
ar
X

iv
:1

70
5.

02
28

0v
1

 [
cs

.D
S]

 5
 M

ay
 2

01
7

The Stochastic Matching Problem: Beating Half with a

Non-Adaptive Algorithm

Sepehr Assadi∗ Sanjeev Khanna∗ Yang Li∗

Abstract

In the stochastic matching problem, we are given a general (not necessarily bipartite) graph
G(V,E), where each edge in E is realized with some constant probability p > 0 and the goal
is to compute a bounded-degree (bounded by a function depending only on p) subgraph H of
G such that the expected maximum matching size in H is close to the expected maximum
matching size in G. The algorithms in this setting are considered non-adaptive as they have
to choose the subgraph H without knowing any information about the set of realized edges in
G. Originally motivated by an application to kidney exchange, the stochastic matching problem
and its variants have received significant attention in recent years.

The state-of-the-art non-adaptive algorithms for stochastic matching achieve an approxi-
mation ratio of 1

2 − ε for any ε > 0, naturally raising the question that if 1/2 is the limit of
what can be achieved with a non-adaptive algorithm. In this work, we resolve this question by
presenting the first algorithm for stochastic matching with an approximation guarantee that is
strictly better than 1/2: the algorithm computes a subgraph H of G with the maximum degree

O
(

log (1/p)
p

)

such that the ratio of expected size of a maximum matching in realizations of H

and G is at least 1/2 + δ0 for some absolute constant δ0 > 0. The degree bound on H achieved
by our algorithm is essentially the best possible (up to an O(log (1/p)) factor) for any constant

factor approximation algorithm, since an Ω(1p) degree in H is necessary for a vertex to acquire
at least one incident edge in a realization.

Our result makes progress towards answering an open problem of Blum et al. (EC 2015)
regarding the possibility of achieving a (1− ε)-approximation for the stochastic matching prob-
lem using non-adaptive algorithms. From the technical point of view, a key ingredient of our
algorithm is a structural result showing that a graph whose expected maximum matching size
is opt always contains a b-matching of size (essentially) b · opt, for b = 1

p .

∗Department of Computer and Information Science, University of Pennsylvania. Supported in part by National
Science Foundation grants CCF-1552909, CCF-1617851, and IIS-1447470.
Email: {sassadi,sanjeev,yangli2}@cis.upenn.edu.

http://arxiv.org/abs/1705.02280v1

1 Introduction

We study the problem of finding a maximum matching in presence of uncertainty in the input graph.
Specifically, we consider the stochastic setting where for an input graph G(V,E) and a parameter
p > 0, each edge in E is realized independently w.p.1 p. We call the graph obtained from this
stochastic process (which should be viewed as a random variable) a realization of G(V,E), denoted
by Gp(V,Ep). The stochastic matching problem can now be defined as follows. Given a general (not
necessarily bipartite) graph G(V,E) and an edge realization probability p > 0, compute a subgraph
H of G such that:

(i) The expected maximum matching size in a realization of H is close to the expected maximum
matching size in a realization of G.

(ii) The degree of each vertex in H is bounded by some function that only depends on p, indepen-
dent of the size of G.

In other words, the stochastic matching problem asks if every graph G contains a subgraph H of
bounded degree (depending only on the realization probability p) such that the expected matching
size in realizations of G and H are close.

Kidney exchange. A canonical and arguably the most important application of the stochastic
matching problem appears in kidney exchange, where patients waiting for kidney transplant can
swap their incompatible donors to each get a compatible donor. The goal is to identify a maximum
set of patient-donor pairs to perform such a swap (i.e., finds a maximum matching). However,
through medical records of patients and donors, one can only filter out the patient-donor pairs
where donation is impossible, and more costly and time consuming tests must be performed before
a transplant can be performed.

The stochastic setting captures the essence of the need of extra tests for kidney exchange: an
algorithm selects a set of patient-donor pairs to perform the extra tests (i.e., computes a subgraph
H), while making sure that there is a large matching among the pairs that pass the extra tests.
The objective that the subgraph H has small degree captures the essence of minimizing the number
of (costly and time consuming) tests that each patient needs to go through. The kidney exchange
problem has been extensively studied in the literature, particularly under stochastic settings (see,
e.g., [2, 4, 5, 9, 17–19, 29, 34]). We remark that the the stochastic matching problem captures the
simplest form of the kidney exchange, referred to as pairwise exchange. Modern kidney exchange
programs regularly employ swaps between three or patient-donor pairs and this setting has also
been studied previously in the literature; we refer the interested reader to [11] for more details.

Previous work. Our results are directly related to the results in [11] and [8] which we describe in
detail below. Blum et al. [11] introduced the (variant of) stochastic matching problem and proposed
a (12 −ε)-approximation algorithm (for any ε > 0) which requires the subgraph H to have maximum

degree of log (1/ε)

pΘ(1/ε) . The algorithm of Blum et al. [11] works as follows: Pick a maximum matching Mi

in G and remove the edges in Mi; repeat for R := log (1/ε)

pΘ(1/ε) times. In order to analyze this algorithm,

the authors showed that, for any i ∈ [R], if the size of the maximum matching among the realized
edges in M1, . . . ,Mi is less than opt/2, the matching Mi+1 contains many augmenting paths of M

1Throughout, we use w.p., w.h.p, and prob. to abbreviate “with probability”, “with high probability”, and “proba-
bility”, respectively.

1

of length O(1ε); since each such augmenting path is realized w.p. pO(1
ε
), one needs to repeat this

augmentation process for 1

pO(1ε)
time (as is roughly the value of R) to increase the matching size to

(12 − ε) · opt.
In a recent work [8], we showed that in order to obtain a (12 − ε)-approximation algorithm, one

only needs a subgraph H with max-degree of O(log (1/εp)εp), significantly smaller than the bounds
in [11]. Interestingly, the algorithm of [8] and the one in [11] are essentially identical (modulo
an extra sparsification part required in [8]) and the main difference is in the analysis. In [8],
we completely bypassed the need for using augmenting paths in the analysis and instead, took
advantage of structural properties of matchings in a global manner (by using Tutte-Berge formula;

see, e.g., [28]). In particular, we showed that repeatedly picking O(log (1/εp)εp) maximum matchings
(as described before) suffices to ensure that, among the chosen edges, a matching of size (essentially)
equal to the size of the last chosen matching would be realized (with high probability). Having this,

one can show that running the aforementioned algorithm even for R := O(log (1/εp)εp) suffices to

obtain a (12 − ε)-approximation.
Adaptive algorithms for stochastic matching have also been studied by [8,11]. In an adaptive al-

gorithm, instead of a single graph H, one is allowed to pick a small number of bounded-degree graphs
H1, . . . ,Hk where the choice of each Hi can be made after probing the edges in H1,H2, . . . ,Hi−1

to see if they are realized or not. A (1− ε)-approximation adaptive algorithm for this problem was
first proposed in [11] and further refined in [8].

Beating the half approximation. This state-of-the-art highlights the following natural ques-
tion:

Is half-approximation the limit for non-adaptive algorithms or is there a non-adaptive
algorithm that achieves approximation guarantee of strictly better than half?

It is worth mentioning that in many variations, obtaining half approximation for the maximum
matching problem is typically a relatively easy task (usually via a greedy approach), while beating
half approximation turns out to be a difficult task. Some notable examples include, randomized
greedy matching [6, 14, 20, 32], online stochastic matching [26, 30, 31], and semi-streaming match-
ing [21, 27].

1.1 Our Contributions

We resolve the aforementioned question of obtaining an algorithm for stochastic matching with an
approximation guarantee of strictly better than half. Formally,

Theorem 1. There exists an algorithm that given any graph G(V,E) and any parameter p > 0,

computes a subgraph H(V,Q) of G with a maximum degree of O
(

log (1/p)
p

)

such that the ratio of the

expected maximum matching size of a realization of H to a realization of G is at least:

(i) 0.52 when p ≤ p0 for an absolute constant p0 > 0.

(ii) 0.5 + δ0 for any 0 < p < 1, where δ0 > 0 is an absolute constant.

Our result in Theorem 1 makes progress towards an open problem posed by Blum et al. [11]
regarding the possibility of having a non-adaptive (1 − ε)-approximation algorithm for stochastic
matching. We further remark that the assumption in Part (i) of Theorem 1 is standard in the
stochastic matching literature and is referred as the case of vanishing probabilities, see, e.g. [30,31].

2

It is worth mentioning the max-degree on H achieved in Theorem 1 is essentially the best
possible (up to an O(log 1

p) factor) for any constant factor approximation algorithm: suppose G is
a complete graph; in this case the expected matching size in G is n − o(n) by standard results on
random graphs (see, e.g., [13], Chapter 7); however, if max-degree of H is o(1p), then the expected
number of realized edges in H is o(n), implying that the expected matching size in H is o(n).

Our approach to proving Theorem 1 can be divided into two parts. In the first part, we prove
a structural result showing that if a realization of G has expected maximum matching size opt,
then G itself should contain essentially 1

p edge-disjoint matchings of size opt each. This result,
established through a characterization of b-matching size in general graphs (see Section 3), sheds
more light into the structure of a graph in terms of its expected maximum matching size, which
may be of independent interest.

In the second part, we combine the aforementioned structural result with the (12−ε)-approximation
algorithm of [8] to obtain a matching of size strictly larger than opt/2. In order to do this, we first
find a collection of 1

p edge-disjoint matchings of size at least opt, remove them from the graph, and
then run the algorithm of [8] on the remaining edges. We show that the edges in this collection of
edge-disjoint matchings must form many length-three augmenting paths of the matching computed
by the algorithm of [8], hence leading to a matching of size strictly larger than opt/2. The analysis
is separated into two steps: we first formulate the increment in the matching size (through these
augmenting paths) via a (non-linear) minimization program, and then analyze the optimal solution
of this minimization program and hence lower bound the increment in the matching size obtained
from the augmenting paths.

