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Near-linear Size Hypergraph Cut Sparsifiers
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Abstract

Cuts in graphs are a fundamental object of study, and play a central role in the study of
graph algorithms. The problem of sparsifying a graph while approximately preserving its
cut structure has been extensively studied and has many applications. In a seminal work,
Benczr and Karger (1996) showed that given any n-vertex undirected weighted graph G and a
parameter ε ∈ (0, 1), there is a near-linear time algorithm that outputs a weighted subgraph G′

of G of size Õ(n/ε2) such that the weight of every cut in G is preserved to within a (1±ε)-factor
in G′. The graph G′ is referred to as a (1± ε)-approximate cut sparsifier of G.

A natural question is if such cut-preserving sparsifiers also exist for hypergraphs. Kogan
and Krauthgamer (2015) initiated a study of this question and showed that given any weighted
hypergraph H where the cardinality of each hyperedge is bounded by r, there is a polynomial-

time algorithm to find a (1± ε)-approximate cut sparsifier of H of size Õ(nr
ε
2 ). Since r can be as

large as n, in general, this gives a hypergraph cut sparsifier of size Õ(n2/ε2), which is a factor
n larger than the Benczr-Karger bound for graphs. It has been an open question whether or not
Benczr-Karger bound is achievable on hypergraphs. In this work, we resolve this question in
the affirmative by giving a new polynomial-time algorithm for creating hypergraph sparsifiers

of size Õ(n/ε2).

1 Introduction

In many applications, the underlying graphs are too large to fit in the main memory, and one
typically builds a compressed representation that preserves relevant properties of the graph. Cuts
in graphs are a fundamental object of study, and play a central role in the study of graph algo-
rithms. Consequently, the problem of sparsifying a graph while approximately preserving its cut
structure has been extensively studied (see, for instance, [19, 7, 20, 26, 1, 3, 14, 6, 4, 23, 17, 5, 18],
and references therein). A cut-preserving sparsifier not only reduces the space requirement for
any computation, but it can also reduce the time complexity of solving many fundamental cut,
flow, and matching problems as one can now run the algorithms on the sparsifier which may con-
tain far fewer edges. In a seminal work, Benczr and Karger [7] showed that given any n-vertex
undirected weighted graph G and a parameter ε ∈ (0, 1), there is a near-linear time algorithm
that outputs a weighted subgraph G′ of G of size Õ(n/ε2) such that the weight of every cut in
G is preserved to within a multiplicative (1 ± ε)-factor in G′. The graph G′ is referred to as the
(1± ε)-approximate cut sparsifier of G.
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In this work, we consider the problem of cut sparsification for hypergraphs. A hypergraph
H(V,E) consists of a vertex set V and a set E of hyperedges where each edge e ∈ E is a subset
of vertices. The rank of a hypergraph is the size of the largest edge in the hypergraph, that is,
maxe∈E |e|. Hypergraphs are a natural generalization of graphs and many applications require
estimating cuts in hypergraphs (see, for instance, [9, 10, 16, 27]). Note that unlike graphs, an
n-vertex hypergraph may contain exponentially many (in n) hyperedges. This strongly motivates
the question if cut-preserving sparsifiers in the spirit of graph sparsifiers can also be created for
hypergraphs as this would allow algorithmic applications to work with hypergraphs whose size
is polynomially bounded in n.

Kogan and Krauthgamer [22] initiated a study of this basic question and showed that given
any weighted hypergraph H , there is an O(mn2) time algorithm to find a (1± ε)-approximate cut
sparsifier of H of size Õ(nr

ε2
) where r denotes the rank of the hypergraph. Similar to the case of

graphs, the size of a hypergraph sparsifier refers to the number of edges in the sparsifier. Since r
can be as large as n, in general, this gives a hypergraph cut sparsifier of size Õ(n2/ε2), which is a
factor of n larger than the Benczr-Karger bound for graphs. Chekuri and Xu [11] designed a more
efficient algorithm for building a hypergraph sparsifier. They gave a near-linear time algorithm
in the total representation size (sum of the sizes of all hyperedges) to construct a hypergraph
sparsifier of size Õ(nr2/ε2) in hypergraphs of rank r, thus speeding up the run-time obtained
in the work of Kogan and Krauthgamer [22] by at least a factor of n, but at the expense of an
increased sparsifier size. It has remained an open question if the Benczr-Karger bound is also
achievable on hypergraphs, that is, do there exist hypergraph sparsifiers with Õ(n/ε2) edges? In
this work, we resolve this question in the affirmative by giving a new polynomial-time algorithm
for creating hypergraph sparsifiers of size Õ(n/ε2).

Theorem 1. Given a weighted hypergraph H , for any 0 < ε < 1, there exists a randomized algorithm that
constructs a (1 ± ε)-approximate cut sparsifier of H of size O(n logn

ε2
) in Õ(mn+ n10/ε7) time with high

probability; here n denotes the number of vertices and m denotes the number of edges in the hypergraph.

It is worth noting that the size bound obtained in Theorem 1 is the best possible to within a
logarithmic factor even when the input is an unweighted hypergraph that only contains edges of
rank Ω(n). Consider the following “sunflower graph” with 2n vertices, say, v1, v2, ..., v2n, and n
hyperedges. For any 1 ≤ i ≤ n, the ith hyperedge ei contains vertex vi along with the vertices
vn+1, vn+2, . . . , v2n. For any 1 ≤ i ≤ n, the size of the cut ({vi}, V \{vi}) is 1 as ei is the unique edge
cut by this cut. So any sparsifier for this graph must include every hyperedge. This in particular
means that the bound in Theorem 1 is the best possible to within a logarithmic factor even when
one measures the total representation size of a hypergraph cut sparsifier, and not just the number
of edges.

We now briefly describe the high-level idea behind the proof of Theorem 1. In the work of
Benczr and Karger [7], a graph sparsifier is constructed by sampling the edges with probabilities
according to their strengths, a notion that captures the importance of an edge. Informally speaking,
any edge that is among a small number of edges crossing some cut will have a high strength while
any edge that does not participate in any small cuts will have a low strength. Once edges are sam-
pled in this manner, a second key element in showing that the (appropriately weighted) sampled
graph approximately preserves every cut in the original graph, is to establish a cut counting bound
which shows that there can not be too many cuts that are within a given factor of the minimum
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cut size in the graph. This allows use of a union bound over all cuts to show that every cut is
well-approximated. Kogan and Krauthgamer [22] extend this elegant approach to constructing
hypergraph sparsifiers. Similar to [7], they construct a hypergraph sparsifier by sampling hy-
peredges according to their strengths. A key point of divergence occurs in the second element,
namely, the cut counting bound. As it turns out, number of cuts that are within a given factor of
the minimum cut size, can be exponentially larger in the setting of hypergraphs1. To compensate
for this increase in the number of cuts, their algorithm samples edges at roughly r times higher
rate, resulting in a sparsifier of Õ(nr) for hypergraphs of rank r. This size bound is essentially
best possible by a direct execution of the Benczr-Karger framework.

Our proof of Theorem 1 follows the high-level idea of creating a suitable probability distribu-
tion over hyperedges, and then sampling them in accordance with this distribution. However, we
construct our hyperdge sampling distribution by analyzing the interaction among hyperdeges at
a finer granularity. In particular, we start by constructing an auxiliary graph G where for each hy-
peredge e in H , we add a clique Fe whose vertex set is the same as the vertex set of the hyperedge
e. The probability of sampling a hyperedge e in H is now determined by the strengths of the edges
in the clique Fe. However, for this “sparsification-preserving coupling” between the graphs G and
H to work, we can not directly use the graph G but instead need to create a non-uniform weight
assignment to the edges in G that roughly ensures that the edges in Fe have similar strengths in
G. In particular, for any hyperedge e, the edges in Fe may get assigned weights that now range
from 0 to the weight of the hyperedge e. This weight assignment scheme, referred to as a balanced
assignment, and an algorithm to compute it efficiently, are the key technical insights in our work.
We note that the strategy of building sparsifiers of a hypergraph by the auxiliary graph G is also
used in [5] where the authors use this strategy to construct spectral hypergraph sparsifier. Unlike
our scheme, however, the work in [5] assigns uniform weights to the edges in Fe.

We conclude our overview by summarizing the three main technical steps involved in obtain-
ing Theorem 1 by executing the high-level idea and described above. In the first step, we assign
weights to the edges in G so that the edges in each clique Fe have similar strengths. In general, this
task might be impossible, but we get around this by working with a weaker condition, namely, we
only require that all edges in Fe that receive a positive weight have similar strengths. We design
an iterative algorithm to achieve this goal, and show that it converges in polynomial time. In the
second step, we prove that the hypergraph sparsifier constructed by sampling each hyperedge e
according to the strengths of edges in Fe is indeed a good sparsifier for our input hypergraph.
The proof of the second step follows the framework in [7] at a high-level but a key challenge is
to couple together the performance of a sparsifier in H with the performance of a sparsifier in
G. Together these two steps give us a polynomial-time algorithm for constructing a hypergraph
sparsifier of size Õ(n/ε2). However, the running time of the resulting algorithm is quadratic in
terms of m, the number of hyperedges. Since in a hypergraph, the number of edges m can be

1As a simple example (derived from an example in [22]), consider a n-vertex hypergraph that contains a single
hyperedge of size n with weight 1, as well as a clique on the n vertices such that each clique edge has weight 1/n2. It is
easy to see that the weight of a minimum cut in this graph is 1+ (n− 1)/n2

≈ 1. On the other hand, all possible 2n − 1
non-trivial partitions of the n vertices gives us a cut of size at most 3/2. This is an exponential increase compared to the
graph setting where it is known that the number of cuts that are at most twice as big as the minimum cut is bounded
by O(n4) [19]. Note the 2n − 1 cuts created above not only correspond to distinct vertex partitions, but also have a
distinct set of edges crossing them. Interestingly, the maximum number of distinct minimum cuts is the same in both
graphs and hypergraphs, see, for instance, the work of Ghaffari, Karger, and Panigrahi [13].
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exponentially larger than n, in the third step, we present a way to speed up the algorithm so that
the run-time has only a linear dependence on m.

