
Proceedings of Machine Learning Research vol 65:1–37, 2017

Learning with Limited Rounds of Adaptivity: Coin Tossing,
Multi-Armed Bandits, and Ranking from Pairwise Comparisons

Arpit Agarwal AARPIT@SEAS.UPENN.EDU

Shivani Agarwal ASHIVANI@SEAS.UPENN.EDU

Sepehr Assadi SASSADI@CIS.UPENN.EDU

Sanjeev Khanna SANJEEV@CIS.UPENN.EDU

Department of Computer and Information Science, University of Pennsylvania

Abstract
In many learning settings, active/adaptive querying is possible, but the number of rounds of adap-
tivity is limited. We study the relationship between query complexity and adaptivity in identifying
the k most biased coins among a set of n coins with unknown biases. This problem is a common
abstraction of many well-studied problems, including the problem of identifying the k best arms in
a stochastic multi-armed bandit, and the problem of top-k ranking from pairwise comparisons.

An r-round adaptive algorithm for the k most biased coins problem specifies in each round the
set of coin tosses to be performed based on the observed outcomes in earlier rounds, and outputs
the set of k most biased coins at the end of r rounds. When r = 1, the algorithm is known as
non-adaptive; when r is unbounded, the algorithm is known as fully adaptive. While the power
of adaptivity in reducing query complexity is well known, full adaptivity requires repeated inter-
action with the coin tossing (feedback generation) mechanism, and is highly sequential, since the
set of coins to be tossed in each round can only be determined after we have observed the out-
comes of the coin tosses from the previous round. In contrast, algorithms with only few rounds of
adaptivity require fewer rounds of interaction with the feedback generation mechanism, and offer
the benefits of parallelism in algorithmic decision-making. Motivated by these considerations, we
consider the question of how much adaptivity is needed to realize the optimal worst case query
complexity for identifying the k most biased coins. Given any positive integer r, we derive essen-
tially matching upper and lower bounds on the query complexity of r-round algorithms. We then
show that Θ(log∗ n) rounds are both necessary and sufficient for achieving the optimal worst case
query complexity for identifying the k most biased coins. In particular, our algorithm achieves
the optimal query complexity in at most log∗ n rounds, which implies that on any realistic input,
5 parallel rounds of exploration suffice to achieve the optimal worst-case sample complexity. The
best known algorithm prior to our work required Θ(log n) rounds to achieve the optimal worst case
query complexity even for the special case of k = 1.

Keywords: Most biased coins, Best arms identification, Limited adaptivity, Multi-armed bandits,
Ranking from pairwise comparisons, Top-k ranking, Active learning, Adaptivity

1. Introduction

In the classical probably approximately correct (PAC) model, the learner is a passive observer who
is given a collection of randomly sampled observations from which to learn. In recent years, there
has been growing interest in active learning models, where the learner can actively request labels or
feedback at specific data points; the hope is that, by adaptively guiding the data collection process,

c© 2017 A. Agarwal, S. Agarwal, S. Assadi & S. Khanna.

AGARWAL AGARWAL ASSADI KHANNA

learning can be accomplished with fewer observations than in the passive case. Most learning
algorithms operate in one of these settings: learning is either fully passive, or fully active.

In an increasing number of applications, while active querying is possible, the number of rounds
of interaction with the feedback generation mechanism is limited. For example, in crowdsourcing,
one can actively request feedback by sending queries to the crowd, but there is typically a waiting
time before queries are answered; if the overall task is to be completed within a certain time frame,
this effectively limits the number of rounds of interaction. Similarly, in marketing applications, one
can actively request feedback by sending surveys to customers, but there is typically a waiting time
before survey responses are received; again, if the marketing campaign is to be completed within a
certain time frame, this effectively limits the number of rounds of interaction.

In this paper, we study active/adaptive learning with limited rounds of adaptivity, where the
learner can actively request feedback at specific data points, but can do so in only a small number of
rounds. Specifically, the learner is free to query any number of data points in each round; however,
all data points to be queried in a given round must be submitted simultaneously, based only on
feedback received in previous rounds. In this setting, we are interested not only in bounding the
overall query complexity of the learner, but rather in understanding the tradeoff between the number
of rounds and the overall query complexity: how many queries are needed given a fixed number of
rounds, and conversely, given a target number of queries, how many rounds are necessary?

We study this question in the context of an abstract coin tossing problem, and discuss how the
results give us novel insights into the round vs. query complexity tradeoff for two problems that
have received increasing interest in the learning theory community in recent years: multi-armed
bandits, and ranking from pairwise comparisons1.

The abstract coin problem we study can be described as follows: say we are given n coins with
unknown biases, each of which can be ‘queried’ by tossing the coin and observing the outcome
of the toss. The goal is to find the k coins with highest biases. This problem is a special case of
the problem of finding the k best arms in a stochastic multi-armed bandit (MAB), and has received
considerable attention in recent years (Even-Dar et al., 2006; Kalyanakrishnan and Stone, 2010;
Audibert and Bubeck, 2010; Kalyanakrishnan et al., 2012; Gabillon et al., 2012; Jamieson et al.,
2013; Bubeck et al., 2013; Karnin et al., 2013; Chen and Li, 2015; Kaufmann et al., 2016; Jun et al.,
2016; Chen et al., 2017). In particular, it is known that O

(n log k
∆2
k

)
coin tosses suffice to find the k

most biased coins with arbitrarily high constant probability, where ∆k is the gap between the k-th
and (k + 1)-th largest biases (Kalyanakrishnan and Stone, 2010; Even-Dar et al., 2006). It is also
known that this bound is optimal in terms of the worst-case query complexity (Kalyanakrishnan
et al., 2012; Mannor and Tsitsiklis, 2004). However, the previous best algorithms for this problem
all required Ω(log n) rounds of adaptivity to achieve the optimal worst-case query complexity. But
are Ω(log n) rounds necessary for achieving this optimal query complexity? (see Table 1; see also
Section 2 for the exact definition of parameters involved).