Other related work. Multiple variants of stochastic matching have been considered in the liter-
ature. Blum et al. [12] studied a similar setting where one can only probe two edges incident on any
vertex and the goal is to find the optimal set of edges to query. Another well studied setting is the
query-commit model, whereby an algorithm probes one edge at a time and if an edge e is probed
and realized, then the algorithm must take e as part of the matching it outputs [1, 10, 15, 16, 23].
We refer the reader to [11] for a detailed description of the related work.

Organization. The rest of the paper is organized as follows. We start by providing a high
level overview of our algorithm in Section 2. Next, in Section 3, we introduce the notation and
preliminaries needed for the rest of the paper. We prove our main structural result, i.e., b-matching
lemma in Section 4. Our main algorithm and its analysis, i.e., the proof of Part (i) of Theorem 1
are provided in Section 5. Proof of Part (ii) of Theorem 1, i.e., an algorithm that works for the
large-probability case appears in Section 6. We conclude the paper in Section 7.

2 Technical Overview

In this section, we give a more detailed overview of the main ideas used in our algorithm for
stochastic matching. For clarity of exposition, throughout this section, we assume p is a sufficiently
small constant (corresponding to Part (i) of Theorem 1) and the expected maximum matching size
in G (i.e., opt) is n − o(n), or in other words, a realization of G, Gp, has a near perfect matching
in expectation.

Our starting point is the following observation: In order for Gp to have a (near) perfect match-
ing in expectation, the input graph G must have many (roughly 1/p) edge-disjoint (near) perfect
matchings. To gain some intuition why this is true, suppose for the moment that the input graph
is a bipartite graph G(L,R,E). Then, by Hall’s Marriage Theorem, we know that in order for Gp

3

to have a matching of size n− o(n), for any two subsets X ⊆ L and Y ⊆ R, with |X| − |Y | ≥ o(n),
at least one edge from X to Ȳ should realize in Gp. However, this requirement implies that in G,
there should be 1/p edges from X to Ȳ so that at least one of these edges appears in Gp. One can
then show that a bipartite graph G with such a structure has 1/p edge-disjoint matchings of size at
least n− o(n).

In general, we need to handle graphs that are not necessarily bipartite. In order to adapt the
previous strategy, we slightly relax our requirement of having 1/p edge-disjoint matchings to having
one (simple) b-matching2 of size nb for the parameter b = 1

p . We show that,

b-Matching Lemma. Any graph G where Gp has a matching of size n−o(n) in expectation,
has a 1

p -matching of size (essentially) n
p .

Next, we combine the fact that a large 1
p -matching, denoted by B, always exists in G, with the

(12 − ε)-approximation algorithm of [8] to obtain a strictly better than 1
2 -approximation algorithm.

To continue, we briefly describe the algorithm of [8], which we refer to as MatchingCover.
MatchingCover works by picking a maximum matching Mi in G and removing the edges of Mi

for R := Θ
(

log (1/p)
p

)

times3. This collection of matchings, denoted by EMC , is referred to as a

matching cover of the original graph G. The main property of this matching cover, proved in [8],
is that the set of realized edges in EMC has a matching of size (essentially) |MR|; note that MR is
the smallest size matchings among the matchings in EMC .

We are now ready to define our main algorithm: Pick a maximum 1
p -matching B from G; run

MatchingCover over the edges E \B and obtain a matching cover EMC ; return H(V,B ∪ EMC). If
|MR| < (12 − δ0)n, using the fact that EMC is obtained by repeatedly picking maximum matchings,
one can show that any matching M of size n− o(n) in G has more than (12 + δ0)n− o(n) edges in
B∪EMC . This also implies that the expected matching size in H is at least (12+δ0)n−o(n). The more
difficult case, which is where we concentrate bulk of our technical effort, is when |MR| ≥ (12 − δ0)n.
For simplicity, assume |MR| = n/2 from here on.

As stated above, if |MR| = n/2, then in almost every realization of the edges in EMC , there
exists a matching M of size at least n/2. Our strategy is to augment the matching M using the
(realized) edges in B, so that the matching size becomes (12 + δ0)n. It is important to note that the
set of edges in EMC and B are disjoint, and hence whether edges in EMC and B are realized are
independent of each other.

Let U be the set of vertices matched by M . There are two cases here to consider:

• Case 1. Nearly all edges in B are incident on vertices in U .

• Case 2. An ε-fraction of edges in B are not incident on U (for some constant ε > 0).

The second case is relatively easy to handle: we show that a realization of a 1
p -matching with

N/p edges has a matching of size at least N/3 in expectation. This implies that Bp has a matching
M ′ of size ε · n

3 = Θ(ε) · n which is not incident on U . Consequently, B ∪ EMC has a matching of
size n

2 + Θ(ε) · n in expectation. The more challenging task is to tackle the first case. To convey
the main idea, we make a series of simplifying assumptions here: (i) all edges in B are incident on
U , (ii) each edge in B is incident on exactly one vertex in U , and (iii) every vertex in U is incident
on exactly 1

p edges of B.

2Recall that a (simple) b-matching is simply a graph with degree of each vertex bounded by b. See Section 3 for
more details.

3We remark that this algorithm has an extra sparsification step which is needed to handle the case where opt =
o(n). However, since in this section we assume opt = n− o(n), this extra step is not required.

4

Our goal is to identify a large collection of length-three augmenting paths for the matching
M using the edges of B. To achieve this, we consider the event that an edge (u, v) in M has a
length-three augmenting path a − u − v − b where u (resp. v) is the only neighbor of a (resp. b).
We say such an edge (u, v) is successful. Since the length-three augmenting that certifies successful
edges are vertex-disjoint by definition, they can all (simultaneously) augment M . Consequently, it
suffices to lower bound the expected number of successful edges, or, equivalently, to lower bound
the prob. that each edge is successful.

Let us further assume for the moment that G is a bipartite graph. In this case, u and v do not
share a common neighbor and we can consider the neighborhood of u and v separately. The prob.
that u has a neighbor w where u is the only neighbor of w (we say u is successful in this case) is not
difficult to bound: enumerate all 1/p neighbors w of u and account for the the prob. that the edge
(u,w) is realized and the prob. that no other edge incident on w is realized. A similar argument
can be made for v. Now, the prob. that (u, v) is successful is simply the product of the prob. that
u is successful and the prob. that v is successful.

However, in general (non-bipartite) graphs, u and v might have common neighbors which results
in prob. of u being successful not independent of prob. of v being successful. Handling this case
requires a more careful argument and analysis. Moreover, recall that in the above discussion, we
made rather strong simplifying assumptions about how the edges in B are distributed across the
vertices of U . In order to further remove these assumptions, in the actual analysis, we cast the
probability of each edge (u, v) being successful as a function of the degrees of the vertices u and
v, and formulate a (non-linear) minimization program to capture the minimum number of possible
successful edges. Finally, we analyze the optimal solution of this minimization program, which
allows us to achieve the target lower bound on the expected increment in the matching size.

3 Preliminaries

Notation. For a graph G(V,E), n denotes the number of vertices in G. For any U ⊆ V , we use
G[U] to denote the subgraph of G induced only on vertices in U , and use E[U] to denote the set of
edges in G[U], i.e., the set of edges with both end points in U . For any two subsets U,W of V , we
further use E[U,W] to denote the set of edges with one end point in U and another in W . For any
X ⊆ E, we use V (X) to denote the set of vertices incident on X. Finally, we use µ(E) to denote
the maximum matching size among a set of edge E.

When sampling from a set of edges X (resp. a graph H) where each edge in X (resp. H) is
sampled w.p. p, we use Xp (resp. Hp) to denote the random variable for the set of sampled edges.
We use opt(G) (or shortly opt if the graph G is clear from the context) to denote the expected
maximum matching size of a realization of G (i.e., Gp(V,Ep))

4. For any algorithm for the stochastic
matching problem, we use alg to denote the expected matching size in a realization of H, where
H is the subgraph computed by the algorithm.

b-matchings. For any graph G(V,E) and any integer b ≥ 1, a subset M ⊆ E is called a simple
b-matching, iff the number of edges M that are incident on each vertex is at most b. Throughout,
we drop the word ‘simple’, and refer to M as a b-matching.

We use the following characterization of the maximum b-matching size in general graphs (see [33],
Volume A, Chapter 33).

4We assume opt = ω(1) to obtain the desired concentration bounds (for example in Lemma 3.3).

5

Theorem 2. Let G(V,E) be a graph and b ≥ 1 be any integer. The maximum size of a b-matching
is equal to the minimum value of

b · |U |+ |E[W]|+
∑

K

⌊

1

2

(

b · |K|+ |E[K,W]|
)

⌋

taken over all disjoint subsets U,W of V , where K ranges over all connected components in the
graph G[V − U −W].

Useful inequalities. We also use the following simple inequalities. The Proofs are provided in
Appendix A for completeness.

Proposition 3.1. Let f(x) := 1−e−x

x . Then, for any c, and any x ∈ [0, c], e−x ≤ 1− f(c) · x.

Proposition 3.2. For any x ∈ (0, 0.43], (1− x)
1
x ≥ 1−x

e . 5

3.1 MatchingCover Algorithm

We use the (0.5− ε)-approximation algorithm of [8] (Algorithm 3) as a sub-routine. For simplicity,
throughout the paper, we refer to this algorithm as MatchingCover. In the following lemma, we
summarize the properties of MatchingCover that we use in this paper. The proof of this lemma
immediately follows from Lemma 3.9 and Lemma 5.2 in [8].

Lemma 3.3 ([8]). For any graph G(V,E), and any input parameter ε > 0, MatchingCover(G, ε)
outputs a collection of R matchings M1,M2, . . . ,MR (denote EMC = M1 ∪M2 ∪ . . . ∪ MR), such
that, w.p. 1− o(1):

1. The size of a maximum matching among realized edges in EMC is at least (1− ε) |MR|.

2. |M1| ≥ . . . ≥ |MR| ≥ (1− ε) · µ (E \EMC).

