
Robust Self-assembly of Graphs

Stanislav Angelov1, Sanjeev Khanna2, and Mirkó Visontai3

1 Google, Inc., New York, NY 10011, USA
angelov@google.com

2 Department of Computer and Information Science, University of Pennsylvania
Philadelphia, PA 19104, USA

sanjeev@cis.upenn.edu
3 Department of Mathematics, University of Pennsylvania

Philadelphia, PA 19104, USA
mirko@math.upenn.edu

Abstract. Self-assembly is a process in which small building blocks in-
teract autonomously to form larger structures. A recently studied model
of self-assembly is the Accretive Graph Assembly Model whereby an
edge-weighted graph is assembled one vertex at a time starting from a
designated seed vertex. The weight of an edge specifies the magnitude of
attraction (positive weight) or repulsion (negative weight) between ad-
jacent vertices. It is feasible to add a vertex to the assembly if the total
attraction minus repulsion of the already built neighbors exceeds a cer-
tain threshold, called the assembly temperature. This model naturally
generalizes the extensively studied Tile Assembly Model.

A natural question in graph self-assembly is to determine whether
or not there exists a sequence of feasible vertex additions to realize the
entire graph. However, even when it is feasible to realize the assembly,
not much can be inferred about its likelihood of realization in practice
due to the uncontrolled nature of the self-assembly process. Motivated
by this, we introduce the robust self-assembly problem where the goal
is to determine if every possible sequence of feasible vertex additions
leads to the completion of the assembly. We show that the robust self-
assembly problem is co-NP–complete even on planar graphs with two
distinct edge weights. We then examine the tractability of the robust
self-assembly problem on a natural subclass of planar graphs, namely
grid graphs. We identify structural conditions that determine whether
or not a grid graph can be robustly self-assembled, and give poly-time
algorithms to determine this for several interesting cases of the problem.
Finally, we also show that the problem of counting the number of feasible
orderings that lead to the completion of an assembly is #P-complete.

1 Introduction

Self-assembly is a process in which small building blocks interact autonomously to
form larger structures. The self-assembly approach is especially suitable for build-
ing molecular scale objects with nano-scale features. Several representative appli-
cations and practical models of self-assembly are discussed in [1,2,3,4,5,6,7,8].

A. Goel, F.C. Simmel, and P. Sośık (Eds.): DNA 14, LNCS 5347, pp. 127–143, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

128 S. Angelov, S. Khanna, and M. Visontai

Rothemund and Winfree [9] proposed the Tile Assembly Model to formalize
and facilitate the theoretical study of the self-assembly process. This model
extends the tiling models based on Wang tiles [10]. In their work, the building
blocks, namely the DNA tiles, are abstracted as oriented unit squares. Each
side of a tile has a glue type and a (non-negative) strength associated to it. An
assembly starts from a designated seed tile and can be augmented by a tile if
the sides of the tile match the glue types of its already assembled neighbors, and
the total glue strength is no less than a threshold parameter τ , referred to as
the temperature of the assembly.

Reif, Sahu, and Yin [11] introduced a generalization of the Tile Assembly
Model, to one on general graphs, called the Accretive Graph Assembly Model.
The accretive graph assembly is a sequential process where a given weighted
graph is assembled one vertex at a time starting from a designated seed vertex.
The weight of each positive (resp. negative) edge specifies the magnitude of
attraction (resp. repulsion) between the adjacent vertices. It is feasible to add a
vertex to the assembly if the total attraction minus the total repulsion of the
already built neighbors is at least the temperature τ . Here, accretive suggests
the monotone property of the process, i.e., once a vertex is added it cannot
be removed later (cf. the Self-Destructive Graph Assembly Model [11] and the
Kinetic Tile Assembly Model where tiles can fall off [12,13]).

The Accretive Graph Assembly Model addresses some of the deficiencies of the
Tile Assembly Model. For example, it models repulsion and allows the assembly
of general graph structures. A central problem in this model is the Accretive
Graph Assembly Problem (AGAP): Given a weighted graph, a seed vertex, and an
assembly temperature τ determine if there is a sequence of feasible vertex ad-
ditions that builds the graph. Among other results, Reif et al. [11] showed that
AGAP is NP-complete for graphs with maximum degree 4 and for planar graphs
(Planar AGAP) with maximum degree 5. Subsequently, Angelov, Khanna, and
Visontai [14] improved these results by giving a dichotomy theorem which com-
pletely characterized the complexity of Planar AGAP on graphs with maximum
degree 3 and only 2 possible edge weights. Specifically, it was shown that when-
ever the allowed edge weights and τ satisfied a simple set of inequalities the
problem is NP-complete, and poly-time solvable otherwise.

A drawback of the Accretive Graph Assembly Model is that even when there
exists a feasible order of vertex additions to build the graph, its realization in
practice may require a careful control over the order of assembly. Such control is
arguably hard to implement at the molecular level, and perhaps, even in conflict
with the notion of self -assembly. To alleviate this drawback, Reif et al. [11]
considered a probabilistic variant of the model where at any point of time, the
vertex to be build is chosen uniformly at random from the set of all vertices
that can be added at that time to the partial assembly. Note that assembly still
proceeds by adding one vertex at a time (cf. insufficient attachment in [12,13]).
One of the main problems in this, so-called Stochastic Accretive Graph Assembly
Model is to determine the probability of a graph system being assembled. One
approach to estimating this probability is to consider the ratio of the number of

Robust Self-assembly of Graphs 129

orderings that assemble the input graph to the total number of feasible maximal
orderings. Reif et al. [11] showed that the problem of counting the number of ways
a given subgraph can be assembled is #P-complete, and inferred that determining
the probability of assembly of the subgraph is also #P-complete.