We present an algorithm, AGRESSIVE-ELIMINATION, that significantly improves upon the
round complexity of state-of-the-art algorithms, yet still achieves the optimal worst-case query com-
plexity: given the gap parameter ∆k, our algorithm returns the k most biased coins using O

(n log k
∆2
k

)
coin tosses with arbitrarily large constant probability in only log∗ (n) rounds of adaptivity. The
algorithm proceeds in rounds and in each round performs: (i) an “estimation” phase to approximate

1. In the MAB and ranking literature, the query complexity of an algorithm is often referred to as simply its sample
complexity. In this paper we use the two terms interchangeably.

2

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

0 2 4 6 8 10 12 14 16

round

10
0

10
1

10
2

10
3

10
4

10
5

S
iz
e
o
f
c
a
n
d
id
a
t
e
s
e
t

Aggressive-Elimination

Halving

Figure 1: An example illustrating that our algorithm eliminates items more “aggresively” as com-
pared to the HALVING algorithm of Kalyanakrishnan and Stone (2010); Even-Dar et al.
(2006). Here, n = 216 and k = 1.

the bias of each coin, and (ii) an “elimination” phase to reduce the number of possible candidates
and finds the top k most biased coins among the remaining candidates in the subsequent rounds. The
elimination phase gets more “aggressive” over the rounds: in each round, the number of remaining
coins reduces to an exponentially smaller fraction (across different rounds) of the current coins.
This allows the algorithm to find the top k most biased coins in only log∗ n rounds of adaptivity
(as opposed to log n if the fraction was constant throughout). Figure 1 gives an example of the rate
at which items are eliminated per round for AGRESSIVE-ELIMINATION algorithm, and the log n-
round HALVING algorithm (Kalyanakrishnan and Stone, 2010; Even-Dar et al., 2006). The main
insight behind our algorithm is that by removing more and more coins in the elimination phase we
can allocate more and more budget (i.e., samples for each remaining coin) to the estimation phase
which in turn results in even more decrease in the number of candidate coins for the next round.

We further prove, perhaps surprisingly, that the log∗ (n) bound achieved by our algorithm is
essentially the “correct” number of rounds of adaptivity required for obtaining the optimal worst-
case query complexity, even when k is only a constant. More formally, we prove that any algorithm
that only usesO

(
n

∆2
k

)
coin tosses and recovers the set of top k most biased coins with some constant

probability requires Ω(log∗ (n)) rounds of adaptivity. Our lower bound proof is based on analyzing
a family of “hard” instances for the problem which consists of k heavy coins and n− k light coins.
Using information- theoretic machinery, we show that any algorithm that uses small number of coin
tosses in the first round can only “trap” the set of heavy coins in a large pool of candidates. We then
inductively show that this forces the algorithm to still solve a “hard” problem on a large domain in
the subsequent rounds which we show is not possible due the limited budget of the algorithm.

Finally, we address the question of round vs. query complexity tradeoff for this problem in a
more fine-grained level: For any fixed number of rounds r, we present an algorithm for the above
coin problem that uses O

(
n

∆2
k
(ilog(r)(n) + log k)

)
coin tosses and prove a matching lower bound

whenever k is a constant. Here, ilog(r)(·) denotes the iterated logarithm of order r. Our results pro-

3

AGARWAL AGARWAL ASSADI KHANNA

Table 1: Summary of some results for k best arms identification in stochastic multi-armed bandits.
Algorithm # Rounds of Adaptivity Sample/Query Complexity

k = 1

Even-Dar et al. (2002) Θ(log(n)) O(n log(1/δ)
∆2

1
)

Audibert and Bubeck (2010) Θ(n) O
(∑n

i=1 ∆−2
i · log2(nδ)

)
Chen and Li (2015) Ω(log(n)) O

(∑n
i=1 ∆−2

i · log(
log(min{n,∆−1

i })
δ)

)

All k ∈ [n]

Kalyanakrishnan and Stone (2010) Θ(log(n)) O(n log(k/δ)
∆2

k
)

Bubeck et al. (2013) Θ(n) O
(∑n

i=1 ∆−2
i · log2(nδ)

)
This paper log∗(n) O(n log(k/δ)

∆2
k

)

Table 2: Summary of some results on top-k ranking from pairwise comparisons.

Pairwise Comparison Model # Rounds of Adaptivity Sample/Query Complexity

Chen and Suh (2015) Bradley-Terry-Luce Non-adaptive O
(

n log(n/δ)
(w[k]−w[k+1])2

)
Shah and Wainwright (2015) General Non-adaptive O(n log(n/δ)

∆2
k

)

Braverman et al. (2016) Noisy Permutation 4 O
(
n log(n/δ)
(1−2p)2

)
Busa-Fekete et al. (2013), General Ω

(
∆−2
k · log(n)

)
O
(∑n

i=1 ∆−2
i · log(n

δ∆i
)
)

Heckel et al. (2016)

This paper General log∗(n) O(n log(k/δ)
∆2

k
)

vide a near-complete understanding of the power of each additional round of adaptivity in reducing
the query complexity of the algorithms for this problem.

Our results for the above coin problem are also applicable to the problem of top-k ranking
from pairwise comparisons, another problem that has received considerable interest in recent years
(Feige et al., 1994; Busa-Fekete et al., 2013; Chen and Suh, 2015; Shah and Wainwright, 2015;
Jang et al., 2016; Heckel et al., 2016; Davidson et al., 2014; Braverman et al., 2016). Most top-k
ranking approaches we are aware of assume either a non-adaptive setting or a fully adaptive setting;
the main exceptions to this are Feige et al. (1994); Davidson et al. (2014); Braverman et al. (2016),
who consider the top-k ranking problem under limited rounds of adaptivity, but under the restricted
noisy permutation model of pairwise comparisons (defined in Section 3). In our work, we make no
assumptions on the underlying pairwise comparison model. Again, our results for the abstract coin
problem above give us a novel algorithm for top-k ranking from pairwise comparisons that requires
only log∗(n) rounds, with matching lower bounds; to our knowledge, this is the first study of this
problem under general pairwise comparison models in the limited-adaptivity setting. See Table 2
for a summary (see also Section 3 for the exact definition of parameters involved).

Our work shows that for a well-studied class of learning problems, the power of fully adaptive
exploration in minimizing worst-case query complexity is realizable by just a few rounds of adaptive
exploration. In fact, for any realistic input size for the problems considered here, our work shows
that at most 5 adaptive rounds are needed to realize optimal worst-case query complexity. We hope

4

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

that our techniques can be used for other classes of learning problems to gain an insight into how
the query complexity changes as one interpolates between the fully passive and fully active settings.