3. R = Θ(log 1/(εp)εp).

We can also prove the following simple claim based on the second property of the MatchingCover

in Lemma 3.3. Roughly speaking, this claim states that if the MatchingCover is not able to extract
any further large matching (of size essentially opt/2) from G, then the set of extracted edges
already provides a matching of size opt/2 in any realization. A similar result is proven in [8] (see
Lemma 5.3); however, since Claim 3.4 does not follow directly from the results in [8], we provide a
self-contained proof of this claim here.

Claim 3.4. Fix 0 < ε < δ < 1. Let G(V,E) be a graph, X be any arbitrary subset of E, and
(M1, . . . ,MR) = MatchingCover(G(V,E \ X), ε). Define EMC = M1 ∪ . . . ∪ MR. If |MR| ≤
(

1
2 − δ

)

opt, then the expected maximum matching size in a realization of G(V,X ∪ EMC) is at
least

(

1
2 + δ − ε

)

opt.

Proof. For each realization of Gp, we fix one maximum matching. Now the expected matching size
in Gp can be written as

opt =
∑

M

Pr (M is the fixed maximum matching in Gp) · |M |

5This inequality actually holds for any x ∈ [0, 1]. However, as we only need the range (0, 0.43] in our proofs and
this allows us to provide a simpler proof, we only consider this range.

6

By property (2) of MatchingCover in Lemma 3.3, the maximum matching size in the graph G(V,E \
(X ∪EMC)) is at most (1 + ε) |MR|. Therefore, for any matching M , at most (1+ ε) |MR| edges of
M is in E \ (X ∪EMC), and hence at least |M | − (1+ ε)L edges of M is in X ∪EMC . This implies
that if all edges in M are realized, a matching of size at least |M | − (1 + ε) |MR| is realized in Q.
Let alg be the expected maximum matching size in G(V,X ∪ EMC); we have,

alg ≥
∑

M

Pr (M is the fixed maximum matching in Gp) (|M | − (1 + ε) |MR|)

= opt − (1 + ε) |MR|

Since |MR| ≤ (1/2 − δ)opt, we have,

alg ≥ opt − (1 + ε) · (1/2 − δ) · opt ≥ (1/2 + δ − ε) · opt

which concludes the proof.

4 b-Matching Lemma

Here, we develop one of the main ingredients of our algorithm, namely, any input graph G contains
a b-matching of size almost b ·opt(G) for b = 1/p. Intuitively, if the expected matching size in G is
opt, then since only p fraction of edges are realized in expectation, one may hope to find up to 1/p
edge-disjoint matchings of size opt in G. The following lemma formalizes this intuition by using
b-matchings (for b = 1/p) instead of a collection of edge-disjoint matchings.

Lemma 4.1 (b-matching lemma). Let b =
⌊

1
p

⌋

; any graph G(V,E) has a b-matching of size at least

(b− 1) · opt(G).

Proof. Suppose by contradiction that the maximum b-matching B in G is of size less than (b−1)·opt.
Consequently, by Theorem 2, there exist disjoint subsets U,W of V such that,

b · |U |+ |E[W]|+
∑

K

⌊

1

2

(

b · |K|+ |E[K,W]|
)

⌋

< (b− 1) · opt (1)

where K ranges over all connected components in the graph G[V − U −W]. Let c be the number
of connected components in G[V − U −W]. We first note that c < 2opt; otherwise,

∑

K

⌊

1

2

(

b · |K|+ |E[K,W]|
)

⌋

≥
∑

K

⌊

b

2

⌋

≥ c ·
(

b− 1

2

)

≥ (b− 1) · opt

and hence the LHS in Eq (1) would be more than (b− 1) · opt, i.e., the RHS; a contradiction.
Additionally, we have |U |+ |W |+∑K |K| = n. Hence, by multiplying each side in Eq (1) by 2

and plugging in this bound, we have,

2b · opt − 2opt > nb− b |W |+ b |U |+ 2 |E[W]|+
∑

K

(|E[K,W]| − 1)

≥ nb− b |W |+ b |U |+ 2 |E[W]|+
∑

K

|E[K,W]| − 2opt

Let T := V \ (U ∪W), i.e., the set of vertices in connected components K. Using this notation, we
can write the above equation simply as,

b · |W | − b · |U | − 2 |E[W]| − |E[T,W]| > b · (n− 2opt) (2)

7

Now consider the partition T,U,W in a realized graph G(V,Ep). Let Ep[W] and Ep[T,W] denote,
respectively, the set of edges in E[W] and E[T,W] after sampling the edges w.p. p. For any
matching M in Gp, define x(M) to be the number of unmatched vertices (by M) in W . Finally,
define x⋆ := minM x(M), where the minimum is taken over all matchings in Gp. Clearly, x⋆ is a
random variable depending on the choice of edges in Gp. We have the following simple claim.

Claim 4.2. For any realization Gp, x
⋆ ≥ |W | − |U | − 2 |Ep[W]| − |Ep[T,W]|.

Proof. Consider the set of vertices in W . At most |U | vertices of W can be matched to vertices in
U . Additionally, any edge in Ep[W] can further reduce the number of unmatched vertices in W by
at most 2. Finally, any edge in Ep[T,W] can reduce the number of remaining unmatched vertices
in W by at most 1.

Using the fact that E[x⋆] ≤ n− 2opt, we have,

b · (n− 2opt) ≥ b · E[x⋆]
≥ b · |W | − b · |U | − b · E

[

2 |Ep[W]|+ |Ep[T,W]|
]

(by Claim 4.2)

= b · |W | − b · |U | − pb · (2 |E[W]|+ |E[T,W]|)
≥ b · |W | − b · |U | − 2 |E[W]| − |E[T,W]| (since pb = p

⌊

1
p

⌋

≤ 1)

> b · (n − 2opt) (by Eq (2))

a contradiction.

We further prove that the bound established in Lemma 4.1 is essentially tight (see Appendix B).

Claim 4.3. For any constant 0 < p < 1, there exist bipartite graphs G where Gp has a matching of
size n− o(n) in expectation, but for any b ≥ 2

p , there is no b-matching in G with (at least) b · 0.99n
edges; here n is the number of vertices on each side of G.

Finally, we establish the following auxiliary lemma.

Lemma 4.4. Let B be a
⌊

1
p

⌋

-matching with
(⌊

1
p

⌋

·N
)

edges; then, E
[

µ(Bp)
]

≥ (1− 3p) · N
3 .

Proof. We first partition the edges of B into a collection of matchings. Since the degree of each

vertex in G(V,B) is at most
⌊

1
p

⌋

, by Vizing’s Theorem [35], we can color the edges in G(V,B) with
⌊

1
p

⌋

+ 1 colors such that no two edges with the same color are incident on a vertex. This ensures

that B can be decomposed into R =
⌊

1
p

⌋

+ 1 matchings M1, . . . ,MR.

Next, we define the following process. Define M (0) = ∅; for i = 1 to R rounds, let M (i) be
a maximal matching obtained by adding to M (i−1) the set of realized edges in Mi that are not
incident on vertices in M (i−1). Define M := M (R).

We argue that E[|M |] ≥ (1 − 3p) · N
3 . To do this, we need the following notation. Define Yi as

a random variable denoting the set of edges in Mi that are not incident on any vertex of matching
M (i−1). Note that Yi depends only on the realization of edges in M1, . . . ,Mi−1 and is independent
of the realization of Mi. Moreover, define Xi as a random variable indicating the number of edges
in (a realization of)Yi that are added to M (i−1) (after updating by edges in Mi). We first have,

|Yi| ≥ |Mi| − 2
∣

∣

∣M (i−1)
∣

∣

∣

8

since any edge in M (i−1) can be incident on at most two vertices of Mi. Moreover, conditioned on
any valuation for Yi, we have E[Xi] = p · |Yi| since each edge in Mi is realized w.p. p, independent
of the choice of Yi. Consequently,

E[Xi] = p · E[Yi] ≥ p ·
(

|Mi| − 2E
[∣

∣

∣
M (i−1)

∣

∣

∣

])

We again stress that the expectation for Xi is taken over the choice of edges in Mi, while the
expectation for Yi (and M (i−1)) is taken over the choice of edges in M1, . . . ,Mi−1. We now have,

E[|M |] =
R
∑

i=1

E[Xi] ≥
R
∑

i=1

p ·
(

|Mi| − 2E
[∣

∣

∣
M (i−1)

∣

∣

∣

])

≥ p ·
(

R
∑

i=1

|Mi| − 2

R
∑

i=1

E[|M |]
)

(E[|M |] ≥ E

[

∣

∣M (i−1)
∣

∣

]

)

≥ p ·
(⌊

1

p

⌋

·N − 2

(⌊

1

p

⌋

+ 1

)

· E[|M |]
)

(R =
⌊

1
p

⌋

+ 1)

This implies that

E[|M |] ≥ (1− 3p) · N
3

which concludes the proof.

5 Main Algorithm and Analysis

We provide our main algorithm for the stochastic matching problem (when p is sufficiently small)
in this section and prove Part (i) of Theorem 1. We assume throughout this section that the edge

realization probability p ≤ p0 for some sufficiently small constant p0. In this case,
⌊

1
p

⌋

− 1 ≥
(1− O(p0)) · 1

p and we use this inequality frequently in the proof. Indeed, throughout this section,
one should view p0 as a negligible constant and hence the term (1−O(p0)) can essentially be ignored.

Let δ0 = 0.02, and ε0 = 0.02001. Our algorithm is stated as Algorithm 1 below:

ALGORITHM 1: A 0.52-Approximation Algorithm for Stochastic Matching

Input: A graph G(V,E) and an edge realization probability p ≤ p0.
Output: A subgraph H(V,Q) of G(V,E).

1. Let B be a maximum
⌊

1
p

⌋

-matching in G.