Finally, we note that Theorem 1 also yields a Õ(n2/ε2) space streaming algorithm for building
a hypergraph sparsifier in a single-pass over an insertion-only stream. This can be done using
a black-box technique for transforming cut sparsification algorithms into streaming algorithms
whose space requirement is only slightly more than the sparsifier size (see Section 2.2 of [24]):

Lemma 1 ([24]). Given an algorithm that finds a (1 ± ε)-approximate cut sparsifier of a hypergraph of
size at most f(n, ε) with high probability, there exists a single-pass insertion-only streaming algorithm
to compute a (1 ± ε)-approximate cut sparsifier of size 2 log(m/n) · f(n, ε

2 log(m/n)) that stores at most

2 log2(m/n) · f(n, ε
2 log(m/n)) hyperedges at any given time with high probability.

Corollary 2. For any 0 < ε < 1, there exists a randomized insertion only streaming algorithm that

constructs (1 ± ε)-approximate cut sparsifier of H of size O(n logn log3(m/n)
ε2 ) with high probability and

stores only O(n logn log4(m/n)
ε2

) hyperedges, and hence uses O(n
2 logn log4(m/n)

ε2
) space in the worst-case.

The above result improves upon the Õ(n3/ε2) space streaming algorithm in [22] for building
hypergraph sparsifiers in insertion-only streams. We note here that for hypergraphs of constant
rank, an Õ(n/ε2) space streaming algorithm is known [15] in dynamic streams where both inser-
tion and deletion of hyperedges is allowed.

Related Work: Spielman and Teng [26] introduced a natural strengthening of the notion of cut
sparsifiers in graphs, called a spectral sparsifier. A (1 ± ε)-approximate spectral sparsifier of a
graph G(V,E) is a weighted graph G′(V,E′) such that for every vector x ∈ R

n, we have

|xTLG′ x− xTLG x| ≤ ε(xTLG x),

where LG and LG′ denote the Laplacian matrices of G and G′, respectively. To see that the notion
of spectral spasrifier only strengthens the notion of a cut sparsifier, observe that the cut sparsifi-
cation requirement for any cut (S, S̄) is captured by the definition above when we choose x to be
the 0/1-indicator vector of the set S. Batson, Spielman, and Srivastava [6] gave a polynomial-time
algorithm that for every graph G, gives a weighted graph G′ with O(n/ε2) edges such that G′ is a
(1 ± ε)-approximate spectral sparsifier of G. Subsequently, Lee and Sun [23] gave an O(m/εO(1))
time algorithm to construct a spectral graph sparsifier with O(n/ε2) edges.

Very recently, Bansal, Svensson, and Trevisan [5] explored both the standard multiplicative
error notion as well as a weaker notion of graph and hypergraph sparsification whereby the size
of each cut (S, S̄), is approximated to within an additive error that is bounded by ε(d|S|+ vol(S))
where d is the average degree in the graph, and vol(S) denotes the sum of degrees of vertices
in S. It is easy to see that in general, the additive error term allowed in the weaker notion can
be Ω(m) times larger than the multiplicative error even in connected graphs. Bansal et al. de-
signed a randomized polynomial time algorithm that gives unweighted hypergraph sparsifiers of

size O(n log(r/ε)
ε2r

) for the weaker notion defined above. For the multiplicative error notion, they

give a polynomial-time algorithm that outputs a weighted spectral sparsifier with O( r
3

ε2
· n log n)

hyperedges. This latter result is in contrast to the recent result of Soma and Yoshida [25] who gave

spectral hypergraph sparsifiers with O(n
3 logn
ε2 ) hyperedges.
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There has also been extensive work on designing space-efficient streaming algorithms for cut
sparsifiers as well as spectral sparsifiers for graphs, starting with the work of Ahn and Guha [1]
who gave the first Õ(n/ε2) space single-pass streaming algorithm to build a (1 ± ε)-approximate
cut sparsifier in insertion-only streams. Ahn, Guha, and McGregor [2] introduced a powerful
linear-sketching primitive for graph connectivity that led to the construction of graph sparsifiers
using Õ(n/ε2) space in the more general setting of dynamic streams where a graph is revealed as
a sequence of edge insertions and deletions [3, 14]. Subsequently, similar results have also been
obtained for spectral sparsifiers in dynamic graph streams [4, 17, 18].

Organization: We set up our notation and state some useful background results in Section 2. We
present a detailed technical overview of our hypergraph sparsifier construction in Section 3. In
Section 4, we give a polynomial-time algorithm to construct a balanced weight assignment, and
in Section 5, we show how a balanced weight assignment can be used to create a hypergraph
sparsifier with O(n logn

ǫ2
) edges. Finally, in Section 6, we present a way to speed-up our algorithm

so that the final algorithm has only a linear dependence on m, completing the proof of Theorem 1.

2 Preliminaries

2.1 Notation

A hypergraph is defined as a pair (V,E) of vertices and edges, where each edge in E is a subset of V .
In this paper, we allow parallel edges (that is, E is a multiset). To emphasize this, we often refer to
a graph/hypergraph as a multigraph/multihypergraph. Given a weight function w that assigns
a nonnegative weight to each edge in E, the triple (V,E,w) is a weighted hypergraph. Notice that
an unweighted graph/hypergraph can be thought of as a weighted graph/hypergraph with all
weights equal to 1.

Throughout the paper, we use “graph” to refer to standard graphs with edges of size 2, and
“hypergraph” to refer to graphs where edge sizes are arbitrary. We generally use the symbol G
to refer to standard graphs, and H to refer to hypergraphs. Additionally, we generally use f to
denote an edge in a standard graph, and e to denote an edge of a hypergraph. We will assume
throughout that we are dealing with a hypergraph with at least n edges, since otherwise, we can
simply output H as its own sparsification. Finally, the phrase “with high probability” means with
probability 1− 1/poly(n) for some large polynomial in n.

Given any weight function w : S → R≥0, we extend it to also be a function on subsets of S
so that w(S′) =

∑

e∈S′ w(e) for S′ ⊆ S. Given a weighted graph/hypergraph G = (V,E,w) and
a subset of vertices V ′ ⊆ V , we define G[V ′] to be the weighted subgraph/subhypergraph of G
induced by the vertices in V ′.

A cut C = (S, S̄) of a vertex set V is any disjoint partition of V into two sets such that neither
of the sets are empty. Given a graph/hypergraph G = (V,E,w) and a cut C = (S, S̄), we denote
by δG(S) the set of the edges crossing the cut C in G. By definition, |δ(S)| is the number of edges
crossing C and w(δ(S)) is the weight/size of C . A (1 ± ε)-approximate cut sparsifier of G is a
graph/hypergraph G′ = (V,E′, w′) with E′ ⊆ E such that

∀S ⊆ V,
∣

∣w′(δG′(S))− w(δG(S))
∣

∣ ≤ εw(δG(S)).

The following concentration bound can be found in [12]:
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Lemma 2 (Theorem 2.2 in [12]). Let {x1, . . . , xk} be a set of random variables, such that for 1 ≤ i ≤ k,
each xi independently takes value 1/pi with probability pi and 0 otherwise, for some pi ∈ [0, 1]. Then for
all N ≥ k and ε ∈ (0, 1],

Pr





∣

∣

∣

∣

∣

∣

∑

i∈[k]

xi − k

∣

∣

∣

∣

∣

∣

≥ εN



 ≤ 2e−0.38ε2·mini pi·N

2.2 Edge Strengths and the Cut Counting Bound

We review some concepts and results that can be found in previous works on cut sparsifiers in
standard graphs, which also play important roles in our algorithm.

Definition 1. Given a weighted graph G, a k-strong component of G is a maximal induced subgraph of
G that has minimum cut at least k.

Lemma 3 ([7]). Given a weighted graph G = (V, F,w) and some real number k, the k-strong components
of G partition V . Given another real number k′ ≥ k, the k′-strong components of G are a refinement of the
partition of k-strong components of G.

Definition 2. Given a weighted graph G = (V, F,w) and an edge f ∈ F , the strength of f , denoted by
kf , in G is the maximum value of k such that f is contained in a k-strong component of G.

Alternatively, the strength of an edge f ∈ F is the largest minimum cut size among all induced
subgraphs G[X] that contain f , where X ranges over all subsets of V . The following two claims
give some properties of strength of edges in a graph.

Claim 1 (Corollary 4.9 in [8]). Given a weighted graph G on n vertices, there are at most n− 1 distinct
values of edge strengths.

Claim 2 (Lemma 4.11 in [8]). For any weighted graph G = (V, F,w) on n vertices,
∑

f∈F
w(f)
kf

≤ n−1.

We can compute the strength of every edge in G by computing the global min-cut of (n − 1)
induced subgraphs of G [8]. For the completeness of the argument, we prove the following lemma
in Appendix A.2.

Lemma 4. Given a weighted graph G with n vertices and m edges. There is an algorithm that computes
the strength of each edge in Õ(mn) time with high probability.

The following cut counting lemma due to Karger [19] gives an upper bound on the number of
“small cuts” in a graph.

