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ABSTRACT
A technique called user views has recently been proposed to
focus user attention on relevant information in response to
provenance queries over workflow executions [1, 2]: Given
user input on what modules in the workflow specification
are relevant to the user, a user view is a concise representa-
tion that clusters together modules to create a small number
of composite modules (or clusters) such that (1) each com-
posite module in a user view contains at most one relevant
(atomic) module, thus assuming the “meaning” of that mod-
ule; and (2) no control or data dependencies (either direct or
indirect) are introduced (soundness) or removed (complete-
ness) between relevant modules. The goal is to find a user
view with a smallest number of composite modules.

We show that for workflow specifications that are general
graphs, regardless of the number of distinct modules in the
input workflow and the structure of interaction between
them, there always exists a user view of size at most (2k−1−
k)2 + k, where k is the number of relevant modules. More-
over, a good user view with at most (2k−1 − k)2 + k clus-
ters can be computed in polynomial time in the size of the
graph. We also show that this upper bound is tight. Thus
in general graphs, the number of composite modules can be
exponentially large in k even in an optimum user view for
the specification. We also give a characterization of a good
user view in terms of structural properties of each cluster in
the user view.

However, for series-parallel workflow graphs, we show that
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there is always a user-view with at most 2k − 3 compos-
ite modules; further, there exist series-parallel graphs where
every user view requires at least 2k − 3 composite modules.
Such graphs capture the structure of many scientific and
other workflows that we have encountered in practice. For
this class of graphs, we give a simple, linear time algorithm
for constructing an optimum user view for a given specifica-
tion.

1. INTRODUCTION
Workflow management systems have become increasingly
popular as a way of specifying and executing data-intensive
scientific analyses (e.g., myGrid/Taverna [14], Kepler [5],
VisTrails [12], and Chimera [11]) as well as business pro-
cesses [7]. In such systems, a workflow can be graphically
designed by chaining together modules, where each module
may take as input data from previous modules, parameter
settings, and data coming from external data sources. The
workflow can then be executed multiple times, using differ-
ent initial input data and parameter settings, and poten-
tially generating a large amount of intermediate and final
data products.

Due to the explosion of data being produced by these “in-
silico” experiments, provenance support in workflow systems
has become of paramount importance, as evidenced by re-
cent workshops [3, 13] and surveys [4, 15]. By maintaining
the provenance of data, its validity and reliability can be un-
derstood and results be made reproducible. Many workflow
systems are therefore beginning to provide tools to capture,
query, and manage provenance (e.g., COMAD-Kepler [6]
and VisTrails [12]). In these and other systems, the prove-
nance of a data object is defined as the dependency graph of
module executions, their parameters, and the data objects
passed between module executions [9]. This information can
be gleaned from the log of operations performed, or may be
explicitly stored by the system.

However, since a workflow execution (or run) may comprise
many module executions (steps) and intermediate data ob-
jects, the amount of information provided in response to a
provenance query can be overwhelming.

Furthermore, many of the modules and intermediate data
products may not be of interest to the user, for example,
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modules that represent reformatting of data. Recent work
(ZOOM [2]) has therefore presented a technique called “user
views” for focusing user attention on provenance informa-
tion that is relevant to the user. The technique takes as
input a workflow specification and a set of relevant mod-
ules, and creates a set of composite modules, each of which
represents a sub-workflow. The set of composite modules
forms the user’s view of the workflow specification, and is
used to present provenance information that is relevant to
the user by hiding the intermediate data and sequence of
module executions within each composite module.

More formally, a user view is a partition of the workflow
modules. It induces a higher level workflow in which nodes
represent composite modules in the partition and edges are
induced by dataflow between modules in different composite
modules. Provenance information is seen by the user with
respect to the flow of data between modules in his view.
In [1, 2], views are automatically constructed given input on
what modules the user finds relevant such that (1) a compos-
ite module contains at most one relevant (atomic) module,
thus assuming the “meaning” of that module; (2) no data
dependencies (either direct or indirect) are introduced or
removed between relevant modules; and (3) the view can-
not be made smaller by combining two composite modules.
In this way, the meaning of the original workflow specifi-
cation is preserved, and relevant provenance information is
provided to the user.

As an example, consider the workflow specification in Fig-
ure 1 which represents a common task in modern biology:
Phylogenomic tree construction using sequence, annotation
and functional data. This workflow first accepts a set of
entries selected by the user from a database and supplies
them to the Split Entries module. The entries are split
into sequence information, which is passed to the Align Se-

quences, and annotation information, which is passed to
the Curate Annotations module. Additional Functional
data may be extracted from a database. The annotation,
alignment, and functional data are then reformatted and
passed to the Construct tree module, which creates the
phylogenomic tree. One user of the system may indicate
that the Align Sequences and Construct tree modules are
relevant, but that the formatting steps, and annotation and
functional steps are not. Given this input, his user view
would be constructed as {C1, C2, C3, C4}, where C1 and
C2 are the composite modules indicated by dotted boxes.
When asking about the provenance of a final tree, only the
information passed between (C1 , C2) and (C2, C3) would
be displayed.

t

Functional Data

Split Entries

Curate Annotations Format

Format

Format

C3 C4
C2

C1

Construct Trees Align Sequences

Figure 1: Phylogenomic workflow

However, the algorithm of [2] does not always guarantee a
minimum size user view, and leaves it as an open problem
as to whether there are efficient, optimal algorithms for con-

structing a user view given a workflow specification and a
set of relevant modules. This is the problem we address in
this paper.

Contributions. The goal of a good user view is to faithfully
represent the control and data flow between relevant nodes
while abstracting away information pertaining to the non-
relevant nodes. We start by formalizing the properties of a
good user view. These properties enforce global constraints
so that the structure of paths in the user view accurately
reflects the underlying structure in the input graph.

Our first result is a characterization theorem for good user
views that shows that certain local conditions on the struc-
ture of each cluster in a user view, precisely capture the
global constraints on the structure of paths. This character-
ization theorem holds for general specification graphs, and
plays a central role in the design and analysis of our algo-
rithms for computing good user views.

Then we study the problem of constructing a minimum user
view for series-parallel workflow graphs. Series-parallel work-
flow graphs, such as the one in Figure 1, capture the struc-
ture of many scientific workflows we have encountered in
practice (see www.myexperiment.org for examples). Further-
more, most scientific workflow systems allow only stateless,
functional behavior, and do not allow looping [10]. For this
common case of workflows, we give a linear time algorithm,
SP-View, to create an optimum user view given a specifi-
cation and a set of k relevant modules. We also show that
there is always a user view with at most 2k − 3 composite
classes, and that this bound is tight. That is, there exist
directed series-parallel graphs for which any user view must
have at least 2k − 3 composite modules. Our analysis relies
on an elegant forbidden subgraph based characterization of
directed series-parallel graphs, and develops several novel in-
sights about the structure of control and data flow in these
graphs.

We then again turn our attention to general workflows. While
the problem of finding an optimum user view remains open
for this class of workflows, we show the following, somewhat
surprising result. Regardless of the number of distinct mod-
ules in the input workflow and the structure of interaction
between them, there always exists a user view of size at most
(2k−1−k)2+k. Moreover, we show that this upper bound is
tight. We also compare the performance of the ZOOM algo-
rithm on series-parallel workflow graphs with our algorithm,
and show that SP-View has considerably better time com-
plexity than ZOOM on this class of graphs: SP-Viewhas
complexity O(n) while ZOOM has complexity O(n2), where
n is the number of modules in the specification.

Thus, the following framework can be used for finding a good
user view given a specification S and a set of relevant nodes:
First, test whether S is a series parallel graph. If it is, then
use SP-View to find an optimum good user view. If not (a
rare case), then use ZOOM to find a good user view that is
optimal in the sense that no two composite modules can be
combined to create a smaller good user view.

Outline. Section 2 presents the model of workflows. Sec-
tion 3 characterizes “good” user views. Section 4 presents
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a linear-time algorithm for finding an optimum (good) user
view for workflows represented by series-parallel graphs. Gen-
eral graphs are considered in Section 5, together with an
analysis of the ZOOM algorithm. Section 6 compares the
performance of SP-View with ZOOM on series-parallel graphs.
We conclude in Section 7.

2. MODEL AND DEFINITIONS
Given a graph G, we will use V (G) and E(G) to denote the
set of the vertices and the edges in G respectively.