2. Let (M1,M2, . . . ,MR) := MatchingCover(G(V,E \B), ε1) for ε1 = (ε0 − δ0)/2, and
EMC = M1 ∪ . . . ∪MR.

3. Return H(V,Q) where Q := B ∪ EMC .

Each vertex in H has degree O
(

log(1/p)
p

)

– this follows immediately from Lemma 3.3. In what

follows, we prove that H has a matching of size at least (0.5+ δ0) ·opt = 0.52 ·opt in expectation,
which will complete the proof of Part (i) of Theorem 1.

First notice that if |MR| < (12 − ε0+δ0
2)opt where MR is the smallest matching in the matching

cover EMC found by Algorithm 1, then by Claim 3.4, the expected matching size in Q is at least

9

(12 + ε0+δ0
2 − ε0−δ0

2)opt = (12 + δ0) · opt. Therefore, from now on we focus on the case that

|MR| ≥ (12 − ε0+δ0
2)opt.

In this case, by Lemma 3.3, w.p. 1− o(1), there exists a matching M among the realized edges
in EMC with size at least

(

1− ε0 − δ0
2

)(

1

2
− ε0 + δ0

2

)

opt ≥
(

1

2
− ε0 + δ0

2
− ε0 − δ0

4

)

opt

=

(

1

2
− 3ε0

4
− δ0

4

)

opt ≥
(

1

2
− ε0

)

opt

In the following, we assume this event happens6 and prove that the set of edges realized in the
⌊

1
p

⌋

-matching B can be used to augment the matching M to create a matching of size (12 + δ0) ·opt

in expectation. To simplify the analysis, we assume w.l.o.g. that |M | = (12 − ε0)opt (i.e., we only
keep (12 − ε0)opt edges of M and remove any additional edges if there is any). By the b-matching

lemma (Lemma 4.1), |B| ≥
(⌊

1
p

⌋

− 1
)

opt ≥ (1 − O(p0)) · opt

p , and hence, to prove Part (1) of

Theorem 1, it suffices to prove the following statement.

Lemma 5.1. Let M be a matching of size
(

1
2 − ε0

)

opt, and B be a
⌊

1
p

⌋

-matching of size at least

(1−O(p0)) · opt

p ; then the expected maximum matching size in M ∪BM is at least (12 + δ0)opt.

Proof. Let BM be the set of edges in B that are incident on the vertices in the matching M , and
let BM = B \ BM . Let sM be the random variable denoting the maximum matching size of a
realization of BM . By Lemma 4.4,

E[sM] ≥
∣

∣BM

∣

∣

⌊

1
p

⌋ · 1− 3p

3
≥ p

∣

∣BM

∣

∣ · 1− 3p

3
(3)

Therefore, if
∣

∣BM

∣

∣ ≥ 6ε0 · opt

p , then

E[sM] ≥ 6ε0 · opt · 1− 3p

3
= 2ε0(1− 3p) · opt ≥ (ε0 + δ0) · opt (assuming p0 ≤ ε0−δ0

6ε0
)

and since no edge in BM is incident on the vertices in M , the expected matching size in M ∪Bp is
at least

(

1

2
− ε0

)

opt + (ε0 + δ0)opt =

(

1

2
+ δ0

)

opt

as asserted by Lemma 5.1. In the following, we assume
∣

∣BM

∣

∣ ≤ 6ε0 · opt

p . Furthermore, we fix a

realization of BM and fix a maximum matching M ′ in the realization of BM (whose size is sM by
definition). In other words, we will lower bound the expected maximum matching size in M ∪ Bp

conditioned on any realization of BM . The lower bound we obtain would be a linear function of sM ,
and by linearity of expectation, we can simply replace sM with E[sM], use Eq (3) to lower bound
E[sM], and obtain the desired lower bound of (1/2 + δ0)opt on the expected maximum matching
size.

Denote by M+ the matching M ∪ M ′ (since the matchings M and M ′ are vertex-disjoint,
M ∪M ′ is indeed a valid matching of size |M |+ sM). We can focus the realizations of BM where

6This assumption can be removed while losing a negligible factor of o(1) in the size of final matching.

10

sM ≤ 2ε0 ·opt since otherwise the matching M+ already have size (1/2+ε0)·opt > (1/2+δ0)·opt.
Therefore, we have sM ≤ 2ε0 · opt = O(opt) and |M+| = O(opt), which will be useful in
simplifying the presentation.

Now consider the edges in BM . We further denote by C the set of edges in BM that are incident
on exactly one vertex in M+. In the following, we first show that |C| must be large (Claim 5.2)
and then show that many edges in C can be used to augment the matching M+, which leads to an
increment on the matching size as a function of |C| (Lemma 5.3 and Lemma 5.4). Combining these
two statements completes the proof of Lemma 5.1.

Claim 5.2. |C| ≥ 2 |BM | − 2|M+|
p .

Proof. Let x denote the number of edges in BM that have degree 2 to V (M+) (i.e., are incident on
two vertices in M+). By definition, every edge in BM is incident on M , and hence every edge in
BM is also incident on M+(= M ∪M ′). Consequently, there are |BM | − x edges in BM that have
degree 1 to V (M+) (i.e. belongs to C). Therefore, the total degrees of all vertices V (M+) provided
by BM is at least: 2 · x+ 1 · (|BM | − x) = x+ |BM |.

On the other hand, since |V (M+)| = 2 |M+| and B (hence BM) is a
⌊

1
p

⌋

-matching, the total

degree of the vertices V (M+) provided by BM is at most
2|M+|

p . Therefore, x + |BM | ≤ 2|M+|
p ,

which implies x ≤ 2|M+|
p − |BM |. Therefore, the number of edges in BM incident on exactly one

vertex in V (M+) (i.e., |C|) is at least

|BM | −
(

2 |M+|
p

− |BM |
)

= 2 |BM | − 2 |M+|
p

completing the proof.

The following two lemmas are dedicated to showing that the edges in a realization of C, Cp, form
many vertex-disjoint length-three augmenting paths for the matching M+ in expectation, which is
a lower bound on the expected increment on the matching size. We first define some notation.
Let W := V \ V (M+), i.e., W is the set of vertices not matched by M+. Denote the edges in
M+ by {(ui, vi) | i ∈ [|M+|]}, and denote by d(ui) (resp. d(vi)) the number of edges in C incident
on ui (resp. vi). Since, by definition, the edges in C are only incident on one vertex in V (M+),
d(ui) (resp. d(vi)) is also the number of edges in C between ui (resp. vi) and W . In the following,
whenever we say “neighbors” or “degrees”, they are only w.r.t. the edges C. Let f(x) be the function
defined in Proposition 3.1.

Lemma 5.3. For any edge (ui, vi) ∈ M , w.p. at least

(1−O(p0))
f(1/e) · p

e2

(

1− e−p·d(vi)
)

·max {d(ui)− 1, 0} ,

there exists a length-three augmenting path ai − ui − vi − bi in the realization Cp of C, such that
ai, bi have no neighbors other than ui and vi.

Note that we can use all edges (ui, vi) in M+ with such an augmenting path ai − ui − vi − bi
to (simultaneously) augment M+ since these augmenting paths are vertex-disjoint (ai and bi are
only neighbors of ui and vi). Therefore, the expected number of edges in M+ that has such an
augmenting path is a lower bound on the expected increment on the matching size.

11

Proof of Lemma 5.3. We consider three disjoint subsets of edges in C one by one: (i) the edges
between vi and W , (ii) the edges incident on a specific vertex w in W (excluding the edge (vi, w)),
and (iii) the edges incident on neighbors of ui other than w (excluding the edges incident on vi).

First, consider the edges between vi and W . The prob. that none of these d(vi) edges are
realized is at most

(1− p)d(vi) ≤ e−p·d(vi)

Therefore, w.p. at least 1− e−p·d(vi), at least one edge between vi and W is realized. We condition
on this event and fix any such edge, denoted by (vi, bi).

Second, consider the edges incident on bi (excluding the edge (vi, bi)). There are at most 1/p
such edges, and the prob. that none of them is realized is at least

(1− p)1/p ≥ 1− p

e
≥ 1− p0

e
(p ≤ p0 ≤ 0.43)

where the first inequality is by Proposition 3.2. In the following, we further condition on no other
edges incident on w is realized.

Third, consider all neighbors of ui other than bi (there are at least max {d(ui)− 1, 0} such
neighbors) and the edges incident on these neighbors (excluding the edges incident on vi). For each
one of these neighbors w of ui, the prob. that the edge (ui, w) is realized (w.p. p) and w does not
have any neighbor other than ui (and possibly vi) (w.p. at least 1−p0

e by Proposition 3.2) is at least

p · 1−p0
e . Therefore, the prob. that at least one neighbor of ui satisfies these two properties is at

least

1−
(

1− p · 1− p0
e

)max{d(ui)−1,0}

≥1− e−(1−p0)·p·max{d(ui)−1,0}/e

≥f(
1

e
) · (1− p0) · p ·max {d(ui)− 1, 0} /e

where f(x) = 1−e−x

x and the second inequality is by Proposition 3.1, using the fact that

(1− p0) · pmax {d(ui)− 1, 0}
e

≤ 1

e
(since d(ui) ≤ 1

p)

Putting the three steps together, the prob. that there is an augmenting path ai − ui − vi − bi
where ai and bi has no neighbors other than ui and vi is at least

(

1− e−p·d(vi)
)

· 1− p0
e

· f(
1
e) · (1− p0) · p ·max {d(ui)− 1, 0}

e

=(1−O(p0)) · f(
1

e
) · p

e2

(

1− e−p·d(vi)
)

·max {d(ui)− 1, 0}

As we pointed out after the statement of Lemma 5.3, we need to lower bound the expected
number of edges in M+ that has such an augmenting path, which, by Lemma 5.3, is lower bounded
by the function F defined below. For the two vectors du := (d(u1), . . . , d(u|M+|)) and dv :=
(d(v1), . . . , d(v|M+|)),

F (du, dv) :=
∑

i∈[|M+|]

(1−O(p0)) · f(
1

e
) · p

e2

(

1− e−p·d(vi)
)

·max {d(ui)− 1, 0}

12

The goal now is to find the smallest value of F (du, dv), with the constraint on the vectors du and
dv formulated in the following (non-linear) minimization program (referred to as MP-(4)).

minimize F (du, dv)
subject to

∑

i∈[|M+|] d(ui) + d(vi) = |C|
d(ui), d(vi) ∈

[⌊

1
p

⌋]

i = 1, . . . , |M+|
(4)

The constraint on each individual d(ui) and d(vi) is because C is a
⌊

1
p

⌋

-matching. The following

lemma lower bounds the value of the objective function in MP-(4).