However, the following example shows that the number of orderings that as-
semble a graph against all possible ways to assemble a maximal subgraph can
be arbitrary far from the actual probability of assembly. Consider the following
graph with seed vertex s, a special vertex t, and two sets of vertices U and V ,
each of size n. The vertices in U are connected to s with edges with weight τ +1,
and to t with edges with weight −1. The vertices in V are connected only to t
with edges with weight τ and there is an edge (s, t) with weight τ . Here τ is the
assembly temperature. It is easy to see that starting from s, if the first vertex
that is built is t, we can complete the remaining vertices in (2n)! possible ways.
On the other hand, if we build first any vertex from U , we make t infeasible.
Furthermore, there are n! orderings that cannot be extended with additional
vertices and do not build the whole graph. Thus, the probability of assembly is
exactly 1

n+1 . On the other hand, the ratio of feasible orderings that complete
the graph to all possible ways to assemble a maximal subgraph is essentially 1.

Our Results and Techniques. We introduce a new accretive graph self-
assembly problem that captures the uncontrolled nature of the self-assembly
process: Given a graph G, does G assemble robustly, i.e., with probability 1? We
refer to this problem as Robust AGAP and characterize its complexity as follows.

Theorem 1. Robust AGAP with 2 weights is co-NP–complete on planar graphs.
Moreover, when the number of weights is 3, Robust AGAP is co-NP–complete
even on graphs with maximum degree 3.

We use ideas developed in [11,14] along with several new combinatorial gad-
gets. The use of gadgets allows us to follow the same general framework while
optimizing various parameters of the problem by finding equivalent gadgets for
each case. We note that NP-completeness of AGAP on a family of instances does
not imply that the corresponding Robust AGAP is co-NP–complete. It is easy to
construct NP-hard instances of AGAP that admit a poly-time decision algorithm
for Robust AGAP. Also, note when the number of allowed weights is one or the
maximum degree is at most two, Robust AGAP is trivially solvable in poly-time.

In light of Theorem 1, it is natural to consider Robust AGAP with two weights
on some subclasses of planar graphs. Towards this end, we study the tractability
of Robust AGAP with two weights on grid graphs. The setting, with a positive
weight wp and a negative weight wn modeling attraction and repulsion, respec-
tively, is a natural analog of the Tile Assembly Model. We systematically analyze
the complexity of Robust AGAP for all possible relationships between wp, wn, and
the assembly temperature τ . We obtain the following partial characterization.

Theorem 2. Robust AGAP on grid graphs is poly-time solvable when either τ ≤
wp + 2wn or τ > 2wp + wn.

130 S. Angelov, S. Khanna, and M. Visontai

Finally, we strengthen a result in [11] by showing #P-hardness results for count-
ing problems in the context of self-assembly. We omit the details from this version
of the paper.

Theorem 3. The problem of counting the number of ways an instance of AGAP
can be assembled, namely #AGAP, is #P-complete.

Organization. We begin by defining AGAP and Robust AGAP. In Section 3,
we show hardness of Robust AGAP using reduction from AGAP by introducing
modular gadgets. We also show hardness of Robust AGAP on planar graphs via a
new reduction from DNF tautology. In Section 4, we study a related problem to
tile assembly in the presence of repulsion, namely Robust AGAP on grid graphs.

2 Preliminaries

We adopt the Accretive Graph Assembly Model introduced in [11]. An accretive
graph assembly system is a quadruple 〈G, vs, w, τ〉, where G = (V, E) is undi-
rected weighted simple connected graph, vs ∈ V is the seed vertex, w : E → Z
is a weight function on the edges, and τ ∈ N is the temperature of the assem-
bly. The assembly process is the following. Initially, the assembly consists of vs

only. The process is a sequential attachment of vertices to the assembly, i.e.,
vertices are built one by one. Given a partially assembled graph and v ∈ V , let
Γ (v) be the set of already built neighbors of v in G. Now, v can be built iff∑

u∈Γ (v) w(u, v) ≥ τ . The model is accretive because once a vertex is built it
cannot be detached from the assembly. For u, v ∈ V we will use u ≺ v to denote
that u has already been built when vertex v is built. Note that ≺ is an irreflexive,
antisymmetric, and transitive relation. We consider the following problems:

Definition 1 (Accretive Graph Assembly Problem (AGAP)). Given an
accretive graph assembly system 〈G = (V, E), vs, w, τ〉, determine if G can be
assembled sequentially (in short, assembled) starting from the seed vertex vs,
and provide a feasible order of assembly, vs = vπ(1) ≺ vπ(2) ≺ . . . ≺ vπ(n), if one
exists. Here, π is a permutation of {1, . . . , n} and n = |V |. The AGAP problem
restricted to planar graphs is referred to as Planar AGAP. When there are at most
k different edge weights in G, we denote the problem as k-Wt. AGAP. Similarly,
when the maximum degree of G is d, we use d-Deg. AGAP.

AGAP and Planar AGAP are NP-complete [11]. Furthermore, Planar AGAP (hence
AGAP) with maximum degree 3 and two distinct weights is NP-complete [14].
Note, even when an instance G of (Planar)AGAP can be assembled, a careful
control over the order in which vertices are built may be required to assemble
G. To deal with such situations, we introduce the notion of robust self-assembly.

Definition 2 (Robust AGAP). Given an accretive graph assembly system with
underlying graph G, determine if every partial feasible order of assembly of G
can be extended to a full feasible order of assembly of G.