2.1 Workflow Specifications
Definition 1. A workflow specification (or simply a spec-

ification) (G, s, t,R) consists of

• a directed graph G such that each node v ∈ V (G)
denotes a unique module in the workflow,

• a source node s ∈ V (G) and a sink node t ∈ V (G) such
that s has no incoming edges, t has no outgoing edges
and every node v ∈ V (G) lies on some s ! t path in
G, and

• a set R ⊆ V (G) of relevant modules in the workflow,
where by convention, s, t ∈ R.

The special nodes s and t correspond to the input and the
output modules in the workflow. We will use NR to denote
the set of non relevant modules in the workflow (i.e. NR
= V (G) \ R) and k to denote size of R.

A node v ∈ V (G) is called an R-node, if v ∈ R and an
NR-node if v ∈ NR. For any edge (u, v) ∈ E(G), u is
called a predecessor of v and v is called a successor of u. A
predecessor u of v in G is an R-predecessor of v if u ∈ R.
NR-predecessor, R-successor and NR-successor are defined
similarly. A path p of length ≥ 1 is called an elementary
path if no intermediate node on p is an R-node.

2.2 Good User Views
A user view for a workflow specification G is another directed
graph H such that the nodes of H are “clusters” of nodes of
G and the edges of H correspond to edges between nodes in
different clusters. The formal definition is given below.

Definition 2. A user view for a workflow specification
(G, s, t,R) is a pair (H,φ) where H is a directed graph and
φ : V (G) → V (H) is a homomorphism such that

• if (u, v) ∈ E(G) then (φ(u), φ(v)) ∈ E(H), and con-
versely, if (C, C′) ∈ E(H) then there exists u ∈ φ−1(C),
v ∈ φ−1(C′) with (u, v) ∈ E(G).

• A self-loop (C, C), C ∈ V (H) is preserved in E(H) if
and only if there exists a cycle ρ such that for each
vertex u on ρ, φ(u) = C and there exists an R-node
on ρ.

We will refer to a node C ∈ V (H) as a composite module
or simply a cluster; it represents all modules u ∈ V (G) such

that φ(u) = C. We say an edge e = (u, v) in G is an origin of
an edge e′ = (C, C′) in H (or that, e induces e′) if φ(u) = C
and φ(v) = C′. Note that an edge in H can have multiple
origins in G; equivalently, multiple edges in G may induce
the same edge in H .

We discard any self-loop in H that does not correspond to
a cycle containing an R-node in G. In this case we assume
that all the edges (u, v) ∈ E(G) on cycle ρ induce the self
loop. This preserves the presence of non-trivial elementary
paths from an R-node to itself and allows the execution of
a composite module containing an R-node r multiple times
if multiple executions of the module r were possible in the
original specification.

The size of a user view is the number of composite modules
in it, that is, |V (H)|. Our goal is to find a minimum size
user view H for a given specification while requiring that
the view obey certain properties that we describe next.

We start by extending the notions of relevant nodes and
elementary paths to a user view H . We will say a cluster
C ∈ V (H) is a relevant cluster or an R-cluster if φ−1(C) ∩
R &= ∅. Similarly, we will say a cluster C ∈ V (H) is non-
relevant cluster or an NR-cluster if φ−1(C) ∩ R = ∅. A
path p of length ≥ 1 in H is called an elementary path if no
intermediate cluster on p is an R-cluster.

Definition 3. A user view (H,φ) for a workflow specifica-
tion (G, s, t,R) is said to be good if it satisfies the following
properties [2]:

1. H is well-formed, that is, for any node C ∈ V (H), the
set φ−1(C) contains at most one node from R.

2. H is sound w.r.t. data flow, that is, for every edge e′

on an elementary path that connects an R-cluster C
to an R-cluster C′ in H , each origin of the edge e′ lies
on an elementary path from an R-node r to an R-node
r′ in G such that r ∈ φ−1(C), r′ ∈ φ−1(C′).

3. H is complete w.r.t data flow, that is, for every edge
e = (u, v) on an elementary path from an R-node r to
an R-node r′ in G, either φ(u) = φ(v), or the edge e′

induced by e lies on an elementary path from φ(r) to
φ(r′) in H .

We now state the motivation behind the above properties.
As we said before, the R-nodes are relevant to the user, and
the goal is to be able to see the workflow relationship among
the relevant nodes. Thus an R-cluster containing an R-node
should take on the meaning or role of the R-node that it
contains. So to preserve the identity of the R-clusters, we
require that each cluster in the workflow be well-formed.
Since we are interested in preserving the “dependency” be-
tween relevant modules in a good user view, two R-clusters
should be connected by an elementary path in the user view
if and only if the corresponding R-nodes are connected by an
elementary path in the given specification. The soundness
property above ensures that the user view does not create
any new elementary paths between a pair of R-clusters, that
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is, elementary paths that did not exist between the corre-
sponding R-nodes in the original workflow specification. The
completeness property, on the other hand, ensures that every
elementary path connecting a pair of R-clusters is preserved
in the user view, modulo merging of nodes along such a path
into a composite module. Thus the provenance information
provided by a good user view is always consistent with the
original specification.

Note that the above properties trivially hold in any given
specification G, hence the specification G is always a good
user view of itself with φ(v) = {v} for each v ∈ V (G). In
any user view H , it is easy to see that for each v ∈ V (G),
φ(v) is on a path from φ(s) to φ(t), as v is on a path from
s to t in G. Later in Corollary 2 we will also show that in
a good user view, φ(s) acts as the source cluster and φ(t)
acts as the sink cluster, i.e. φ(s) and φ(t) do not have any
incoming edge and any outgoing edge respectively.

2.3 Series-Parallel Graphs
A natural class of workflows is directed two terminal series-
parallel (SP) graphs defined below.

Definition 4. A directed two terminal series-parallel
graph is a directed multigraph G with a single source s and
a single sink t (two terminals) that can be produced by a
sequence of the following operations:

• Basic SP-graph: Create a new graph consisting of a
single edge directed from s to t.

• Series Composition: Given two SP-graphs G1 and
G2 with sources s1, s2 and sinks t1, t2 respectively,
form a new graph G = S(G1, G2) by identifying s = s1,
t1 = s2 and t = t2.

• Parallel Composition: Given two SP-graphs G1 and
G2 with sources s1, s2 and sinks t1, t2 respectively,
form a new graph G = P (G1, G2) by identifying s =
s1 = s2 and t = t1 = t2.

G = P(G  , G  ) 

1

s1

s2

t 2

s =

=

=

t

t 2

s2

t 1t

s1s ==

= =

G1 G2

t 2

s2s1

t 1

G1 G2and G = S(G  , G  ) 1 2

(a) Directed
SP!graphs 

(b) Series 
composition composition

(c) Parallel

21

t

Figure 2: An example of series and parallel compo-
sitions

Examples of series and parallel compositions are shown in
Figure 2. The following observations can be made from the
inductive definition above.

Observation 1. Let G be a directed SP graph. Then,

1. Each node v ∈ V (G) is on a path from the start node
s to the sink node t, and

2. G is acyclic (that is, it is a DAG).

Definition 5. A directed graph G1 is said to contain a
subgraph1 homeomorphic to a directed graph G2 if G2

can be obtained from G1 by a sequence of operations: (1)
removal of an edge, or (2) replacement of two edges of the
form (u, w) and (w, v) by the edge (u, v) when w has indegree
= 1 and outdegree = 1.

We will use the following characterization of two terminal
directed SP graphs from [16].

Theorem 1. Let G be a directed acyclic graph such that
G has a unique source node s and a unique sink node t, and
each node v ∈ V (G), is on a path from s to t. Then G is
a two terminal directed SP graph if and only if G does not
contain a subgraph homeomorphic to the graph F given in
Figure 3.

A B C D

Figure 3: The forbidden subgraph F of directed two-
terminal SP graphs

Next we derive a necessary condition from the above charac-
terization for a two terminal directed acyclic graph to be a
two terminal directed SP graph. We will use this condition
in analyzing our algorithms.

Definition 6. For a directed acyclic graph G and two nodes
v1, v2 ∈ G, v1 "= v2,

• the last common ancestor set of v1, v2, denoted by
LCA(v1, v2), is defined as LCA(v1, v2) = {u1 ∈ V (G)
| ∃ internally vertex-disjoint paths p1 = u1 ! v1 and
p2 = u1 ! v2 in G}

• the first common descendant set of v1, v2, denoted
by FCD(v1, v2)), is defined as FCD(v1, v2) = {u2 ∈
V (G) | ∃ internally vertex-disjoint paths p1 = v1 ! u2

and p2 = v2 ! u2 in G}.