Lemma 5.4. Let F ⋆ denote the optimal value of MP-(4); then,

F ⋆ ≥
(

p · |C| −
∣

∣M+
∣

∣

)

· η −O(p0) · opt

where η := f(1e) · 1
e2

(

1− e−1
)

> 0.07157.

The proof of the Lemma 5.4 is technical, and we defer it to Section 5.1. By Lemma 5.4 and
Claim 5.2 (the lower bound on |C|) the expected increment (over M+) of the matching size is at
least

F ⋆ ≥
(

p · |C| −
∣

∣M+
∣

∣

)

· η −O(p0) · opt

≥
(

p · (2 |BM | − 2
∣

∣M+
∣

∣ /p)−
∣

∣M+
∣

∣

)

· η −O(p0) · opt (By Claim 5.2)

=
(

2p |BM | − 3
∣

∣M+
∣

∣

)

· η −O(p0) · opt

=
(

2p(|B| −
∣

∣BM

∣

∣)− 3(|M |+ sM)
)

· η −O(p0) · opt

=
(

2p |B| − 3 |M | − 2p
∣

∣BM

∣

∣− 3sM
)

· η −O(p0) · opt

=

(

2p(1−O(p0))
opt

p
− 3

(

1

2
− ε0

)

opt − 2p
∣

∣BM

∣

∣− 3sM

)

· η −O(p0)opt

=

((

1

2
+ 3ε0

)

opt − 2p
∣

∣BM

∣

∣− 3sM

)

· η −O(p0) · opt

Since the original matching M+ is of size (1/2 − ε0) · opt + sM , the expected matching size in
M ∪Bp, i.e., µ(M ∪Bp), is

E[µ(M ∪Bp)] =
∑

sM

Pr
(

sM
)

E[µ(M ∪Bp) | sM] (E[X] =
∑

Y Pr (Y)E[X | Y])

≥
∑

sM

Pr
(

sM
)

(
∣

∣M+
∣

∣+ F ⋆)

≥
(

1

2
− ε0

)

· opt + E[sM] +

((

1

2
+ 3ε0

)

opt − 2p
∣

∣BM

∣

∣− 3E[sM]

)

· η −O(p0) · opt

≥
(

1

2
+

η

2
− ε0 + 3ηε0

)

· opt + (1− 3η)E[sM]− 2pη
∣

∣BM

∣

∣−O(p0) · opt

≥
(

1

2
+

η

2
− ε0 + 3ηε0

)

· opt + (1− 3η)(1 −O(p0))
p
∣

∣BM

∣

∣

3
− 2pη

∣

∣BM

∣

∣−O(p0) · opt

(By Equation 3)

≥
(

1

2
+

η

2
− ε0 + 3ηε0

)

· opt +

(

1

3
− 3η

)

p
∣

∣BM

∣

∣−O(p0) · opt

13

Since η ≈ 0.07157, 1
3 − 3η > 0, and we have

(

1

2
+

η

2
− ε0 + 3ηε0

)

· opt +

(

1

3
− 3η

)

p
∣

∣BM

∣

∣−O(p0) · opt

≥
(

1

2
+

η

2
− ε0 + 3ηε0

)

· opt −O(p0) · opt

> 0.52 · opt (ε0 = 0.02001, η > 0.07157, and p0 is sufficiently small.)

=(1/2 + δ0) · opt

completing the proof of Lemma 5.1.

5.1 Lower Bounding the Value of MP-(4)

In this section, we prove Lemma 5.4, i.e., the following inequality,

F ⋆ (= minF (du, dv)) ≥ (p · |C| −
∣

∣M+
∣

∣) · η −O(p0)opt

where η := f(1e) · 1
e2

(

1− e−1
)

.
Recall that

F (du, dv) =
∑

i

(1−O(p0)) · f(
1

e
) · p

e2

(

1− e−p·d(vi)
)

·max {d(ui)− 1, 0}

=(1−O(p0)) · f(
1

e
) · p

e2

∑

i

(

1− e−p·d(vi)
)

·max {d(ui)− 1, 0}

Since the term (1−O(p0)) · f(1e) ·
p
e2

is independent of du and dv,

arg min
du,dv

F = arg min
du,dv

∑

i

(

1− e−p·d(vi)
)

·max {d(ui)− 1, 0}

Define d(V) :=
∑

i d(vi) and d(U) :=
∑

i d(ui); then, d(V) + d(U) = |C|. We need to prove
that for any choice of d(V) and d(U), the lemma statement holds. First of all, we can assume

d(U) ≥ |M+|: otherwise, since d(V) ≤
⌊

1
p

⌋

|M+|, we will have

|C| = d(V) + d(U) ≤
⌊

1

p

⌋

∣

∣M+
∣

∣+
∣

∣M+
∣

∣ ≤
(

1

p
+ 1

)

∣

∣M+
∣

∣

Therefore, for the target lower bound on F ⋆

(p · |C| −
∣

∣M+
∣

∣) · η −O(p0)opt

≤
(

p

(

1

p
+ 1

)

∣

∣M+
∣

∣−
∣

∣M+
∣

∣

)

· η −O(p0)opt

≤pη
∣

∣M+
∣

∣−O(p0)opt

≤p0η
∣

∣M+
∣

∣−O(p0)opt

which can be made negative by choosing the constant hidden in O(p0) to be 1, proving Lemma 5.4.

We further assume d(U)−|M+| is an integer multiple of
⌊

1
p

⌋

−1 and d(V) is an integer multiple

of
⌊

1
p

⌋

. This can be achieved by removing at most 1/p edges from d(U) and d(V) respectively.

14

Since F is monotonically increasing with any d(ui) or d(vi), removing edges from d(U) and d(V)
can only make F ⋆ even smaller. Therefore, if we show that after removing these edges, the target
lower bound on F ⋆ holds, then it definitely holds for the original d(U) and d(V). In the following,

we fix any d(U) and d(V) where d(U) − |M+| is an integer multiple of
⌊

1
p

⌋

− 1, d(V) is an integer

multiple of
⌊

1
p

⌋

, and d(V) + d(U) ≥ |C| − 2
p . We prove the following key property of F (du, dv).

Lemma 5.5. There exists du and dv that minimizes F (du, dv) where any entry in du is either 1 or
⌊

1
p

⌋

and any entry in dv is either 0 or
⌊

1
p

⌋

.

We first show why Lemma 5.5 implies the target lower bound on F ⋆, and then prove Lemma 5.5.
Fix d⋆(ui) and d⋆(vi) that satisfy the property in Lemma 5.5. Since every entry in d⋆u is either 1 or
⌊

1
p

⌋

, the number of 1’s in d⋆u is x := |M+| − (d(U)− |M+|)/(
⌊

1
p

⌋

− 1). Similarly, the number of 0’s

in d⋆v is y := |M+|−d(V)/
⌊

1
p

⌋

. Therefore, the number of edges in M+ where d⋆(vi) = d⋆(ui) =
⌊

1
p

⌋

is at least

∣

∣M+
∣

∣− x− y =
∣

∣M+
∣

∣−

∣

∣M+
∣

∣− d(U)− |M+|
⌊

1
p

⌋

− 1

−

∣

∣M+
∣

∣− d(V)
⌊

1
p

⌋

=
d(U) − |M+|
⌊

1
p

⌋

− 1
−
∣

∣M+
∣

∣+
d(V)
⌊

1
p

⌋

≥d(U) − |M+|
1
p

−
∣

∣M+
∣

∣+ d(V)p (
⌊

1
p

⌋

− 1 ≤
⌊

1
p

⌋

≤ 1
p)

=p · d(U) + p · d(V)− (1 + p)
∣

∣M+
∣

∣

≥p

(

|C| − 2

p

)

− (1 + p)
∣

∣M+
∣

∣ (d(V) + d(U) ≥ |C| − 2
p .)

=p |C| −
∣

∣M+
∣

∣−O(p0)opt (|M+| = O(opt))

And just focusing on these p |C| − |M+| −O(p0)opt edges, we have

F ⋆ ≥
(

p |C| −
∣

∣M+
∣

∣−O(p0)opt

)

· (1−O(p0)) · f(
1

e
) · p

e2
(

1− e−1
)

· (
⌊

1

p

⌋

− 1)

≥
(

p |C| −
∣

∣M+
∣

∣−O(p0)opt

)

· (1−O(p0)) · f(
1

e
) · p

e2
(

1− e−1
)

· 1
p

(
⌊

1
p

⌋

− 1 ≥ (1−O(p0))
1
p)

≥
(

p |C| −
∣

∣M+
∣

∣−O(p0)opt

)

· (1−O(p0)) · η
≥
(

p |C| −
∣

∣M+
∣

∣

)

· η −O(p0)opt (|M+| = O(opt), p |C| ≤ p |BM | = O(opt))

which proves Lemma 5.4.
We now prove Lemma 5.5 which will complete the proof.

Proof of Lemma 5.5. Fix any allocation d⋆u and d⋆v that minimizes F (du, dv). We will show that
first, there exists a sequence of locally reallocating the values (i.e., degrees) in d⋆u without changing

the value of F (du, dv) such that at the end, every entry in d⋆u is either 1 or
⌊

1
p

⌋

. After changing the

vector d⋆u, we then show that there exists a sequence of locally reallocating the values in d⋆v without

changing the value of F (du, dv) such that at the end, every entry in d⋆v is either 0 or
⌊

1
p

⌋

.