Lemma 5 (Corollary 8.2 in [19]). Given a weighted graph G = (V, F,w) with minimum cut size c, for
all integers α ≥ 1, the number of cuts of the graph with weight at most αc is at most |V |2α. We will refer
to such cuts as α-cuts throughout the paper.
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3 Construction of Near-linear Size Hypergraph Cut Sparsifiers

Before describing our approach of creating hypergraph sparsifiers, we briefly review Benczr and
Karger’s algorithm for graph sparsifiers [7, 8].

Given a graph G = (V, F,w), they construct a sparsifier Ĝ as follows: for each edge f ∈ F ,

we include f in Ĝ with probability pf = Õ(w(f)
kf

) (i.e. its weight over its strength). Every edge f

that gets sampled is assigned a weight of ŵ(f) = w(f)
pf

in Ĝ . By Claim 2, the expected size of the

sparsifier is Õ(n). For any cut C = (S, S̄) in the graph, the expected size of ŵ(δĜ(S)) is equal to
w(δG(S)). We need to give an upper bound of the probability that

∣

∣ŵ(δĜ(S))− E
[

ŵ(δĜ(S))
]∣

∣ >
εE

[

ŵ(δĜ(S))
]

. By concentration bounds, the larger the size of C , the lower the probability that
ŵ(δĜ(S)) is far from its expectation. By Lemma 5, if a graph has minimum cut size c, for any
integer α, the number of cuts of size at most αc is at most n2α. So we can group the cuts in
different sizes based on this α value, take a union bound within each group, and then take a
union bound over all groups to prove that with high probability, every cut in Ĝ has size close to
its expectation. This gives a (1± ε)-approximate cut sparsifier.

Recently, Kogan and Krauthgamer [22] generalized this approach to hypergraphs by defining
an analogue of edge strengths for hyperedges. Most of the analysis for standard graphs also
holds in the case of hypergraphs. The main difference is that in hypergraphs, the cut counting
bound (Lemma 5) is no longer true. Instead, the authors prove that if the minimum cut size of
a hypergraph is c, the number of cuts with size at most αc is O(2αrn2α) for any integer α, where
r is the maximum cardinality of the edges in the hypergraph (see the footnote on page 2 for an
example showing that an exponential dependence on r is necessary even for constant α). This
increase in the number of α-cuts in turn requires edges to be oversampled at a rate that is O(r)
times higher, giving a hypergraph sparsifier of size Õ(nr).

3.1 Overview of Our Approach

Similar to the previous works on graph/hypergraph sparsification, for each edge e in the hyper-
graph H , we will assign a probability pe of sampling the edge in the sparsifier Ĥ . If e is sampled,
we give it weight we

pe
in the sparsifier. However, unlike [22], our probabilities are not decided

by the strength of the edge e in H . Instead, we derive these probabilities from edge strengths
in an auxiliary standard graph G, where for each hyperedge e in H , we create a clique over the
vertices of e in G such that the total weight of these clique edges is we. The hyperedge sampling
probability pe is derived from the strengths of the edges in the associated clique in G.

To prove that the sparsifier Ĥ is valid, we compare Ĥ to the Benczr-Karger sparsifier Ĝ of G.
For any cut C , it is not hard to see that the total weight of C in H is at least as large as the size of
C in G. Consider the cut size in Ĥ as the sum of several random variables (each one representing
an edge/hyperedge across the cut). By concentration bounds, the higher the probability mass of
these random variables, the greater is the concentration of their sum, which means the variance of
the size of C in Ĥ is at most its variance in Ĝ. So we can use the cut-counting bound for standard
graphs on Ĝ to analyze the concentration of the hypergraph sparsifier Ĥ .

The approach of analyzing the performance of a hypergraph sparsifier through an auxiliary
standard graph is also used in [5]. The authors use it to build a spectral sparsifier of a hypergraph.
For a hyperedge e in H , like [5], a natural way of assigning its weight is to distribute its weight
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uniformly among all corresponding edges in G. However, this may cause the strengths of these
edges in G to be very different. Two natural ways of assigning pe are to either let pe be decided by
the maximum inverse strength of these edges or decided by the average inverse strength. We can
prove that deriving probabilities from the maximum inverse strength gives us small variance in
cut sizes, while deriving probabilities from the average inverse strength results in a small number
of sampled edges. However, the first approach may cause the number of sampled edges to be too
large and the second approach cannot guarantee that the variance of the cut sizes in Ĥ is small
enough. The two examples below illustrate this.

. . .

. . .

v1 v2 vn

vn+1 vn+2 v2n

(a) Example 1

K
(2r)
n

K
(2r)
n

e0

e1

. . . . . . . . .

. . .

v1 vr v2r−1 vn

vn+1 vn+r v2n

(b) Example 2

Figure 1: Illustrations of Examples 1 and 2. K
(2r)
n refers to a copy of the complete 2r-uniform

hypergraph.

Example 1. Consider the following hypergraph with 2n vertices v1, v2, . . . v2n: for any 1 ≤ i ≤ n, we
have all

( n
r−1

)

edges of size r containing vi and r − 1 vertices in {vn+1, vn+2, . . . , v2n}. Suppose we were
to distribute the weight of each hyperedge uniformly in the auxiliary graph G, each edge in G has weight
1/
(r
2

)

= O(1/r2). For any 1 ≤ i ≤ n, the weighted degree of vi in the graph G is O(1/r) ·
( n
r−1

)

, which

means for each hyperedge, some of the edges in the associated clique in G have strength O(1/r) ·
( n
r−1

)

.
Hence if the hyperedges are sampled according to the minimum strength of the corresponding edges in G,

each hyperedge will be sampled with probability Ω(r)

( n
r−1)

, and the expected number of edges in the sparsifier

will be Ω(nr) since there are n ·
( n
r−1

)

hyperedges.

Example 2. Consider the following hypergraph with 2n vertices and hyperedge size 2r ≤ n
2 : let V =

V1 ∪ V2 where V1 = {v1, . . . , vn} and V2 = {vn+1, . . . , v2n}. The graph contains one hyperedge e0 =
{v1, . . . , v2r−1, vn+1}, and one hyperedge e1 = {v1, . . . , vr, vn+1, . . . , vn+r}. There are also

( n
2r

)

hyper-
edges in V1 and

( n
2r

)

hyperedges in V2. Suppose we distribute the weight of each hyperedge uniformly in the
auxiliary graph G. The cut size of C = (V1, V2) is Θ(1) in G since there are r2 + 2r − 1 edges of weight
1/
(2r
2

)

crossing C . On the other hand, the induced subgraphs G[V1] and G[V2] both has minimum cut size
Ω(2r). So for any edge in G crossing the cut C , its strength is Θ(1), and other edges in G have strength
Ω(2r). Let F0 be set of edges in G corresponding to e0. About 1/r fraction of the edges in F0 have strength
Θ(1) while the others have strength Ω(2r). Both

(r
2

)

/(
∑

f∈F0
kf ) (inverse of average) and (

∑

f∈F0

1
kf
)/
(r
2

)

(average of inverse) are O(1/r). However, the cut C has size 2 in the hypergraph, which means that in order
to build a (1± ε)-approximate cut sparsifier with ε < 1/2, the edge e0 must be included.
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To solve this problem, we give an algorithm that assigns the weights of edges in G such that
for each hyperedge e, the strength of all corresponding edges in G whose weight is positive is
close to the smallest strength edge in the clique (we will formally define this idea in the next sub-
section). In this case, the maximum inverse strength is quite close to the average inverse strength,
so if pe is decided by the smallest strength (i.e. the largest inverse strength) in the clique, both the
size of the sparsifier and the variance of the cuts have the properties we desire.

3.2 Construction of the Cut Sparsifier

In this section, we formalize the ideas introduced in the previous section. To simplify the analysis,
we first consider unweighted hypergraphs, and then give a simple reduction from the weighted
case to the unweighted case. Later, in Section 6, we present a more sophisticated approach for
handling weighted hypergraphs that gives us our final algorithm whose run-time has only a linear
dependence on m.

Let H = (V,E) be an unweighted multi-hypergraph with |V | = n and |E| = m. Our goal is
to create a (1 ± ε)-approximate cut sparsifier, given any ε ∈ (0, 1]. That is, we want to create a
weighted hypergraph Ĥ = (V, Ê, ŵ) where Ê ⊆ E such that with high probability, for all cuts
C = (S, S̄) of V ,

∣

∣ŵ(δĤ(S)) − |δH(S)|
∣

∣ ≤ ε |δH(S)| .

In other words, the graph Ĥ preserves all cuts up to a factor of (1 ± ε). We will sample the graph
Ĥ by computing a probability pe for each edge e ∈ E. Each edge e ∈ E is included in Ĥ with
probability pe, and if included, it is given a weight of ŵ(e) := 1/pe.

Given a hyperedge e ∈ E, define Fe := {{u, v} : u, v ∈ e, u 6= v} as the clique on the vertex
set of e. Let F :=

⋃

e∈E Fe be the multiset union of all such cliques. Given a weight function
wF : F → R≥0, we define G = (V, F,wF ) as the weighted multigraph induced by wF . Finally,
given any subset Fsub ⊆ F , define F+

sub = {f ∈ Fsub : w
F (f) > 0} to be subset of Fsub containing

only positive weight edges.
For all hyperedges e ∈ E, define κe := minf∈Fe

kf to be the minimum strength over all edges
in its associated clique, and κmax

e := maxf∈F+
e
kf to be the maximum strength over all positive-

weighted edges in its associated clique.

