
Using the Crowd for Top-k and Group-by Queries

Susan B. Davidson
University of Pennsylvania
susan@cis.upenn.edu

Sanjeev Khanna
University of Pennsylvania

sanjeev@cis.upenn.edu
Tova Milo

Tel Aviv University
milo@cs.tau.ac.il

Sudeepa Roy∗
University of Washington

sudeepa@cs.washington.edu

ABSTRACT
Group-by and top-k are fundamental constructs in database queries.
However, the criteria used for grouping and ordering certain types
of data – such as unlabeled photos clustered by the same person
ordered by age – are difficult to evaluate by machines. In contrast,
these tasks are easy for humans to evaluate and are therefore natural
candidates for being crowd-sourced.

We study the problem of evaluating top-k and group-by queries us-
ing the crowd to answer either type or value questions. Given two
data elements, the answer to a type question is “yes” if the ele-
ments have the same type and therefore belong to the same group
or cluster; the answer to a value question orders the two data ele-
ments. The assumption here is that there is an underlying ground
truth, but that the answers returned by the crowd may sometimes
be erroneous. We formalize the problems of top-k and group-by
in the crowd-sourced setting, and give efficient algorithms that are
guaranteed to achieve good results with high probability. We an-
alyze the crowd-sourced cost of these algorithms in terms of the
total number of type and value questions, and show that they are
essentially the best possible. We also show that fewer questions
are needed when values and types are correlated, or when the error
model is one in which the error decreases as the distance between
the two elements in the sorted order increases.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms And Problem Complexity]: Gen-
eral; H.2.0 [Database Management]: General

General Terms
Algorithms, Theory

Keywords
crowd sourcing, top-k, group by, clustering, lower bounds

∗This work was done while the author was at the University of
Pennsylvania.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03...$15.00.

1. INTRODUCTION
Consider the following problem: You have a massive database of
photos. Currently, the photos are tagged and organized along a di-
mension of geo-location. However, many of these photos contain
people and for those that are focused on a single person – Alice
standing in front of Niagara Falls or Bob in front of the Louvre –
you wish to be able to group the photos by person. Furthermore,
you wish to find the most recent photo of each person, or alterna-
tively the 5 most recent photos of each person. Thus one of the
queries you wish to run over the photo database is:

SELECT most-recent(photo)
FROM photoDB
WHERE singlePerson(photo)
GROUP BY Person(photo)

This query contains several (non-traditional) functions, most-recent,
singlePerson, and the grouping function Person. While some of the
functions in this query could be done by your photo processing
software – for example, singlePerson, or allowing you to annotate
faces in photos with names that could be used for grouping – it may
not have been done for all the photos in your database. The anno-
tation results are also not impressive for a time span of 20 years
when the person has aged from babyhood to adult. Furthermore,
the date field is missing in many of the photos or is not completely
trustworthy as some people forget to set the date and time when
they buy a new camera. You therefore decide to ask the database to
crowd-source some of the functions in this query, in particular the
group-by function (photos of the same person) and the “max” func-
tion most-recent (returning the most recent photo of each person).

In this paper, we formally study the problem of evaluating such
max/top-k and group-by queries using the crowd to answer either
type or value questions. Given two data elements, the answer to
a type question is “yes" if the elements have the same type and
therefore belong to the same group or cluster; the answer to a value
question orders the two data elements. The assumption here is that
there is an underlying ground truth that the crowd is expected to
know. However, due to differing skill levels or the amount of time
and effort spent, the answers returned by the crowd may sometimes
be erroneous. That is, the crowd may not correctly identify pictures
as being of the same person (type) or of one picture of a person
being more recent than another picture of that same person (value).

There are several ways of modeling this human error. In the first
and the more standard one, we assume that each type or value ques-
tion is answered correctly by the crowd with a constant probability
> 1

2
(constant error model). We then propose a more interesting

error model, called the variable error model, in this paper. Here
the error is related to how close the elements are in the ordering of
interest. For example, if a value question involves two pictures of
the same person, one of which is them as a baby and the other of
which is them at their high school graduation it is easy to decide
which is the most recent. However, if the value question involves
two pictures of the same person separated by a week, it is much
harder to decide which is the most recent.

Using these error models, we formalize the max/top-k problems
and clustering problems for group-by queries in the crowd-sourced
setting, and give efficient algorithms that are guaranteed to achieve
the desired results with high probability. For max/top-k, we ask
value questions to the crowd, whereas for clustering, we ask type
questions. Asking questions to the crowd using platforms like Ama-
zon Mechanical Turk [6] involves monetary cost. Therefore, we
analyze the crowd-sourced cost of these algorithms in terms of the
total number of type and value questions asked to the crowd.

There are scenarios where type and value questions are needed to
be used together, e.g. in the database query given above, where
we want to find max/top-k elements from each cluster. However
it turns out that, even for the simple clustering problem when the
types and values of the elements are correlated, both type and value
questions can be used to reduce the total number of questions. Note
that in our example photo database, there is no correlation between
the type and value questions; not all “older” people are the same
person.1 However, there are other examples in which there is such
a correlation. For example, suppose that you have a database of
hotels in a city. If the hotels were to be clustered by districts, then
there would be a high correlation between the district and the qual-
ity (luxury level or star ratings) of a hotel. In this case, a value
question – the luxury level of a hotel – would give some informa-
tion about its type, i.e. the district of the hotel. Similar correlation
is expected to exist when the value of a hotel in a given district is
its (average/maximum) price, and the type is its quality. We show
that this type of correlation can be used to advantage.

Contributions. We study max/top-k and clustering problems in
the crowd-sourced setting. Here is a summary of our contributions.

• We propose a variable error model for erroneous answers
from the crowd. Suppose the two elements being compared
by a value question is ∆ apart in the sorted order on val-
ues. Then the probability of error is ≤ 1

f(∆)
for a monotone

non-negative error function f , i.e. the error in the answer de-
creases when the distance ∆ between the elements increases.
We study the max/top-k problems under this model. For
max and top-k with small values of k, we show that only
n + o(n) value questions are sufficient to find the answers
with high probability given any strictly monotone error func-
tion f . Here o(n) denotes a function of n that is strictly
asymptotically smaller than the linear function.

• For the general clustering problem, we give a lower bound of
Ω(nJ) where J is the number of clusters, even for random-
ized algorithms, even when the answers to the type questions
are always correct, and the value of J is known by the algo-
rithm. We show that this bound is essentially the best pos-
sible by providing a simple algorithm that compares O(nJ)
pairs of elements by type questions (if the answers to the type

1The most recent photo of a person is the one in which they are the
oldest.

questions are erroneous, the number of questions increases
by a factor ofO(logn) to output the clusters with high prob-
ability). We also note that our algorithm does not require an
a priori knowledge of J .

• We formalize the scenario when the types and values are cor-
related, and show that O(n log J) type and value questions
in total (with additional logarithmic factors for erroneous an-
swers) are sufficient when elements from same types form
contiguous blocks in the sorted order (called the full correla-
tion case). In the partial correlation case, there are at most
α changes in types between any two element of the same
type in the sorted order by value. We show that in this case
O(αJ+n log(αJ)) questions (with logarithmic factors) suf-
fice. We also discuss the problem of finding max/top-k ele-
ments from each cluster.

Outline of paper. We review related work in Section 2. Section 3
presents the model and definitions that will be used throughout the
paper. Results on max and top-k (value comparisons) for the vari-
able error model are given in Section 4, while results on clustering
(type comparisons) are given in Section 5. In Section 6, we con-
sider the case when values and types are correlated, and give an
improved clustering algorithm using both type and value questions.
We conclude in Section 7.

2. RELATED WORK
Crowd-sourcing is a topic of recent interest to the database commu-
nity, and has been suggested as a method for data cleansing, data
integration, entity resolution, schema expansion, and data analyt-
ics see e.g. [10, 17, 19, 1, 11]. Different crowd-sourced databases
like CrowdDB [8], Deco [15], Qurk [12], AskIt![4] have been built.
These systems help decide which questions should be asked of the
crowd, taking into account various requirements such as latency,
monetary cost, quality, etc.