1.1. Related Work

The general question of computation with limited rounds of adaptivity has been studied for certain
problems such as sorting and selection in the theoretical computer science (TCS) literature under
the term parallel algorithms (Valiant, 1975; Bollobás and Thomason, 1983; Ajtai et al., 1986; Pip-
penger, 1987; Alon and Azar, 1988; Cole, 1988; Bollobás and Brightwell, 1990; Feige et al., 1994;
Davidson et al., 2014; Braverman et al., 2016). However, with the exception of Feige et al. (1994);
Davidson et al. (2014); Braverman et al. (2016), these studies all operate in a deterministic set-
ting, where any sample yields a deterministic outcome; this is unlike the setting we consider in our
problems, where there is an underlying probabilistic model and queries yield noisy outcomes.

We note that the coin problem studied by Karp and Kleinberg (2007) is different from ours:
there, given a ranked list of coins with unknown biases and a target bias p ∈ (0, 1), the goal is to find
the coins that have bias greater than p. In our case we do not know a ranking on the coins. Another
line of work on biased coin identification is that of Chandrasekaran and Karp (2014); Malloy et al.
(2012); Jamieson et al. (2016): there, given an infinite population of coins, each of which is of one
of two types, ‘heavy’ or ‘light’, the goal is to identify a coin of the heavy type. In our case we have
a finite population of coins, each of which can be of a different type. Moreover, all these previous
papers work in the fully adaptive setting, while our focus is on the limited-adaptivity setting.

The problem of best arm identification in MABs has mostly been considered in a fully adaptive
setting, where the learner can observe the outcome of any arm pull before selecting the next arm
to be pulled (Even-Dar et al., 2006; Audibert and Bubeck, 2010; Kalyanakrishnan et al., 2012;
Gabillon et al., 2012; Jamieson et al., 2013; Bubeck et al., 2013; Karnin et al., 2013; Hillel et al.,
2013; Perchet et al., 2015; Chen and Li, 2015; Kaufmann et al., 2016; Jun et al., 2016; Chen et al.,
2017). A recent work by Jun et al. (2016) is most closely related to our work. It considers algorithms
that pull multiple arms in each round and there is a bound on the number of arms that the algorithm
is allowed to pull in each round. However, the number of rounds required by their algorithm in the
worst-case is Ω(log(n)) irrespective of the bound on the number of pulls in each round.

The problem of top-k ranking from (noisy) pairwise comparisons has mostly been considered
in either the non-adaptive setting or the fully adaptive setting (Busa-Fekete et al., 2013; Chen and
Suh, 2015; Shah and Wainwright, 2015; Jang et al., 2016; Heckel et al., 2016). Feige et al. (1994),
and more recently Davidson et al. (2014); Braverman et al. (2016), considered a setting with limited
rounds of adaptivity, but under a restricted pairwise comparison model that we refer to as the noisy
permutation model (see Section 3 for details). In contrast, in this work, we make no assumptions
on the underlying pairwise comparison model.

A more comprehensive summary of previous work appears in Tables 3–4 in Appendix D, and
Table 5 in Appendix E (see also Appendix D.1).

1.2. Notation

For any integer a ≥ 1, [a] := {1, . . . , a}. For a (multi-)set of numbers {a1, . . . , an}, we define a[i]

as the i-th largest value in this set (ties are broken arbitrarily). For any integer r ≥ 0, ilog(r)(a)

denotes the iterated logarithms of order r, i.e. ilog(r)(a) = max
{

log
(

ilog(r−1)(a)
)
, 1
}

and

5

AGARWAL AGARWAL ASSADI KHANNA

ilog(0)(a) = a. Matrices and vectors are denoted in boldface, e.g., A and b, and random variables
in serif, e.g., X.

For a random variable X, supp(X) denotes the support of X and dist(X) denotes its distribution.
We use U to denote the uniform distribution. For any p ∈ [0, 1], B(p) denotes the Bernoulli dis-
tribution with mean p. We denote the Shannon entropy of a random variable A by H(A) and the
mutual information of two random variables A and B by I(A ; B). Finally, for any two probability
distribution µ, ν over the same support, ‖µ − ν‖tvd denotes the total variation distance between µ
and ν. A summary of useful information theory facts used in this paper is provided in Appendix A.

2. Finding the k Most Biased Coins / k Best Arms

Here, we present our main results on finding the k most biased coins using coin tosses with a
limited number of rounds of adaptivity. We give an algorithm for this problem in Section 2.1, and
a matching lower bound showing the algorithm achieves an optimal worst-case tradeoff between
round and query complexity in Section 2.2. The coin problem is equivalent to the problem of the
k best arms identification problem in MABs with Bernoulli reward distributions. Our results also
extend to the more general case of MABs with sub-Guassian reward distributions; see Appendix D.

The specific problem we consider can be stated formally as follows: given n coins with unknown
biases p1, . . . , pn, and an integer k ∈ [n], the goal is to identify (via tosses of the n coins) the
set of k most biased coins. An important parameter in determining the query complexity of this
problem is the gap parameter ∆k := p[k] − p[k+1], i.e. the gap between the k-th and (k + 1)-
th highest biases (recall that p[i] denotes the bias of the i-th most biased coin). We also define
∆i = max{

∣∣p[i] − p[k+1]

∣∣ , ∣∣p[i] − p[k]

∣∣}. We will assume throughout that the set of k most biased
coins is unique, i.e. that ∆k > 0; we will also assume our algorithm is given a lower bound ∆ on
the gap parameter (∆k ≥ ∆ > 0).2

We are interested here in algorithms that require limited rounds of adaptivity. In each round, an
algorithm can decide to query various coins by tossing them (with no limit on the number of coins
that can be tossed in a round or on the number of times any given coin can be tossed in a round);
however, all tosses to be conducted in a given round must be chosen simultaneously, based only on
the outcomes observed in previous rounds. We say an algorithm is an r-round algorithm if it uses at
most r rounds of adaptivity; the total number of coin tosses it uses is termed its query complexity.
For any δ ∈ [0, 1), we say an algorithm is a δ-error algorithm for the above problem if it correctly
returns the set of k most biased coins with probability at least 1− δ.