Definition 3. Let γ ≥ 1 be some parameter. The weight function wF : F → R≥0 is called a γ-balanced
weight assignment if it satisfies the following two conditions for all e ∈ E in the hypergraph H :

(1)
∑

f∈Fe
wF (f) = 1, and

(2) κmax
e /κe ≤ γ.

The next theorem, whose proof appears in Section 4, shows that there exists a γ-balanced
weight assignment for any γ ≥ 2. We say two hyperedges are distinct if the vertex sets of these
two hyperedges are not the same.

Theorem 3. Suppose we are given a hypergraph with n vertices and m hyperedges such that there are at
most m̄ distinct hyperedges. Then for any integer γ ≥ 2, there is an algorithm that runs in Õ(mm̄n4) time
and finds a γ-balanced weight assignment.

9



In fact, with a more careful analysis, we can prove the statement of Theorem 3 is true for any
real number γ > 1. Together with Bolzano-Weierstrass theorem and some standard analysis, we
can prove the existance of a balanced weight function even for γ = 1. See Appendix A.1 for more
details.

Given such a weight assignment, the theorem below, whose proof appears in Section 5, shows
that sampling with probabilities proportional to 1/κe gives a good sparsifier:

Theorem 4. Let ε ∈ (0, 1] and let d be any integer constant. Suppose wF is a γ-balanced weight as-
signment of H . Consider a random subgraph Ĥ of H where each edge e ∈ E is sampled with probability

pe := min(1, 8(d+6)γ2 logn
0.38ε2κe

) and is given weight 1/pe if sampled. Let ŵ be this weight function on the

sampled edges. Then with probability at least 1−O(n−d), for every cut C = (S, S̄),

∣

∣ŵ(δĤ(S))− |δH(S)|
∣

∣ ≤ 2ε |δH(S)| .

Furthermore, the expected number of edges in Ĥ is O(γ
3n logn
ε2

).

Setting γ = 2, for any unweighted hypergraph H = (V,E), by Theorem 3, there exists an
algorithm that finds a γ-balanced weight assignment. Thus by Theorem 4, we can create a (1± ε)-
approximate cut sparsifier of H of size O(n logn

ε2
) with high probability.

The corollary below gives a simple reduction from the weighted case to the unweighted case.

Corollary 5. Given a weighted hypergraph H = (V,E,w), suppose W is the ratio of the largest edge
weight to the smallest edge weight in H . Then for any ε ∈ (0, 1], there exists an algorithm that constructs
an (1± ε)-approximate sparsifier of H with size O(n logn

ε2
) in Õ(Wm2n4) time with high probability.

Proof. Without loss of generality, assume that 1/ǫ is an integer, and also that the weights w are
between 3/ǫ and 3W/ǫ. For every edge e ∈ E, we add ⌊w(e)⌋ copies of e to a multiset E′. Since
w(e) ≥ 3/ǫ, the number of copies of e in E′ is (w(e)± 1), which is within the range (1± ǫ/3) ·w(e).
Let Ĥ be a (1 ± ǫ/3)-approximate cut sparsifier of H ′ = (V,E′) computed using Theorems 3 and
4. Then the weight of a cut in Ĥ is within a (1± ǫ/3)2 factor (which is within the range (1± ǫ)) of
its weight in H . In H ′, there are at most Wm hyperedges and there are at most m hyperedges are
distinct with each other. By Theorem 3, the running time is Õ(Wm2n4).

We prove Theorem 3 in Section 4 and Theorem 4 in Section 5. In Section 6, we speed up our
algorithm so that the running time is linear in m and eliminate the dependance of W , and thus
prove Theorem 1.

4 Finding a γ-balanced Assignment

In this section, we prove Theorem 3, which shows that given an unweighted hypergraph H =
(V,E) with n vertices and m hyperedges, and for any integer γ ≥ 2, we can find a γ-balanced
assignment in polynomial time. Although we only consider the case when γ is an integer for
convenience, the argument can be easily generalized to the case when γ is not an integer.

We find a γ-balanced assignment using an iterative algorithm. We start with the uniform
weight assignment. In each step, say e is an unbalanced hyperedge (i.e. e violates condition (2) of
Definition 3) where f1 and f2 are the two edges in Fe that “witness” e being unbalanced, i.e. f1

10



has positive weight and kf1 > γkf2 . We move weight from f1 to f2. Informally (we will prove this
later), the strength of f1 can only decrease and the strength of f2 can only increase as a result of
this weight transition. There are two possible events that may happen if we keep moving weight
from f1 to f2: either the strength of f1 finally moves within a γ factor of f2; or we end up moving
all the weight of f1 to f2, but kf1 is still larger than γkf2 . In either case, f1 and f2 are no longer
a pair of “witnesses” to e being unbalanced. We repeat this weight transfer until no unbalanced
hyperedge remains.

Before we formally describe the algorithm, we first prove a lemma that shows how edge
strengths in a graph change when we change the weight of an edge.

Lemma 6. Let G = (V,E,w) be a weighted graph, and let G′ = (V,E,w′) be the weighted graph obtained
from G by increasing the weight of some edge f by δ. For any edge f ′, denote by kf ′ and k′f ′ the strengths
of f ′ in G and G′ respectively. Then for any edge f ′,

1. kf ′ ≤ k′f ′ ≤ kf ′ + δ

2. If k′f ′ > kf ′ , then kf ′ ≥ kf and k′f ′ ≤ k′f

Proof. Let f ′ be an edge, and let G[Xf ′ ] be the induced subgraph of G that contains f ′ and has
minimum cut size kf ′ . Since we only increase the weight of an edge f , the minimum cut size of
G′[Xf ′ ] is at least kf ′ , which means kf ′ ≤ k′f ′ . On the other hand, since the weight of f is increased
by δ, the minimum cut size of any induced subgraph is increased by at most δ. So k′f ′ ≤ kf ′ + δ.

Next, we prove the second part of the lemma. Let f ′ be an edge, and suppose k′f ′ > kf ′ .
Let G′[X ′

f ′ ] be the induced subgraph of G′ that contains f ′ and has minimum cut size k′f ′ . Since
k′f ′ > kf ′ , the minimum cut size of G[X ′

f ′ ] is strictly less than k′f ′ , which means f is a part of some
minimum cut of G[X ′

f ′ ]. In particular, this implies that f is in X ′
f ′ , so k′f is at least the minimum

cut size of G′[X ′
f ′ ], which is k′f ′ .

On the other hand, let G[Xf ] be the induced subgraph of G that contains f and has minimum
cut size kf . Consider the subgraph G[X ′

f ′ ∪Xf ]. Let C = (S, S̄) be a minimum cut of this induced
subgraph, and let c be the size of C . Since this subgraph contains f ′, by definition of strength,
c is at most kf ′ . Note that X ′

f ′ and Xf have nonempty intersection (they both contain the edge
f ). Therefore any cut of X ′

f ′ ∪Xf must either cut through Xf , or cut through X ′
f ′ but not Xf . In

the case that C cuts through X ′
f ′ but not Xf , C does not cut through f , so it has size at most c in

G′[X ′
f ′ ] (since the weight of all edges crossing C stays the same). This implies that the minimum

cut of G′[X ′
f ′ ] is at most c, which means that k′f ′ ≤ c ≤ kf ′ , contradicting our assumption. So it

must be the case that C cuts through the vertex set Xf , which means c is at least the minimum cut
size of G[Xf ], and therefore kf ≤ c ≤ kf ′ .

Our algorithm will maintain the invariant that all weights in the current weight assignment
graph are integer multiples of some fixed δ > 0, and the magnitude of each weight update will be
exactly δ. In such a graph, Lemma 6 immediately implies that changing (increasing or decreasing)
the weight of some edge f by δ can only change the strength of an edge f ′ if f and f ′ have the
same strength both before and after the change.

11



4.1 The Algorithm

Now we describe the algorithm to find a γ-balanced assignment. Let δ = 1
n2 . First we assign

the initial weights winit : F → R≥0 with the following constraint: the weight of each edge in G
is an integer multiple of δ and is at least 2δ. We can always do so because each hyperedge in H
has weight 1, which is an integer multiple of δ, and the number of edges in the clique associated
with a hyperedge is at most

(n
2

)

, which is less than 1
2δ . These initial weights give us a set of initial

edge strengths kinitf of the weighted graph Ginit = (V, F,winit). Define K0 := minf∈F kinitf , and

define ℓ to be the smallest integer such that K0 · γ
ℓ is larger than maxf∈F kinitf . For each integer

0 ≤ i ≤ ℓ, define Ki = K0 · γi. Note that since the weights of all edges are integer multiples
of δ, the strength of each edge is also an integer multiple of δ, which means K0 is an integer
multiple of δ. Since γ is an integer, all Ki is also integer multiples of δ. We partition the interval
I = [K0,Kℓ] into subintervals I0, I1, I2, . . . , Iℓ, where Ij := (Ki−1,Ki] for i > 0, and I0 = {K0}.
Note that maxf∈F kinitf is at most the total weight of the edges and K0 is at least 2δ, so ℓ is at most

logγ(n
2m) = O(logm). We fix this partition for the rest of this section.