The problem of finding max in the crowd-sourced setting has been
considered in [10]. However, instead of finding the maximum ele-
ment exactly, [10] focuses on the judgment problem: given a set of
comparison results, which element has the maximum likelihood of
being the maximum element, and the next vote problem: given a set
of results, which future comparisons will be most effective. Find-
ing the exact solution to these problems is shown to be hard, and
efficient heuristics are proposed that work well in practice. Finding
max in crowd-sourced settings has also been considered in [18]. It
provides efficient heuristics and evaluate them empirically which
can be tuned using parameters like execution time, cost, and qual-
ity of the result. The more general sorting problem is considered in
[13] which aims to minimize the cost of asking questions using the
Qurk system by optimization techniques like batching and replac-
ing pairwise comparisons by numerical ratings. The focus of [13]
is mainly on handling different implementation aspects in contrast
to obtaining rigorous theoretical results which is the goal of this
paper.

On the other hand, the problem of finding max/top-k elements in
the presence of noisy comparison operators has been extensively
studied in the the theory community (see the references in [18,
10]). Our work is closest to [7] which considers the more stan-
dard constant error model; we compare our work with [7] in detail
in Section 4, and show that we obtain better bounds for max and for
small values of k in top-k when the error function in the variable
error model is strictly monotone.

The clustering problem in the crowd-sourced setting has been con-
sidered in [9]. However, the goal of [9] is to define cluster types
instead of only classifying the elements. It also assumes that work-
ers may have different clustering criteria and each worker only has
a partial view of the data. This paper proposes a Bayesian model
of how the workers can approach clustering. This is in contrast to
our model where we assume that there is a fixed (but unknown)
set of clusters partitioning the elements. Previous work has also
considered filtering data items based on a set of properties that can
be manually verified [16], and also entity resolution using crowd-
sourcing [19]. However, to the best of our knowledge, our work is
the first one that formally considers clustering in the crowd-sourced
setting assuming a ground truth on the clusters, and studies the cor-
relation between types and values.

3. PRELIMINARIES
In this section, we present some preliminary notions and formally
define the problems that we study in this paper.

There are n elements x1, · · · , xn. Each element xi is associated
with a type (denoted by type(xi)) and a value (denoted by val(xi)).
We denote by J , the number of distinct types. Types induce a
partition of the elements into J clusters where each cluster con-
tains elements of the same type. The clusters are balanced when
the ratio of maximum and minimum cluster size is bounded by
some given constant c, i.e. when each cluster has about n/J ele-
ments. The values of the elements are distinct and there is a total
order on the values, i.e. for any two elements xi and xj , either
val(xi) > val(xj) or val(xj) > val(xi). For simplicity, we
will use xi > xj instead of val(xi) > val(xj) when it is clear
from the context.

In the photoDB example mentioned in the introduction, each photo
is an element. The type of a photo is the person appearing in the
photo, while the value of a photo is the age of the person in that
photo (or, the date when the photo was taken). The number of clus-
ters J is the number of distinct people in the database who appear
in a singlePerson photo. Since some people may appear in
many more singlePerson photos than others, the clusters are
not necessarily balanced. Note that the name or age of the individ-
uals may not be explicitly recorded in the photos, but that there is
an underlying ground truth.

Group-by and top-k database queries. Consider the elements
as tuples in a relational setting. The types and values of the ele-
ments can be assumed to be two different attributes of the tuples
which are not explicitly mentioned in the database. The goal of a
group-by query is to group together elements having same types,
i.e. to find the clusters mentioned above. An example group-by
query that clusters the photos based on the individuals appearing in
them is the following (for simplicity assume that group photos have
already been filtered out and ind-photoDB contains photos focusing
on individual people):

SELECT Person(photo)
FROM ind-photoDB
GROUP BY Person(photo)

On the other hand, in a top-k query, predicates can be added in the
select clause to find the maximum or k elements having the highest
values for each cluster in the query (the smallest elements can be
found similarly). As an example, consider the scenario where a
person accesses only her photos in the database and wants to find

the most recent photo, or where someone wants to find the most
recent photo of a place of interest given a number of such photos.
Both can be answered by the following query (where my-photoDB
represents the set of photos of interest) :

SELECT most-recent(photo)
FROM my-photoDB

Here value of a photo is the date when it was taken (or the age of the
person was at the time the photo was taken). In particular, group-
by and top-k queries can be combined in the natural way when we
want to find top-k/maximum element from each cluster, as in the
example database query given in the introduction.

Questions for the crowd. As mentioned in the introduction,
the wisdom of the crowd can be used to compute the functions
“GROUP BY Person(photo)” or “most-recent(photo)” in the above
queries. This is done by posing questions to the crowd that ask them
to compare types or values of two elements, followed by (possibly
in rounds) some computation performed within the system. In our
model, the crowd can be asked either a type question: given two ele-
ments xi and xj , whether type(xi) = type(xj), or a value ques-
tion: given two elements xi and xj , whether val(xi) > val(xj).
Note that the answers to these questions are always “yes” or “no”,
and we cannot ask what the type or value of a given element is.
This is motivated by the examples given, since the crowd may not
know the exact date when the photo was taken, who the person is
in the photos they are shown, or where the places of interest are.
From now on, we use “queries” to denote database group-by or
top-k queries, and “questions” or “comparisons” to denote the type
or value questions asked to the crowd.

Problem definitions. The problems studied in this paper are:

(i) Max and top-k: Here our goal is find the maximum, and in
general the top-k elements having the highest values in order to
compute top-k/max functions in queries. That is, assuming without
loss of generality that x1 > x2 > · · · , xn, we want to find x1 (for
max) or x1, · · · , xk (top-k) using value questions.

(ii) Clustering: Here we want to find the J clusters using type
questions grouping together elements having the same type. This
allows us to find the groups in group-by queries.

(iii) Clustering with correlated types and values: The problem
stated above uses only type questions to cluster the elements. How-
ever, sometimes the types and values of elements are highly corre-
lated. For instance, consider average/maximum price of hotels (or
rooms in a hotel) of a district vs. their quality. Here the elements
are hotels or rooms in the same hotel; quality of a room or a hotel
(luxury level or star ratings) captures its type, and the value is the
(average) price of the room or the hotel. When we sort rooms in the
same hotel according to their prices, it is likely that rooms of simi-
lar quality will form a contiguous block in the sorted order. This we
call the full correlation case. On the other hand, when we sort the
hotels according to their average prices, the hotels of similar qual-
ity are expected to form “almost” contiguous blocks in the sorted
order (due to other factors like location). This we call the partial
correlation case. In this problem, once again we want to find the J
clusters for group-by queries. However, we use both type and value
questions in order to exploit any correlation as above between types
and values.

The above intuition is formalized as follows. Suppose x1 > x2 >
· · · > xn. There are at most α changes in types of elements in
the sorted order between any two elements of the same type for
some value of α. Formally, consider any two elements xi > xj
such that type(xi) = type(xj). There exists a value of α, α ∈
[1, n − 1]2, such that between xi and xj there are at most α − 1
elements x`, i ≤ ` < j, where type(x`) 6= type(x`+1). For
instance, when type(x1) = type(xn), and all other elements
have distinct types, α = n − 1. On the other hand, when α = 1,
we get the full correlation case. In general, when the value of α
is small, the clusters are nearly sorted according to the values of
the elements in them, and we get the partial correlation case. We
will show that fewer number of type and value questions in total are
needed compared to the number of type questions in (ii) when the
value ofα is small. We also discuss how we can find top-k elements
from each cluster using both type and value questions (for queries
using both top-k/max function and GROUP BY clause).

A dominant cost factor in crowd sourcing applications is the num-
ber of questions being asked.3 This is because answering may incur
monetary cost, involves human efforts, and may be slow. There-
fore, we will provide upper and lower bounds on the cost to solve
the above problems by counting the total number of type and value
questions.

Error model. Although each element has a fixed type and a fixed
value, due to differing skill levels, or the amount of time and effort
spent, the answers returned by the crowd may be erroneous. We
first model the potential noisy answers by a simple and standard
error model for the questions: both type and value questions are
answered correctly with probability≥ 1

2
+ ε, where 0 < ε ≤ 1

2
is a

fixed constant4. This ensures that the answer returned by the crowd
is always correct with higher probability than a random “yes” or
“no” answer returned with probability 1

2
. We call this the constant

error model.

