protocol.
[14] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and

S. Shenker. Controlling high bandwidth aggregates in the network.
SIGCOMM Comput. Commun. Rev., 32(3):62–73, 2002.

[15] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz. Mitigating
distributed denial of service attacks with dynamic resource pricing.
In ACSAC ’01: Proceedings of the 17th Annual Computer Security
Applications Conference, page 411, Washington, DC, USA, 2001. IEEE
Computer Society.

[16] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage.
Inferring internet denial-of-service activity. ACM Trans. Comput. Syst.,
24(2):115–139, 2006.

[17] G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson. A framework
for a collaborative DDoS defense. In ACSAC ’06: Proceedings of the
22nd Annual Computer Security Applications Conference on Annual
Computer Security Applications Conference, pages 33–42, Washington,
DC, USA, 2006. IEEE Computer Society.

[18] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network
support for IP traceback. In SIGCOMM ’00: Proceedings of the
conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, pages 295–306, New York, NY, USA,
2000. ACM Press.

[19] M. Sherr, M. B. Greenwald, C. A. Gunter, S. Khanna, and S. S.
Venkatesh. Mitigating DoS attacks through selective bin verification.
In IEEE ICNP Workshop on Secure Network Protocols (NPSec), pages
7– 12, 2005.

[20] D. X. Song and A. Perrig. Advanced and authenticated marking schemes
for IP traceback. In INFOCOM ’01: Proceedings of the Joint Conference
of the IEEE Computer and Communications Societies. IEEE Press, 2001.

[21] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu. A middleware system
for protecting against application level denial of service attacks. In
Middleware, pages 260–280, 2006.

[22] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker.
DDoS defense by offense. In SIGCOMM ’06: Proceedings of the 2006
conference on Applications, technologies, architectures, and protocols
for computer communications, pages 303–314, New York, NY, USA,
2006. ACM Press.

[23] X. Wang and M. K. Reiter. Defending against denial-of-service attacks
with puzzle auctions. In SP ’03: Proceedings of the 2003 IEEE
Symposium on Security and Privacy, page 78, Washington, DC, USA,
2003. IEEE Computer Society.

[24] A. Yaar, A. Perrig, and D. X. Song. SIFF: A stateless internet flow filter
to mitigate DDoS flooding attacks. In IEEE Symposium on Security and
Privacy, pages 130–, 2004.

[25] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In SIGCOMM ’05: Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for computer
communications, pages 241–252, New York, NY, USA, 2005. ACM
Press.

[26] D. K. Y. Yau, J. C. S. Lui, F. Liang, and Y. Yam. Defending against
distributed denial-of-service attacks with max-min fair server-centric
router throttles. IEEE/ACM Trans. Netw., 13(1):29–42, 2005.

[27] C. C. Zou, N. Duffield, D. Towsley, and W. Gong. Adaptive defense
against various network attacks. In IEEE Journal on Selected Areas in
Communications, volume 24, pages 1877–1888. IEEE Press, 2006.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

1210