2.1. A Limited-Adaptivity Algorithm for Finding the k Most Biased Coins

Our main algorithmic result is the following:

Theorem 1 There exists an algorithm that given an integer k ∈ [n], a set of n coins with gap
parameter ∆k ∈ (0, 1), target number of rounds r ≥ 1, and confidence parameter δ ∈ [0, 1), finds
the set of k most biased coins w.p. ≥ 1 − δ using O

(
n

∆2
k
·
(

ilog(r)(n) + log (k/δ)
))

coin tosses
and r rounds of adaptivity.

2. We point out that the assumption that ∆k > 0 is only for simplicity of exposition; by picking ∆k to be the gap
between the bias of the k-th most biased coin and the next largest distinct bias value, our algorithm works as it is.
The assumption about knowledge of ∆ is also common in the MAB and ranking literature; see, e.g., (Even-Dar et al.,
2006; Kalyanakrishnan and Stone, 2010; Chen and Suh, 2015; Shah and Wainwright, 2015).

6

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

We also point out that by setting r = log∗ (n) in Theorem 1, we can achieve the optimal worst-
case query complexity (Kalyanakrishnan et al., 2012; Mannor and Tsitsiklis, 2004) in a significantly
smaller number of rounds of adaptivity than previous work.

Corollary 2 There exists an algorithm that given an integer k ∈ [n], a set of n coins with gap
parameter ∆k ∈ (0, 1), and confidence parameter δ ∈ [0, 1), finds the set of k most biased coins
w.p. ≥ 1− δ using O

(
n

∆2
k
· log (k/δ)

)
coin tosses and only log∗ (n) rounds of adaptivity.

2.1.1. ALGORITHM

We design a recursive algorithm, which we term as AGRESSIVE-ELIMINATION, for proving Theo-
rem 1. The pseudo-code is given in Algorithm 1. It takes as input a set S ⊆ [n] of m ≥ k candidate
coins for the top k coins and a parameter r denoting the number of rounds of adaptivity the algo-
rithm can use. In addition, the algorithm is given the confidence parameter δ ∈ (0, 1) and a lower
bound on the gap parameter ∆ ≤ ∆k. Given this input, Algorithm 1 essentially does the following:

1. Estimation phase: Toss each coin O
(

1
∆2 ·

(
ilog(r)(m) + log (k/δ)

))
many times and

estimate the bias of each coin.

2. Elimination phase: Let S′ be the set of O(m
ilog(r−1)(m)

) coins with the largest estimated

biases. Recursively solve the problem for the set S′ in the remaining r − 1 rounds.

We point out that the estimation phase of the algorithm is allowed to be erroneous, i.e. there
might be large deviations between the estimated biases and the true biases for a relatively large
fraction of coins. The elimination phase is then designed to be robust to such errors by selecting a
suitably large subset for the next round. As rounds progress, the set of candidates for k most biased
coins shrinks more and more such that in the last round, the algorithm can estimate the bias of each
candidate with high confidence and return the k most biased coins. We should also point that in
any round, if the input set S becomes too small, i.e. is of size O(k), then Algorithm 1 bypasses the
subsequent rounds and simply runs the 1-round algorithm on this set to recover the answer.

2.1.2. ANALYSIS

Given a target number of rounds r as input, Algorithm 1 clearly uses at most r rounds of adaptivity.
In Lemma 3 below we establish correctness of the algorithm, i.e. we show that it correctly returns the
k most biased coins with probability at least 1− δ. In Appendix B, we bound its query complexity
(number of coin tosses). Theorem 1 then follows immediately from these two results.

For simplicity of exposition, in the remainder of this section we assume w.l.o.g. that the coins
are indexed such that pi ≥ pi+1 ∀i ∈ [n − 1], so that the set of k most biased coins is simply [k]
(this is used for analysis purposes only; the algorithm does not know this indexing).

Lemma 3 Suppose S is any subset of the coins [n] with gap parameter ∆ ≤ ∆k, such that |S| = m
and [k] ⊆ S. For any number of rounds 1 ≤ r ≤ log∗ (m) − 3 and any confidence parameter
δ ∈ (0, 1), Algorithm 1 correctly returns the set of k most biased coins w.p. ≥ 1− δ.

7

AGARWAL AGARWAL ASSADI KHANNA

Algorithm 1 AGRESSIVE-ELIMINATION(Sr, k, r, δ,∆)

1: Input: set Sr ⊆ [n] of coins, number of desired top items k, number of rounds r, confidence
parameter δ ∈ (0, 1), and lower bound on gap parameter ∆ ≤ ∆k

2: Let m = mr = |Sr| and tr := 2
∆2 ·

(
ilog(r)(m) + log (8k/δ)

)
.

3: Toss each coin i ∈ Sr for tr times.
4: For each i ∈ Sr, define p̂i as the fraction of times coin i turns up heads.
5: Sort the coins in Sr in a decreasing order of p̂-values.
6: if r = 1 then
7: Return: the set of k most biased coins (according to p̂-values).
8: else
9: Let mr−1 := k + m

ilog(r−1)(m)
and Sr−1 be the set of mr−1 most biased coins according to p̂.

10: end if
11: if mr−1 ≤ 2k then
12: Return: AGRESSIVE-ELIMINATION(Sr−1, k, 1, δ/2,∆).
13: else
14: Return: AGRESSIVE-ELIMINATION(Sr−1, k, r − 1, δ/2,∆).
15: end if

In the remainder of this section, we fix ε := ∆/2. Before proving Lemma 3, we need the fol-
lowing simple claim. The proof is a simple application of Hoeffding’s inequality (see Appendix B).

Claim 1 For any round r ≥ 1, and any coin i ∈ Sr, Pr (|p̂i − pi| ≥ ε) ≤ δ
4k·ilog(r−1)(m)

.