The paths p1, p2 can be trivial paths of length 0, and in that
case u1(or u2) ∈ {v1, v2}.

Note that if G has a unique source s and a unique sink t,
and each node v ∈ V (G) is on a path from s to t, then
for any two nodes v1, v2 ∈ V (G), the sets LCA(v1, v2) and
FCD(v1, v2) are non empty.
1A directed graph G1 is a subgraph of a directed graph G if
V (G1) ⊆ V (G) and E(G1) ⊆ E(G).
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Lemma 1. Let G be a directed acyclic graph with a unique
source node s and a unique sink node t such that each node
v ∈ V (G) is on a path from s to t. Suppose G contains four
distinct nodes W, X, Y, Z ∈ V (G) such that

1. ∃UWX ∈ LCA(W,X) with UWX #= W and ∃UY Z ∈
FCD(Y, Z) with UY Z #= Z, and

2. there exist pairwise vertex-disjoint paths pW = UWX !

W, pX = UWX ! X, pWY = W ! Y , pWZ =
W ! Z, pXZ = X ! Z, pY = Y ! UY Z , and
pZ = Z ! uY Z .

Then G is not a two terminal directed SP graph.

Z

uYZ uYZ uYZ

uYZuYZuYZ

uWX uWX uWX

(a)
W X

Y Z

W

Z

W

Z

(b)
W

X

Y Z

W

X

Z

W

X

Figure 4: Forming forbidden subgraph F

Proof. First consider the case when UWX #= X and
UY Z #= Y .

1. Delete all other edges in G except these paths to form
a subgraph G′ of G (ref. Figure 4 (a)).

2. Note that all internal vertices on the paths UWX !

X ! Z and W ! Y ! UY Z have indegree = 1 and
outdegree = 1 and so they can be contracted to edges
(UWX , Z) and (W,UY Z) respectively.

3. Again all internal vertices on the paths UWX ! W
and Z ! UY Z have indegree = 1 and outdegree = 1
and so they can be contracted to edges (UWX , W ) and
(W,UY Z) respectively.

This gives a subgraph homeomorphic to F given in Figure 3.

Next consider the case UWX = X and UY Z #∈ {Y, Z}. Again
we can obtain the subgraph homeomorphic to F in G (see
Figure 4(b)). The case when UWX #∈ {W, X} and UY Z = Y
can be handled analogously.

Finally, if UWX = X and UY Z = Y , then we can simply
contract each of the vertex-disjoint paths pW = UWX ! W,

pWY = W ! Y , pWZ = W ! Z, pXZ = X ! Z, and
pZ = Z ! UY Z to single edges and obtain the forbidden
subgraph F .

Now we state a stronger necessary condition than given in
Lemma 1 for a directed acyclic graph to be a two terminal
directed SP graph. The proof is deferred to the full version
of the paper.

Lemma 2. Let G be a directed acyclic graph with a unique
source s and a unique sink t such that each node v ∈ V (G),
is on an s to t path. Suppose G contains four distinct nodes
w, x, y, z ∈ V (G) such that

1. no w ! x or y ! z path exists.

2. there exist paths pwy = w ! y, pwz = w ! z,
pxz = x ! z such that the path pairs 〈pwy , pwz〉 and
〈pwz, pxz〉 are vertex disjoint.

Then G is not a two terminal directed SP graph.

We will also use the following property of directed SP graphs
in developing our algorithms in Section 4.

Lemma 3. In a directed SP graph G, if a node v ∈ V (G)
has ≥ 2 predecessors, then the last predecessor of v in any
topological ordering of the vertices of G can not have another
successor v′ #= v.

Proof. Let us list the predecessors in any topological
order u1, · · · , u!, ! ≥ 2, and assume the contradiction that
u! has another successor v′ #= v. Note that u!−1, u!, v, v′

are four pairwise distinct points. As the ujs are listed in
topological order, there cannot be any path from u! to u!−1.
Since the edge (u!, v

′) exists and u! is the last predecessor in
topological order, no v′ to v path can exist. Also the edges
(u!−1, u!), (u!, v) and (u!, v

′) trivially form three mutually
vertex disjoint paths. So we can map these four nodes to
w, x, y, z given in Lemma 2 as u! → w, u!−1 → x, v′ → y
and v → z. This contradicts the assumption that G is a
directed SP graph.

3. A CHARACTERIZATIONOFGOODUSER
VIEWS

We next derive a useful characterization of good user views
for any general directed graph given as a specification. Through-
out this section, we will assume that (H,φ) is a user view
for a given workflow specification (G, s, t, R).

Let us first define the R−(v) and R+(v) sets for a node v ∈
V (G).

Definition 7. • For an NR-node v ∈ V (G), R−(v) =
{r ∈ R | there is an elementary path from r to v in
G} and R+(v) = {r ∈ R | there is an elementary path
from v to r in G}.

314



• For an R-node r ∈ V (G), R−(r) = R+(r) = {r}.

The intuition behind the above definition is that, if there is
an elementary path p from u to v, and both u and v are
NR-nodes, then we would like to have R−(u) ⊆ R−(v) and
R+(u) ⊇ R+(v), i.e. (i) v should “inherit” the R− set of u
and (ii) u should inherit the R+ set of v along the elemen-
tary path p. But if u is an R-node and v is an NR-node, and
r is another R-node such that there is an elementary path
p′ from r to u, then v cannot inherit r in R−(v) along the
elementary path p, as the path p′ followed by p from r to v
is not elementary any more, though in this case u ∈ R−(v).
Definition 7 makes the inheritance of R− and R+ sets con-
sistent.

Note that the sets R−(v) and R+(v) for any node v ∈ V (G)
are non empty since all nodes in V (G) are on some path
from s to t in G. We also extend the functions R− and R+

to the clusters in H by considering them as subsets of nodes
in V (G).

For a node C ∈ V (H), we define,

R−(C) =
⋃

v∈φ−1(C)

R−(v) and R+(C) =
⋃

v∈φ−1(C)

R+(v).

Also, for any cluster C ∈ V (H), we define

• IN(C) = {v ∈ φ−1(C) | ∃v′ such that (v′, v) ∈ E(G),
φ(v′) %= C} and

• OUT(C) = {v ∈ φ−1(C) | ∃v′ such that (v, v′) ∈
E(G), φ(v′) %= C}.

3.1 Structure of R-clusters in GoodUser Views
Definition 8. An R-cluster C ∈ V (H) containing r ∈ R

is called R-Valid if ∀v ∈ OUT(C), R−(v) = {r}, and
∀v ∈ IN(C), R+(v) = {r}.

Since for an R-node r, we have defined R−(r) = R+(r) =
{r}, the above definition also holds for v = r. If each R-
cluster C ∈ V (H) is R-Valid, H is called an R-Valid user
view.

Lemma 4. Any well-formed and complete user view H is
also an R-Valid user view.

Proof. Note that since H is well-formed, each C ∈ V (H)
contains at most one R-node. Assume by way of contradic-
tion, that H is not R-Valid. Then there is an R-cluster
C ∈ V (H), containing an R-node r ∈ R, such that either
there exists v ∈ OUT(C) with R−(v) %= {r}, or there ex-
ists v ∈ IN(C) with R+(v) %= {r}. Assume it is the for-
mer, so there exists r1 %= r ∈ R−(v), the other case can be
handled analogously. As H is well-formed, φ(r1) %= φ(r).
Since v ∈ OUT(C), there exists an edge e = (v, v′) ∈ E(G)
such that φ(v′) %= C and therefore e induces the edge e′ =
(φ(v), φ(v′)) ∈ E(H). Consider the case when v′ is an NR-
node and let r2 ∈ R+(v′) (recall that the set R+(v) is non
empty).

The edge e is on an elementary path r1 ! r2 in G and
since H satisfies the completeness property, e′ must lie on an
elementary path φ(r1) ! φ(r2) in H . But this is impossible
since φ(v) = φ(r) is an R-cluster. A contradiction. Note
that the above argument holds when r2 = r or r2 = r1 or
r ∈ {s, t}. If v′ is an R-node, assume r2 = v′ and the above
argument holds again. Thus H must be R-Valid.

The following corollary easily follows from the above lemma.

Corollary 1. For any NR-node v ∈ V (G) such that |R−(v)|
≥ 2 and |R+(v)| ≥ 2, the cluster φ(v) can never be an R-
cluster in any good user view.