For the max/top-k problem, we will see the effect of a more refined
variable error model for value questions, where the probability of
error decreases when two elements that are far apart in the total
order on values are compared. For instance given two photos of
an individual, it is easier for the crowd to decide which one has
been taken earlier if the time difference between the photos is 10
years than when the photos are taken a week apart. We formalize
this concept as follows: A function f : N → R≥0 5 is monotone
(respectively, strictly monotone) if for al n1 ≥ n2, f(n1) ≥ f(n2)
(respectively, f(n1) > f(n2)). Given two distinct elements xi, xj
such that xi > xj

Pr[xj is returned as the larger element] ≤ 1

f(j − i) − ε (1)

where f is a monotone function, f(1) ≥ 2, and ε > 0 is a constant.
The conditions f(1) ≥ 2 and ε > 0 ensure that even if xi and xj
are consecutive elements in the total order, i.e. j = i + 1, then the
probability of making the right decision is also strictly greater than

2For positive integers a, b, where a ≤ b, [a, b] denotes the interval
a, a+ 1, · · · , b.
3There are other natural cost function like the latency or number of
rounds of questions asked of the crowd, which we leave as future
work.
4The results obtained are similar if we assume two different ε val-
ues for type and value questions.
5N,R, and R≥0 respectively denote the set of natural numbers, the
set of real numbers, and the set of non-negative real numbers.

1
2

. Note that when f(∆) = 2 for all inputs ∆, the variable error
model is the same as the constant error model for value questions6.

The function f is called the error function, and can have different
rate of growth depending on the dataset and skill level of the crowd.
For instance, when the set of n photos spans a time line of few
weeks, the probability of error in ordering them according to age
of people is likely to be high even when the oldest and most recent
photos are compared. However, if the n photos span a time line of
over 20 years, the probability of error is much smaller when the first
and last photos are compared. In practice, the nature of error can be
estimated by asking a test set of questions to the crowd on a small
set of elements for which the correct answer is already known, prior
to asking the actual questions for finding max/top-k. In Section 4,
we will study the effect of different error functions on the number
of questions asked to the crowd.

Error in the answers to value and type questions results in errors
in the answer to a database query. Therefore, we seek to find solu-
tions to the queries that are correct with high probability: given any
constant δ > 0, our goal is to find the exact max/top-k elements or
the exact clusters with probability 1− δ.

We will frequently use the standard notationO() and Ω() for asymp-
totic upper and lower bounds, and o() and ω() for strict asymptotic
upper and lower bounds respectively [5]. We will also use the nota-
tion Õ() or Θ̃() which hides the associated logarithmic terms in an
expression. All logs used in the paper refer to logarithms with base
2. Next we discuss the three problems mentioned above in detail in
Sections 4, 5 and 6 respectively.

4. MAX AND TOP-K
The problem of finding the maximum and top-k elements with
faulty comparisons has been thoroughly studied in [7] under the
constant error model. When value comparisons are performed by
the crowd, the probability of error is likely to be less when two ele-
ments far apart in the sorted order are compared, which can reduce
the number of questions asked to the crowd. This motivates the
study of max and top-k problems under the variable error model
which is formalized in Equation (1). In this section, we show that
when the error function f in Equation (1) is strictly monotone, only
n+ o(n) value questions are sufficient to find the max or the top-k
elements for a small value of k (which is typically the case in prac-
tice) with high probability. We start with the algorithm for finding
max in Section 4.1, and then use that algorithm as building block
to find the top-k elements in Section 4.2.

4.1 Finding Max
Suppose x1 > x2 > · · · > xn. Given δ > 0, we want to find x1

with probability ≥ 1− δ using a small number of value questions.
When the answers to value questions are correct, n − 1 questions
are necessary and sufficient to find x1. On the other hand in the
constant error model, where each value question is answered cor-
rectly with probability ≥ 1

2
+ ε for a constant ε, [7] gives a simple

algorithm to find the maximum with probability ≥ 1 − δ using
O(n log 1

δ
) questions (we sketch the algorithm later). They also

show that this bound is tight as stated in the following theorem:

THEOREM 1. [7] For all δ ∈ (0, 1
2
), Θ(n log(1

δ
)) value ques-

tions (comparisons) are both sufficient and necessary to find the
6Our results also hold for an alternative ‘value-based’ error model
when adjacent values in the sorted order are well-separated (see
Section 7).

Algorithm 1 Algorithm for finding the maximum element.

1: – Choose a random permutation Π of the elements x1, · · · , xn.
2: for levels L = 1 to logn in the comparison tree do { leaves

are in level 0, the root is in level logn* }
3: – If L ≤ logX (lower logX levels), do one comparison at

each internal node. Propagate the winners to the level above.
4: – If L > logX (upper log n

X
levels), do NL comparison

at each internal node. Take majority vote and propagate the
winners to the level above.

5: end for
6: return The element at the root node of the comparison tree.

maximum with probability ≥ 1− δ in the constant error model.

Moreover, the proof of the lower bound shows a stronger result
when δ + ε ≤ 1

2
, i.e. when a high probability of success is needed

in spite of a high probability of error.

OBSERVATION 4.1. [7] There exists a constant c > 0 such that
at least (1+ c)n comparisons are needed to compute the maximum
with probability 1− δ for any δ, ε satisfying δ + ε ≤ 1

2
.

In this section we show that a much better upper bound can be
obtained in the variable error model that almost matches both the
upper bound of n − 1 comparisons when the value questions are
correctly answered, and the lower bound of (1 + c)n stated in Ob-
servation 4.1. Recall the probability of error for value questions in
the variable error model in terms of the error function f given in
(1) in the previous section. The following theorem shows that for
all strictly monotone functions f , n + o(n) questions suffice (for
constant ε, δ) to find the maximum with high probability. Further,
the number of questions improves to n + O(log logn) when f is
at least linear (i.e. f(∆) = Ω(∆)) and to n + O(1) when f is
exponential (f(∆) = 2∆).

THEOREM 2. For all strictly growing functions f and constant
ε, δ > 0, n + o(n

δ
log 1

δ
) value questions are sufficient to output

the maximum element x1 with probability ≥ 1 − δ in the variable
error model.

Further, if f(∆) = Ω(∆), then n + O(log logn
δ2

log 1
δ
) questions

are sufficient. If f(∆) = 2∆, then n + O(log2 1
δ
) questions are

sufficient.
Next we present our algorithm and prove the bounds given in the
theorem.

Our Algorithm. Our algorithm uses the tournament approach
using a comparison tree. The key idea is to choose a random per-
mutation of the elements x1, · · · , xn which appear as leaves in
the tree. These leaves are grouped into n

2
pairs, the two elements

in each pair are compared using value questions, and the winners
(larger elements) propagate to the level above. This is continued
until only one element remains as the root of the tree which is de-
clared as the maximum.

We divide the logn levels of the comparison tree into upper log n
X

levels and lower logX levels (see Figure 1a). In the lower levels,
only one value comparison is performed at each internal node. In
the upper levels L = logX + 1 to logn, NL comparisons are
performed at each internal node, and a majority vote is taken to
decide the larger element. Algorithm 1 presents our method; the
parameters X and NL will be calculated later depending on the
nature of error function f .

n
X

log n/X

log X

(a)
X = 16 = 2h

1 2 4 8

(b)

Figure 1: (a) General framework of Algorithm 1 with a comparison
tree, (b) Amplified single X-tree with X nodes and (lower) logX
levels.

Analysis. The total number of comparisons performed by the al-
gorithm is

n− n

X
+

logn∑
L=logX+1

NL ≤ n+

logn∑
L=logX+1

NL

We will show that the maximum element x1 is returned with prob-
ability ≥ 1 − 6δ; to obtain the desired 1 − δ probability as stated
in Theorem 2, the algorithm is run with δ′ = δ/6.

We analyze the upper log n
X

levels and the lower logX levels sep-
arately: (i) in the upper levels, we use the algorithm from [7] which
returns the maximum element with probability ≥ 1 − δ; (ii) in
the lower levels, we show that x1 does not lose in any compari-
son with probability ≥ 1− 5δ, even when only one comparison is
performed at each internal node in the lower levels. Therefore, by
union bound, the maximum element x1 will be returned with prob-
ability≥ 1− 6δ. Moreover, the chosen value of X ensures that the
number of comparisons in the upper levels in o(n) (for constant
ε, δ) for any strictly monotone error function f .

Analysis of the Upper Levels. For the upper log n
X

levels, we
simply use the fact that each value question is answered correctly
with probability ≥ 1

2
+ ε irrespective of the function f . Then we

can use the algorithm and bounds given in [7] for constant error
model (see Theorem 1). We briefly sketch the algorithm for the
sake of completeness.