Proof [of Lemma 3.] The proof is by induction on the number of rounds r. In the following, we
use Ar to denote Algorithm 1 with input number of rounds r.
Base case: For r = 1, Claim 1 ensures that for any i ∈ S1, Pr (|p̂i − pi| ≥ ε) ≤ δ

4k·ilog(0)(m1)
≤ δ

m1

as ilog(r−1)(m1) = ilog(0)(m1) = m1 by definition. By taking a union bound over all m1 coins,
we obtain that w.p. ≥ 1− δ, simultaneously for all coins i ∈ S1, |p̂i − pi| < ε. On the other hand,
we know for all i ∈ [k] and j ∈ S1 \ [k], pi − pj ≥ ∆ = 2ε, and hence the returned set of k most
biased coins according to p̂-values is the correct answer. This proves the base case.
Induction step: Suppose the lemma is true for all number of rounds smaller than some r ≤
log∗ (m)− 3; we prove that Ar also returns the set of k most biased coins w.p. ≥ 1− δ.

Let I = {i ∈ [k] : p̂i < pi − ε} (underestimated coins in top k) and J = {j ∈ Sr \ [k] : p̂j >
pj + ε} (overestimated coins in Sr \ [k]). We know that for all i ∈ [k] and j ∈ Sr \ [k], pi−pj ≥ 2ε.
As the algorithm identifies a set of mr−1 = k+ mr

ilog(r−1)(mr)
coins with the highest estimated biases

(according to p̂) to recurse upon, we have,

Pr (Ar errs) ≤ Pr (|I| > 0) + Pr
(
|J | > mr

ilog(r−1)(mr)

)
+ Pr (Ar−1 errs | E) (1)

where E denotes the event that |I| = 0 and |J | ≤ mr
ilog(r−1)(mr)

.
In the following, we bound probability of each event above. We first have,

Pr (|I| > 0) ≤
∑
i∈[k]

Pr (p̂i < pi − ε) ≤Claim 1 k ·
δ

4k · ilog(r−1)(mr)
≤ δ

4
(2)

8

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

where the last inequality is true because ilog(r−1)(mr) ≥ 1.
We next bound the second term. For all j ∈ Sr \ [k], we define an indicator random variable Yj

which is 1 iff p̂j > pj + ε. We further define Y :=
∑

j Yj . We have,

E [Y] =
∑
j

E [Yj] =
∑
j

Pr (p̂j > pj + ε) ≤Claim 1

∑
j

δ

4k · ilog(r−1)(mr)
≤ δ ·mr

4 · ilog(r−1)(mr)

Notice that Y = |J |; hence,

Pr
(
|J | > mr

ilog(r−1)(mr)

)
≤ Pr

(
Y >

4

δ
· E [Y]

)
≤ δ

4
(3)

where the second inequality is by Markov bound.
Finally, we calculate the probability of error of Ar−1 conditioned on that none of the two

events above happens (i.e., the event E). In this case, we have [k] ⊆ Sr−1 and that ∆ ≤ ∆k.
As r ≤ log∗ (mr) − 3 (by the lemma statement), we have r − 1 ≤ (log∗ (mr)− 1) − 3 =
log∗ (logmr) − 3 ≤ log∗ (mr−1) − 3. Therefore, the input to Ar−1 satisfies the assumptions
in the lemma statement as well and since the confidence parameter for Ar−1 is δ/2, by induction,
we obtain that Pr (Ar−1 errs | E) ≤ δ/2. By plugging in this bound, together with Eq (2) and Eq (3)
to Eq (1), we obtain that Ar is also a δ-error algorithm. This proves the induction step.

2.2. A Lower Bound for the k Most Biased Coins Problem

We further establish a tight lower bound on the tradeoff between the round complexity and query
complexity of any algorithm for the k most biased coins problem:

Theorem 4 For any parameter ∆ ∈ (0, 1
2) and any integers n, k ≥ 1, there exists a distribution

D on instances of the k most biased coins problem with n coins and gap parameter ∆k = ∆ such
that for any integer r ≥ 1, any r-round algorithm that finds the k most biased coins in instances
sampled from D w.p. at least 3/4 has query complexity Ω

(
n

∆2·r4 · ilog(r)(nk)
)

.

An important corollary of Theorem 4 is that achieving the optimal worst-case query complexity
requires (slightly) super-constant round complexity:

Corollary 5 For any parameter ∆ ∈ (0, 1
2) and any integers n, k ≥ 1, there exists a distribution

on instances of the k most biased coins problem with n coins and gap parameter ∆k = ∆ such that
any

(
1
4

)
-error algorithm for finding the top k most biased coins that uses O(n/∆2) coin tosses on

these instances requires round complexity at least (log∗ (n)− log∗ (Θ(log∗ n))).

We remark that by Corollary 2, the bound on the round complexity of algorithms in Corollary 5
is tight up to an extremely small additive factor of log∗ (Θ(log∗ n)) when k is a constant.

9

AGARWAL AGARWAL ASSADI KHANNA

2.2.1. PROOF SKETCH FOR k = 1

Here we give a detailed sketch of the proof of Theorem 4 for the case k = 1, i.e. the case of finding
the most biased coin. A complete proof and generalization to all values of k is in Appendix C.

Fix any arbitrary value ∆ ∈ (0, 1
2) (possibly a function of n) and a constant p < 1 − ∆. Our

hard input distribution is defined based on the parameters ∆ and p:

Distribution D∆,p
n (A hard input distribution on n coins with gap parameter ∆1 = ∆).

• Sample an index i? ∈ [n] uniformly at random.

• Let pi =

{
p+ ∆ if i = i?

p otherwise
∀i ∈ [n] .

• Return the coins [n] with biases {pi}ni=1.

It is immediate to see that in any instance of D∆,p
n , ∆1 = ∆. Moreover, one can see that finding

the most biased coin in this family of instances is equivalent to determining the value of i?. We use
this to prove a lower bound on the query complexity of any algorithm on these instances.

Define the recursive function e(r) = e(r − 1) + o(1/r2) with e(1) = 0. Our main result in
this section is Lemma 6 below, for which we give a detailed proof sketch. Theorem 4 (for the case
k = 1) then follows from Lemma 6 (see Appendix C for details).

Lemma 6 Fix any integers n, r ≥ 1. Suppose Ar is an r-round algorithm that given an instance
sampled from D∆,p

n , correctly outputs the most biased coin w.p. ≥ 2
3 + e(r). Then Ar must have

query complexity Ω(n
∆2·r4 · ilog(r)(n)).