Proof. Suppose not. Then there exists a good user view
H and an NR-node v ∈ V (G) such that C = φ(v) contains
a R-node r, and |R−(v)| ≥ 2 and |R+(v)| ≥ 2. If v ∈ IN(C)
then it violates Lemma 4 since R+(v) %= {r}. Similarly, if
v ∈ OUT(C) then also it violates Lemma 4 since R−(v) %=
{r}. Finally, if v %∈ IN(C) ∪ OUT(C), then let r1 %= r ∈
R−(v). As H is good and therefore well-formed, C %= φ(r1).
Now let u ∈ IN(C) be such that u is on an elementary path
r1 ! v in G. Since there is an elementary path from u
to v, R+(u) ⊇ R+(v) and as |R+(v)| ≥ 2, R+(u) %= {r},
contradicting Lemma 4 once again.

Note that self-loops are not taken into account while defining
IN(C) and OUT(C) for a C ∈ V (H). If C is an R-cluster
with a self-loop in a good user view, a node u with φ(u) = C
on a cycle that induces the self-loop can have |R−(u)| ≥ 2
or |R+(u)| ≥ 2 (see Figure 5).

s tr’
r

u

vC

Figure 5: (u, v) induces the self-loop in C, R−(u) =
R−(v) = {r, r′} but the user view is R-Valid and good

A direct consequence of the R-Valid property is that φ(s)
is the source cluster and φ(t) is the sink cluster in any
good user view as stated in the next corollary. The proof is
straightforward and hence omitted.

Corollary 2. In a good user view, φ(s) (resp. φ(t)) has no
incoming (resp. outgoing) edges.

3.2 Structure ofNR-clusters in GoodUser Views
Definition 9. An NR-cluster C ∈ V (H) is called NR-

Valid if ∀v ∈ OUT(C), R−(v) = R−(C), and ∀v ∈ IN(C),
R+(v) = R+(C).

A user view is called an NR-Valid user view if each NR-
cluster in the user view is NR-Valid.

Lemma 5. Any well-formed, sound and complete user view
H is also an NR-Valid user view.
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Proof. Assume by way of contradiction that H is not
NR-Valid. Here we consider the case when there exists an
NR-cluster C ∈ V (H) and an R-node r ∈ R−(C) such that
for some v ∈ OUT(C), the node r "∈ R−(v) (by definition,
R−(C) ⊇ R−(v)). The other case can be handled analo-
gously. Since r ∈ R−(C), ∃u ∈ IN(C) such that r ∈ R−(u)
and there exists an edge eu = (u′, u) on an elementary path
from r to u, where φ(u′) "= C. This edge induces an edge
e′u = (φ(u′), C) in H . As the set R+(u) is non empty there
exists ru ∈ R+(u) and as H is complete, e′u is on an elemen-
tary path pu from φ(r) to φ(ru).

Similarly, as v ∈ OUT(C), there exists an edge ev = (v, v′) ∈
E(G) such that φ(v′) "= C and e induces the edge e′v =
(C, φ(v′)) in H . Consider the case when v′ is an NR-node
and r′ ∈ R+(v′). Again as R−(v) is non empty, ∃rv ∈ R−(v),
rv "= r. The edge ev was on an elementary path from rv to
r′ in G, so e′v is on an elementary path pv from φ(rv) to
φ(r′) in the complete user view H .

Since H is well formed and rv "= r, φ(rv) "= φ(r). The
elementary paths pu (from φ(r) to φ(ru)) and pv (from
φ(rv) to φ(r′)) intersect at the cluster C and thus creates
an elementary path from φ(r) to φ(r′) in H with the edge
e′v = (C, φ(v′)) lying on this path. But as r /∈ R−(v), an
origin ev of e′v is not on an elementary path from r to r′.
This contradicts the fact that H is a sound user view. The
above argument also holds if any two of r, r′, ru, rv are same
node, with the restriction that r "= rv. If v′ is an R-node,
consider r′ as v′ and the above argument holds once again.
Thus H must be NR-Valid.

3.3 Characterization of Good User Views us-
ing R-Valid and NR-Valid Properties

The following lemma gives a sufficient condition for a user
view to be a good user view and therefore, in combination
with Lemma 4 and Lemma 5, completes the characterization
of a good user view given by Theorem 2.

Lemma 6. A well-formed user view (H,φ) that is both
R-Valid and NR-Valid, is a good user view.

Proof. We start by arguing the soundness of H . Assume
by way of contradiction that H is both R-Valid and NR-
Valid but it is not sound. Then there exists an edge e′ =
(C, C′) ∈ E(H) and R-nodes r1, r2 ∈ R such that e′ is on
an elementary path connecting cluster φ(r1) to cluster φ(r2)
but an edge e = (v1, v2) ∈ E(G) that is origin of e′ is not on
an elementary path from r1 to r2 in G. We will now show
that r1 ∈ R−(v1). Consider an elementary path in H from
φ(r1) to C, say, φ(r1), Ci1 , · · · , Cil , C and let this path be
induced by the edges (v+

r1
, v−

i1
), (v+

i1
, v−

i2
), · · · , (v+

il−1
, v−

il
),

(v+
il

, v−

1 ), where v+
r1

∈ OUT(φ(r1)), for j = 1 to l, v−

ij
∈

IN(Cij ), v+
ij

∈ OUT(Cij ) and v−

1 ∈ IN(C). Since φ(r1) is

R-Valid, r1 ∈ R−(v+
r1

), an elementary path r1 ! v−

i1
exists,

and therefore r1 ∈ R−(v−

i1
). Also, since H is NR-Valid,

it is easy to see that r1 ∈ R−(v+
i1

) as well, and therefore,

the elementary path r1 ! v+
i1

exists. This elementary path
can be extended up to v1 using the same argument and thus
establishing that r1 ∈ R−(v1). Using a similar argument, we

can show that r2 ∈ R+(v2). This contradicts the assumption
that e = (v1, v2) is not on any elementary path from r1 to
r2.

We next argue the completeness of H . Assume by way of
contradiction that there exists an edge e ∈ E(G) on an el-
ementary path p from r1 to r2, r1, r2 ∈ R, such that the
edge e′ ∈ E(H) induced by e, is not on any elementary
path from φ(r1) to φ(r2) in H . Let the r1 ! r2 elementary
path p be r1, v1, · · · , vl, r2. The subgraph of H induced by
the nodes in the set {φ(r1), φ(v1), φ(v2), · · · , φ(vl), φ(r2)}
must induce a path from φ(r1) to φ(r2) and let the path be
φ(r1), C1, · · · , Cq, φ(r2). We will now prove that the path
φ(r1), C1, · · · , Cq , φ(r2) is elementary. For each node vi

on the path p, r1 ∈ R−(vi) and r2 ∈ R+(vi). Therefore,
φ(vi) "= φ(r) for any R-node r /∈ {r1, r2}, as otherwise, we
violate the assumption that H is R-Valid. We also claim that
for each Cj , Cj /∈ {φ(r1), φ(r2)}. If Cj = φ(r1) for some j,
then there exists a v ∈ IN(Cj), with r2 ∈ R+(v), contradict-
ing that Cj = φ(r1) is R-Valid. Similarly if Cj = φ(r2) for
some j, then there exists a v ∈ OUT (Cj), with r1 ∈ R−(v),
again contradicting that Cj = φ(r2) is R-Valid.

Theorem 2. A well-formed user view is good if and only
if it is both R-Valid and NR-Valid.

The significance of Theorem 2 is that it maps global con-
straints on the structure of a good user view to a simple
collection of locally-testable properties.

4. SERIES-PARALLEL WORKFLOWS
Given a specification such that the underlying graph G is a
(two terminal) directed SP graph, we now present an algo-
rithm for finding a good user view with minimum size for
G. Since the completeness and soundness properties are not
altered by the presence or absence of multiple copies of an
edge, we will assume w.l.o.g. that the input graph G is a
simple directed SP graph (i.e. it has no parallel edges).

4.1 The Algorithm SP-View
We start with an overview of the algorithm. Our algorithm
processes the vertices in a topologically sorted order [8], mak-
ing a forward and a backward pass, and incrementally builds
the clusters in the final user view.

Definition 10. Given a directed acyclic graph G, a topo-
logically sorted order (or, simply a topological order) is a
linear ordering τ on V (G) such that for each edge (u, v) ∈
E(G), u is listed before v in τ .

The fact that such a topological ordering exists follows from
Observation 1.