Robust Self-assembly of Graphs 131

Robust AGAP is in co-NP since given any ordering π, we can check in polynomial-
time that π is a partial feasible assembly of a strict subset of V that cannot be
extended to include additional vertices.

We also consider Robust AGAP on grid graphs due to its close connection with
tile assembly with repulsion.

Definition 3 (Grid Graph). An m× l grid graph Gm,l = (Vm,l, E) is a graph
such that its vertices can be arranged in an m× l rectangular (integer) grid with
edges between vertices with "1 distance 1.

3 Hardness of Robust Self-assembly

Planar 3SAT. In our hardness results, we will mostly use a reduction from
Planar 3SAT similar to [11,14]. Lichtenstein proved that Planar 3SAT, i.e., 3SAT
with the restriction that the identifying graph is planar, remains NP-complete
[15]. The identifying graph of a 3SAT formula φ is the following graph G. Vertices
of G correspond to literals and clauses of φ. There is an edge between a literal
vertex and a clause vertex if the literal participates in the clause in φ, and there
is an edge between every literal and its complement. Middleton showed that
deciding the satisfiability of a Planar 3SAT formula with a modified identifying
graph (see Fig. 1) obeying the following restrictions is still NP-complete [16]:

(1) There is a cyclic path, called the loop (the dashed circle denoted by L in
Fig. 1), that can be drawn in the plane such that it passes between all pairs
of complementary literals, but does not intersect any other edges of G.

(2) The formula φ contains only clauses in which the literals are either all positive
or all negative.

x̄1 x1

x̄2

x2

x3 x̄3

x4

x̄4

!A !
C

!B

!D

!
E

!!

!!
!!

!!

L

Fig. 1. The identifying graph for
the formula A∧B∧C ∧D∧E =
(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x4)∧ (x2 ∨
x3) ∧ (x̄3 ∨ x̄4) ∧ (x̄1 ∨ x̄2)

"
sd

"a
"
b

"
c

"d
"
td

"t′d
!!
""

""
!!

#####

$$$$$ %
%%

&
&&

2

2

2
1

1

1

1

1

1

(a) Direction gadget

"
sc

"d
"
e

"t′c
"
tc

!!
""

2

2
2

2

-2

(b) Choice gadget

""
"

'''
(((

1
1

tu

s1
u

s2
u

(c) Unidirectional gadget (for k = 2)

Fig. 2. Gadgets for wp = 2, wn = −2, and wo = 1,
and temperature τ = 2. Edges without annotation
have weight wp = 2.

132 S. Angelov, S. Khanna, and M. Visontai

(3) G can be arranged so that interior (resp. exterior) clauses have positive
(resp. negative) literals.

(4) Let C(!) denote the set of clauses in which a literal ! participates, then
|C(!)| ≤ 2 for all ! in φ.

We assume the loop to be directed. This provides a natural (cyclic) ordering of
the variables. For x and y we use the notation xy ∈ L to denote that y succeeds
x in L, e.g., x1x2 ∈ L, but x1x3 /∈ L in Fig. 1.

Gadgets. In our hardness constructions, we use modular composition of basic
graph gadgets as outlined below. In parentheses, we give the identifying vertices
of the gadgets (omitting any additional vertices for clarity). We first describe the
gadgets when there are 3 distinct edge weights (wp ≥ τ , wn < 0, and 0 < wo < τ)
and then show the required modifications for 2 distinct edge weights (wp ≥ τ
and wn < 0 only). Note that we have maximum degree 3 in the first case, and
maximum degree 5 in the latter. Also, the gadgets are planar and τ > 1.
Direction gadget (sd, td, t′d) [14]: The gadget (see Fig. 2(a)) properties are as
follows. Note, to realize the gadget, we require 2wo ≥ τ .

– If sd is built, we can complete the gadget: i.e., sd ≺ {a, b} ≺ c ≺ d ≺ {td, t′d}.
– If td and t′d are built, we can complete the gadget: i.e., {td, t′d} ≺ d ≺ c ≺

{a, b} ≺ sd.
– If only td or t′d are built, but not both, we cannot build sd via the gadget.

Choice gadget (sc, tc, [14]: The gadget (see Fig. 2(b)) properties are as follows.
Note, to realize the gadget, we require wp + wn < τ and 2wp + wn ≥ τ .

– If sc is built, we can build either tc or t′c but not both via the gadget. For
example, building d before e makes the net contribution to e from (sc, e) and
(d, e) equal to 0 which is less than τ = 2.

– If only tc (resp. t′c) is built, we cannot build t′c (resp. tc) via the gadget. This
property follows from a similar argument to the one above.

Unidirectional gadget (s1
u, . . . , sk

u, tu): The gadget (see Fig. 2(c)) properties
are as follows. Note, to realize the gadget, we require kwo ≥ τ (k > 1).

– If s1
u or s2

u are built we can build tu.
– If only tu is built, we cannot build s1

u nor s2
u via the gadget.

Weak unidirectional gadget (sw, tw, fw): The gadget (see Fig. 3(b)) proper-
ties are as follows. Note, to realize the gadget, we require wp + wo + wn < τ ,
2wo ≥ τ , and 2wp + wn ≥ τ .

– If sw is built but not tw then in any feasible order of assembly for the gadget,
we can build tw, i.e., sw ≺ su ≺ su′ = fw ≺ tu ≺ a ≺ b ≺ {c, tw}.

– If tw is built before fw, then there is an order of assembly in which fw is made
infeasible, i.e., cannot be built. For example, consider the order of assembly:
tw ≺ a ≺ b ≺ c. The contribution to fw from (c, fw) is −2 which cannot be
offset by the weights of (su, fw) and (tu, fw).