In the following, fix n, r ≥ 1 and algorithm Ar as in Lemma 6. Note that by an averaging
argument, we can assume w.l.o.g that Ar is deterministic (see Appendix C for a formal proof).

Before proving Lemma 6, let us first set up some notation. Let S1 denote the multi-set of coins
tossed in the first round byAr. Let s1 denote the size of S1 counting the multiplicities. We define the
outcome profile of S1 as the s1-dimensional tuple T = ((i1, θ1), (i2, θ2), . . . , (is1 , θs1)), whereby
for any j ∈ [s1], ij and θj , denote, respectively, the index of the j-th coin in S1 and the outcome
of its toss, i.e., heads or tails. We use I to denote the random variable for the index i? in D∆,p

n , and
T to denote the random variable for the vector T . We further use Θj , for any j ∈ [s1], to denote
the random variable for θj defined above. In order to prove Lemma 6, we will need the following
key lemma that bounds the “information” revealed about the index i? in the first round based on the
number of coin tosses conducted by Ar in this round:

Lemma 7 I(I ; T) = O(s1 ·∆2/n).

The proof of Lemma 7 involves: (i) separating the information revealed by each coin toss (ij , θj) ∈
T using the chain rule of mutual information and the fact that for any j ∈ [s1], Θj and Θ \ Θj are
independent conditioned on I (see Appendix C, Eq (13)); and (ii) using the KL-divergence between
distribution of dist(Θj) and dist(Θj | I) to bound the information revealed by each coin toss by
O(∆2/n). A formal proof is given in Appendix C.

Proof [(Sketch) for Lemma 6.] The proof is by induction on the number of rounds. The base
case of this induction, which asserts that the query complexity of A1 is Ω(n

∆2 · log n), follows from

10

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Lemma 7 and Fano’s inequality (see Fact 2) and is provided in Appendix C. Now assume inductively
that Lemma 6 is true for all integers smaller than r and we want to prove this for r-round algorithms.
Our proof of the induction step is by contradiction. We show that if there exists an algorithm Ar
with smaller query complexity than the bound stated in Lemma 6 for D∆,p

n , then there also exists an
(r− 1)-round algorithm Ar−1 with smaller query complexity than the corresponding bound for the
distribution D∆,p

m for some appropriately chosen m ≤ n.
Intuitively, Lemma 7 implies that if the number of coin tosses in the first round is small, then

the outcome profile T, on average, does not reveal much information about the identity of the most
biased coin, i.e. I. More formally, if we assume (by way of contradiction) that the query complexity
of Ar is o(n

∆2·r4 · ilog(r)(n)), then we have,

H(I | T) = H(I)− I(I ; T) =Fact 1-(a) log n− I(I ; T) =Lemma 7 log n− o(ilog(r)(n)/r4) (4)

where in the last part we used the fact that s1 is at most the query complexity of Ar. Now consider
any fixed possible outcome profile T for Ar in round one, i.e., any possible value for T. We say
that T is uninformative iff H(I | T = T) = log n− o(ilog(r)(n)/r2). Roughly speaking, whenever
the outcome profile in the first round is uninformative, the algorithm is quite “uncertain” about the
identity of the most biased coin, and hence needs to find it among a large pool of candidate coins in
the next (r − 1) rounds. This we argue is not possible as by induction hypothesis as the available
budget is not large enough to solve the problem in (r − 1) rounds on such a large domain.

We can show that our assumption on the query complexity of Ar implies that there exists an
uninformative outcome profile Tui in the first round which still results in a correct output by Ar in
the subsequent rounds, i.e., Pr (Ar errs | T = Tui) ≤ δ + o(1/r2) (see Claim 7 in Appendix C).

Fix the uninformative profile Tui and define ψ := dist(I | T = Tui). Using the fact that the condi-
tional entropy H(I | T = Tui) is quite close to log n (i.e., to the entropy of the uniform distribution),
the distribution ψ can be expressed as a convex combination of distributions ψ0, ψ1, . . . , ψk, i.e.,
ψ =

∑
i qi · ψi (for

∑
i qi = 1) such that q0 = o(1/r2) and for all i ≥ 1,

|supp(ψi)| ≥ 2(logn−o(ilog(r)(n))) ≥ n(
ilog(r−1)(n)

)o(1)
(5)

‖ψi − Ui‖tvd = o(1/r2) (6)

where Ui is the uniform distribution on supp(ψi) (see Lemma 8 in Appendix A and discussion
before Eq (17) in Appendix C). With this notation,

δ + o(1/r2) ≥Claim 7 Pr (Ar errs | T = Tui) =
∑
i

qi · Pr (Ar errs | T = Tui, I ∼ ψi)

As q0 = o(1/r2), by an averaging argument, we have that there exists a distribution ψi for some
i ≥ 1 such that Pr (Ar errs | T = Tui, I ∼ ψi) ≤ δ + o(1/r2). W.l.o.g. let this distribution be ψ1

and define m := |supp(ψ1)|. We will need the following claim:

Claim 2 There exists a deterministic (r−1)-round
(
δ + o(1/r2)

)
-error algorithm for the best coin

problem on D∆,p
m with query complexity at most equal to the query complexity of Ar on D∆,p

n .

Proof Let Ar,Tui be an (r − 1)-round algorithm obtained by running Ar from the second round
onwards assuming that the outcome profile in the first round was Tui. We use Ar,Tui to design a
randomized algorithm A′ for D∆,p

m .

11

AGARWAL AGARWAL ASSADI KHANNA

Given any instance sampled fromD∆,p
m ,A′ maps [m] to supp(ψ1) (using any arbitrary bijection).

Next, it runs Ar,Tui as follows: if Ar,Tui chooses to toss a coin in supp(ψ1), A′ also chooses the
corresponding coin in [m]; otherwise, if Ar,Tui chooses to toss a coin in [n] \ supp(ψ1), A′ simply
tosses a coin from the distribution B(p) and returns the result to Ar,Tui . Finally, if Ar,Tui outputs a
coin from supp(ψ1), A′ returns the corresponding coin in [m] and otherwise A′ simply return an
arbitrary coin in [m] as the answer.