In the forward pass, if possible, Procedure SPV-Forward
merges each newly encountered NR-node with one of the (al-
ready formed) clusters which its predecessors in G belong to.
We will prove that all intermediate user views in this process
are directed SP graphs and are good. SPV-Forward takes
G as input and outputs an intermediate SP user view H ′.
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Algorithm 1 Algorithm SP-View
Input: A directed SP graph G
Output: A good user view H ′′

– Run SPV-Forward on G to produce (H ′, φ′).
– Run SPV-Reverse on (H ′, φ′) to produce (H ′′, φ′′).
– output (H ′′, φ′′).

In the backward pass, Procedure SPV-Reverse performs a
mirror step. SPV-Reverse takes H ′ as input and outputs
the final user view H ′′. This algorithm is similar to SPV-
Forward but processes nodes in H ′ (which are clusters of
nodes in G) in reverse topological order , i.e. merges nodes
with their successors instead of their predecessors. We also
show that, there is a simple linear (O(n)) time implemen-
tation of SP-View and given an SP workflow graph G as
input, SP-View outputs a user view which is optimum in
size for G.

Then we show that, for each NR-cluster that remains in the
final user view H ′′, a unique R-cluster can be identified as a
witness for its existence. In addition to that, each R-cluster
serves as a witness of at most one NR-cluster in the final
user view. This observation with slight care in handling of
the boundary cases suffices to argue that the total number
of clusters in the output can not exceed 2k − 3.

A key step in these algorithms is merging two clusters C and
C′ in a user view (H1, φ1) to create a new cluster C∗. This
creates a new user view (H2, φ2) defined as follows.

1. (Merge C and C′) ∀u ∈ V (G) if φ1(u) ∈ {C, C′}, define
φ2(u) = C∗ and add C∗ to V (H2).

2. (Keep other clusters unchanged) ∀u ∈ V (G) such that
φ1(u) $∈ {C, C′}, define φ2(u) = φ1(u). Also add each
C′′ $∈ {C, C′} to V (H2).

3. (Edge set) For each edge (u, u′) ∈ E(G), if φ2(u) $=
φ2(u′), add the edge (φ2(u), φ2(u′)) to E(H2). Note
that as G is a directed SP graph and therefore is acyclic
from Observation 1, any user view of G will not have
a self-loop.

4.2 Algorithm SPV-Forward
Let v1, v2, ..., vn denote nodes of G in a topological order.
Algorithm SPV-Forward proceeds iteratively, processing
the node vi of G in iteration i. At the end of an iteration i, it
creates an intermediate (good) user view (Hi, φi). It starts
with (H0, φ0) where φ0 is a one-to-one mapping ∀v, φ0(v) =
{v}. In iteration i, vi is considered for merging with one of
its predecessors. Upon termination, SPV-Forward returns
(H ′, φ′) = (Hn, φn).

It is easy to see that in any topological order of the nodes
in V (G), v1 = s and vn = t. We will show that each in-
termediate user view Hi is a good user view. Hence from
Corollary 2, in each intermediate graph Hi, only φi(s) has
0-indegree, and only φi(t) has 0-outdegree. Therefore, if an
NR-node vi is processed in iteration i, then vi must satisfy
one of the three cases (II), (III) and (IV).

Table 1: Actions taken by SPV-Forward to pro-
cess an NR-node vi based on the number of R-
predecessors and NR-predecessors of vi in Hi−1

Case #R-pre- #NR-pre- Action
decessor decessor

(I) = 0 = 0 Does not arise
(II) = 0 ≥ 1 Merge with the

last predecessor in
a topological order

(III) = 1 = 0 Merge with the
predecessor

(IV)
≥ 1 ≥ 1 Do nothing
≥ 2 ≥ 0

Algorithm 2 Algorithm SPV-Forward
Input: A directed SP graph G
Output: A good SP user view (H ′, φ′)

– Let n = |V (G)|
– Let (v1, v2, · · · , vn) be a topological order of vertices in
V (G)
for i = 1 to n do {/* H0 = G */}

– φ0(vi) = {vi}
end for
for i = 1 to n do {/* φi−1(vi) = {vi} */}

if vi is an R-node then {/* do nothing */}
–(Hi, φi) = (Hi−1, φi−1)

else {/* vi is an NR-node */}
if φi−1(vi) has no R-predecessor in Hi−1 then {/*
Case (II) */}

– Let the NR-predecessors of φi−1(vi) in Hi−1 be
the clusters C1, C2, · · · , C! listed in a topological
order in Hi−1

– Merge clusters C! and φi−1(vi)
else if φi−1(vi) has exactly one R-predecessor and no
NR-predecessor in Hi−1 then {/* Case (III) */}

– Let C be the unique predecessor of φi−1(vi) in
Hi−1 (and C is an R-cluster)
– Merge clusters C and φi−1(vi)

else {/* Case (IV): φi−1(vi) has ≥ 2 predecessors
including ≥ 1 R-predecessors in Hi−1; do nothing
*/}

– (Hi, φi) = (Hi−1, φi−1)
end if

end if
end for
– (H ′, φ′) = (Hn, φn)
– output (H ′, φ′)

4.2.1 Invariants of SPV-Forward
As mentioned earlier, SPV-Forward incrementally forms
an intermediate user view processing the node vi in itera-
tion i so that each intermediate user view formed satisfies
some properties. The following lemma lists a set of struc-
tural properties of the user view formed at the end of each
iteration. We defer the proof to the full version of the paper.

Lemma 7. For any i ∈ [1..n], upon termination of the i-
th iteration of SPV-Forward, the pair (Hi, φi) satisfies the
following invariants:
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1. Hi is acyclic.

2. Hi is a directed SP-graph.

3. If φi(vi) is an NR-cluster, then φi(vi) has at least
two predecessors in Hi, at least one of which is an
R-predecessor.

Hence, after the execution of SPV-Forward on G, we get a
user view H ′ satisfying the properties given by the following
corollary.

Corollary 3. The output graph H ′ produced by SPV-
Forward is a directed SP graph. Moreover, if C is an NR-
cluster in H ′, C has at least two predecessors including an
R-predecessor.

4.2.2 Correctness of SPV-Forward
We will use the characterization of a good user view given
in Theorem 2 to prove that the graph H ′ output by SPV-
Forward is a good user view.

Lemma 8. After each iteration i of SPV-Forward, the
intermediate graph Hi is a good user view.

Proof. We prove the lemma by induction on the number
of iterations. At i = 1, the start node s gets processed, and
since it is an R-node, H1 = H0 = G, and hence trivially is a
good user view.

Now suppose that the hypothesis holds until iteration i− 1,
just before the node vi is processed. If vi is an R-node or vi

is an NR-node that satisfies Case (IV), Hi = Hi−1 and we
are done. Hence we need to only consider the Cases (II) and
(III) for an NR-node vi. Say in these cases C = φi−1(vi) is
merged with a predecessor C′ in Hi−1 to form the cluster
C∗ in Hi. Note that Hi is well-formed.

Case (II): Hi is R-Valid as no R-node is being changed. First
consider the case when C′ is the unique NR-predecessor
of C = {vi} in Hi−1. Since C′ is NR-Valid, for all u ∈
OUT(C′) the R−(u) sets are same and are equal to R−(C′).
C′ is the unique predecessor of C, so for all edges (u, vi) ∈
E(G), u ∈ C′ in Hi−1 and therefore, u ∈ OUT(C′). Hence

R−(vi) =
⋃

(u,vi)∈E(G)

R−(u) = R−(C′). Therefore R−(C∗) =

R−(vi) ∪ R−(C′) = R−(C′). In Hi, vi /∈ IN(C∗), vi ∈
OUT(C∗) and R−(vi) = R−(C∗). Hence for all u ∈ OUT(C∗),
R−(u) = R−(C) = R−(C∗). Also note that R+(C∗) =
R+(C′) (as ∃u ∈ C′ such that (u, vi) ∈ E, R+(C) ⊆ R+(C′),
so R+(C∗) = R+(C′) ∪ R+(C) = R+(C′)). Since C′ is
NR-Valid and vi /∈ IN(C∗), for all v ∈ IN(C∗), R+(v) =
R+(C′) = R+(C∗). So C∗ remains NR-Valid in Hi, and as
all other NR-nodes are unchanged, Hi is NR-Valid. Since
Hi is well-formed, it is a good user view.