Consider the sub-tree with the upper log n
X

levels, the number of
nodes in the subtree is n

X
. Each internal node in the levels ` = 1 to

log n
X

uses S` = (2`− 1) ∗O(1
ε2

log 1
δ
) comparisons, and NL =

SL−logX . It is easy to verify that
∑logn
L=logX+1 NL = O(n

X
log 1

δ
)

for constant ε > 0 (see the appendix). Therefore, given constant
ε, δ > 0, to find the maximum element in the upper log n

X
levels

with probability ≥ 1− δ,

it suffices to ask O(
n

X
log

1

δ
) value questions (2)

Analysis of the Lower Levels. The expression in (2) bounds the
number of comparisons in the upper log n

X
levels; the number of

comparisons in the lower logX levels is bounded by n. Next we
show that there exists a value of X such that n

X
= o(n

δ
) for any

strictly monotone function f , and the maximum element does not
lose in any comparison with probability ≥ 1 − 5δ in the lower
levels.

Algorithm 1 starts with a random permutation Π of the elements

x1, · · · , xn. Let us partition Π into block of size (at most) X of
consecutive elements. Let us call the sub-trees of the comparison
tree in the bottom logX levels on each block of X elements an X-
tree (the sub-trees in Figure 1a); the number of X-trees is n

X
. The

algorithm performs only one comparison at each non-leaf node of
each X-tree.

Consider the X-tree that contains the maximum element in Fig-
ure 1b. Without loss of generality, assume that the leftmost leaf is
the maximum element x1. Consider the left-most path of length h
to the root of the X-tree. We will compute the probability that x1

is never eliminated along this path.

The height of theX-tree is h = logX . Let r`, ` ∈ [1, h], be a non-
leaf node on the left-most path of theX-tree. The right subtree of r`
will have 2`−1 leaf nodes (see Figure 1b). Note that, if x1 survives
all the comparisons in levels 1 to `− 1, in the internal node r`, x1

can only be compared with the nodes in the right subtree of r`. For
parameters ∆`, ` ∈ [1, h], to be decided later, we will bound the
following probabilities:

1. δ` = Pr[At least one leaf in the right subtree of r` corre-
sponds to an element from the set {xj : 2 < j ≤ ∆` + 1}].

2. p` = Pr[x1 loses the comparison at node r`, when none of
the leaves in the right subtree of r` correspond to an element
from the set {xj : 2 < j ≤ ∆` + 1}].

In particular, we prove the following proposition:

PROPOSITION 4.1. There exist values of h = logX and ∆`,
` ∈ [1, h] such that

∑h
`=1 δ` +

∑h
`=1 p` ≤ 5δ and n

X
= o(n

δ
) for

any monotone error function f .

It follows from Proposition 4.1 (using union bound) that the max-
imum element x1 cannot lose any comparison in the lower levels.
Next, we choose values of h and ∆`, ` ∈ [1, h], and prove Propo-
sition 4.1 (see Lemmas 4.1 and 4.3 below).

Since Π is a random permutation, given a fixed position of x1, any
of the n − 1 elements other than x1 can appear in another given
position in Π with probability 1

n−1
. Therefore by union bound,

δ` ≤ ∆`2
`−1/(n− 1) (3)

On the other hand, if the right subtree of r` does not contain any
element from {xj : 2 < j ≤ ∆` + 1}, then the minimum distance
between the ranks of x1 and the elements in the right subtree of r`
is (∆` + 2)− 1 = ∆` + 1. In this case

p` ≤
1

f(∆` + 1)
− ε ≤ 1

f(∆`)
(4)

Inequality (4) follows from Equation (1), since f is an increasing
function and ε > 0. Given any δ > 0, for all ` ∈ [1, h], we set

∆`2
`−1

n− 1
=

(h− `+ 1)δ

2h−`
(5)

The following lemma (proved in the appendix) gives a bound on∑h
`=1 δ`:

LEMMA 4.1. If ∆`2
`−1

n−1
= (h−`+1)δ

2h−`
, then

∑h
`=1 δ` ≤ 4δ

The bound on
∑h
`=1 p` is obtained in two steps. First, in Lemma 4.2,

we give an upper bound on
∑h
`=1 p` for any monotone function f

in terms of h = logX . Then in Lemma 4.3, we show that there
exists a value of X such that

∑h
`=1 p` ≤ δ and n

X
= o(n

δ
) which

will complete the proof of Proposition 4.1.

LEMMA 4.2.
∑h
`=1 p` ≤

h

f
(
δn
2h

) .

PROOF. By Inequality (4) and Equation (5), ∆` =
(h−`+1)δ(n−1)

2h−1 , and p` ≤ 1
f(∆`)

. Then
∑h
`=1 p` ≤

∑h
`=1

1
f(∆`)

=
∑h
`=1

1

f
(

(h−`+1)δ(n−1)

2h−1

) =
∑h
`=1

1

f
(

2(h−`+1)δ(n−1)

2h

)
≤
∑h
`=1

1

f
(

(h−`+1)δn

2h

) (for n ≥ 2, 2(n− 1) ≥ n). Therefore,

h∑
`=1

p` ≤
h∑
q=1

1

f
(
qδn

2h

) (6)

≤ h

f
(
δn
2h

) (since f is monotone) (7)

LEMMA 4.3. Given any strictly monotone function f , and a
constant δ > 0, there exists a h and n0 ∈ N, such that for all
n ≥ n0,

∑h
`=1 p` ≤ δ, and n

X
= n

2h
= o(n

δ
).

PROOF. Since f is strictly monotone, f(∆) = ω(1) (super-
constant growth rate). We choose h as follows:

• h = logn− log logn− log 1
δ

, if f(∆) = ω(∆).

Then n/2h = logn
δ

= o(n
δ

).

• h = log f(n1/4) − log 1
δ

, if f(∆) = O(∆). Then n/2h =
n

δf(n1/4)
= n

δω(1)
= o(n

δ
).

If f(∆) = ω(∆),
∑h
`=1 p` ≤

h

f
(
δn
2h

) (from Lemma 4.2)

=
logn−log logn−log 1

δ

f

(
δn
δn

logn

) ≤ logn
f(logn)

= logn
ω(logn)

= o(1) ≤ δ

when δ > 0 is a constant, there exists n0 such that for all n ≥ n0

the last step holds.

If f(∆) = O(∆),
∑h
`=1 p` ≤

h

f
(
δn
2h

) (from Lemma 4.2)

=
log f(n1/4)−log 1

δ

f

(
δn

δf(n1/4)

) ≤ log f(n1/4)

f

(
n

O(n1/4)

) = log f(n1/4)

f(Ω(n3/4))
≤ log f(n1/4)

f(n1/4)

(for large enough n, since f is strictly monotone) ≤ δ.

For all constant δ > 0, there exists n0 such that for all n ≥ n0 the
last step holds.

Since n
X

= n
2h

= o(n
δ

), by the expression in (2), the upper level
uses o(n

δ
log 1

δ
) comparisons in total. Combining with the total

number of comparisons in the lower levels, which is ≤ n, and
summing up the bad probabilities in the upper and lower levels

by union bound (from the expression in (2) and Proposition 4.1),
the maximum element is found with probability ≥ 1 − 6δ with
n+ o(n

δ
log 1

δ
) value questions.

The proof of Lemma 4.3 also shows that, when f(∆) = ω(∆),
n + O(logn

δ
log 1

δ
) value questions suffice. However, the follow-

ing Lemma 4.4 shows that better bound can be obtained when
f(∆) = Ω(∆) or f(∆) = 2∆, by a tighter analysis using In-
equality (6). This lemma also gives a tighter bound for the slowly
growing logarithmic error function. This lemma is analogous to
Lemma 4.3; the proof of the lemma is given in the appendix.

LEMMA 4.4. Given any δ > 0,

1. for exponential error function, there exists a value of X
such that n

X
= O(log2 1

δ
), and

∑h
`=1 p` ≤ δ,

2. for linear error function, there exists a value of X such that
n
X

= O(log logn
δ2

) and and
∑h
`=1 p` ≤ δ.

3. for logarithmic error function, there exists a value ofX such

that n
X

= O

(
n

1
1+δ

δ
δ
δ+1

)
, and

∑h
`=1 p` ≤ δ.

Substituting the value of n
X

in the expression in (2), the better up-
per bounds for functions f such that f(∆) = Ω(∆) or f(∆) = 2∆

in Theorem 2 can be obtained. This completes the proof of Theo-
rem 2.

4.2 Finding Top-k
Suppose x1 > x2 > · · · > xn. Given an integer k, Feige et. al.
[7] has given an algorithm to find the top-k elements x1, · · · , xk in
the constant error model. This algorithm usesO(n log min(k,n−k)

δ
)

comparisons to find the k-th largest element with probability ≥
1− δ. For simplicity, assume that k ≤ n

2
, i.e. min(k, n− k) = k.