15

We first explain how to change d⋆u. To simplify the presentation, we define qi = 1− e−p·d⋆(vi)

and the target expression becomes

∑

i

(

1− e−p·d⋆(vi)
)

·max {d⋆(ui)− 1, 0} =
∑

i

qi ·max {d⋆(ui)− 1, 0} (5)

Recall that d⋆(ui) satisfies d⋆(ui) ∈
[⌊

1
p

⌋]

(in MP-(4)) (and hence qi ≥ 0) and
∑

i d
⋆(ui) =

d(U). First of all, if there exists some i1 where d⋆(ui1) = 0, then since d(U) ≥ |M+|, there must
exist an index i2 where d⋆(ui2) ≥ 2. Then, we can shift one degree from d⋆(ui2) to d⋆(ui1) and
after the shift, (a) max {d⋆(ui1)− 1, 0} remains 0 and hence qi1 max {d⋆(ui)− 1, 0} remains 0, and
(b) max {d⋆(ui2)− 1, 0} decreases and hence qi1 max {d⋆(ui2)− 1, 0} does not increase. Therefore,
F (du, dv) does not increase after the shift, and from now on, we have d⋆(ui) ≥ 1 for all i ∈ [|M+|].
To proceed, we need the following property of d⋆(ui).

Claim 5.6. For any pair of indices i1, i2 where qi1 > qi2 , either d⋆(ui2) =
⌊

1
p

⌋

or d⋆(ui1) ≤ 1.

Proof. Suppose not. We have d⋆(ui2) <
⌊

1
p

⌋

and d⋆(ui1) > 1, for some i1 and i2. We can shift one

degree from d⋆(ui1) to d⋆(ui2) and still get a valid allocation. In the following, we show that this
new allocation achieves a smaller value of F , which contradicts to the optimality of d⋆(ui).

Since shifting from d⋆(ui1) to d⋆(ui2) only changes the degrees for ui1 and ui2 , it suffices for us
to prove that

∆ :=(qi2 max {d⋆(ui2)− 1, 0} + qi1 max {d⋆(ui1)− 1, 0})
− (qi2 max {d⋆(ui2), 0} + qi1 max {d⋆(ui1)− 2, 0}) > 0

Since d⋆(ui1) ≥ 2, max {d⋆(ui1)− 1, 0} = d⋆(ui1)−1, max {d⋆(ui1)− 2, 0} = d⋆(ui1)−2. In addition,
since d⋆(ui2) ≥ 0, max {d⋆(ui2), 0} = d⋆(ui2). We have

∆ =(qi2 max {d⋆(ui2)− 1, 0} + qi1(d
⋆(ui1)− 1))− (qi2d

⋆(ui2) + qi1(d
⋆(ui1)− 2))

=qi2 (max {d⋆(ui2)− 1, 0} − d⋆(ui2)) + qi1

≥qi2(d
⋆(ui2)− 1− d⋆(ui2)) + qi1

=qi1 − qi2 .

Since we have qi1 > qi2 , the value of F decreases after the shifting according to Eq 5, a contradiction.

We use Claim 5.6 to prove the correctness of the following sequence of reallocation of d⋆u. Now,

as long as there exists an index i1, where d⋆(ui1) ∈ (1,
⌊

1
p

⌋

), since d(U)−|M+| is an integer multiple

of (
⌊

1
p

⌋

− 1), there must exists some index i2 where d⋆(ui2) ∈ (1,
⌊

1
p

⌋

) (recall that d⋆(ui) ≥ 1), and

we will shift the values between d⋆(ui1) and d⋆(vi2) such that one of them becomes either 1 or
⌊

1
p

⌋

and both of them are still at least 1 (it is easy to see this is always possible). First of all, every

step of this reallocation reduces the number of vertices with d⋆(ui) ∈ (1,
⌊

1
p

⌋

), and hence it will

terminate. To see that this process never changes F (du, dv), (a) it cannot be that qi1 6= qi2 , since
otherwise the indices i1 and i2 will contradict Claim 5.6, and (b) if qi1 = qi2 , shifting the allocation
between i1 to i2 will not change F (du, dv).

16

Therefore, we can focus on the case where the entries of d⋆(ui) are either 1 or
⌊

1
p

⌋

. We now

consider d⋆(vi). Recall that d(V) =
∑

i d(vi) and d(V) is an integer multiple of
⌊

1
p

⌋

. The target

expression can be written as

∑

i

(

1− e−p·d⋆(vi)
)

·max {d⋆(ui)− 1, 0}

=
∑

i: d⋆(ui)=
⌊

1
p

⌋

(

1− e−p·d⋆(vi)
)

(⌊

1

p

⌋

− 1

)

+
∑

i: d⋆(ui)=1

(

1− e−p·d⋆(vi)
)

· 0

=
∑

i: d⋆(ui)=
⌊

1
p

⌋

(

1− e−p·d⋆(vi)
)

Since F is monotonically increasing when any d(ui) increases, for the indices i where d⋆(ui) = 1,

ideally, one should allocate as many degrees to d⋆(vi) as possible, i.e., d⋆(vi) =
⌊

1
p

⌋

. However, it

might be the case that d(V) cannot supply
⌊

1
p

⌋

degree for all i where d⋆(ui) = 1. But in this case,

we are done since reallocating between different d⋆(vi) where d⋆(ui) = 1 does not change the F (in

fact, F is always 0), and we can shift them such that we have as many d⋆(vi) =
⌊

1
p

⌋

as possible and

leave the rest equal to 0.

In the following, we assume d(V) can supply
⌊

1
p

⌋

degree for all i with d⋆(ui) = 1, and hence

d⋆(vi) =
⌊

1
p

⌋

whenever d⋆(ui) = 1. It suffices to only focus on d⋆(vi) where d⋆(ui) =
⌊

1
p

⌋

. We need

the following property of d⋆(vi) to complete the argument.

Claim 5.7. For any pair of indices i1 and i2 such that d⋆(ui1) = d⋆(ui2) =
⌊

1
p

⌋

, we have that either

min {d⋆(vi1), d⋆(vi2)} = 0 or max {d⋆(vi1), d⋆(vi2)} =
⌊

1
p

⌋

.

Proof. Suppose not. Then, for some i1 and i2, we have min {d⋆(vi1), d⋆(vi2)} > 0, and also

max {d⋆(vi1), d⋆(vi2)} <
⌊

1
p

⌋

. Without lose of generality, assume 1 ≤ d⋆(vi1) ≤ d⋆(vi2) ≤
⌊

1
p

⌋

− 1.

Then, shifting one degree from d⋆(vi1) to d⋆(vi2) leads to a valid allocation, and we prove in the
following that the new allocation decreases the objective function which contradicts the optimality
of d⋆v.

Since only the indices i1 and i2 are affected, it suffices for us to prove that

∆ :=
(

1− e−p·d⋆(vi1)
)

+
(

1− e−p·d⋆(vi2)
)

−
(

1− e−p·(d⋆(vi1)−1)
)

+
(

1− e−p·(d⋆(vi2)+1)
)

> 0

We have

∆ ≥ e−p·d⋆(vi1)(ep − 1) + e−p·d⋆(vi2)(e−p − 1)

Since d⋆(vi1) ≤ d⋆(vi2), e
−p·d⋆(vi1) ≥ e−p·d⋆(vi2). We further have

e−p·d⋆(vi1)(ep − 1) + e−p·d⋆(vi2)(e−p − 1) ≥ e−p·d⋆(vi2)(ep − 1) + e−p·d⋆(vi2)(e−p − 1)

≥ e−p·d⋆(vi2)(ep − 1 + e−p − 1)

> e−p·d⋆(vi2)(2
√
ep · e−p − 2)

= 0

17

where the strict inequality is true since the two terms can only be equal when ep = e−p which does
not happen for p > 0.

Using Claim 5.7, we can now show that any d⋆(vi) where d⋆(ui) =
⌊

1
p

⌋

, must be either 0 or
⌊

1
p

⌋

. Suppose not. If d⋆(vi1) ∈ (0,
⌊

1
p

⌋

), then since d(V) is an integer multiple of
⌊

1
p

⌋

, there

must exists some other index i2 where d⋆(vi2) ∈ (0,
⌊

1
p

⌋

); hence, 0 < min {d⋆(vi1), d⋆(vi2)} <

max {d⋆(vi1), d⋆(vi2)} <
⌊

1
p

⌋

, a contradiction to Claim 5.7.

6 An Algorithm for Large Values of p

In this section, we provide an algorithm, namely, Algorithm 2, with approximation ratio strictly
better than 1/2 when p is bounded away from zero. In particular, this algorithm computes a
matching of size

(

1/2 + Θ(p2)
)

·opt. Algorithm 2 is required to handle the case when p is not small
enough for Algorithm 1 to perform well. Using a combination of both of these algorithms, we can
prove the second part of Theorem 1.

Let p0 be any fixed constant independent of n, δ = p2

4 , and ε =
p20
104

. The new algorithm (i.e,

Algorithm 2) is similar to Algorithm 1 with the only difference being that instead of a
⌊

1
p

⌋

-matching,

here, we simply pick a single maximum matching in G. Our algorithm is stated as Algorithm 2.

ALGORITHM 2: A
(

0.5 + Θ(p2)
)

-Approximation Algorithm for Stochastic Matching

Input: A graph G(V,E) and an edge realization probability p0 ≤ p < 1.
Output: A subgraph H(V,Q) of G(V,E).

1. Let M be a maximum matching in G.

2. Let (M1,M2, . . . ,MR) := MatchingCover(G(V,E \M), ε) (recall that ε =
p20
104), and

EMC = M1 ∪ . . . ∪MR.

3. Return H(V,Q) where Q := M ∪ EMC .

The following lemma proves the approximation ratio of Algorithm 2.

Lemma 6.1. For any constant p0 > 0, any realization probability p ≥ p0, and any graph G(V,E) the

expected maximum matching size in the graph H computed by Algorithm 2 is at least
(

1
2 + p2

4 − p20
104

)

·
opt(G).