We use this partition I0, I1, I2, . . . , Iℓ to determine how to iteratively modify these weights.
Given a real number x ∈ I , we define ind(x) to be the integer j such that x ∈ Ij . Given a weight
function wF : F → R≥0 and the corresponding edge strengths k : F → R≥0, we say that a
hyperedge e ∈ E is bad in G = (V, F,wF ) if there exist some f, f ′ ∈ Fe such that wF (f ′) > 0 and
kf < Kind(kf ′)−1. It is clear that if a hyperedge is not bad, then it is γ-balanced. We note that in

general, as we update the weights, kf and kf ′ might not be contained in I (so ind(k′f ) might not
be defined), but as it will turn out that we will maintain the invariant that all the edge strengths
are always contained in I . We expand this definition to ind(e) := ind(maxf∈F+

e
kf ). Note that a

hyperedge e is bad if and only if κe < Kind(e)−1.
We run the following algorithm: while there exist bad hyperedges, we find a bad hyperedge e

with the maximum ind(e). Let f, f ′ ∈ Fe be a pair that such wF (f ′) > 0 and kf < Kind(kf ′)−1. We

move δ weight from f ′ to f .

Algorithm 1: An algorithm that eliminates all bad hyperedges

1 w = winit;
2 while there exists some bad hyperedge do
3 Let e be the one with maximum ind(e);
4 Let fmin := argminf∈Fe

kf and fmax := argmaxf∈F+
e
kf ;

5 Let kmin and kmax to be the strengths of fmin and fmax, respectively;
6 Increase w(fmin) by δ and decrease w(fmax) by δ;

7 end

8 Return w;

Note that throughout the execution of the algorithm, the weight of each edge is an integer
multiple of δ, so the strength of each edge throughout the running of the algorithm is also an
integer multiple of δ. To prove the correctness of the algorithm, we first prove an important
invariant that is maintained by the algorithm.
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Claim 3. Let i equal the value of ind(e) at some iteration of the while loop. For any edge f whose strength
increased as a result of transferring the weights (Line 6), ind(kf ) < i after executing the transfer of weights.
Also, no edge f has strength less than K0 after executing the transfer of weights.

Proof. Fix some iteration of the while loop, and let i = ind(e). By definition of ind(e) and fmax,
we have ind(kmax) = ind(e). On the other hand, since e is a bad hyperedge, we have kmin < Ki−1,
which means kmin ≤ Ki−1 − δ since kmin is an integer multiple of δ. By the first half of Lemma 6,
kfmin

is increased by at most δ, which implies that after the weight transfer, kfmin
≤ Ki−1. By the

second half of Lemma 6, for any edge f such that kf increases, kf ≤ kfmin
≤ Ki−1, so ind(kf ) ≤ i−1

after the weight transfer. This concludes the first part of the claim.
Now we prove the second part of the claim inductively. Suppose that before we change the

weights, no edge has strength less than K0. Since K0 ≤ kmin < Ki−1, i ≥ 2, so kmax ≥ K1 + δ. By
the first half of Lemma 6, kfmax

≥ K1 after the weight transfer. By the second half of Lemma 6, for
any edge f such that kf decreases, kf ≥ kfmax

≥ K1 > K0 after the weight change. So the second
invariant still holds and this concludes the second part of the claim.

Claim 3 essentially proves that the interval I = [K0,Kℓ] (which was defined using the initial
graph Ginit) is the correct range of strengths to focus on. Algorithm 1 gives a γ-balanced assign-
ment if it terminates since there would be no bad hyperedges. Therefore, to prove Theorem 3, it
is sufficient to prove that the running time of Algorithm 1 is Õ(mm̄n4). We call the tth iteration of
the while loop as iteration t. The following claim is another important invariant of Algorithm 1.

Claim 4. For any integer i, we define iteration ti as the earliest iteration that the bad hyperedge e in the
while loop has ind(e) ≤ i. Then after iteration ti, the total weight of edges that have strength larger than
Ki−1 is non-increasing.

Proof. For any t ≥ 1, we denote et as the bad hyperedge in line 3 during iteration t. We say a
hyperedge e′ is very bad if κe′ < Kind(e′)−1 − δ. We first prove that at any iteration starting from ti,
no hyperedge e′ with ind(e′) > i is very bad. We prove it by contradiction. Suppose the statement
is not true, and let t̄ ≥ ti − 1 be the first iteration such that after iteration t̄, a hyperedge ē is very
bad. At the beginning of iteration ti, by the definition of eti , no hyperedge e′ with ind(e′) > i
is bad, and hence no such hyperedge is very bad. So t̄ ≥ ti, which means at the beginning of
iteration t̄, no hyperedge e′ with ind(e′) > i is very bad. There are two possible reasons that
would cause ē to become very bad: either ind(ē) is increased or κē is decreased during the weight
transfer in iteration t̄.

Suppose ind(ē) increases during the weight transfer in iteration t̄, and let f ∈ F+
ē be the edge

that ind(f) increases. By Lemma 6, kf increases by at most δ during iteration t̄. On the other hand,

since kf is always an integer multiple of δ, kf = Kind(f) at the beginning of iteration t̄. Let f̂ ∈ Fet̄

be the edge whose weight is increased during iteration t̄. By Lemma 6, kf̂ = kf = Kind(kf ) since

kf̂ is an integer multiple of δ. So at the beginning of iteration t̄, ind(et̄) ≥ ind(f) + 2 since et̄ is
bad. This means

kf̂ = Kind(f) < Kind(f)+1 − δ ≤ Kind(et̄)−1 − δ

where the first inequality is because Kind(f)+1 −Kind(f) ≥ K1−K0 = (γ− 1)K0 ≥ 2δ. So et̄ is very
bad at the beginning of iteration t̄, which contradicts the minimality of t̄.
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Now consider the other possibility - κē decreases while ind(ē) does not increase during weight
transfer in iteration t̄. By Lemma 6, κē is decreased by at most δ during iteration t̄, which means
that at the beginning of iteration t̄, κē ≤ Kind(ē)−1− δ. So ē is a bad hyperedge. On the other hand,

by Lemma 6, κmax
et̄

= κē, so ind(et̄) < ind(ē), which contradicts that et̄ is the bad hyperedge which
has the maximum index at the beginning of iteration t̄.

So at any time after iteration ti, there is no very bad hyperedge e′ with ind(e′) > i.
Since the algorithm only moves the weight from a high strength edge to a low strength edge,

there is only one way that the total weight of the edges that has strength larger than Ki−1 in-
creases: the strength of some edges increase from less than or equal to Ki−1 to larger than Ki−1.
At the beginning of any iteration t′ after ti, by Claim 3, if ind(et

′
) ≤ i, any edge f whose strength

increases has kf ≤ Ki−1. On the other hand, if ind(et
′
) > i, et

′
is not very bad, which means

κet′ ≥ Ki − δ > Ki−1. So any edge f whose strength increases already has kf > Ki−1 at the
beginning of iteration t′. So the total weight of edges that has strength larger than Ki−1 is non-
increasing.

Claim 5. Algorithm 1 iterates in the while loop Õ(mn2) times.

Proof. Throughout the running of the algorithm, for any 1 ≤ j ≤ ℓ − 1, we define a nonnegative
potential function Wj as follows: before iteration tj , Wj is always equal to m; after iteration tj ,
Wj equals the total weight of edges that have strength larger than Kj . Since the total weight of
all edges is m, by Claim 4, all Wj ’s are non-increasing throughout the running of the algorithm.
On the other hand, for each iteration, suppose the bad hyperedge e has ind(e) = i. Note that this
iteration cannot be before ti. In this iteration, we transfer δ amount of weight from an edge whose
strength is larger than Ki−1 to an edge whose strength is less than Ki−1. Furthermore, the edge
whose weight increases does not have strength larger than Ki−1 after the weight change. So Wi−1

is decreased by at least δ. Thus, in each iteration, no Wj increases, and Wi is decreased by at least
δ, which means there are at most m ∗ ℓ/δ = Õ(mn2) iterations since ℓ = O(logm).

By Claim 3 and Claim 5, Algorithm 1 correctly outputs a γ-balanced weight assignment within
a polynomial number of iterations.

Proof of Theorem 3. The multi-graph G contains O(mn2) edges, so computing the initial weight
assignment takes O(mn2) time.

In each iteration of the while loop, we need to compute the strength of all edges in G and find
the bad hyperedges with maximum index. Note that if two edges share the same endpoints, their
strengths are the same, so to compute the strength of the edges, we only need to compute the
strength on a weighted complete graph Ḡ where for each pair of vertices (u, v), the weight of edge
(u, v) is the sum of weights of edges whose endpoints are u and v in G. By Lemma 4, we need
Õ(n3) time to compute the strength of all edges in Ḡ since there are

(n
2

)

edges in Ḡ. Updating the
weight of edges in Ḡ only takes O(1) time.

Once the strengths of all edges in Ḡ has been computed, it takes O(mn2) time to check for each
hyperedge if it is bad or not. However, if there are at most m̄ distinct hyperedges, we can do it in
O(m̄n2) time in the following way: we group the hyperedges with the same vertex sets. For each
group, we store the total weight in each edge slot, together with the identity of the hyperedges
which have positive weight in each edge slot. To find a bad hyperedge with the maximum index
in one group, we only need to consider the edge slot that has the maximum strength with positive
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weight, and check if the hyperedge that has weight in this slot is bad. In each iteration, it takes
O(m̄n2) time to find the maximum strength positive weight edge slot in each group and takes
constant time to update the information in each edge slot.

Thus overall, each iteration takes Õ(m̄n2 + n3) = Õ(m̄n2) time. So by Claim 5, Algorithm 1
runs in Õ(mm̄n4) time.

5 Constructing a Cut Sparsifier from a γ-balanced Assigment

In this section, we prove Theorem 4, which shows that given a γ-balanced assigment wF , we can

construct a (1± ε)-approximate cut sparsifier that contains O(γ
3n logn
ε2 ) edges.