It is trivially true that the query complexity of A′ is at most that of A. Hence, in the following
we prove the correctness of A′. Let D′ be the distribution of underlying instances on [n] created by
A′. Let U1 be the uniform distribution on supp(ψ1). It is straightforward to verify that D′ = D∆,p

n |
I ∼ U1, and that D′ is a deterministic function of I. As such,

Pr
D∆,p
m

(
A′ errs

)
= Pr
D∆,p
n

(
Ar,Tui errs | I ∼ U1

)
≤Fact 5 Pr

D∆,p
n

(
Ar,Tui errs | I ∼ ψ1

)
+ ‖ψ1 − U1‖tvd

=Eq (18) Pr
D∆,p
n

(Ar errs | I ∼ ψ1,T = Tui) + o(1/r2) ≤ δ + o(1/r2)

To finalize the proof, note that by an averaging argument, there exists a fixing of the randomness in
A′ that results in the same error guarantee. But by fixing the randomness in A′ we obtain a deter-
ministic (r − 1)-round algorithm A′′ that errs on D∆,p

m w.p. at most δ + o(1/r2).

We can now conclude the proof of Lemma 6. By Claim 2, there exists an (r − 1)-round algorithm
Ar−1 that errs w.p. at most δ + o(1/r2) = 1/3− e(r) + o(1/r2) = 1/3− e(r− 1) on instances of
D∆,p
m with (at most) the same query complexity as Ar. But by induction hypothesis (as Ar−1 is an

(r − 1)-round algorithm), we know that the query complexity of Ar−1 is

Ω

(
m

∆2 · (r − 1)4
· ilog(r−1)(m)

)
=Eq (5) Ω

 1

∆2 · (r − 1)4
· n(

ilog(r−1)(n)
)o(1)

· ilog(r−1)(n)


= Ω

(n

∆2 · r4
· ilog(r)(n)

)
(as ilog(r)(n) = log(ilog(r−1)(n)))

which is in contradiction with the bound of o
(

n
∆2·r4 · ilog(r)(n)

)
on the query complexity of Ar

and hence Ar−1. This completes the proof (sketch) of Lemma 6.

3. Top-k Ranking from Pairwise Comparisons

The problem of ranking from pairwise comparisons arises in many applications including sports
rankings, recommender systems, crowdsourcing and others, and has received increasing attention
in recent years (Gleich and Lim, 2011; Jamieson and Nowak, 2011; Negahban et al., 2012; Busa-
Fekete et al., 2013; Rajkumar and Agarwal, 2014; Chen and Suh, 2015; Shah and Wainwright,
2015; Jang et al., 2016; Heckel et al., 2016; Braverman et al., 2016). Here there are n items, and
an unknown preference matrix P ∈ [0, 1]n×n satisfying Pij + Pji = 1 for all i, j ∈ [n], such that
whenever items i and j are compared, item i beats item j with probability Pij and j beats i with

12

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

probability Pji = 1− Pij . Previous studies have often made strong assumptions on the preference
matrix P; here we consider a very general setting where we make no assumptions on P.

We are interested in the problem of identifying the top-k items according to the Borda score,
which for item i is defined as the probability that i beats another item j drawn uniformly at random:

τi =
1

n− 1

∑
j 6=i

Pij .

Ranking according to Borda scores is very natural and encompasses several special cases. For
example, Chen and Suh (2015) and Jang et al. (2016) assume P follows a Bradley-Terry-Luce
(BTL) model, under which there is a ‘score’ vector w ∈ Rn++ such that Pij = wi

wi+wj
∀i, j, and seek

to identify the top-k items according to the scores wi; it can be verified that for such P, ranking
by Borda scores is equivalent to ranking by the scores wi. Feige et al. (1994); Braverman et al.
(2016) assume P follows a noisy permutation model3, under which there is a permutation σ ∈ Sn
and noise parameter p ∈ [0, 1

2) such that Pij = 1 − p if σ(i) < σ(j) and Pij = p otherwise, and
seek to identify the top-k items according to σ; again, it can be verified that for such P, ranking
by Borda scores is equivalent to ranking according to σ. Here we make no such assumptions on
P. The general problem of top-k ranking from pairwise comparisons under Borda scores has been
considered recently by Busa-Fekete et al. (2013), Shah and Wainwright (2015) and Heckel et al.
(2016); however, these studies are either in the non-adaptive setting (where pairwise comparisons
are observed for randomly drawn item pairs) or in the fully adaptive setting (where one can actively
query pairs to be compared with no limit on the number of rounds of adaptivity). Here we consider
the limited-adaptivity setting, and show that our results for the coin problem studied in Section 2
also yield an optimal algorithm and corresponding lower bound for top-k ranking in this setting.

In order to apply the algorithm of Section 2 to the top-k ranking problem, observe that we can
view each item i as a coin with bias pi equal to its Borda score τi. In order to toss coin i, we simply
select another item j ∈ [n] \ {i} uniformly at random, and compare i and j; clearly, this results in a
win for item i (heads outcome) with probability τi. Thus, the AGRESSIVE-ELIMINATION algorithm
from Section 2 applies directly, with O(n

∆2
k

log k) pairwise comparisons and log∗ (n) rounds of
adaptivity. Thus we require fewer comparisons than in the passive setting, and fewer rounds of
adaptivity than the previous active algorithms of Busa-Fekete et al. (2013) and Heckel et al. (2016)
(see Table 2).

For the lower bound, we need to be more careful, since not all collections of n coins with biases
p1, . . . , pn can be realized as the Borda scores of a preference matrix P (to see this, consider n = 2
coins with biases p1 = 0.9 and p2 = 0.8; these clearly cannot be realized as Borda scores of a
preference matrix P, due to the constraint that P12 = 1 − P21). However, we show that a simple
reduction allows us to convert the hard instances for the coin problem used in the lower bound
of Theorem 4 (and Corollary 5) into hard instances for the pairwise comparison problem, thereby
leading to a similar tight lower bound for the top-k ranking problem; we give details in Appendix E.

3. The results of Feige et al. (1994); Braverman et al. (2016) can be further extended to a slightly more general model
where P is such that there is a permutation σ ∈ Sn and noise parameter p ∈ [0, 1

2
) such that Pij ≥ 1 − p if

σ(i) < σ(j) and Pij ≤ p otherwise.