Before proving Lemma 6.1, we show how to combine Algorithm 1 and Algorithm 2 to prove
Part (ii) of Theorem 1.

Proof of Theorem 1, Part (ii). Let p0 be the constant such that Algorithm 1 achieves an approxi-
mation ratio of 0.52 for any p ≤ p0. The algorithm for Part (ii) is simply as follows. If the realization
probability p ≤ p0, run Algorithm 1 and otherwise run Algorithm 2. By Lemma 6.1, the approxi-

mation ratio of this algorithm is min
{

0.52, 12 +
p2

4 − p20
104

}

= 0.5 + δ0 for some absolute constant δ0

(since p0 is an absolute constant and p ≥ p0).

18

We note that by optimizing the choice of p0 and a more careful analysis of Algorithm 1 (to
account for many constants involved), one can bound the value of δ0 ≈ 0.001. We omit the tedious
details of this calculation as it is not the main contribution of this paper.

We now prove Lemma 6.1.

Proof of Lemma 6.1. Recall that opt (resp. alg) is the expected maximum matching size in a
realization Gp of G (resp. a realization Hp of H).

Firstly, by Claim 3.4, with the parameters ε, δ, and X = M , we have that if |MR| in EMC is
smaller than (12 − δ) ·opt, then the expected matching size in G(V,Q) is at least (12 + δ− ε) ·opt =

(12 +
p2

4 − p20
104

) ·opt, which proves the lemma. We now consider the case where |MR| ≥ (12 − δ) ·opt.
Let M ′ be the random variable denotes a maximum matching in a realization of EMC (breaking

tie arbitrarily). By Lemma 3.3, w.h.p., |M ′| ≥ (1 − ε) |MR| ≥ (12 − δ − ε) · opt. For simplicity, in
the following, we always assume this event happens7 and further remove any extra edges in M ′ so
that |M ′| = (12 − δ− ε) ·opt. We now use the matching M chosen in the first step of the algorithm
(which is a maximum matching of G) to augment the matching M ′. We should point out that at
this point, M ′ refers to a realized matching, while M is still a random variable (independent of M ′

since M and EMC are edge-disjoint).
Let α1, α3 and α≥5 denote, respectively, the number of augmenting paths (w.r.t. M ′) of length

1, 3, and at least 5 in M △M ′. We have the following claim. The proof uses standard facts about
the augmenting paths (see, e.g., [24]).

Claim 6.2. For α1, α3, and α≥5, defined as above:

α3 + 2α≥5 ≤
∣

∣M ′
∣

∣

α1 + α3 + α≥5 = |M | −
∣

∣M ′
∣

∣

Proof. Any augmenting path of length 3 has one edge in M ′ and any augmenting path of length
at least 5 has at least two edges in M ′. Since the augmenting paths are edge disjoints, the first
inequality follows. The second inequality follows from the fact that M is a maximum matching in
G and each augmenting path in M △M ′ increases the size of M ′ by 1.

As stated earlier, each edge in M is realized w.p. p (independent of the choice of M ′). Since
an augmenting path of length 1 (resp. of length 3) realizes in M ′ △ Mp w.p. p (resp. p2), we
have that the expected number of times that M ′ can be augmented using realized edges of M is at
least α1p+ α3p

2, implying that the final matching size is at least (12 − δ − ε) · opt+ α1p+ α3p
2 in

expectation. Combining this with Claim 6.2, the minimum size of the output matching we obtain
can be formulated as the following linear program (denoted by LP-(6)):

minimize α1p+ α3p
2

subject to α3 + 2α≥5 ≤ (12 − δ)opt − ε · opt

α1 + α3 + α≥5 ≥ (12 + δ)opt + ε · opt

α1, α3, α≥5 ≥ 0

(6)

where in the second constraint, we use the fact that M is a maximum matching in G and hence
|M | ≥ opt. We have the following claim.

7This assumption can be removed while losing a negligible factor of o(1) in the size of final matching.

19

Claim 6.3. The minimum value of LP-(6) is at least p2

2 · opt.

Proof. The two constraints of LP-(6) imply that,

2α1 + α3 ≥
(

1

2
+ 3δ + 3ε

)

· opt (7)

Suppose we want to minimize α1p + α3p
2 subject to the constraint in Eq (7) (this is clearly a

lower bound for the value of LP-(6)). In this case, since the contribution of α3 to the objective value
is p times the contribution of α1, while its contribution to the constraint is 1

2 times the contribution
of α1, it is straightforward to verify that for p ≤ 1/2, there is an optimal solution with α1 = 0, and
for p > 1/2, there is an optimal solution with α3 = 0. We can now compute the value of solution in
each case:

p ≤ 1

2
case. In this case α1 = 0 and α3 =

(

1
2 + 3δ + 3ε

)

· opt minimizes α1p + α3p
2. Hence,

the objective value is

α3 · p2 =
(

1

2
+ 3δ + 3ε

)

· opt · p2 ≥ p2

2
· opt

p >
1

2
case. In this case α1 =

(

1
4 +

3
2δ +

3
2ε
)

· opt and α3 = 0 minimizes α1p + α3p
2. Hence,

the objective value is

α1 · p =

(

1

4
+

3

2
δ +

3

2
ε

)

p · opt ≥
(

1

4
+

3

2
δ

)

p · opt

=

(

1

4
+

3p2

8

)

p · opt ≥ p2

2
· opt (δ = p2

4 and 1
4 +

3p2

8 ≥ 2
√

1
4 ·

3p2

8 ≥ p
2)

The claim now follows since in above calculation we relaxed constraints of LP-(6) to the constraint
in Eq (7).

By plugging in the bound from Claim 6.3, we obtain that the final matching size is at least:

opt

2
− δ · opt − ε · opt + α1p+ α3p

2 ≥
(

1

2
− δ − ε+

p2

2

)

· opt

=

(

1

2
+

p2

4
− p20

104

)

· opt

by plugging in δ = p2

4 and ε =
p20
104

.

7 Concluding Remarks and Open Problems

We presented the first non-adaptive algorithm for stochastic matching with an approximation ratio
that is strictly better than half. In particular, we showed that any graph G has a subgraph H
with maximum degree O(log (1/p)p) such that the ratio of expected size of a maximum matching in
realizations of H and G is at least 0.52 when p is sufficiently small, i.e., case of vanishing probabilities,
and 0.5 + δ0 (for an absolute constant δ0 > 0) for any p ∈ (0, 1).

A main open problem is to determine the best approximation ratio achievable by a non-adaptive
algorithm. In particular, can non-adaptive algorithms qualitatively match the performance of adap-
tive algorithms by achieving a (1−ε)-approximation for any ε > 0 using a subgraph with maximum
degree f(ε, p) for some function f? In the following, we mention some potential directions towards
resolving this problem.

20

A barrier to obtaining a (1−ε)-approximation. We briefly explain here a barrier to a (1−ε)-
approximation algorithm that was noted in [8]. It was shown in [8] that any (non-adaptive) (1− ε)-
approximation algorithm for stochastic matching needs to solve the following problem.

Problem ([8]). Suppose you are given a bipartite graph G(L,R,E) (|L| = |R| = n) with the property
that the expected maximum matching size between two uniformly at random chosen subsets A ⊆ L
and B ⊆ R with |A| = |B| = n/3, is n/3 − o(n). The goal is to compute a subgraph H(L,R,Q)
with max-degree of O(1), such that the expected size of a maximum matching between two randomly
chosen subsets A and B is Ω(n).

For the harder problem in which the two subsets A and B are chosen adversarially, it is known
that there exist graphs (in particular, a Ruzsa-Szemerédi graph; see, e.g. [3,22]) that admit no such
sparse subgraph H (see [8] for more details). However, in the stochastic matching application, our
interest is in randomly chosen subsets A and B, and it is not known if there are instances such that
the random set version of the problem is hard.

A direct application of b-matching lemma. There is another possible way of utilizing the
b-matching lemma. In Lemma 4.4, we showed that for any 1

p -matching B of size opt

p , the expected

maximum matching size of a realization of B is at least opt

3 . In fact, using a more careful analysis,
we can improve this bound to ≈ 0.4 ·opt. This, together with our b-matching lemma, immediately
implies a simple 0.4-approximation algorithm for stochastic matching. However, it is not clear to
us whether this bound can be significantly improved to get a matching of size strictly more than
opt

2 . It is worth mentioning that using a result of Karp and Sipser [25] on sparse random graphs
(see also [7], Theorem 4), one can show that if the 1

p -matching itself is chosen randomly, then its
realizations contain a matching of size ≈ 0.56·opt in expectation. However, this result relies heavily
on the fact that the original graph (in our case a realization of a random 1

p -matching) is chosen

randomly, and it seems unlikely that a similar result holds for an adversarially chosen 1
p -matching.

References

[1] M. Adamczyk. Improved analysis of the greedy algorithm for stochastic matching. Inf. Process.
Lett., 111(15):731–737, 2011.

[2] M. Akbarpour, S. Li, and S. O. Gharan. Dynamic matching market design. In ACM Conference
on Economics and Computation, EC ’14, Stanford , CA, USA, June 8-12, 2014, page 355, 2014.

[3] N. Alon, A. Moitra, and B. Sudakov. Nearly complete graphs decomposable into large induced
matchings and their applications. In Proceedings of the 44th Symposium on Theory of Com-
puting Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 1079–1090,
2012.

[4] R. Anderson, I. Ashlagi, D. Gamarnik, and Y. Kanoria. A dynamic model of barter exchange.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1925–1933, 2015.

[5] R. Anderson, I. Ashlagi, D. Gamarnik, and A. E. Roth. Finding long chains in kidney ex-
change using the traveling salesman problem. Proceedings of the National Academy of Sciences,
112(3):663–668, 2015.

21

[6] J. Aronson, M. E. Dyer, A. M. Frieze, and S. Suen. Randomized greedy matching II. Random
Struct. Algorithms, 6(1):55–74, 1995.

[7] J. Aronson, A. M. Frieze, and B. Pittel. Maximum matchings in sparse random graphs: Karp-
sipser revisited. Random Struct. Algorithms, 12(2):111–177, 1998.