Robust Self-assembly of Graphs 133

x

x

x

x

1

2

1

n

G

.

.

.

. . .

Direction
Gadget 1

Direction
Gadget 2

Direction
Gadget 2n-1

s

Weak Unidirectional
Gadget

s
sw

¶
twfw

.

s
1d

t
1d

t¶
1d

s
2d

t
2d

t¶
2d

s
2n-1d

t
2n-1d

t¶
2n-1d

. . .

(a) Composition of graph G induced by a formula
φ (as in Theorem 4) with 2n− 1 direction gadgets
and a weak unidirectional gadget.

Unidirectional
 Gadget

1 1

-2

a

csw
twsu s¶=fu w

b
tu

(b) Weak unidirectional gadget for
graphs with maximum degree 3
and three possible edge weights,
e.g., {2, 1,−2} for τ = 2.

-1

a

c

g

e

-1
-1sw fw

tw

b

d

f

h

(c) Weak unidirectional gadget for
graphs with maximum degree 5
and two possible edge weights,
e.g., {2,−1} for τ = 2.

Fig. 3. Template for co-NP–hardness reductions for 3-Deg. 3-Wt. Robust AGAP and
5-Deg. 2-Wt. Robust AGAP and the corresponding weak unidirectional gadgets. Edges
without annotation have weight equal to the temperature τ .

The gadgets above can also be constructed using only two edge weights (e.g.,
wp = 2 and wn = −1 at τ = 2) by increasing the maximum degree to 5. For
the Direction and Unidirectional gadgets, we model an edge (u, v) of weight 1
by creating a triangle adding vertex w and setting (u, v) = −1, (u, w) = 2, and
(w, v) = 2. For the Weak unidirectional gadget, we can use the construction
given in Fig. 3(b). In general, for τ > 1, we require the following edge weight
constraints to realize each gadget:

– Direction gadget: 2wp + 2wn ≥ τ .
– Choice gadget: wp + wn < τ and 2wp + wn ≥ τ .
– Unidirectional gadget: 2wp + 2wn ≥ τ .
– Weak unidirectional gadget: 2wp + 3wn < τ and 2wp + wn ≥ τ .

In Section 3.2, we will also use the Asymmetric gadget.
Asymmetric gadget (sa, ta; ws ≥ 0, wt ≥ 0): The gadget (see Fig. 5) property
is that starting from sa (resp. ta) and building all vertices of the gadget except
ta (resp. sa) the net (weight) contribution to ta (resp. sa) is wt (resp. ws).

3.1 Robust AGAP Is Co-NP–Complete

To show our hardness results, we reduce AGAP to Robust AGAP. Given an as-
sembly system on graph G, we construct an instance H of Robust AGAP such
that there is a maximal ordering that does not assemble all of H iff G can be

134 S. Angelov, S. Khanna, and M. Visontai

assembled. For the purpose, we will compose G with direction gadgets and one
weak unidirectional gadget (identified by sw, tw, and fw) such that if all of G
can be assembled then the vertex fw can be made infeasible (via tw). But, if G
cannot be assembled, H robustly assembles (via sw).

For the basis of our reductions we will use the following result shown in [14].

Theorem 4 ([14]). Given a Planar 3SAT formula φ, there is an instance of
3-Deg.3-Wt.Planar AGAP (also an instance of 5-Deg.2-Wt.Planar AGAP)
where the underlying graph G = (V, E) has a subset of vertices V ′ ⊂ V sat-
isfying:

(i) V ′ consists of the seed vertex and the literals of φ: V ′={s, x1, x̄1, . . . , xn, x̄n},
(ii) each vertex in V ′ has degree 2,
(iii) G can be assembled iff all vertices in V ′ can be built, and
(iv) all vertices in V ′ can be built iff φ is satisfiable.

Furthermore, G consists of carefully composed choice and direction gadgets only.

We now show that Robust AGAP is co-NP–complete.

Theorem 5. 3-Deg.3-Wt.Robust AGAP is co-NP–complete.

Proof. W.l.o.g., we show the proof for τ = 2 and weights {2, 1,−2}. By using
the same gadgets with different weights, the argument extends to any τ > 1.

We use reduction from an AGAP instance with graph G, seed vertex s, edge
weights {2, 1,−2} and formula φ containing literals x1, x̄1, . . . , xn, x̄n (as in The-
orem 4). From G, we obtain graph H in the following way (see Fig. 3(a)). We use
2n−1 direction gadgets where the ith gadget is identified by tdi , t

′
di

, and sdi. The
first copy is connected to x1 and x̄1 by edges (x1, td1) and (x̄1, t′d1

). For i > 1, the
ith gadget is connected to the (i − 1)th gadget by an edge (sdi−1 , tdi) and to G
by an edge (y, t′di

), where y = x" i
2 #+1 for even i, and y = x̄" i

2 #+1 otherwise. The
last direction gadget is connected to a weak unidirectional gadget (identified by
sw, tw, and fw) by an edge (sd2n−1 , tw). Finally, an additional vertex s′ is set to
be the seed vertex and is connected by edges (s′, s) and (s′, sw). All connecting
edges have weight equal to 2.

We now prove that there is a feasible maximal ordering H that does not
assemble all of H iff G can be assembled. We will use the fact that sd2n−1 can
be built without tw being built iff G can be assembled (from Theorem 4 and
properties of direction gadgets). Furthermore, if sd2n−1 is built, we can build all
of G via the direction gadgets.