In practice, for database top-k queries, the value of k is likely to be
much smaller than the total number of elements n. When the value
of k is small, a better bound on the number of value comparisons
can be obtained using Theorem 2 in Section 4.1 and the algorithm
given in [7] with strictly monotone error functions. In particular,
we show the following corollary to Theorem 2 that solves the top-k
problem with high probability.

COROLLARY 1. For all strictly growing functions f and con-
stant ε, δ > 0, n+o(nk

δ
log k

δ
)+O(k

2

δ
log k

δ
) value questions are

sufficient to output all the top-k elements x1, · · · , xk with proba-
bility ≥ 1− δ.

Further, if f(∆) = Ω(∆), then n+O(k log logn
δ3

log k
δ
)+O(k

2

δ
log k

δ
)

value questions are sufficient. If f(∆) = 2∆, then n+O(k
2

δ
log k

δ
)

value questions are sufficient.

When k = O(1) and δ > 0 is constant, we once again get a bound
of n+ o(n) even to find all the top-k elements with high probabil-
ity, which exceeds n only by lower order additive terms. Note that,
even when the comparisons are exact, the linear time recursive se-
lection algorithm [3] requires cn comparisons for a constant c > 1
to find the k-th element (although it works for all values of k). The

same guarantee of n + o(n) can be obtained for any k = o(
√
n),

when the error function f(∆) = Ω(∆) (the growth-rate is at least
linear). The algorithm in [7] gives a better bound for other error
functions and values of k.

As an aside, we note that for any fixed δ > 0, when the answers
to value questions have no errors, and when k = o(

√
n), our tech-

niques give a bound of n + g(k, δ) on the value comparisons for
finding the top-k elements with probability ≥ 1 − δ. Here g(k, δ)
is a polynomial function of k and 1

δ
independent of n (see the ap-

pendix).

To conclude this section, we sketch how we can obtain Corollary 1
using Theorem 2; the details are given in the appendix. Once again,
we use a comparison tree and start with a random permutation of
the elements in the leaves of this tree. We also divide the logn lev-
els of the comparison tree into lower logX levels and upper log n

X
levels. In the lower levels, we have n

X
X-trees. We show that there

is a value of X such that with high probability each of x1, · · · , xk
appear in different X-trees so that they are the maximum elements
in their respective X-trees. In all the X-trees we use Algorithm 1,
and argue that all of x1, · · · , xk are the winners in their respec-
tive X-trees with high probability. Therefore, in the upper log n

X
levels, x1, · · · , xk remain to be the top-k elements. In the upper
levels, which has n

X
elements, we use the top-k algorithm from

[7]. We show that the total number of questions asked to the crowd
is given by the expressions in Corollary 1. We also argue that the
total probability of error (probability that exactly x1, · · · , xk are
not returned) is bounded by δ, so with probability ≥ 1− δ we find
the top-k elements.

5. CLUSTERING
We study the clustering problem motivated by group-by queries in
this section. Recall that there are J distinct types, and the goal of
the clustering problem is to find the J clusters, i.e. the groups of
elements having the same type. For the max and top-k problems
discussed in the previous chapter we used value questions, where
the crowd is asked to order two elements according to their values.
We will use type questions in this section for clustering purposes.
Here the crowd is asked to decide whether the elements have the
same type, for instance, whether two photos capture the same per-
son or place.

We prove the following theorem which gives a bound on the num-
ber of type questions that are necessary and sufficient to exactly
find the J clusters. In our algorithms, we do not assume that J is
known a priori – when a set of questions regarding a photo database
is asked, the crowd may not know the number of people participat-
ing in the database. However, our (tight) lower bounds hold even
when the value of J is known. Recall that we assume the constant
error model for type questions, i.e. each type question is answered
correctly with probability ≥ 1

2
+ ε, for a constant ε > 0.

THEOREM 3. For all δ > 0, to group n elements into J clusters
with probability ≥ 1 − δ, O(nJ log n

δ
) type questions in expecta-

tion are sufficient in the constant error model.

On the other hand, Ω(nJ) type questions are necessary (i) even
if the algorithm is randomized, (ii) even when answers to all type
questions are exact, and (iii) even when the value of J is known.

Proof of Upper Bound. Algorithm 2 finds the J clusters with
high probability.

Algorithm 2 Algorithm for clustering with only type questions
(given n elements, and the values of ε, δ > 0))

1: – List the elements in arbitrary order L.
2: – Initialize a set for clusters P = ∅.
3: while L is not empty do
4: Let y be the first element in L.
5: Find elements with the same type as y among the remain-

ing elements in L as follows: For each remaining ele-
ment x in L, ask the type question type(x) = type(y)
O(1

ε2
(log n

δ
)) times. If the majority of the answers are

“yes”, x, y are decided to have the same type; otherwise they
are decided to have different types.

6: Collect all elements of the same type, make a cluster C, add
to P , and delete these elements from L.

7: end while
8: return the clusters in P .

Analysis. With appropriate choices of constants, by Chernoff
bound, whether the elements x, y compared in Step 5 have the same
type is decided incorrectly with probability ≤ δ

n3 . Since J ≤ n,
nJ ≤ n2. By union bound, with probability ≥ 1 − δ

n
, for all

pairs of elements considered by the algorithm whether they have
the same type is decided correctly. When the type comparisons are
correct, it is easy to check that the correct clusters are returned in J
iterations. This happens with probability ≥ 1− δ

n
.

Note that in each iteration, at least the first remaining element from
the list L is deleted, therefore the loop is run at most n times. How-
ever, as argued above, with probability ≥ 1 − δ

n
, the number of

iterations of the while loop is J (when the clusters are correctly
returned), and with probability ≤ δ

n
, the number of iterations is

≤ n. Hence the expected number of iterations is O(J). In each
iteration, at mostO(n

ε2
log n

δ
) type questions are asked. Therefore,

in expectation and for constant ε, the bound given in Theorem 3
follows.

Proof of Lower Bound. First we give the proof of lower bound
for deterministic algorithm, when there is no error in the answers to
the type questions (exact comparisons), and when the value of J is
known. Then we prove the lower bound for randomized algorithms.

Lower bound for deterministic algorithms. Let smax be the
size of the maximum cluster in an instance, and smin be the size of
the minimum cluster. Recall that the instance is called balanced if
smax/smin = O(1). We will prove the lower bound of Ω(nJ) for
deterministic algorithms even when the clusters are balanced.

Consider any deterministic algorithm A that solves the clustering
problem. Let us number the clusters arbitrarily asC1, · · · , CJ . The
adversary starts by assigning 2n/3J elements to each of the clus-
ters C1, C2, ..., CJ and reveals these elements for free to A (there-
fore, algorithm A knows the value of J). At this point, number of
unassigned elements is n/3. Let this be the set U . The adversary
now plays an evasive game on this set U . An element x ∈ U is
active iff it has been compared with (J − 1)/2 elements. For an
active element, whenever the algorithm A asks a question involv-
ing it, the answer is always “no”. Once an element ceases to be
active, it has at least J − (J − 1)/2 = (J + 1)/2 valid clusters
among C1, · · · , CJ to which it can still be assigned. We always

assign it to a cluster with smallest number of elements, breaking
ties arbitrarily. This ensures that no cluster Ci ever gets assigned
more than n/3

(J+1)/2
< 2n/3J elements from U . So the minimum

cluster size is 2n/3J (recall that all clusters initially had 2n/3J
elements), and the maximum cluster size is 4n/3J . The ratio is
bounded by 2. The total work done is clearly Ω(nJ).

Lower bound for randomized algorithms. We next show that an
Ω(nJ) lower bound holds for randomized algorithms as well even
when all type comparisons are exact. By Yao’s min-max principle
[14], it suffices to exhibit a distribution on input instances such that
any deterministic algorithm needs Ω(nJ) comparisons in expecta-
tion with respect to that distribution.

Suppose the clusters are C1, · · · , CJ . For each element, we ran-
domly choose j ∈ [1, J] and assign it to cluster Cj . Let us call
an element x to be settled, if either the algorithm performs J − 1
comparisons involving x, or if the algorithm performs a type com-
parison between x and some element y whose result is a “yes”.
Note that to cluster all n elements, each element must be settled.
This is because if ≤ J − 2 comparisons are performed involving
x, and all of the comparisons return ”no”, there are still at least two
clusters where x can go to. Next we compute the expected num-
ber of comparisons needed to make an element settled by a “yes”
answer.