[8] S. Assadi, S. Khanna, and Y. Li. The stochastic matching problem with (very) few queries.
Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, Maastricht,
The Netherlands, July 24-28, 2016, pages 43–60, 2016.

[9] P. Awasthi and T. Sandholm. Online stochastic optimization in the large: Application to
kidney exchange. In IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, 2009, pages 405–411, 2009.

[10] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra. When LP is the cure for
your matching woes: Improved bounds for stochastic matchings. Algorithmica, 63(4):733–762,
2012.

[11] A. Blum, J. P. Dickerson, N. Haghtalab, A. D. Procaccia, T. Sandholm, and A. Sharma.
Ignorance is almost bliss: Near-optimal stochastic matching with few queries. In Proceedings of
the Sixteenth ACM Conference on Economics and Computation, EC ’15, Portland, OR, USA,
June 15-19, 2015, pages 325–342, 2015.

[12] A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma. Harnessing the power of two crossmatches.
In ACM Conference on Electronic Commerce, EC ’13, Philadelphia, PA, USA, June 16-20,
2013, pages 123–140, 2013.

[13] B. Bollobás. Random Graphs. Number 73. Cambridge University Press, 2001.

[14] T. H. Chan, F. Chen, X. Wu, and Z. Zhao. Ranking on arbitrary graphs: Rematch via continu-
ous LP with monotone and boundary condition constraints. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 1112–1122, 2014.

[15] N. Chen, N. Immorlica, A. R. Karlin, M. Mahdian, and A. Rudra. Approximating matches
made in heaven. In Automata, Languages and Programming, 36th International Colloquium,
ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages 266–278, 2009.

[16] K. P. Costello, P. Tetali, and P. Tripathi. Stochastic matching with commitment. In Automata,
Languages, and Programming - 39th International Colloquium, ICALP 2012, Proceedings, Part
I, pages 822–833, 2012.

[17] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Dynamic matching via weighted myopia
with application to kidney exchange. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence., 2012.

[18] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Failure-aware kidney exchange. In ACM
Conference on Electronic Commerce, EC ’13., pages 323–340, 2013.

[19] J. P. Dickerson and T. Sandholm. Futurematch: Combining human value judgments and
machine learning to match in dynamic environments. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages
622–628, 2015.

22

[20] M. E. Dyer and A. M. Frieze. Randomized greedy matching. Random Struct. Algorithms,
2(1):29–46, 1991.

[21] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a
semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[22] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky.
Monotonicity testing over general poset domains. In Proceedings on 34th Annual ACM Sym-
posium on Theory of Computing., pages 474–483, 2002.

[23] A. Gupta and V. Nagarajan. A stochastic probing problem with applications. In Integer
Programming and Combinatorial Optimization - 16th International Conference, IPCO 2013.
Proceedings, pages 205–216, 2013.

[24] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM J. Comput., 2(4):225–231, 1973.

[25] R. M. Karp and M. Sipser. Maximum matchings in sparse random graphs. In 22nd Annual
Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28-30 October
1981, pages 364–375, 1981.

[26] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 352–358, 1990.

[27] C. Konrad, F. Magniez, and C. Mathieu. Maximum matching in semi-streaming with few
passes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques - 15th International Workshop, APPROX 2012, and 16th International Workshop,
RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 231–242, 2012.

[28] L. Lovász and D. Plummer. Matching Theory. AMS Chelsea Publishing Series. American
Mathematical Soc., 2009.

[29] D. F. Manlove and G. O’Malley. Paired and altruistic kidney donation in the UK: algorithms
and experimentation. ACM Journal of Experimental Algorithmics, 19(1), 2014.

[30] A. Mehta and D. Panigrahi. Online matching with stochastic rewards. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA,
October 20-23, 2012, pages 728–737, 2012.

[31] A. Mehta, B. Waggoner, and M. Zadimoghaddam. Online stochastic matching with unequal
probabilities. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1388–1404, 2015.

[32] M. Poloczek and M. Szegedy. Randomized greedy algorithms for the maximum matching
problem with new analysis. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 708–717, 2012.

[33] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer Science & Business
Media, 2003.

[34] U. Unver. Dynamic kidney exchange. Review of Economic Studies, 77(1):372–414, 2010.

23

[35] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz, 3(7):25–30,
1964.

24

A Omitted Proofs from Section 3

A.1 Proof of Proposition 3.1

Proof. We first have f(x) is monotonically decreasing, since,

df

dx
=

e−x · x− 1 + e−x

x2
=

(x+ 1) · e−x − 1

x2
≤ ex · e−x − 1

x2
= 0

where we used the inequality (1 + x) ≤ ex.
Consequently, since x ≤ c,

f(c) ≤ f(x) =
1− e−x

x

which implies e−x ≤ 1− f(c) · x.

A.2 Proof of Proposition 3.2

Proof. We first exam the equivalent conditions for the target inequality.

(1− x)
1
x ≥ 1− x

e

⇐⇒ (1− x)
1
x
−1 ≥ 1

e

⇐⇒ (
1

x
− 1) ln(1− x) ≥ −1 (by taking natural log of both sides)

Now, since ln(1− x) ≥ −x− x2

2 − x3

2 when x ∈ (0, 0.43]. We have

(
1

x
− 1) ln(1− x) ≥ (

1

x
− 1)(−x− x2

2
− x3

2
) (since (1x − 1) > 0)

= −1− x

2
− x2

2
+ x+

x2

2
+

x3

2

= −1 +
x

2
+

x3

2
≥ −1

which completes the proof.

B The Optimality of the b-Matching Lemma

In this section, we establish that our b-matching lemma is essentially optimal in the sense that it
is impossible to find a b-matching with at least b · opt(G) edge for b much larger than 1/p. In
particular, we show that,

Claim. For any constant 0 < p < 1, there exist bipartite graphs G where Gp has a matching of
size n− o(n) in expectation, but for any b ≥ 2

p , there is no b-matching in G with (at least) b · 0.99n
edges; here n is the number of vertices on each side of G.

25

Proof. For any integer N , let GN, 1
N

be the family of bipartite random graphs with N vertices on

each side and probability of picking each edge being 1/N . Let c⋆ ∈ (0, 1) such that any bipartite
graph sampled from GN, 1

N
has a matching of size at least c⋆ ·N w.p. 1− o(1). By a result of Karp

and Sipser [25] on sparse random graphs (see also [7], Theorem 4), we have c⋆ ≈ 0.56.
Consider bipartite graphs G(L,R,E) where the vertices in L consists of two disjoint sets L1 and

L2 with |L1| = N and |L2| = (1 − c⋆) ·N for parameter N = n
2−c⋆ . Similarly, R contains two sets

R1 and R2 with |R1| = N and |R2| = (1− c⋆) ·N .
The set of edges in G can be partitioned into two parts. First, there is a complete bipartite

graph between L1 and R2, and a complete bipartite graph between L2 and R1. Second, there is a
sparse graph between L1 and R1 defined through the following random process: each edge between
L1 and R1 is independently chosen w.p. 1

pN .
In the following, we show that for a graph G created through the above process, w.p. 1− o(1),

Gp has a matching of size n − o(n) in expectation, and w.p. 1 − o(1), there is no b-matching in G
with b · 0.99n edges, for b ≥ 2

p . Hence, by applying a union bound, the above process find a graph
with both properties w.p. 1− o(1), proving the claim.

To see that Gp has a matching of size n− o(n) in expectation, we realize the edges in G in two
steps: first realize the edges between L1 and R1, and then the other edges (i.e., the two complete
graphs between L1, R2 and between L2, R1, respectively). For the subgraph between L1 and R1,
notice that each edge between L1 and R1 is realized w.p. 1

pN · p = 1
N (chosen w.p. 1

pN in the above
process and realize w.p. p). Since |L1| = |R1| = N , the subgraph between L1 and R1 is sampled
from GN, 1

N
and hence w.p. 1−o(1), there is a matching of size c⋆N between L1 and R1. Now for the

remaining (1−c⋆)N unmatched vertices in L1 (resp. in R1), since there is a complete graph between
L1 and R2 (resp. R1 and L2), w.p. 1 − o(1), a perfect matching realizes between the unmatched
vertices in L1 and vertices in R2 (resp. between R1 and L2). We conclude that any realization Gp

has a perfect matching w.p. 1 − o(1) and hence the expected maximum matching size in Gp is at
least (1− o(1))n + o(1) · 0 = n− o(n).

It remains to show that w.p. 1−o(1), G has no b-matching with b·0.99n edges for b ≥ 2
p . For any

b-matching in G, the number of edges incident on L2 and R2 is at most b·(|L2|+|R2|) = 2bN/(1−c⋆).
The remaining edges of this b-matching must be between L1 and R1. Each edge between L1 and
R2 is chosen w.p. 1

pN , and there are N2 possible edges between L1 and R1. By Chernoff bound,

w.p. 1− o(1), the number of realized edges between L1 and R1 is at most (1 + o(1))Np . Therefore,
the total number of edges of any b-matching in G is at most

2b(1− c⋆)N + (1 + o(1))
N

p
= b · n−

(

c⋆b ·N − N

p

)

+ o(n) ((2− c⋆) ·N = n)

≤ b · n− (0.56bN − 0.5bN) + o(n)
(b ≥ 2/p and hence 1/p ≤ b/2; c⋆ ≈ 0.56)

< b · 0.99n

26

	1 Introduction
	1.1 Our Contributions

	2 Technical Overview
	3 Preliminaries
	3.1 MatchingCover Algorithm

	4 b-Matching Lemma
	5 Main Algorithm and Analysis
	5.1 Lower Bounding the Value of Metapost

	6 An Algorithm for Large Values of p
	7 Concluding Remarks and Open Problems
	A Omitted Proofs from Section 3
	A.1 Proof of Proposition ??
	A.2 Proof of Proposition ??

	B The Optimality of the b-Matching Lemma