(only-if) Suppose G cannot be assembled. Then in any feasible order of as-
sembly of H , s′ ≺ sw ≺ fw ≺ tw ≺ sd2n−1 . Now, once sd2n−1 is built, we can
assemble all vertices of G corresponding to literals via the direction gadgets.
Therefore, we can assemble all of G and thus all of H .

(if) On the other hand, if G can be assembled then we can build sd2n−1 and
therefore tw before sw and fw. Using the properties of the weak unidirectional
gadget, we conclude fw can be made infeasible.

Robust Self-assembly of Graphs 135

-1 1

xs

x

x

xt

1 1

1
1

A B

E

11

1

1 1

Choice Gadget

Unidrectional
Gadgets

(a) Gadget replacing a variable x, partici-
pating in clauses A,B, E along the loop L.

-1
xs

x

x

E

1

1
F1

...

...

...

(b) Fragment: Literal participating
in two clauses with two literals each.

Fig. 4. Construction for 6-Deg. 3-Wt. Robust AGAP on planar graphs for edge weights
{−1, 1, 3} and temperature τ = 3. Edges without annotation have weight 3.

Using the equivalent gadgets for the case when there are only 2 possible edges
weights, we obtain the next corollary.

Corollary 1. 5-Deg.2-Wt. Robust AGAP is co-NP–complete.

3.2 Robust AGAP on Planar Graphs Is Co-NP–Complete

Note that in the previous section the constructed graph H is not planar re-
gardless of G being planar. We show that Robust AGAP on planar graphs is
co-NP–complete by using reduction from DNF tautology. We construct a planar
graph that robustly self-assembles iff the underlying formula is a tautology.

Let formula φ be a Planar 3SAT formula. Then φ̄ is a DNF formula that
has the same identifying graph as φ up to a permutation of the variables. Let
the loop L induce the ordering of the variables x1, . . . , xn and recall that each
clause has either 2 or 3 literals. Given φ̄ and its identifying graph, we modify the
graph similarly to the constructions given in [11,14] but using different gadgets.
We then connect all clauses (preserving planarity) such that if any one clause is
built we can build the remaining clauses and all other vertices. In the end, we
show that the graph robustly self-assembles iff φ̄ is a tautology.

We now describe the details of the construction below for temperature τ = 3
and draw the edge weights from the set {3, 1,−1}. For every variable x and
its negation x̄, we replace the edge (x, x̄) in the graph (Fig. 1) with the gadget
depicted in Fig. 4(a). For x and y, xy ∈ L\{xnx1}, we connect the corresponding
gadgets with edge (tx, sy) with weight w(tx, sy) = 3. The gadget ensures that
unless all literal vertices adjacent to a clause are built (i.e., the clause is satisfied)
then for each variable x at most one of x or x̄ can be built following the ordering
induced by L. Formally, let i be the largest index such that xi or x̄i is built.
Then, exactly one of xj or x̄j , for all j ≤ i, are built if there is no clause with
all literals already built.

We connect each literal # to the clauses it participates as follows. If a clause
A ∈ C(#) has two literals, and # is induced by the variable with smaller index,

136 S. Angelov, S. Khanna, and M. Visontai

-2sb tb

(a) Starting from sb re-
sults in a net contribution
of 1 to tb, while starting
from tb results in a net
contribution of 3 to sb.

-2
-2

s taa

(b) Starting from sa re-
sults in a net contribution
of 2 to ta, while starting
from ta results in a net
contribution of 3 to sa.

1sb tb 2sa ta33

(c) Simplified graphical notation of the gadgets.

Fig. 5. Asymmetric gadgets for τ = 3 and weights
{−2, 3}. Graphically, we will represent the gadgets
with bidirectional edge with corresponding weights at
end-points.

-2

3

xs

x

x ys

1
A B

E

3

2

2

3

3

3
1

1

Fig. 6. Composition of gad-
gets for 9-Deg. 2-Wt. Robust
AGAP on planar graphs for edge
weights {−2, 3} and τ = 3.

then ! and A are connected with an edge of weight 2. Otherwise, ! and A are
connected with an edge of weight 1. We simulate edge weight 2 by a triangle
with two edges of weight 1 and one with weight 3 (see Fig. 4(a)). If a literal is
connected to two clauses in this manner, then the induced two triangles share
the edge with weight 3 adjacent to the literal (see Fig. 4(b)).

Finally, we want to connect all clauses with paths of edges with weight 3 such
that if one clause is built then we can build the remaining clauses, planarity is
preserved, and the maximum degree of the resulting construction is low. Consider
the clauses with only positive literals (similarly negative). A clause A = xa ∧
xb ∧ xc (a < b < c) is contained in clause B = xi ∧ xj ∧ xk (i < j < k) iff
i < a < c < j or j < a < c < k. Note that the relation is transitive. Let p(A)
denote the parent of A, i.e., the clause B that contains A such that there is no
other clause C such that C contains A and B contains C. Note that clauses are
properly nested and thus preserve planarity.

Connect all clauses with a common parent in a binary tree where edges have
weight 3 and clauses are the leaves. W.l.o.g., this tree preserves planarity. Fur-
thermore, it ensures that if a clause can be built then all clauses with the same
parent can be built. We then connect the root of the tree with the parent clause
of the leaves. We introduce vertices, rp and rn, corresponding to the null par-
ents of the clauses with positive and negative literals, respectively, and an edge
(rp, rn) of weight 3. Note that since we did not connect xn and x1 above, this
edge also preserves planarity.

The maximum degree of the above construction is 6. Each clause has three
edges due to connections with literals (if the clause has two literals, one literal
contributes two edges). One edge connects the clause to its parent and to the
root of at most two trees of contained clauses. The literals have degree at most
6 and all other vertices have degree at most 5.