Let ρ = 8(d+6)γ2 logn
0.38ε2

, we sample each hyperedge e in H with probability pe = min{1, ρ
κe
}. If

an edge e is sampled, it is assigned weight ŵe = 1
pe

in Ĥ . We first show the expected number of

edges in the sparsifier Ĥ is small.

Claim 6. The expected number of edges in the sparsifier Ĥ is O(γ
3n logn
ε2

).

Proof. The expected number of edges in the sparsifier is

∑

e∈E

pe ≤ ρ
∑

e∈E

1

κe
= ρ

∑

e∈E

∑

f∈Fe

wF (f)

κe

= ρ
∑

e∈E

∑

f∈Fe

wF (f)

kf

kf
κe

≤ ργ
∑

e∈E

∑

f∈Fe

wF (f)

kf

= ργ
∑

f∈F

wF (f)

kf
≤ ργ(n− 1).

For the second-to-last inequality, we used that for every f ∈ Fe such that wF (f) > 0, kf ≤

κmax
e ≤ γκe by Definition 3. The last inequality is due to Claim 2, which asserts that

∑

f∈F
wF (f)
kf

≤

n− 1. By the definition of ρ, this is O(γ3n log n/ε2).

In the rest of this section, we prove that Ĥ is indeed a good sparsifier. This proof is inspired
by the framework of [7], who partition the edges into classes based on strength, and analyze the
performance of each class separately. Before we start, as an additional piece of notation, given
any subset of hyperedges E′ ⊆ E, we define Ê′ to be the subset of edges of E′ that were sampled
in the sparsifier.

We first group the edges by their strengths. For each integer i, let F≥i := {f ∈ F+ : kf ≥ ρ · 2i}
be the multiset of positive-weight edges with strength at least ρ ·2i. Let E≥i := {e ∈ E : κe ≥ ρ ·2i}
be the set of hyperedges with minimum strength at least ρ · 2i, and let Emax

≥i := {e ∈ E : κmax
e ≥

ρ · 2i} be the set of hyperedges with maximum strength at least ρ · 2i. Note that E≥i ⊆ Emax
≥i .

Let Ei := E≥i \E≥i+1. We will prove an error bound for each Ei separately. To prove this error
bound, we define and analyze some slightly modified graphs. We first define some modified
weights wF

i : F≥i → R
+ and wE

i : E≥i → R
+ in the following way: for an edge f ∈ F such that

ρ · 2j ≤ kf < ρ · 2j+1, wF
i (f) := wF (f) · 2i−j , and for a hyperedge e ∈ Ej , wE

i (e) := 2i−j . Note
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that for a hyperedge e ∈ Ei, the weight of e in wE
i remains 1. Finally, define G≥i = (V, F≥i, w

F
i ),

H≥i = (V,E≥i, w
E
i ), and Hmax

≥i = (V,Emax
≥i , wE

i ) to be the weighted graphs induced by these
modified weights.

The following lemma proves that for any i and any cut C , the weight of the edges in Êi which
cross C is close to its expectation.

Lemma 7. Fix some integer i ≥ 0. With probability at least 1 − 4n−(d+1), for all cuts C = (S, S̄) of V ,
we have that

∣

∣

∣ŵ(δÊi
(S))− |δEi

(S)|
∣

∣

∣ ≤
ε

γ
· wE

i (δEmax
≥i

(S)).

Note that this lemma is not claiming that Êi is a good sparsifier of Ei - the error term ε
γw

E
i (δEmax

≥i
(S))

can be much larger than ε |δEi
(S)|. We postpone the proof of Lemma 7 and first show why

Lemma 7 completes the proof Theorem 4.

Proof of Theorem 4. In order to obtain concentration over all edges, we wish to take a union bound
over every value of i such that Ei is not empty. By Claim 1, there are at most n− 1 such values of
i.

By Lemma 7, taking a union bound over these values of i, we get that with probability at least
1− 4n−d, for all cuts C = (S, S̄) of V and for all i,

∣

∣

∣ŵ(δÊi
(S))− |δEi

(S)|
∣

∣

∣ ≤
ε

γ
· wE

i (δEmax
≥i

(S))

≤
ε

γ
·

∑

j≥i−log γ

2i−j
∣

∣δEj
(S)

∣

∣

where the last inequality is because Emax
≥i ⊆ E≥i−log γ (since κmax

e /κe ≤ γ). Note that for all
hyperedges e that do not belong to any Ei, κe ≤ ρ, so pe = 1. That is, the contribution of these
hyperedges to the error is 0. We sum the errors over edges in Ei for i ≥ 0 to obtain that the total
error is at most

∑

i≥0

∣

∣

∣ŵ(δÊi
(S))− |δEi

(S)|
∣

∣

∣

≤
ε

γ

∑

i≥0

∑

j≥i−log γ

2i−j
∣

∣δEj
(S)

∣

∣

=
ε

γ

∑

j≥0





∣

∣δEj
(S)

∣

∣ ·
∑

i≤j+log γ

2i−j





≤2ε
∑

j≥0

∣

∣δEj
(S)

∣

∣ ,

which is at most 2ε |δE(S)|. Here the last inequality is due to
∑

i≤j+log γ 2
i−j ≤

∑∞
i=−⌊log γ⌋ 2

−i ≤

2γ. Therefore with probability at least 1 − 4n−d, for all cuts C = (S, S̄), the size of C in Ĥ is a
(1± 2ε)-approximation of the size in H .
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5.1 Proof of Lemma 7

Before proving Lemma 7, we first make some observations. As stated before, we associate the
performance of Ĥ with the auxiliary standard graph G. The following claim states that for any
cut C , the total weight of the edges crossing C in Hmax

≥i is at least the total weights of the edges
crossing C in G≥i.

Claim 7. For any cut C = (S, S̄) of V , wE
i (δEmax

≥i
(S)) ≥ wF

i (δF≥i
(S)).

Proof. Let e be some hyperedge, and let f ∈ Fe. If f is a member of G≥i, then e must be a member
of Hmax

≥i . Therefore if f is cut by C in G≥i, then e must be cut by C in Hmax
≥i . Thus,

∑

f∈δG≥i
(S)

wF
i (f) ≤

∑

e∈δHmax
≥i

(S)

∑

f∈Fe

wF
i (f) =

∑

e∈δHmax
≥i

(S)

wE
i (e).

Here the equality is because for an edge e ∈ Ej , by condition (1) of γ-balanced weight assign-
ments,

∑

f∈Fe
wF
i (f) =

∑

f∈Fe
wF (f) · 2i−j = 2i−j = wE

i (e).

In our analysis, we will independently bound the error incurred by each connected component
of G≥i. The following claim states that no hyperedge is split among two different connected
components of G≥i.

Claim 8. For any e ∈ E≥i, the entire vertex set of e belongs to the same connected component in G≥i.

Proof. Consider an edge e ∈ E≥i and let u, v be any two vertices in e. By definition of κe, the
strength of the edge (u, v) ∈ Fe is at least κe, so there exists some vertex set X ⊆ V such that
u, v ∈ X and the induced subgraph G[X] has min-cut size at least κe > 0.

Therefore u and v are connected by a path P such that each edge on P has positive weight.
On the other hand, since G[X] has min-cut size at least κe, which is at least ρ · 2i, all edges f in
G[X] have kf ≥ 2i. By definition of F≥i, this implies that all edges on P are in F≥i, so u and v are
connected in G≥i.

The following claim is similar to Lemma 3.2 in [7], which states that the min-cut size of each
component in G≥i is at least ρ · 2i, even with regards to the new weight function wF

i . We give the
proof of this claim for completeness.

Claim 9 (Analog of Lemma 3.2 in [7]). Let AG be a connected component of G≥i. Then the minimum
cut size of AG is at least ρ · 2i.

Proof. LetA′
G be the graph with the same vertex set and edge set as AG, but instead of the modified

weights wF
i , we use the original weights wF . We first claim that the strength of an edge f in A′

G

is the same as its strength in G. To see this, let X ⊆ V be a set of vertices such that f ⊆ X and
the induced weighted graph G[X] has min-cut size at least kf . Let G[X]+ denote the subgraph
of G[X] that contains only positive-weight edges. Then every edge in G[X]+ has strength at least
kf ≥ ρ·2i, which implies that G[X]+ is a (induced) subgraph of F≥i. Since G[X]+ is connected (and
A′

G is a connected component), G[X]+ is also an induced subgraph of A′
G, providing a certificate

that the strength of f in A′
G is kf .
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Next, fix a cut C = (S, S̄) of the vertex set of AG. Let f∗ be a maximum strength edge in
δA′

G
(S). We claim that the total weight of strength kf∗ edges in δA′

G
(S) is at least kf∗ . To see this,

let X ⊆ V (A′
G) be a set of vertices such that f∗ ⊆ X and the min-cut size of A′

G[X] is kf∗ . As
required, all edges in A′

G[X] have strength at least kf∗ , and the total weight of such edges crossing
C is at least kf∗ . Furthermore, by maximality of f∗, all edges crossing C in A′

G[X] have strength
exactly kf∗ . Let j be the index such that ρ ·2j ≤ kf∗ ≤ ρ ·2j+1. Now we bound the weight of edges
crossing the cut in AG:

wF
i (δAG

(S)) ≥
∑

f∈δAG
(S):kf=kf∗

wF
i (f)

=
∑

f∈δAG
(S):kf=kf∗

wF (f) · 2i−j

≥ kf∗ · 2i−j ≥ ρ · 2i.