Now we consider the case when C = {vi} has " > 1 NR-
predecessors C1, · · · , C!, listed in the topological order of
clusters in Hi−1 and C is merged with C! to form C∗ in
Hi. From Invariant 2 of Lemma 7 Hi−1 is a directed SP
graph, hence from Lemma 3 C is the unique successor of

C!. Therefore, for each u ∈ OUT(C!), (u, v) ∈ E(G) with
v /∈ C! if and only if v = vi. Hence in Hi, OUT(C∗) =
{vi} and IN(C∗) = {vi} ∪ IN(C!). Since OUT(C∗) = {vi},
∀v ∈ C∗, R+(v) = R+(vi) = R+(C∗). Therefore ∀v ∈
IN(C∗), R+(v) = R+(C∗). Again as OUT(C∗) = {vi},

R−(vi) =
⋃

v∈C∗

R−(v) = R−(C∗). These two facts to-

gether imply that C∗ is NR-Valid. All other NR-nodes are
unchanged in Hi. Hence Hi is NR-Valid.

Case (III): Here C′ is the unique R-predecessor of C. Since
Hi−1 is a good user view, each R-cluster in Hi−1 is R-Valid
and each NR-cluster is NR-Valid. Now all NR-clusters ex-
cept the singleton cluster C = {vi} are unchanged in Hi, and
C is merged with an R-cluster in Hi. Therefore, R− and R+

sets of all NR-clusters remain unchanged in Hi (recall that
R− and R+ sets of a cluster are defined over the specifica-
tion graph G) and Hi is NR-Valid. Now we show that C∗

is R-Valid. Since Hi−1 is a good user view, R-cluster C′ in
Hi−1 is R-Valid. Let r ∈ R be the unique R-node in C′ (as
Hi−1 is good, it is well-formed). Since C′ is the unique pre-
decessor of C = {vi} in Hi−1, for all edges (u, vi) ∈ E(G),
u ∈ C′ in Hi−1, and therefore, u ∈ OUT(C′). Since C′

is R-Valid, R−(u) = {r}, and therefore R−(vi) = {r}. In
Hi, vi ∈ OUT(C∗) (because vi is an NR-node, vi '= sink
node t ∈ V (G), and vi can not have 0 outdegree), and
R−(u) = {r}. For all other nodes u ∈ OUT(C∗) in Hi,
R−(u) = {r} and for all nodes v ∈ IN(C′), v ∈ IN(C∗),
hence R+(v) = {r} (note that vi /∈ IN(C∗)). So C∗ remains
R-Valid in Hi. So Hi is both R-Valid and NR-Valid, and
it is well-formed. Hence from Theorem 2, Hi is a good user
view.

Hence after the execution of SPV-Forward, we have a good
user view as stated in the following corollary.

Corollary 4. H ′ is a directed SP graph that is a good user
view of the input specification graph G.

4.3 Algorithm SPV-Reverse
SPV-Reverse takes the intermediate user view (H ′, φ′) as
input, and performs the merging process of SPV-Forward
on a reverse topological order of the clusters in H ′. More
precisely, we can view SPV-Reverse as reversing the di-
rection of all edges in H ′ and running SPV-Forward on
this reversed copy of H ′. Thus SPV-Reverse attempts to
merge a cluster in H ′ with one of its successor instead of its
predecessors.

It can be verified that the property of an NR-cluster of graph
H ′ given by Invariant 3 is not destroyed by SPV-Reverse.
Assume that C∗ = {Cip , Cip−1

, · · · , Ci1} is an NR-cluster
in H ′′ where Cip , Cip−1

, · · · , Ci1 are NR-clusters of H ′ and
they entered C∗ in the order ip, ip−1, · · · , i1. From Corol-
lary 3, Ci1 had two predecessors including an R-predecessor.
If Ci1 had two R-predecessors in H ′, they will form two R-
clusters in H ′′ (as H ′′ is well-formed), and the property will
hold in H ′′. Otherwise, Ci1 had at least one NR-predecessor,
say Cnr, and an R-predecessor, say Cr in H ′. As Ci1 is the
last cluster of H ′ added in C∗, Cnr is not included in C∗

and hence must belong to an NR-cluster C∗
nr in H ′′ (note
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that Cnr can not be merged with one of its R-successor as
Ci1 is one of its NR-successor in H ′). The R-predecessor Cr

of Ci1 will form an R-cluster, say C∗
r in H ′ and will be a

predecessor of C∗. Hence the cluster C∗ in H ′′ will have at
least one R-predecessor C∗

r and at least one NR-predecessor
C∗

nr.

Thus using Corollary 3 and Lemma 8, we can conclude the
following.

Lemma 9. The output graph H ′′ produced by SP-View
is a directed SP graph. Moreover, if C is an NR-cluster
in H ′′, C has at least two predecessors including an R-
predecessor and at least two successors including an R-successor.

The correctness proof of SPV-Forward on G as done in
Lemma 8, along with the R-Valid and NR-Valid properties
of the clusters in H ′, can also be extended to SPV-Reverse,
which runs SPV-Forward on the “reverse” of H ′. Combin-
ing all these, the next theorem follows.

Theorem 3. H ′′ is a two terminal directed SP graph that
is a good user view of the input specification graph G.

4.4 An Example
Figure 6 (a) shows a directed SP graph G given as a speci-
fication with n = 14 and k = 6. The numbers next to each
node in the figure denote the position of the nodes in an ar-
bitrary topological order. The nodes in G are merged with
their predecessor clusters in the intermediate user views. For
example, when node v5 is processed (in the 5-th iteration),
the R-cluster {v2, v4} is its unique predecessor in H4, and v5

is merged with this cluster to form a new cluster {v2, v4, v5}
(Case (III)). Again, when the node v8 is processed (in the 8-
th iteration), the clusters {v2, v4, v5}, {v1, v6} and {v7} are
its predecessors in H7. As it has two R-predecessors and
one NR-predecessor, v8 satisfies Case (IV) and remains a
singleton NR-cluster. Later in the 9-th iteration, {v9} gets
merged with {v8} to form the cluster {v8, v9} and in the
12-th iteration, {v12} gets merged with {v8, v9} to form the
final cluster {v8, v9, v12}. The output H ′ of SPV-Forward,
with nine clusters, is given in Figure 6 (b).
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Figure 6: An example (SPV-Forward): input speci-
fication G and output (intermediate) user view H ′

SPV-Reverse takes H ′ as input and merges clusters in
H ′ with their successors, if possible. Let C1, · · · , C9 be an
arbitrary topological order of the clusters in H ′ (Figure 7
(a)). Then SPV-Reverse processes the clusters in the or-
der C9, · · · , C1. For example, since the NR-cluster C5 is the
unique successor of C4, these two clusters are merged to-
gether when the cluster C4 is processed. The final good and
optimum user view H ′′ is given in Figure 7 (b). Note that
the user view H ′′ has only seven clusters, whereas the orig-
inal specification contains fourteen modules. A provenance
query on H ′′ will only involve information flow between these
clusters. Thus a significant amount of non-relevant infor-
mation flow between modules will be suppressed, while still
preserving the identity of relevant modules and their inter-
action.
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Figure 7: An example (SPV-Reverse): input (inter-
mediate) user view H ′ and output (final) user view
H ′′

4.5 Time Complexity
This section gives a simple linear time implementation of
the algorithm SP-View, and thus we have the following
theorem.

Theorem 4. The algorithm SP-View can be implemented
in O(n) time where n = |V (G)|.

We assume that the workflow specification is given in ad-
jacency list representation and we have the outgoing and
incoming edges for a node v ∈ V (G) available in linked lists
in(v) and out(v) respectively. We also assume that the in-
formation whether a node v is an R-node in G is given in an
array so the look up can be done in O(1) time. Now we de-
scribe an implementation of the algorithm SPV-Forward,
and as SPV-Reverse takes the graph H ′ output by SPV-
Forward as blackbox, it can be implemented in similar way.

First we do a topological ordering of the vertices in G, and
that takes O(m + n) time. Next we describe how to update
the function φi(v) for a vertex v in an iteration i. We give
the inductive definition of name of a cluster φ(v) as follows.
Note that no vertex is ever removed from a cluster, so if a
vertex is assigned to a cluster that is fixed till the end of the
algorithm.

• (Base Case): Assign φ(s) = C1.
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• (Iteration i): Let C1, · · · , Cj−1 be the clusters allo-
cated so far till iteration i−1. If the node processed in
iteration i is not merged with any predecessor, allocate
a new cluster Cj and assign φ(vi) = Cj .