Robust Self-assembly of Graphs 137

For graph G, a maximal order of assembly has the following properties.

– For each variable x, the vertex sx is built. Therefore, vertex x or x̄ (or both)
is also built.

– Assume there is a built clause and let C be the first such clause in the
ordering. Then all literals participating in C are built before C.

– If a clause is built then all clauses are built: Recall all clauses are connected
by weight 3 edges and adjacent to only positive edges.

– If all clauses are built then all vertices are built: Since all clauses and all sx’s
are built, each literal receives contribution of at least 3+(−1)+1 ≥ 3. After
the literals are built, all of the remaining vertices can be built.

– If no clause is built then exactly one of x and x̄ is built, for each variable x.
Such a partial assembly corresponds to a certificate that φ is not a tautology.

Hence, we obtain the following theorem.

Theorem 6. 6-Deg.3-Wt.Robust AGAP on planar graphs is co-NP–complete.

Using τ = 3 and only two edge weights, we can modify the above construction
but the resulting maximum degree will be 9 (see Figs. 5 and 6).

Corollary 2. 9-Deg.2-Wt. Robust AGAP on planar graphs is co-NP–complete.

4 Robust AGAP on Grid Graphs

Grid graphs are of particular interest due to their correspondence to the Tile
Assembly Model. For completeness, we mention that AGAP on grid graphs with
3 weights is NP-complete by embedding on a grid the hardness construction of
[14] for planar graphs of maximum degree 3 and 2 weights (the third weight is
introduced to pad the construction to be a grid graph).

A qualitative difference between AGAP and Robust AGAP is that in instances
that assemble robustly, finding a feasible order of assembly is easy, i.e., a simple
algorithm of building any vertex (which is feasible at the time) should be able
to find such an order of assembly. On the other hand, it is enough to show one
maximal ordering on vertices that only partially assembles the input graph to
certify a graph is a NO instance for the Robust AGAP.

For our analysis, we introduce the recurring notions of inextensibility and
forbidden structures.

Definition 4 (Inextensibility). Given an accretive graph assembly system
〈G, vs, w, τ〉, a subgraph G′ of G with V (G′) ! V (G) is called inextensible if
G′ can be assembled starting from the seed vertex without building any vertex in
V (G)\V (G′), and once G′ is built no other vertex can be added to the assembly.
Such an order of assembly of G′ is referred to as inextensible ordering.

Remark 1. We assume that each vertex is reachable through a path of positive
edges. Otherwise it is clear that the instance cannot be assembled.

138 S. Angelov, S. Khanna, and M. Visontai

Definition 5 (Forbidden Structure). Let G be a grid graph and H a con-
nected subgraph of G. We call v ∈ V (H) a boundary vertex if v is on the grid
boundary or ∃u ∈ V (G) \ V (H) such that (v, u) ∈ E. We say H is a forbid-
den structure if the seed vertex vs /∈ V (H) and, for each boundary vertex v,∑

u∈(V (G)\V (H))∩Γ (v) w(v, u) < τ , where Γ (v) denotes the set of vertices adja-
cent to v. The size of H is |V (H)|.

Intuitively, the boundary vertices of a forbidden structure can be made infeasible
by assembling all the outside neighbors of these vertices. The following theorem
gives a sufficient condition when these neighbors can be assembled, and hence
gives a partial characterization of Robust AGAP in terms of forbidden structures.

Theorem 7. If G cannot robustly self-assemble, then there exists a forbidden
structure. Conversely, consider a forbidden structure H in G. Let B denote the
set of boundary vertices of H, and Γ (B) the set of vertices in V (G)\V (H) which
are adjacent to some vertex in B or are on one diagonal from a vertex of B.
Then if every edge (u, v) such that u ∈ Γ (B) and v ∈ V (G) \ V (H) has weight
at least τ , G cannot robustly self-assemble.

Proof. The first part follows from the definition of forbidden structure. For the
second part, consider a forbidden structure H with a maximum number of ver-
tices on the grid boundary. Note that in this case the subgraph induced by Γ (B)
is connected and have positive edges only. Furthermore, every path from the seed
to a vertex in V (H) crosses Γ (B). Fix an order of assembly for G and consider
the first time it reaches a vertex in Γ (B). Since no vertex in V (H) is built at this
point, we can build all vertices in Γ (B) without using any vertex in V (H). Since
Γ (B) includes all outside neighbors of H , this ordering makes H infeasible. #$

4.1 Robust AGAP on Grid Graphs with 2 Weights

We now focus on Robust AGAP on grid graphs with two possible edge weights.
The case when there is only one possible weight is trivial, i.e., the graph robustly
self-assembles iff this weight is ≥ τ . Table 1 summarizes all possible cases when
there are two possible edge weights, wp ≥ τ and wn < 0. Note that when

Table 1. Cases of Robust AGAP on grid graphs with 2 edge weights wp ≥ τ and wn < 0

Case Results

τ ≤ wp + 3wn Poly-time solvable
τ ∈ (wp + 3wn, wp + 2wn] Poly-time solvable
τ ∈ (wp + 2wn, wp + wn] Open problem
τ ∈ (wp + wn, 2wp + 2wn] Open problem
τ ∈ (2wp + 2wn, 2wp + wn] Open problem
τ ∈ (2wp + wn, 3wp + wn] Poly-time solvable (Theorem 9)
τ > 3wp + wn Poly-time solvable

Robust Self-assembly of Graphs 139

both weights are positive the instance is trivial [11]. When there is only one
positive weight, it must be at least τ , otherwise the instance is not feasible.
When τ ≤ wp + 3wn, the graph G robustly self-assembles iff there is a spanning
tree of positive edges (see Remark 1) since even 3 negative neighbors cannot
make a vertex infeasible. If wp + 3wn < τ ≤ wp + 2wn, then we can show G
robustly self-assembles iff there does not exists a vertex (other than the seed
vertex) with 3 negative edges incident on it. Furthermore, if 3wp + wn < τ then
the graph G robustly self-assembles iff there is no negative edge in G.