To prove Lemma 7, for any cut C = (S, S̄), we deal with each connected component in G≥i

separately. For each component AG, we use concentration bound Lemma 2 together with Claim 9
to prove that the total weights of the edges crossing C in AG is preserved within an additive error
O(max{wE

i (δAH
(S)), wF

i (δAG
(S))}) where AH is the subhypergraph of H≥i induced by the vertex

set of AG (it is well defined due to Claim 8). On the other hand, since wE
i (δEmax

≥i
(S)) dominates

both wE
i (δE≥i

(S)) and wF
i (δF≥i

(S)) (by Claim 7), by summing up the weights of the edges crossing
C in different components, we are able to prove that for the edges in Hi, the total weights of the
edges crossing C is perserved within additive error O(wE

i (δEmax
≥i

(S))).

Proof of Lemma 7. Fix some connected component AG of G≥i, and let VA be the vertex set of this
component. Let C = (S, S̄) be some cut of VA. For brevity, let AH := H≥i[VA] and A′

H := Hi[VA]
be the subgraphs induced by this component.

In order to apply Lemma 2, we set the random variables x1, . . . , xk to be the sampled weights

of edges in δA′
H
(S) (so k equals

∣

∣

∣δA′
H
(S)

∣

∣

∣). We set N := max{wE
i (δAH

(S)), wF
i (δAG

(S))}. We know

that for each edge e ∈ A′
H , wE

i (e) = 2i−i = 1, so N ≥ wE
i (δAH

(S)) ≥
∣

∣

∣δA′
H
(S)

∣

∣

∣. Therefore N ≥ k,

and we can indeed apply Lemma 2.
Let c be the size of the minimum cut of AG. By Claim 9, we have c ≥ ρ · 2i. Now define

α :=
wF

i (δAG
(S))

c . Note that N is at least wF
i (δAG

(S)) = αc ≥ α · ρ · 2i.
Also, we have mine∈δA′

H
(S) pe = min{1,mine∈δA′

H
(S) ρ/κe} ≤ min{1, ρ/(ρ · 2i+1)} ≤ 1/2i+1. The

second-to-last inequality is because for any edge e ∈ Ei, we have that κe ≤ ρ · 2i+1, and the last
inequality is because i ≥ 0.
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We apply Lemma 2 and get that

Pr

(

∣

∣

∣
ŵ(δÂ′

H
(S))−

∣

∣

∣
δA′

H
(S)

∣

∣

∣

∣

∣

∣
≥

ε

2γ
N

)

≤2 exp (−
0.38ε2

4γ2
·min pe ·N)

≤2 exp (−
0.38ε2

4γ2
·

1

2i+1
· α ·

8(d + 6)γ2 log n

0.38ε2
· 2i)

=2n−(d+6)α.

(1)

We now have a concentration bound which gets stronger as α increases.
Apply cut counting bound (Lemma 5) on the weighted graph AG, and we use this to apply

a union bound over all cuts C = (S, S̄) of AH such that αc ≤ wi
F (δAG

(S)) ≤ 2αc to conclude
that with probability at least 1 − 2n2·2α · n−(d+6)α = 1 − 2n−(d+2)α, the event in equation (1) does
not occur for all of these cuts. We again apply the union bound over all values of α ≥ 1 that are

powers of 2 to obtain that with probability at least 1−
∑∞

j=0 2n
−(d+2)·2j ≥ 1− 4n−(d+2), for all cuts

C = (S, S̄) of V (AH),
∣

∣

∣ŵ(δÂ′
H
(S))−

∣

∣

∣δA′
H
(S)

∣

∣

∣

∣

∣

∣

≤
ε

2γ
·max{wE

i (δAH
(S)), wF

i (δAG
(S))}

≤
ε

2γ
·
(

wE
i (δAH

(S)) + wF
i (δAG

(S))
)

.

We now apply another union bound over all connected components of G≥i (of which there are
at most n) and sum this error term over all components. Let C = (S, S̄) be a cut of the entire vertex
set V . By Claim 8, every hyperedge in δH≥i

(S) is cut in exactly one such connected component.

Therefore with probability at least 1− 4n−(d+1), for all cuts C = (S, S̄) of V ,
∣

∣

∣
ŵ(δÊi

(S)) − |δEi
(S)|

∣

∣

∣
≤

ε

2γ
·
(

wE
i (δE≥i

(S)) + wF
i (δF≥i

(S))
)

.

By Claim 7 and by the fact that H≥i is a subgraph of Hmax
≥i , this is at most

ε

2γ
·
(

2 · wE
i (δEmax

≥i
(S))

)

=
ε

γ
wE
i (δEmax

≥i
(S)).

6 Speeding Up the Sparsifier Construction

In this section, we complete the proof of Theorem 1 by speeding up our algorithm so that its
running time reduces to Õ(mn + n10/ε7) from Õ(Wm2n4) (Corollary 5). Note that even for un-
weighted case (W = 1), this is a significant speed-up in dense hypergraphs.

At a high-level, the idea underlying the speed up is to reduce the general weighted problem
to one where both m and W are polynomially bounded in n. The first task is easy to accomplish
using previously known results while the second task requires some additional ideas.
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Our starting point for reducing the number of edges is the following result by Chekuri and
Xu [11] which shows that the number of edges m can be reduced to a polynomial in n in near-
linear time:

Lemma 8 (Corollary 6.3 of [11]). A (1± ε)-approximate cut sparsifier of a weighted hypergraph H with
O(n3/ε2) edges can be found in O(mn log2 n logm) time with high probability.

After running this algorithm, we obtain a (1 ± ε)-approximate cut sparsifier of H with only
O(n3/ε2) edges.We then run the algorithm by Kogan and Krauthgamer [22] and get a cut-sparsifier
with Õ(n2/ε2) edges.

Lemma 9 ([22]). A (1 ± ε)-approximate cut sparsifier of a weighted hypergraph H with Õ(n2/ε2) edges
can be found in O(mn2 + n3) time with high probability.

Since the number of hyperedges in the sparsifier given by Lemma 8 is O(n3/ε2), we only need
Õ(n5/ε2) time to run the algorithm in Lemma 9. Let H̄ = (V, Ē, w̄) be the sparsifier.

It is worth noting that although the number of edges in H̄ is polynomial, the ratio of maximum
and minimum weight is still unbounded. In fact, even if H is unweighted, the ratio of maximum
and minimum weight of H̄ still could be as large as 2n. To solve this problem, we group the edges

by their weights. Let α = 10n2

ε3
and Ē = E1∪E2∪. . . where Ei = {e ∈ Ē : w̄(e) ∈ [w0 ·α

i−1, w0 ·α
i)}

where w0 is the minimum weight in H̄ .
Let Hi = (V,Ei, w̄) and mi = |Ei|. By Corollary 5, we only need Õ(αm2

in
4) time to build a

near-linear size (in n) sparsifier for each of Hi. However, if we combine these sparsifiers together,
the size is no longer near-linear.

Note that α ≥ 10m̄
ε where m̄ is the number of edges in H̄ . Suppose a cut separates an edge e

in Hi, the sum of weights of all edges in ∪j≤i−2Ej is less than ε/10 fraction of the size of the cut.
Therefore, for any i, we can ignore the performance of the sparsifier of Hj for j ≤ i− 2 within the
connected components of Hi.

Define Eodd = E1 ∪ E3 ∪ . . ., and Eeven = E2 ∪ E4 ∪ . . .. We will independently construct
sparsifiers of Hodd = (V,Eodd, w) and Heven = (V,Eeven, w) and merge them into a single sparsifier
for H̄ .

Lemma 10. For any 0 < ε < 1, there is an algorithm that constructs (1 ± ε)-approximate cut sparsifiers
for both Heven and Hodd with size O(n logn

ε2
) in Õ(n10/ε7) time with high probability.

Without loss of generality, we focus on Heven. The algorithm builds sparsifiers for each of
H2i one by one from higher i to lower i. Let E>2i = ∪j>iE2j and H>2i = (V,E>2i, w̄). For
each i, we first find all connected components of H>2i. Let V C

2i be a vertex set such that each
connected component (including isolated vertices) of H>2i is a “supervertex” in V C

2i . Let EC
2i be

the hyperedge set such that for each edge e ∈ E2i, E
C
2i contains the hyperedge e′ ⊆ V C

i with weight
w̄(e′) = w̄(e) that contains all vertices in V C

i such that e contains a vertex in the corresponding
connected component. Let HC

2i = (V C
2i , E

C
2i, w̄).

For each connected component of HC
2i , we build a (1 ± ε

2)-approximate cut sparsifier by the

algorithm in Corollary 5. We take the union of these sparsifiers and get an ε
2 -sparsifier ĤC

2i =

(V C
2i , Ê

C
2i, ŵ) of HC

2i . Let Ĥ2i = (V, Ê2i, ŵ) be the graph “restored” from ĤC
2i , i.e. for each edge e

in E2i, e is in Ê2i if the corresponding edge e′ is in ĤC
2i . It also gets the same weight as e′ if it

is included in Ĥ2i. For any cut (S, S̄) of V2i which does not cut any component in H>2i, the cut
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size in Ĥ2i and ĤC
2i are the same, and the cut size in H2i and HC

2i are the same. In particular, this
implies that Ĥ2i is a good sparsifier of H2i with respect to all cuts that do not cut any component
in H>2i.

We output Ĥeven = ∪iĤ2i as a sparsifier of Heven. By Corollary 5, the running time is

∑

i

Õ(αm2
in

4) = Õ((
∑

i

mi)
2αn4) = Õ(αm̄2n4) = Õ(n10/ε7).

We now prove Ĥeven is indeed a good cut sparsifier of Heven. From this point on, we assume
the algorithm in Corollary 5 is always successful throughout the algorithm (which happens with
high probability). We first prove that Ĥeven is indeed a (1± ε)-approximate cut sparsifier of Heven.