Otherwise, if vi is merged with a predecessor cluster
Cj1 , assign φ(vi) = Cj1 .

We claim that as the vis are listed in topological order, the
clusters Cjs as they are being allocated, are always listed
in topological order. If a node vi is assigned a new single-
ton cluster Cj (i.e. not merged with any predecessor), then
topological order of the clusters is not violated as vi can not
have an edge to a previously allocated cluster Cj1 , j1 < j.
Same is the case when vi is merged with its unique prede-
cessor cluster in Hi−1. If vi has ≥ 2 NR-predecessors and
no R-predecessor, we will merge vi with the predecessor Cj1

with the highest index j1, and again the topological order of
the clusters remains maintained.

We also keep track of whether a cluster Cj is an R-cluster or
NR-cluster by updating this information each time a node
enters the cluster. For a vertex v, the function φ(v) can
be computed as follows. If v = vi is processed in iteration
i, we go over the list in(v). If we find all u ∈ in(v) have
same φ(u), we know that v has unique predecessor in Gi−1

(that may be an R-cluster or an NR-cluster). If not, but
for all the u ∈ in(v), φ(u) are NR-clusters, we compute the
highest index " such that for an u ∈ in(v), φ(u) = C! and
assign φ(vi) = C!. This way we find the last predecessor
in a topological order in Hi−1. Otherwise we know that
vi has at least two predecessors in Gi−1 including one R-
cluster and we allocate new Cj for φ(vi). Note that for
a vertex v, the function φ(v) can be computed in time =
O(|in(v)|). Hence total time complexity for all the iterations

is max(n,
∑

v∈V (G)

(O(|in(v)|) = O(m + n). Finally we output

the graph H ′ by going over all v ∈ V (G) and looking at
φ(v) to build the sets in(C) and out(C) for each cluster C in
V (H ′), which will be the input for SPV-Reverse. Again
it can be done in O(m + n) time. Hence the algorithm SP-
View can be implemented in O(m +n) time which is linear
in terms of the size of the input graph G. Since for an SP
graph, m = O(n), the overall time complexity is O(n), that
is, linear in the size of V (G).

4.6 Optimality of the Algorithm SP-View
In this section we show that the number of clusters in any
good user view is as large as the number of clusters in H ′′,
i.e. we prove the following theorem.

Theorem 5. For a given specification (G, s, t,R) where G
is a two terminal directed SP graph, the user view (H ′′, φ′′)
output by Algorithm SP-View is optimum in size.

Here we will give an overview of the proof and state the
main lemmas, and defer the details to the full version of the
paper.

Overview of the Proof:. Suppose the output user view H ′′

contains Nr = k R-clusters and Nnr NR-clusters. As any

good user view H is well-formed, it has to contain Nr R-
clusters. Hence it suffices to prove that any good user view
also has at least Nnr NR-clusters.

Let us recall from Corollary 1 that if an NR-node v is such
that |R−(v)| ≥ 2 and |R+(v)| ≥ 2 then v cannot be included
in an R-cluster in any good user view. We will call these NR-
nodes as Essential NR-nodes, that must be in NR-clusters in
any good user view.

Definition 11. An NR-node v is called Essential if |R−(v)| ≥
2 and |R+(v)| ≥ 2.

First we show that each NR-cluster in H ′′ contains at least
one Essential NR-node. Then we deduce a sufficient condi-
tion when two Essential NR-nodes vi, vj , are included in the
same NR-cluster in H ′′ by SP-View. Finally we show that
when two Essential NR-nodes vi, vj are put in different NR-
clusters by SP-View, then no good user view can put vi, vj

in the same NR-cluster. In particular, if C1 and C2 are two
distinct NR-clusters of H ′′, then an Essential NR-node from
C1 and an Essential NR-node from C2 can never be included
in the same NR-cluster in any good user view. This will
complete the proof of Theorem 5.

(1) Existence of Essential nodes in each NR-cluster in
H ′′:. For an NR-node v, we will prove that if φ′(v) is an
NR-cluster in H ′, then |R−(v)| ≥ 2. Similarly, if C is an NR-
cluster in H ′′, |R+(C)| ≥ 2. As H ′′ is good, any NR-cluster
C is NR-Valid, hence for all v ∈ IN(C), R+(v) = R+(C).
Hence for any v ∈ IN(C), |R+(v)| ≥ 2. If φ′′(v) = C is an
NR-cluster, φ′(v) is also an NR-cluster, therefore |R−(v)| ≥
2. Hence, for each NR-cluster C in H ′′, there is an NR-node
v such that |R−(v)| ≥ 2 and R+(v) ≥ 2.

Lemma 10. Each NR-cluster C in H ′′ contains at least
one Essential NR-node.

(2) A sufficient condition for φ′′(vi) = φ′′(vj), where
vi, vj are two Essential NR-nodes. The following lemma
gives a sufficient condition.

Lemma 11. For two Essential NR-nodes vi, vj , if (i) R−(vi) =
R−(vj) or R+(vi) = R+(vj), or, (ii) there exists a vi ! vj

path and all paths from vi to vj are elementary paths, then
φ′′(vi) = φ′′(vj).

Lemma 11 will be proved in two steps. First we will prove
that for two Essential nodes vi, vj , if R−(vi) = R−(vj) or
R+(vi) = R+(vj), then φ′′(vi) = φ′′(vj). Next we will show
that if a vi ! vj path exists and all paths from vi to vj

are elementary paths, then there exists an NR-node v! such
that both R−(v!) = R−(vj) and R+(vi) = R+(v!) hold.
Combining these two facts Lemma 11 will be proved.

(3) The number of NR-clusters in H ′′ is optimum:. To
complete the proof of optimality of the algorithm, for two
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Essential NR-nodes vi, vj , we will show that if (i) there is any
R-node on any path from vi to vj , or (ii) R−(vi) != R−(vj)
and R+(vi) != R+(vj) and no vi to vj path exists, then vi and
vj cannot be included in the same NR-cluster in any good
user view. Combining the above observation with Lemma 11
the next lemma proving the optimality of SP-View follows.

Lemma 12. For two Essential NR-nodes vi, vj , if φ′′(vi) !=
φ′′(vj) then no good user view can put vi, vj in the same
NR-cluster.

Thus the number of NR-clusters in H ′′ cannot be reduced
in any good user view and the user view H ′′ output by SP-
View is optimum in size.

4.7 Extremal Bounds on Size of a Good User
View for SP Graphs

We now give tight extremal bounds on the size of good user
views when the specification graph is an SP graph. We show
that, whatever be the total number of nodes n, the size of
H ′′ output by SP-View is at most 2k − 3, and there exist
SP graphs which always require 2k − 3 clusters in a good
user view.

4.7.1 An Upper Bound on the Size of a good User
View for SP Graphs

First we show that if there is an NR-cluster C in the final
user view H ′′ by the algorithm SP-View, there is an R-
predecessor of C which “accounts for” the existence of C in
H ′′. The following lemma will be used in proving the upper
bound; the proof is deferred to the full version.

Lemma 13. Let C ∈ V (H ′′) be an NR-cluster. Then in
any topological order of the clusters in V (H ′′), the last pre-
decessor C′ of C is an R-cluster and C is the unique successor
of C′ in H ′′.

The following corollary immediately follows from Lemma 13.

Corollary 5. In H ′′, each NR-cluster C ∈ V (H ′′) has at
least one R-predecessor C′ such that C is the unique succes-
sor of C′ in H ′′.

Note that since s, t ∈ R, k ≥ 2, and therefore any good user
view must contain at least 2 clusters. Next we show that
|V (H ′′)| ≤ 2k − 3, thereby proving the following theorem.

Theorem 6. Given a workflow specification (G, s, t,R) where
G is a directed SP graph, there exists a good user view of
size at most 2k−3 that is also a directed SP graph, whenever
k = |R| ≥ 3.