The remaining cases for 2 edge weights appear nontrivial. In what follows, we
make progress towards understanding the complexity of those cases by giving a
poly-time algorithm that solves one of the cases. In our analysis, we will assume
that the seed vertex is connected to its neighbors in G with positive weight edges.

4.2 Robust AGAP on Grid Graphs with 2wp + wn < τ ≤ 3wp + wn

We now consider a nontrivial case of Robust AGAP on grid graphs when there
are 2 edge weights, wp and wn, such that 2wp + wn < τ ≤ 3wp + wn. We
show that this case is poly-time solvable since in this case the existence of a
forbidden structure is both sufficient and necessary condition of the fact that
G cannot robustly assemble. Therefore, we first categorize forbidden structures
into groups and then proceed with a theorem giving the desired characterization.

Definition 6 (Nearby Negative Edges). A pair of disjoint edges e1 and e2

with negative weights are nearby iff they have adjacent nodes (see Fig. 7(a)).

Theorem 8. If there is a forbidden structure in G with 2wp+wn < τ ≤ 3wp+wn

then at least one of the following conditions holds:

(i) there is a negative path of length 2 or more, or
(ii) there is a negative edge with at least one end-point on the grid boundary, or
(iii) there is an elementary forbidden structure (shown in Fig. 7).

Furthermore, if (i), (ii), or (iii) holds, then G cannot robustly self-assemble.

Proof (of the first part of Theorem 8). If we have a negative path of length 2
or a negative edge with at least one of its end-point on the grid boundary, the
statement is trivial. In fact, these are the only forbidden structures of size 1 (see
Definition 5). Assume now that there are neither negative paths of length 2 nor
negative edges with at least one end-point on the grid boundary.

Consider the boundary vertices of the forbidden structure. If there are two
boundary vertices which are adjacent to each other, then we have nearby negative
edges. Thus the only possibility is that the boundary vertices are from at distance
two from each other (on the diagonal). Also note that if there are three boundary
vertices on the same diagonal line, the middle vertex will be an end-point of a
negative edge which has a nearby edge (one of the edges with an end-point on
the diagonal). Hence, the only remaining possibility is if the boundary of the
forbidden structure consists of vertices which are distance two from each other

140 S. Angelov, S. Khanna, and M. Visontai

-2-2 -2

-2

-2

-2

-2

-2

a

b d

c e

f

g

h

m

n o

p

i

j

k
l

(a) Nearby negative edges

-2 -2

-2

-2

(b) Non-nearby edges

Fig. 7. Elementary forbidden structures for weights {−2, 1} and τ = 1. Solid edges
without annotation have weight 1; dashed edges have weight 1 or −2. The vertices of
the forbidden structures are sown with square nodes.

(only two vertices on each diagonal). The only such structure is formed by 4
vertices vertices arranged in a diamond shape (if one of the 4 vertices is missing
we can always complete the structure). In this case, depending on the orientation
of the incident edges, we either have nearby edges or the elementary forbidden
structure in Fig. 7(b).

Now we prove the second part of the theorem in the following lemmas.

Lemma 1. Let (u, v) be a negative edge and let p be a neighbor of u that has
common neighbors with v. If π is a feasible order of assembly such that p ≺ u ≺ v
in π, then either there is an ordering (possibly inextensible) where v is built before
u, or there is an ordering when u is built but v is made infeasible.

Proof. Note that if (u, v) is a negative edge and u is built before v, then when v
is built, it must have 3 neighbors connected with positive edges that have already
been built. Now consider the time when p is built in π. If we cannot build the
common neighbor, say q, of p and v, then by building u we make v infeasible.
This is because q depends on v to be built and vice versa. Now if q can be built,
we can either build v, or by building u before, we make v infeasible as it has at
most two neighbors connected with positive edge.

Lemma 2. If there is a negative edge with at least one end-point on the grid
boundary or if there is a path of negative edges of length at least 2 then the grid
cannot robustly self-assemble.

Proof. Consider a negative edge (u, v) with at least one end-point on the grid
boundary. If both u and v are on the boundary then there is no feasible order of
assembly since by building one of the vertices, we make the other one infeasible.
When only one end-points is on the boundary, say u, then it must be the case
u ≺ v in any order of assembly since 2wp +wn < τ . However, since any neighbor
of such u is as in Lemma 1, we can either built v before u or make v infeasible.

Now assume that all negative edges have end-points strictly inside the grid. Let
P = {(v, u), (u, w)} be a negative path. Consider a feasible order of assembly π.
Clearly, u ≺ {v, w}. Since each neighbor of u other than v and w is as in Lemma
1 with respect to either v or w, the claim follows.

Robust Self-assembly of Graphs 141

Lemma 3. If there are two nearby negative edges, then the grid cannot robustly
self-assemble.

Proof. W.l.o.g., the premise conditions of Lemma 2 do not hold. We proceed
by case analysis on the types of nearby edges given in Fig. 7(a). When there
are two parallel nearby negative edges (a, b) and (c, d), consider the first vertex
from {a, b, c, d} that is built, say a. Now, building c right after a completes the
forbidden structure {b, d}. For what follows, we assume there are no parallel
nearby negative edges.