Claim 10. Ĥeven is a (1± ε)-approximate cut sparsifier of Heven.

Proof. We first prove that for any i, ŵ(Ê2i) ≤ 3w̄(E2i). Equivalently, we prove that ŵ(ÊC
2i) ≤

3w̄(EC
2i). Let (S′, S̄′) be some cut of ĤC

2i of weight at least ŵ(ÊC
2i)/2. Such a cut must exist because

the expected weight of a random cut of a graph/hypergraph is at least half of the total weight
of the graph. Since ĤC

2i is a (1 ± ε
2)-approximate cut sparsifier of HC

2i , ŵ(δĤC
2i
(S′)) ≤ (1 + ε

2) ·

w̄(δHC
2i
(S′)) ≤ 1.5 · w̄(EC

2i) since ε < 1. Therefore ŵ(ÊC
2i)/2 ≤ 1.5 · w̄(EC

2i), concluding the proof.

Now fix any cut C = (S, S̄) of V . Let i be the largest integer such that δE2i
(S) 6= ∅. Since

α ≥ 10m̄
ε , w̄(δE2i

(S)) is at least (1− ε
10) fraction of w̄(δEeven(S)).

Since C does not cut through any component of H>2i, ŵ(δĤ2i
(S)) is within (1 ± ε

2) fraction of
ŵ(δH2i

(S)), which means

ŵ(δĤeven
(S)) ≥ ŵ(δĤ2i

(S)) ≥ (1− 0.5ε)w̄(δH2i
(S)) ≥ (1− ε)w̄(δH̄even

(S)).

On the other hand, since α ≥ 10m̄
ε and ŵ(Ê2j) ≤ 3w̄(E2j) for any j, we have ŵ(∪j<iÊ2j) <

0.3ε · w̄(δHeven(S)). which means

ŵ(δĤeven
(S)) ≤ ŵ(δĤ2i

(S)) + 0.3ε · w̄(δEeven(S))

≤ (1 + 0.5ε)w̄(δH2i
(S)) + 0.3ε · w̄(δEeven(S))

≤ (1 + ε)w̄(δH̄even
(S)).

The next claim shows that Ĥeven has near linear size.

Claim 11. The size of Ĥeven is O(n logn
ε2 ).

Proof. For any i > 0, let ∆i = |V>2i| −
∣

∣V>2(i−1)

∣

∣ for all i > 0 and let |V>0| be the number of

connected components in Heven. To prove the claim, it is sufficient to prove that
∣

∣

∣
Ê2i

∣

∣

∣
= O(∆i logn

ε2
)

for all i > 0.
Suppose there are ℓ connected components in HC

2i and their sizes are ni1, ni2, . . . , niℓ. For any

j, if nij > 1, then 2(nij − 1) ≥ nij , so the size of the sparsifier of this component is O(
(nij−1) logn

ε2
)

by Corollary 5. On the other hand, if nij = 1, the component is an isolated vertex and we do
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not need to find a sparsifier for this component. So the total size of these sparsifiers is
∣

∣

∣
Ê2i

∣

∣

∣
=

O(
∑ℓ

j=1
(nij−1) logn

ε2
).

For each component of HC
2i of size nij , the vertices in the component will contract to one single

vertex in V C
>2(i−1), which means

∣

∣

∣
V C
>2(i−1)

∣

∣

∣
= ℓ =

ℓ
∑

j=1

(nij − (nij − 1)) =
∣

∣V C
>2i

∣

∣−
ℓ

∑

j=1

(nij − 1).

So
∑ℓ

j−1(nij − 1) = ∆i, implying that
∣

∣

∣
Ê2i

∣

∣

∣
= O(∆i logn

ǫ2
).

Lemma 10 immediately follows from Claim 10 and Claim 11. Now we are ready to prove
Theorem 1.

Proof of Theorem 1. We first apply the algorithm in Lemma 8 and Lemma 9 to build H̄ , which runs
in time Õ(mn + n5/ε2). Then we build the graphs Heven and Hodd, find (1 ± ε)-approximate cut
sparsifiers with size O(n logn

ε2 ) for each of them and take the union of these two sparsifiers to get a

(1± ε)-approximate cut sparsifier Ĥ of H̄ . By Lemma 10, this runs in time Õ(n10/ε7). So we get a
(1±O(ε))-approximate cut sparsifier Ĥ of H with size O(n logn

ε2
), in Õ(mn+ n10/ε7) time.
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A Appendix

A.1 Proof of Existence of 1-balanced Assignment

In this section, we prove that there exists a 1-balanced weight assignment G = (V, F,w) for every
hypergraph H = (V,E). To do this, we first prove that the conclusion of Theorem 3 holds for all
γ > 1 (as opposed to γ ≥ 2). Equivalently, we prove that Theorem 3 holds for γ = 1 + 1/i every
positive integer i. The only change needed in the algorithm is to use δ = 1

n2i
instead of δ = 1

n2 ,
and to ensure that K0 is at least 2iδ instead of 2δ. The rest of the proofs are completely analogous,
with the only modification being that (γ − 1)K0 ≥ 2δ no longer follows from the fact that γ ≥ 2,
but simply from the fact that K0 is at least 2iδ = 2δ

γ−1 . Note that the number of iterations (and

hence the running time) of the algorithm is increased by a factor of i2, since δ and ℓ are decreased
and increased by a factor of i respectively.

For the rest of this section, it will be convenient to represent a weight assignment w : F → R≥0

as a vector in R
|F |
≥0 . Additionally, given a vector w ∈ R

|F |
≥0, we use kf (w), κe(w), and κmax

e (w), and
F+
e (w) to denote the value of these quantities in the weight assignment represented by w.

Let {wi ∈ R
|F |
≥0} be a sequence of vectors such that wi represents a 1 + 1/i-balanced weight

assignment. We invoke the Bolzano-Weierstrass Theorem on this sequence:
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Theorem 6 (Bolzano-Weierstrass Theorem). Every bounded sequence of vectors in R
n has a convergent

subsequence.

Denote this convergent subsequence by {w′
i ∈ R

|F |}, and let w be the limit of this subsequence.
We will use a limiting argument to show that w is 1-balanced. First we note that the strength of an
edge kf is a (1-Lipschitz) continuous function of the weight assignment. This follows immediately
from the first half of Lemma 6. Therefore lim kf (w

′
i) = kf (limw′

i) = kf (w). Since min is also a
continuous function, this implies that

lim κe(w
′
i) = lim min

f∈Fe

kf (w
′
i) = min

f∈Fe

lim kf (w
′
i)

= min
f∈Fe

kf (w) = κe(w)
(2)

We would like to be able to make a similar statement about limκmax
e (w′

i), but it is not true in
general because κmax

e is not a continuous function of the weight assignment vector. Instead, we
observe that for i large enough, the set F+

e (w′
i) is a superset of F+

e (w), since the weight of any
edge in F+

e (w) must eventually become positive in the sequence {w′
i}. So

limκmax
e (w′

i) = lim max
f∈F+

e (w′
i)
kf (w

′
i) ≥ lim max

f∈F+
e (w)

kf (w
′
i)

= max
f∈F+

e (w)
lim kf (w

′
i) = max

f∈F+
e (w)

kf (w) = κmax
e (w) (3)

Here the inequality used the fact that for for large i, F+
e (w′

i) ⊇ F+
e (w), and second equality

used that max is a continuous function. Combining Equations 2 and 3,

κmax
e (w) ≤ limκmax

e (w′
i) ≤ lim((1 + 1/i) · κe(w

′
i)) = 1 · κe(w),

where the second inequality holds because w′
i is 1 + 1/i-balanced. Therefore, w is 1-balanced, as

desired.

A.2 Computing Exact Edge Strengths

In this section, we give for completeness an algorithm that computes the exact strength of each
edge in a graph and prove Lemma 4. Our algorithm will use as a subroutine the following global
min-cut result of Karger [21]:

Theorem 7 ([21]). Given a weighted graph G with n vertices and m edges, there is a randomized algorithm
that finds the minimum cut in Õ(m) time with high probability.

The algorithm for computing exact edge strengths works as follows. We start by finding a
minimum cut in the input graph G, and removing the edges in the minimum cut. We then repeat
this process in each connected component, until the graph becomes an empty graph. Now for
each edge in the graph, we output the strength of this edge as the largest min-cut value among
all connected components containing this edge, that are encountered during the execution of the
algorithm.

Lemma (Restatement of Lemma 4). Given a weighted graph G with n vertices and m edges, there is a
randomized algorithm that computes the strength of each edge exactly in Õ(mn) time with high probability.
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Proof. The above algorithm requires (n− 1) computations of global min-cut. Thus by Theorem 7,
the total running time is Õ(mn). We now prove that it correctly outputs exact edge strengths. We
fix an edge e, let k̄e denote the strength that our algorithm outputs for the edge e. It is clear that
k̄e ≤ ke since by the definition of k̄e, there is a subgraph of G which contains e and has min-cut
size k̄e. To show that k̄e ≥ ke also holds, consider the induced subgraph G[X] which contains the
edge e and has min-cut ke. During the execution of our algorithm, let G[X̄ ] be the last connected
component encountered which fully contains X. By our choice of G[X̄ ], the min-cut of G[X̄ ] must
also cut through G[X], which means that the cut size in this step is at least the min-cut size of
G[X], which is ke. Thus by the definition of k̄e, the value of k̄e is at least the size of min-cut of
G[X̄ ] since G[X̄ ] contains G[X] which contains e. So k̄e ≥ ke.
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