Proof. We will show this by a simple “charging argu-
ment” on the good user view H ′′ by our algorithm. If the
number of NR-clusters in H ′′ is 0, then the upper bound of
2k − 3 trivially holds because 2k − 3 ≥ k for k ≥ 3. Other-
wise, let C1, C2, · · · , C! be the NR-clusters in H ′′, listed in

the topological order for some " ≥ 1. We start with an initial
assignment of a charge of 1 to each R-cluster. The analysis
above shows that this charge assignment, a total of k units,
suffices to account for all NR-clusters. We will show that
this charge can be reduced to k − 3 and still all NR-clusters
will get accounted for, proving the desired bound. This is
achieved by noting that Lemma 9 requires the cluster C1

to have at least two predecessors. But each predecessor of
C1 must be necessarily an R-predecessor as C1 is the first
NR-cluster in the topological sorted order. We argue that
these R-predecessors of C1 are not charged by any other NR-
cluster. This is because if C1 is the single NR-successor of
these clusters, we are done. If an R-predecessor Cr of C has
another NR-successor C′

1 != C1, by Corollary 5, C′
1 has one

R-predecessor C′
r != Cr, such that C′

1 is unique NR-successor
of C′

r, and therefore C′
r is charged for the existence of C′

1.
Thus we can drop the charge on one of these two clusters
and still account for all NR-clusters. Similarly, C! must have
at least two R-successors such that neither of them is an R-
predecessor of any NR-cluster. We can drop the charge on
both of these clusters. Thus the total remaining charge on
R-clusters is exactly k− 3, proving that the total number of
clusters in H ′′ is at most 2k − 3.

4.7.2 A Lower Bound on the Size of a good User View
for SP Graphs

In this section we show that the upper bound given in The-
orem 6 for directed SP graphs is tight.

Theorem 7. There is a directed SP graph Hk with k R-
nodes that needs exactly 2k−3 nodes in any good user view.

The example graph Hk with 2k−3 nodes is given in Figure 8
where the ri’s are R-nodes and nrj ’s are NR-nodes. It is easy

nr  1 nr 2r 0s = 

r 1 r2 rk!13 rk!2

nr k!3nrk!4 t= r k!1

Figure 8: SP graph Hk that needs 2k − 3 clusters

to see that no two nodes in this graph can be included in
the same cluster in any good user view, hence we omit the
proof.

5. GENERAL GRAPHS
In this section we give an upper bound on the number of clus-
ters for the general graph model using the ZOOM algorithm
given in [2]. The upper bound we get is an (exponential)
function of number of relevant modules k and is indepen-
dent of n (the total number of modules in the specification).
We also show that our upper bound is tight, i.e., there ex-
ist graphs that need exponentially many nodes in any good
user view. However, given a general graph as a specifica-
tion, the question of whether there exists a polynomial time
algorithm for constructing an optimum user view is an open
problem.

Given any graph G, the algorithm in [2] can be described as
follows in terms of our notations.
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1. If for an NR-node v, R−(v) = {r} or R+(v) = {r}, v
and r are put in the same cluster.

2. For an NR-node v and an NR-cluster C (after Step 1),
if R−(C) = R−(v) and R+(C) = R+(v), merge C and
v in the same cluster. Repeat Step 2 until no more
merging is possible.

3. (To make the user view minimal) For two NR-clusters
C1 and C2 after Step 2, let C = C1 ∪ C2. If ∀v ∈
OUT(C), R−(v) = R−(C) and ∀v ∈ IN(C), R+(v) =
R+(C), merge C1 and C2 in the user view. Repeat
Step 3 until no more merging is possible.

For simplicity, we also assume that NR-nodes can be merged
with s and t.

5.1 Upper bound on Size of Good User View
The following theorem shows that for general directed graphs
there exists a good user view whose size is a function of k
(and not of n); moreover, this good user view can be com-
puted in polynomial time using the ZOOM algorithm.

Theorem 8. For a workflow specification (G, s, t,R), with
k = |R|, the ZOOM algorithm [2] outputs a good user view
with size ≤ (2k−1 − k)2 + k.

Proof. We look at the good user view output by the
ZOOM algorithm on G. Since in the specification only s
can have 0-indegree and only t can have 0-outdegree, for all
NR-nodes in G, the R− and R+ sets are non empty. Since
the ZOOM algorithm merges an NR-node with its unique
R-predecessor or its unique R-successor in Step 1, each NR-
node v which is not in a cluster with some R-node after Step
1 has |R−(v)| ≥ 2 and |R+(v)| ≥ 2. Also note that for any
NR-node v ∈ V (G), s /∈ R+(v) and t /∈ R−(v), and therefore,
|R−(v)|, |R+(v)| ≤ k − 1. Step 2 puts NR-nodes with the
same R− and R+ clusters in same cluster. The number of
distinct pairs (R−, R+) such that 2 ≤ |R−| ≤ k − 1 and
2 ≤ |R+| ≤ k − 1 is (2k−1 − 1 − (k − 1))2. Step 3 does
further minimalization if possible. Taking into account the
R-clusters in the user view, the total number of clusters
output by the algorithm is therefore bounded by (2k−1−1−
(k − 1))2 + k.

5.2 Lower bound on Size of Good User view
We prove that the upper bound given by Theorem 8 is tight
by constructing an example specification graph with k R-
nodes such that any good user view for G will have at least
(2k−1 − k)2 + k clusters.

Theorem 9. There exists a workflow specification (G, s, t,R),
with k = |R|, such that number of clusters in any good user
view is exactly (2k−1 − k)2 + k.

Proof. We construct a specification as follows. Label
the R-nodes in G as r1, · · · , rk, where r1 = s and rk =
t. Let v1, v2, ..., vN be the NR-nodes in G (the value of N
will be computed later). Let P (resp. S) be the set of all
possible subsets of size ∈ [2, k − 1] of {r1, · · · , rk−1} (resp.

{r2, · · · , rk}). Now form all possible pairs (X, Y ), X ∈
P, Y ∈ S, and make a one-to-one assignment between the
pairs (X, Y ) and NR-nodes vi, and create the edges such
that R−(vi) = X and R+(vi) = Y . Note that X and Y can
be same set for some vi. As |P | = |S| = (2k−1 − 1 − (k −
1)) = (2k−1 − k) and the number of distinct pairs (X, Y )
is (2k−1 − k)2 = N . To make this construction a feasible
workflow specification (i.e. to keep all the nodes in V (G)
on some path from s to t), we also add the edges {(r1, ri) |
2 ≤ i ≤ k − 2} and {(ri, rk−1) | 2 ≤ i ≤ k − 2} to E.

For each vi, |R−(vi)| ≥ 2 and |R+(vi)| ≥ 2 - by Corol-
lary 1 they can not be put together in an R-cluster. If
vi1 , vi2 , · · · , vi! are put in the same cluster C, then each
vij ∈ IN(C) and each vij ∈ OUT(C). Since no two of
the vij s have both of R− and R+ sets same, C is not NR-
Valid and the user view would not be good (from Theo-
rem 2). Hence the number of clusters in any good user view
is |V (G)| = N + k = (2k−1 − k)2 + k.

6. COMPARISONOFSP-VIEWANDZOOM
ON SERIES-PARALLEL GRAPHS

First, note that [2] assumes nodes are not allowed to be
merged with s or t. To model this, SP-View needs another
step in which it finds all NR-nodes v such that R−(v) = {s}
and R+(v) = {t} and puts them together in the same clus-
ter. With this constraint, there is an example where SP-
View outputs an optimum user view while the ZOOM al-
gorithm in [2] outputs a user view which is twice the size
(see Figure 9). It is not known whether or not ZOOM out-
puts an optimum user view for SP workflows without this
constraint.

ZOOM algorithm
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Figure 9: An example where SP-View outperforms
ZOOM algorithm (when no node can be merged
with s and t)

For two terminal directed SP graphs, an advantage of SP-
View over the ZOOM algorithm is its running time. Even
ignoring the time to compare the R− and R+ sets of two
nodes, ZOOM takes O(n2) time, where n = |V (G)|, whereas
SP-View takes O(n) time. Moreover, no preprocessing is
needed for SP-View whereas ZOOM needs to compute the
R− and R+ sets for all nodes.

ZOOM may fail to output the optimum user view for general
graphs, even without the requirement that no node can be
merged with s or t. We can extend the example given in
Figure 9 to form a DAG where ZOOM does not output an
optimum user view (see Figure 10).

7. CONCLUSIONS
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Figure 10: An example for which the ZOOM algo-
rithm does not give optimum solution (even when
nodes are allowed to be merged with s′ and t′)

An interesting open question is whether there is a polynomial-
time algorithm to find an optimum good user view for any
general directed graph. Another natural open question is to
find out if the size of a view can still be exponential in num-
ber of relevant modules for arbitrary DAGs. It would also
be interesting to see if SP-View can be extended to obtain
an optimum (or near optimum) algorithm for a larger family
of directed graphs, like SP graphs with a laminar family of
subgraphs specifying forks and cycles.
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