Now consider the case of nearby edges (e, f) and (g, h) with forbidden struc-
ture {f, g}. Consider the first time in some feasible ordering of assembly, a vertex
adjacent to say one of {e, f} other than g is built. If it is a neighbor of e we can
extend the ordering so far to build e. If it is a neighbor of f , we use Lemma 1 to
argue that e can be built before f , otherwise e can be made infeasible. Similarly,
we can argue that we can build h before g. Note that if after building e, we
cannot reach a neighbor of {g, h} then the resulting ordering is inextensible. For
what follows, we assume there are no such nearby edges.

It remains to argue that if there is any of the remaining combinations of nearby
edges (forbidden structures) then there is an inextensible ordering. Consider an
order of assembly up to the point where we reach a vertex at distance 1 from a
vertex of nearby edges for the first time. Call this vertex r.

First, consider the case of nearby edges (i, j) and (k, l). If r is the North
neighbor of i, after r we can build i and follow clockwise the black nodes to
build l. Similarly, if r is the East neighbor of l we build l first and proceed in
counterclockwise direction to build i. For the remaining choices of r, we can
follow the unique paths on the black nodes from r to i and from r to l that
do not include the empty node (which might have a neighbor that is built and
connected with a negative edge to it). The black nodes are such that if they
cannot be built along this path (because of negative edge) it would contradict
the choice of r since we reached such neighbor of nearby edges earlier. A special
care is needed for the edges shown with dashed line which might be negative
edges. However, the only possibility an end-point of such an edge is included in
the above paths is if it coincides with r, contradicting the choice of r.

Now, let the reached nearby edges be in configuration as (m, n) and (o, p).
Furthermore, w.l.o.g. there is no reached configuration as in the previous case
(i.e., none of the horizontal dashed edges are negative). Applying the same argu-
ment as above does not work since a path from m to p always includes one of the
depicted empty nodes and furthermore it can be blocked by the vertical dashed
edges if negative. Suppose both vertical dashed edges are negative edges. Then,
depending on where r is, we can build all vertices in the row of m (resp. p) mak-
ing o (resp. n) infeasible. Now assume that at most one of the vertical dashed
edges is a negative edge, say the leftmost one. We can show that even if the
empty node on the row of m had a neighbor connected with negative weights
that is already built we can construct m and p from r. We note that when we
try to use such “disabled” vertices it is the case that they are not part of nearby
edges. Our argument uses the fact that if we have a negative edge (u, v) that is

142 S. Angelov, S. Khanna, and M. Visontai

not nearby other negative edge, if we build v we can build the two horizontal
(resp. vertical) neighbors of u by building the horizontal (resp. vertical) neigh-
bors of v. For example, if the negative edge that disables one of the empty nodes
in the Fig. 7(b) is horizontal and r is adjacent to m, then we can build the east
vertex of o and therefore the east neighbor of p and p itself. The cases when the
negative edge is vertical or r is some other vertex are slightly more involved (we
need to argue for at most two non nearby edges) but use the same ideas.

Lemma 4. If there is a forbidden structure shown in Fig. 7(b) the grid cannot
robustly self-assemble (where the seed vertex is not one of the square nodes).

Proof. W.l.o.g., we can assume that there are no nearby negative edges, other-
wise the claim follows from Lemma 3. Consider the first time a round node is
reached on this structure. Since there are no nearby negative edges, the round
end-points of negative edges shown Fig. 7(b) can be built. Now, the square end-
points of those edges cannot be built since the center vertex cannot be built.

Since the conditions of Theorem 8 are poly-time testable (and hence existence
of forbidden structures is poly-time decidable), we obtain the following theorem.

Theorem 9. Robust AGAP on grid graphs is poly-time solvable when 2wp+wn <
τ ≤ 3wp + wn.

References

1. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

2. Rothemund, P.: Using lateral capillary forces to compute by self-assembly. Proc.
Nat. Acad. Sci. U.S.A. 97, 984–989 (2000)

3. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman,
N.C.: Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. J. Amer. Chem. Soc. 122, 1848–1860 (2000)

4. Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA
tile complexes for barcode-patterned lattices. Proc. Nat. Acad. Sci. U.S.A. 100,
8103–8108 (2003)

5. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2, 2041–2053 (2004)

6. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adle-
man, L.M.: DNA triangles and self-assembled hexagonal tilings. J. Amer. Chem.
Soc. 126, 13924–13925 (2004)

7. He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA
two-dimensional (2D) arrays. J. Amer. Chem. Soc. 127, 12202–12203 (2005)

8. Malo, J., Mitchell, J.C., Vénien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J.,
Turberfield, A.J.: Engineering a 2D protein-DNA crystal. Angewandte Chemie In-
ternational Edition 44, 3057–3061 (2005)

9. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC, pp. 459–468 (2000)

10. Wang, H.: Proving theorems by pattern recognition II. Bell Systems Technical
Journal 40, 1–41 (1961)

Robust Self-assembly of Graphs 143

11. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive sys-
tems and self-destructible systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005.
LNCS, vol. 3892, pp. 257–274. Springer, Heidelberg (2006)

12. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–
144. Springer, Heidelberg (2004)

13. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti,
C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer,
Heidelberg (2005)

14. Angelov, S., Khanna, S., Visontai, M.: On the complexity of graph self-assembly
in accretive systems. Natural Computing 7, 183–201 (2008)

15. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343
(1982)

16. Middleton, A.A.: Computational complexity of determining the barriers to inter-
face motion in random systems. Phys. Rev. E 59, 2571–2577 (1999)