Suppose ` comparisons have been performed involving x all of
which answered “no”. Since type of each element is chosen uni-
formly at random, under the above assumptions, for any element
x that has participated so far in ` type comparisons each of which
resulted in a “no”, the probability that the next type comparison re-
turns a “yes” is bounded by 1

J−` . The probability that each of the
first ` type comparisons of x returns a “no” is at least J−`

J
. Thus

the expected number of type comparisons before an element gets a
“yes” answer is at least

∑J
`=1 ` ×

1
J−` ×

J−`
J

= J+1
2

. Therefore
the expected number of comparisons for an element to get settled is
Ω(J). Since every type comparison involves exactly two elements,
it follows by linearity of expectation that the total number of type
comparisons is Ω(nJ)7.

6. CLUSTERING WITH CORRELATED
TYPES AND VALUES

In the previous section, we used only type questions for cluster-
ing that compares whether two elements have the same type. We
showed that, to cluster n elements into J clusters Θ̃(nJ) questions
are necessary and sufficient. However, as mentioned in Section 3,
types and values can be correlated in some scenarios and elements
of the same type can form (almost) contiguous blocks in the sorted
order according to the values (e.g. quality of hotels as types vs. their
prices as values). Recall that we formalized this idea assuming that
there are at most α changes in types between any two elements of
the same type. In this section we will see that this bound improves
to Õ(n log J) when α is small and both type and value questions
are asked. Note that both value and type questions are answered
correctly with probability ≥ 1

2
+ ε, given a constant ε > 0.

THEOREM 4. Given any δ > 0, it is sufficient to ask
O
(
(n log(αJ) + αJ) log n

δ

)
type and value questions in expecta-

tion to cluster n elements into J clusters with probability ≥ 1− δ.
7We leave the exact bound for randomized algorithms for the bal-
anced case as an open problem.

Similar to the previous section, we do not assume that the value of
J is known a priori. But we assume that the value of α (or an upper
bound on α) is known. In this section we will also explain why
the bound given in the above theorem is tight in a certain sense,
and briefly discuss how top-k/maximum elements from each of the
J clusters can be found with high probability using both type and
value questions.

Recall that when α = 1, we have the full correlation case, where
elements from the same type exactly form contiguous blocks in the
sorted order on values. When the value of α is small, we have the
partial correlation case. Here we present our key ideas assuming the
full correlation case in Algorithm 3 and assuming that the answers
to the type and value questions are exact. We analyze this algorithm
and discuss how erroneous answers to the type and value questions
can be handled. Then we discuss how the ideas can be extended to
work for general α.

6.1 Clustering for Full Correlation
Since the clusters do not have any name to identify them, Algo-
rithm 3 forms the clusters as a forest. For each cluster C, except
one element in C, each element y stores a pointer link(y) which
points to another element z in the same cluster (i.e. type(y) =
type(z)). The element with no link (null) is the root of this tree.
Clearly, from this structure all the clusters can be output in O(n)
time.

Analysis. We first analyze Algorithm 3 assuming that the an-
swers to all type and value questions are correct. To argue the cor-
rectness, we show that exactly one element from each type has null
link which forms the tree of the corresponding cluster, and the rest
of the elements link to another element from the same cluster. Note
that we assign link(z) = y if and only if type(y) = type(z),
therefore we never set link(z) incorrectly for any element z. Also
whenever an element z is deleted (Step 19), another element y such
that type(y) = type(z) is retained, i.e. we never delete all ele-
ments from a type. Therefore, we argue that the algorithm returns
exactly one element y from each type such that link(y) = null,
which proves its correctness.

For the sake of analysis, consider the elements x1 > · · · > xn in
sorted order. In the full correlation case, elements from the same
type form contiguous blocks in the sorted order. We argue that the
two while loops in the algorithm keep exactly one element from
each such block.

The algorithm tries to identify these blocks by dividing the list of
elements (in arbitrary order L) into intervals. As long as there is
one interval with more than two types, the interval is partitioned
into two halves by the median, which also ensures that all elements
before (resp. after) the median are greater (resp. smaller) than the
median. Therefore, repeatedly finding the medians divide the list of
elements into intervals such that all elements of any earlier interval
is larger than all elements in any interval after. When the variable
repeat_loop is set to FALSE, only one element from each block
(i.e. from each cluster) is retained. These elements are returned by
the algorithm as elements with null link.

Number of questions asked. The following lemma bounds on the
total number of type and value questions.

LEMMA 6.1. The total number of type and value questions used

Algorithm 3 Algorithm for clustering in the full correlation case
(given ε, δ > 0)

1: – List all elements in L in an arbitrary order.
2: – Initialize link(y) = null for each element y.
3: – Set repeat_loop = true.
4: while repeat_loop is true do
5: – Let s = |L|.
6: – Initially, the entire L forms a single interval.
7: while |L| > s/2 do {/*The total number of elements in L is

not halved*/}
8: if each interval has exactly one element then
9: – repeat_loop = false

10: else
11: /* Divide each interval in half to form two smaller in-

tervals*/
12: for each interval B with two or more elements do
13: – Find the median of the elements in B.
14: – Partition the elements in B in two halves compar-

ing with the median by value questions.
15: – Each of these two halves forms a new interval, say

B1 and B2.
16: for both Bi, i ∈ {1, 2} do
17: – Check if Bi has at least two types: The first el-

ement y in Bi is compared with each of the other
elements z in Bi to check if there is a z such that
type(y) 6= type(z).

18: – If Bi has at least two types, Bi is called an ac-
tive interval. Do nothing.

19: – If Bi is not active (all elements have the
same type), choose an arbitrary element y from
Bi. For the other elements z in the interval, set
link(z) = y. Delete all elements in Bi from L
except y.

20: end for
21: end for
22: end if
23: end while
24: end while
25: return all elements y with their link link(y).

by the algorithm isO (n log J) assuming the answers to these ques-
tions are correct.

PROOF. First we compute the total number of questions asked
in each iteration of the inner while loop (Step 7). Let us count unit
cost for the repeated value and type questions in Steps 13, 14 and
17. Consider the first for loop with original intervals in Step 12.
Let the number of intervals be b, and let the number of elements
in these intervals be n1, · · · , nb. Since the intervals are disjoint,
n1 + · · · + nb ≤ s. In the j-th interval, the linear-time selec-
tion algorithm [3] can find the median using O(nj) value ques-
tions (Step 13) and the partition can also be done using O(nj)
value questions (Step 14). This for loop further partitions the in-
tervals into two disjoint intervals B1, B2. In the inner for loop
(Step 16), only one element from each interval is compared with
the other elements using type questions, hence the total number
of type questions in B1, B2 is O(nj). Therefore the total num-
ber of value and type questions in the outer for loop (Step 12) is∑b
i=1 O(nj) = O(s).

Next we compute the number of iterations in the inner while loop.
Consider the contiguous blocks of elements of the same type in

the sorted order. Since there are J clusters, the number of blocks
is J . Suppose the algorithm reduces the number of elements in
P iterations of the inner while loop. Then the number of ele-
ment at the start of the while loop s is divided into 2P intervals.
When 2P = 4J , at most J intervals may be active (two or more
types). The active intervals have ≤ s/4 elements in total. Each
interval is of size s/4J and one element is retained from each in-
active interval. Hence the number of remaining elements will be
s/4 + s/4J ≤ s/2. Therefore, the while loop will terminate in
P = O(log J) iterations.

Now we compute the number of questions in the outer while loop
in Step 4. The inner while loop ensures that the problem size s is
halved in each of its iterations. Hence the number of questions
Q(n) with input size n is captured by the following recurrence re-
lation (counting unit cost in Steps 14 and 17):

Q(n) = Q(
n

2
) +O(n log J) (8)

The solution of this recurrence relation is O(n log J).

Handling erroneous answers to type and value questions. Here
we discuss how erroneous answers to type and value questions can
be handled using standard techniques. When type and value com-
parisons are correct, cn log J questions suffice, for some constant
c. Now consider the case when the comparisons are erroneous, but
correct answers are returned with probability≥ 1

2
+ ε, for constant

ε > 0. In this case we repeat each type or value comparison per-
formed by Algorithm 3 between two elements O(1

ε2
log n

δ
) times

and take the majority vote (omitted in the algorithm for simplicity)
to decide whether they have the same type, or to order them accord-
ing to their values. This adds the multiplicative log n

δ
factor in the

total number of questions asked. Moreover, we abort the algorithm
after comparing cn2 pairs of elements (note that we do not assume
that the value of J is known).

With appropriate choices of the constants, by Chernoff bound, the
answer to each type and value comparison between any two ele-
ments is correct with probability ≥ 1 − δ

cn2 . By union bound, the
total bad probability in the cn log J ≤ cn2 comparisons is bounded
by δ. Hence with probability ≥ 1− δ, all the comparisons are cor-
rect, and the above analysis holds. The expected number of ques-
tions asked by the algorithm is O(n log J) × O(log n

δ
): cn log J

comparisons are performed with probability≥ 1− δ and cn2 com-
parisons are performed only with probability ≤ δ. This proves
Theorem 4 for the full correlation case.

6.2 Extension to general α
For arbitrary α, there are at most α changes in types between any
two elements of the same type. Again partition the elements in the
sorted order x1 > · · · > xn into consecutive blocks of the same
type. Algorithm 3 as it is run for the case of general α. As argued
above, this will give one representative element from each block.
However, when now there may be more than one representative
element from the same cluster, which we need to group together.
Further note that, these representative elements will be sorted ac-
cording to their values due to repeated partitioning using medians
of active intervals.

To group elements of the same types, consider the list of remaining
elements L returned by Algorithm 3. While L is not empty, select
the first element y in L. For the next α elements z in L, check if
y and z have the same type. For all elements z with type(y) =

type(z), set link(z) = y. Delete these elements from S. Then
repeat the procedure with the remaining elements in L (in order).

We already argued in the full correlation case that Algorithm 3
leaves one element from each consecutive block of the same type.
In the additional step to group elements of the same types, the con-
secutive α elements in L are examined by type questions. At most
α changes in types are present between the first and the last element
of any cluster in the sorted order. This ensures that all elements of
the same type as the first element y in S will be grouped together.
This process is repeated until the list L is empty, which returns all
clusters.

To count the number of type and value questions, note that the num-
ber of consecutive blocks for general α is ≤ αJ . Therefore, Algo-
rithm 3 asks O(n log(αJ)) questions (similar to Lemma 6.1). The
additional step to group elements of the same type needs J itera-
tions. So O(n log(αJ) + αJ) comparisons suffice when the an-
swers to type and value questions are exact. Errors in the answers
can be handled by repeating each comparison O(log n

δ
) times and

taking the majority vote, as described for the full correlation case.

6.3 Lower Bounds
Let us briefly discuss why the bounds given in Theorem 4 is tight
upto logarithmic factors in a certain sense even when there is no er-
ror in the comparisons. Recall that we proved Ω(nJ) lower bound
for clustering in Section 5. Since α in the worst case is Ω(n) (no
correlation between types and values), we cannot hope to get a bet-
ter bound than O(αJ) for all values of α. Further, there is also a
lower bound of Ω(n logn) which explains that we cannot get a bet-
ter bound than O(n log(αJ)) for all values of α and J . This lower
bound follows from the element distinctness problem, i.e. given n
elements check if any two elements have the same value, which is
known to have a lower bound of Ω(n logn) [2]. In the reduction,
two elements belong to the same cluster if and only if they have
the same value, and a cluster has ≥ 2 elements if and only if the
elements are not distinct.

6.4 Max/Top-k from Each Cluster using Con-
stant and Variable Error Model

When both type and value questions are asked, a natural question
to ask is to find top-k or the maximum element from each clus-
ter (see the query example given in the introduction). This can be
achieved by combining our results on clustering and top-k: first
find the clusters using Algorithms 2 or 3, and then find the top-k or
max from each cluster using the algorithms in Section 4. Clearly,
to guarantee that top-k elements are found from all clusters with
probability≥ 1− δ given δ > 0, the value of δ in the max or top-k
algorithm has to be replaced by δ′ = δ

J
(when the clusters are con-

structed, the value of J is known). The maximum elements from
each cluster can be found by a small modification of Algorithm 2:
as each cluster is computed, in addition to type comparisons be-
tween two elements, also compare their values; retain the element
with larger value. We can also use the algorithms from Section 4 for
a monotone error function f to obtain better bounds on the number
of questions asked8.
8Let ∆ and ∆′ be the distance of two elements having same type
in the entire sorted order, and in the sorted order restricted to the
cluster containing them respectively. Since ∆ ≥ ∆′, for mono-
tone error function f , the probability of error in value comparisons

1
f(∆)

≤ 1
f(∆′) . Therefore, the same error function can be assumed

even when the elements in respective clusters are compared.

7. CONCLUSIONS
In this paper, we studied max/top-k and clustering problems in the
crowd sourcing setting. These problems are motivated by top-k
and group-by database queries, where the criteria used for grouping
and ordering are difficult to evaluate by machines but much easier
to evaluate by the crowd (e.g. grouping photos by the individuals
occurring in them or finding their most recent photo). We gave ef-
ficient algorithms that ask a small number of type and value ques-
tions to the crowd. For max/top-k queries, we proposed a variable
error model for erroneous answers and showed that fewer queries
are needed compared to the constant error model. On the other
hand, for the clustering problem or group-by queries, fewer ques-
tions are needed when there is a correlation between the types and
values of the elements.

There are many interesting future directions. We focused on the
objective of minimizing the number of comparisons performed by
the crowd to find the exact top-k elements or the exact clusters.
It will be interesting to consider alternative cost-based objectives
that are amenable to better bounds on the number of comparisons.
Further, there is a natural ‘value-based’ alternative to the ‘ranking-
based’ variable error model considered in the paper, where the er-
ror probability is a monotone function of the difference in values of
the two elements being compared instead of the difference in their
ranks in the sorted order. The upper bounds given in this paper for
the ranking-based error model also hold for the value-based error
model when the difference in the values of two consecutive ele-
ments in the sorted order is at least one (then the value-based error
is bounded above by the ranking-based error); it will be interesting
to further explore the value-based error model. Other reasonable
objectives include minimizing latency or the number of rounds of
interactions with the crowd. We assumed that the cost is directly
proportional to the number of questions. One can look at cost func-
tions that are concave in the number of questions, so that when
asking more questions one needs to pay less per question (as repet-
itive tasks are considered easier). It will also be interesting is to
minimize the probability of errors for top-k or clustering questions,
when a budget on the number of comparisons is provided.

Acknowledgements. We thank the anonymous reviewers for
their insightful comments. This work was supported in part by the
NSF Awards IIS-0803524, CCF-1116961, and IIS-0904314, the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant agreement
291071-MoDaS, the Israel Ministry of Science, the Binational (US-
Israel) Science Foundation, and a Google Ph.D. Fellowship.

8. REFERENCES
[1] Eyal Baharad, Jacob Goldberger, Moshe Koppel, and

Shmuel Nitzan. Distilling the wisdom of crowds: weighted
aggregation of decisions on multiple issues. Autonomous
Agents and Multi-Agent Systems, 22(1):31–42, January 2011.

[2] Michael Ben-Or. Lower bounds for algebraic computation
trees. In Proceedings of the fifteenth annual ACM symposium
on Theory of computing, STOC ’83, pages 80–86, New York,
NY, USA, 1983. ACM.

[3] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L.
Rivest, and Robert E. Tarjan. Time bounds for selection. J.
Comput. Syst. Sci., 7(4):448–461, August 1973.

[4] Rubi Boim, Ohad Greenshpan, Tova Milo, Slava
Novgorodov, Neoklis Polyzotis, and Wang-Chiew Tan.
Asking the right questions in crowd data sourcing. ICDE,
0:1261–1264, 2012.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[6] https://www.mturk.com/.
[7] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli

Upfal. Computing with noisy information. SIAM J. Comput.,
23(5):1001–1018, October 1994.

[8] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti
Ramesh, and Reynold Xin. Crowddb: answering queries
with crowdsourcing. In SIGMOD, pages 61–72, New York,
NY, USA, 2011. ACM.

[9] Ryan Gomes, Peter Welinder, Andreas Krause, and Pietro
Perona. Crowdclustering. In NIPS, pages 558–566, 2011.

[10] Stephen Guo, Aditya Parameswaran, and Hector
Garcia-Molina. So who won?: dynamic max discovery with
the crowd. In SIGMOD, pages 385–396, New York, NY,
USA, 2012. ACM.

[11] Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu,
and Meihui Zhang. Cdas: a crowdsourcing data analytics
system. Proc. VLDB Endow., 5(10):1040–1051, June 2012.

[12] Adam Marcus, Michael S. Bernstein, Osama Badar, David R.
Karger, Samuel Madden, and Robert C. Miller. Twitinfo:
aggregating and visualizing microblogs for event
exploration. In CHI, pages 227–236, 2011.

[13] Adam Marcus, Eugene Wu, David R. Karger, Samuel
Madden, and Robert C. Miller. Human-powered sorts and
joins. PVLDB, 5(1):13–24, 2011.

[14] Rajeev Motwani and Prabhakar Raghavan. Randomized
algorithms. Cambridge University Press, New York, NY,
USA, 1995.

[15] Aditya Parameswaran, Hyunjung Park, Hector
Garcia-Molina, Neoklis Polyzotis, and Jennifer Widom.
Deco: Declarative crowdsourcing. Technical report, Stanford
University.

[16] Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung
Park, Neoklis Polyzotis, Aditya Ramesh, and Jennifer
Widom. Crowdscreen: algorithms for filtering data with
humans. In SIGMOD, pages 361–372, New York, NY, USA,
2012. ACM.

[17] Joachim Selke, Christoph Lofi, and Wolf-Tilo Balke.
Pushing the boundaries of crowd-enabled databases with
query-driven schema expansion. Proc. VLDB Endow.,
5(6):538–549, February 2012.

[18] Petros Venetis, Hector Garcia-Molina, Kerui Huang, and
Neoklis Polyzotis. Max algorithms in crowdsourcing
environments. In WWW, pages 989–998, New York, NY,
USA, 2012. ACM.

[19] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua
Feng. Crowder: Crowdsourcing entity resolution. PVLDB,
5(11):1483–1494, 2012.

APPENDIX
A. OMITTED PROOFS
In this section we give the proofs that are omitted in the previous
sections.

A.1 The number of questions in the upper
log (n/X) levels for Algorithm 1

Recall that, each internal node in the levels ` = 1 to log n
X

uses
S` = (2`−1)∗O(1

ε2
log 1

δ
) comparisons. By a simple application

of Chernoff bound [14], it can be shown that the max element in

this sub-tree can be found with probability ≥ 1− δ. Level ` in the
sub-tree has n

X2`
nodes, ` = 1 to log n

X
. Clearly, NL = SL−logX

for L = logX + 1 to logn. The total number of comparisons∑logn
L=logX+1 NL is

∑log n
X

`=1 (2` − 1) × n
X2`
× O(1

ε2
log(1

δ
)) =

O(n
ε2X

) log(1
δ
). For constant ε > 0, the expression in (2) follows.

A.2 Proof of Lemma 4.1
PROOF. Let S =

∑h
`=1 δ` ≤

∑h
`=1

(h−`+1)δ

2h−`
(from (3)). Then

S = δ + 2δ/21 + 3δ/22 + · · ·+ hδ/2h−1

S/2 = δ/21 + 2δ/22 + · · ·+ (h− 1)δ/2h−1 + hδ/2h

⇒ S/2 = δ + δ/21 + δ/22 + · · ·+ δ/2h−1 − hδ/2h ≤ 2δ

⇒ S ≤ 4δ

A.3 Proof of Lemma 4.4
PROOF. The particular choices of the exponential, linear or log-

arithmic functions in the proof ensure that f(1) ≥ 2, the results
also hold for any other choices of these functions (and functions
having steeper growth rates than these functions).

Exponential error function. Suppose f(∆) = 2∆. From (4)
and (5), p` ≤ 1

2∆`
and ∆` = (h−`+1)δ(n−1)

2h−1 . We set X =

2h = 2δ(n−1)
log(2/δ)

. With these choice of X ,
∑h
`=1 p` ≤

∑h
`=1

1

2∆`

≤
∑h
q=1

1

2
qδn

2h

(from (6)) ≤
∑∞
q=1

1

2
qδn

2h

≤
∑∞
q=1

1(
2
δn
2h

)q ≤
2

2

δ(n−1)

2h−1

= 2

2

δ(n−1)
δ(n−1)
log(2/δ)

= 2
2/δ

= δ.

Therefore, n
X

= n log(2/δ)
2δ(n−1)

≤ n log(2/δ)
δn

= log(2/δ).

Linear error function. Suppose f(∆) = ∆ + 1. We set
X = 2h = δ2n

log logn
. With this choice of X ,

∑h
`=1 p` ≤

∑h
`=1

1
∆`

≤
∑h
q=1

1
qδn

2h

(from (6)) = 2h

δn

∑h
q=1

1
q
≤ 2h log h

δn
≤ δ2n

log logn
×

log(log δ2n
log logn

)

δn
≤ δ2n

log logn
× log logn

δn
= δ.

Therefore, n
X

= n× log logn
δ2n

= log logn
δ2

.

Logarithmic error function. Suppose f(∆) = log ∆+2. We set
X = (2δn)

δ
δ+1 . With this choice of X ,

∑h
`=1 p` ≤

∑h
`=1

1
log ∆`

≤ h

log
(
δn
2h

) (from (7)) = log(δn)
δ
δ+1

log

 δn

(δn)
δ
δ+1

 ≤
δ
δ+1

log(δn)

log

 δn

(δn)
δ
δ+1


≤

δ
δ+1

log(δn)

log(δn)
1
δ+1

= δ.

With this choice of X , n
X

= n

(δn)
δ
δ+1

= n
1

1+δ

δ
δ
δ+1

.

A.4 Proof of Corollary 1
Here we show that we obtain the exact top-k elements with prob-
ability ≥ 1 − 8δ. To obtain the bound of 1 − δ, we need to run
our algorithm with δ′ = δ/8. We assume that k = o(

√
n), as dis-

cussed in Section 4.2, otherwise the algorithm in [7] gives a better
bound on the number of value comparisons.

Once again, we start with a random permutation Π and the compar-
ison tree is again divided into upper and lower levels. In the lower
levels, n elements in Π are partitioned into n

X
number of X-trees.

Instead of focusing on the single X-tree that contains the largest
element x1, we consider all the X-trees that contain the top-k ele-
ments x1, · · · , xk. We show that with probability 1− 6δ, (A) each
of x1, · · · , xk appear in different X-trees so that they are the max-
imum elements in their respective X-trees, and (B) none of these
elements lose any comparison in their X-trees.

First we consider (A) and argue that no two elements in x1, · · · , xk
appear in the same X-tree with probability ≥ 1 − δ if X ≤ δn

k2 .
Since Π is a random permutation, any of the other n − 1 ele-
ments have equal probability of belonging to any fixed leaf of the
X-tree containing xi, for any i ∈ [1, k]. Therefore, by union
bound, the probability that this X-tree contains another element
from x1, · · · , xk is≤ k(X−1)

n−1
≤ kX

n
which is≤ δ

k
whenX ≤ δn

k2 .
We choose X = δn

k2 . Applying union bound for all xi, i ∈ [1, k],
with probability ≥ 1 − δ no two top-k elements appear in the
same X-tree. From now on, we will consider that the elements
x1, · · · , xk belong to separate X-trees.

Now consider (B). Given (A), each xi, i ∈ [1, k] is the maximum
element in their respective X-trees. We apply Algorithm 1 on all
n
X
X-trees with δ′ = δ/k. Hence total number of comparisons

= (n
X

) × X + o(X) × O(1
δ′ log 1

δ′) = n + o(n) × O(k
δ

log k
δ
).

By Theorem 2, all of x1, · · · , xk are decided as the maximum el-
ements in their respective X-trees with probability ≥ 1 − 6δ/k.
By union bound, all of them go to the upper levels with probability
≥ 1− 6δ.

In the upper levels, we employ the algorithm given in [7] to find
the top-k elements which are still x1, · · · , xk. Since these upper
levels have n

X
elements, O(n

X
log k

δ
) = O(k

2

δ
log k

δ
) comparisons

suffice to find x1, · · · , xk with probability 1− δ.

Combining with the number of comparisons in the lower levels, and
the bad probabilities from (A) and (B), with probability ≥ 1 − 8δ
the top-k elements are found with the stated number of compar-
isons. For error functions f(∆) = Ω(∆) or f(∆) = 2∆, better
bound can be obtained by using Lemma 4.4 in the lower levels.

An upper bound of n+O(k
2

δ
) for exact comparison .

Suppose the answers to the value comparisons are exact. Here we
sketch how our techniques presented above can find all top-k ele-
ments with probability≥ 1− δ given δ > 0 using only n+O(k

2

δ
)

comparisons when k = o(
√
n). As discussed above, we choose

X = δn
k2 . This ensures that with probability ≥ 1− δ, all top-k ele-

ments appear in differentX-trees and therefore survive in the upper
levels. In each X-tree, we perform X − 1 comparisons to perform
the maximum element in it. Clearly, all x1. · · · , xk are chosen as
maximum elements in their respective X-trees. The upper level
has k2

δ
elements, and we run the linear time selection algorithm

[3] to find xk. A linear pass on the upper level finds x1, · · · , xk
which are larger than x1. The total number of value comparisons
performed is ≤ n+O(k

2

δ
).