13

AGARWAL AGARWAL ASSADI KHANNA

4. Conclusion

We considered the question of learning with limited rounds of adaptivity in the context of several
learning problems: the k most biased coins problem, the closely related k best arms identification
problem in stochastic multi-armed bandits (MABs), and top-k ranking from pairwise comparisons.
We developed an algorithm which applies to all these problems, and that achieves the optimal worst-
case query complexity for these problems in just log∗(n) rounds of adaptivity, in contrast with
previous results which require Ω(log n) rounds. We also gave a matching lower bound showing that
any algorithm achieving this query complexity must use Ω(log∗(n)) rounds of adaptivity.

In recent years, there also has been much interest in the MAB literature (and increasingly, in
the ranking literature) in adaptive algorithms whose query complexity depends not only on the gap
∆k between the k-th and (k + 1)-th best items, but also on the gaps of other items (see Tables 1–
2). The optimal query complexity as a function of these parameters, referred to as instance-wise
optimality, is not yet fully understood despite significant progress in recent years; see, e.g., (Chen
and Li, 2015; Chen et al., 2017) and references therein. The round complexity of the state-of-the-art
algorithms (Karnin et al., 2013; Jamieson et al., 2013; Chen and Li, 2015) for this setting has at
least a logarithmic dependence on n, as they call the log(n)-round HALVING algorithm of Even-
Dar et al. (2006) as a subroutine. It is possible to reduce the round complexity of these algorithms
to have a log∗ dependence on n by using an (ε, δ)-PAC version4 of our algorithm as a subroutine
instead of HALVING. This log∗(n) dependence is also necessary as our lower bound of Ω(log∗(n))
rounds also applies to the case of instance-wise algorithms. But the round complexity of these
algorithms also depends on the gaps ∆i’s, and it is not clear whether the dependence on these ∆i’s
is necessary. Closing this gap remains an interesting open question; its resolution would further
enhance our understanding of the role of the degree of adaptivity in designing learning algorithms.

Acknowledgments

Sepehr Assadi and Sanjeev Khanna are supported in part by National Science Foundation grants
CCF-1552909, CCF-1617851, and IIS-1447470.

4. Here, the goal is to return a set of k coins whose biases are at least p[k] − ε with probability ≥ 1 − δ, for some
parameters ε, δ. Our algorithm can be easily extended to this (ε, δ)-PAC setting.

14

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

References

Miklos Ajtai, János Komlos, William L Steiger, and Endre Szemerédi. Deterministic selection in
o(log log n) parallel time. In STOC, 1986.

Noga Alon and Yossi Azar. Sorting, approximate sorting, and searching in rounds. SIAM J. Discrete
Math., 1(3):269–280, 1988.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In SODA, 2017.

Jean-Yves Audibert and Sébastien Bubeck. Best Arm Identification in Multi-Armed Bandits. In
COLT, 2010.

Béla Bollobás and Graham Brightwell. Parallel selection with high probability. SIAM Journal on
Discrete Mathematics, 3(1):21–31, 1990.

Béla Bollobás and Andrew Thomason. Parallel sorting. Discrete Applied Mathematics, 6(1):1–11,
1983.

Mark Braverman, Jieming Mao, and S. Matthew Weinberg. Parallel Algorithms for Select and
Partition with Noisy Comparisons. In STOC, 2016.

Sébastien Bubeck, Tengyao Wang, and Nitin Viswanathan. Multiple identifications in multi-armed
bandits. In ICML, 2013.

Róbert Busa-Fekete, B. Szorenyi, Weiwei Cheng, Paul Weng, and E. Hullermeier. Top-k selection
based on adaptive sampling of noisy preferences. In ICML, 2013.

Karthekeyan Chandrasekaran and Richard Karp. Finding a most biased coin with fewest flips. In
Journal of Machine Learning Research, volume 35, pages 394–407, 2014.

Lijie Chen and Jian Li. On the Optimal Sample Complexity for Best Arm Identification. arXiv
preprint arXiv:1511.03774, 2015. URL http://arxiv.org/abs/1511.03774.

Lijie Chen, Jian Li, and Mingda Qiao. Nearly Instance Optimal Sample Complexity Bounds for
Top-k Arm Selection. arXiv preprint arXiv:1702.03605, 2017. URL https://arxiv.org/
abs/1702.03605.

Yuxin Chen and Changho Suh. Spectral MLE: Top-k rank aggregation from pairwise comparisons.
In ICML, 2015.

Herman Chernoff. Sequential analysis and optimal design. SIAM, 1972.

Richard Cole. Parallel merge sort. SIAM J. Comput., 17(4):770–785, 1988.

Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley, 2006. ISBN
978-0-471-24195-9.

Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and clustering with noisy
comparisons. ACM Transactions on Database Systems (TODS), 39(4):35, 2014.

15

http://arxiv.org/abs/1511.03774
https://arxiv.org/abs/1702.03605
https://arxiv.org/abs/1702.03605

AGARWAL AGARWAL ASSADI KHANNA

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC Bounds for Multi-Armed Bandit and
Markov Decision Processes. In COLT, 2002.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning problems. Journal of Machine Learning
Research, 7:1079–1105, 2006.

Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with Noisy Information.
SIAM Journal on Computing, 23(5):1001–1018, 1994. doi: 10.1137/S0097539791195877.

Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identification: A
unified approach to fixed budget and fixed confidence. In NIPS, 2012.

Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics. Interna-
tional statistical review, 70(3):419–435, 2002.

David F Gleich and Lek-heng Lim. Rank aggregation via nuclear norm minimization. In KDD,
pages 60–68, 2011.

Reinhard Heckel, Nihar B. Shah, Kannan Ramchandran, and Martin J Wainwright. Active Rank-
ing from Pairwise Comparisons and when Parametric Assumptions Dont Help. arXiv preprint
arXiv:1606.08842, 2016. URL http://arxiv.org/abs/1606.08842.

Eshcar Hillel, Zohar Shay Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed
exploration in multi-armed bandits. In NIPS, 2013.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sebastien Bubeck. On Finding the Largest
Mean Among Many. arXiv preprint arXiv:1306.3917v1, 2013. URL http://arxiv.org/
abs/1306.3917.

Kevin Jamieson, Daniel Haas, and Ben Recht. The Power of Adaptivity in Identifying Statistical
Alternatives. In NIPS, 2016.

Kevin G Jamieson and Robert D. Nowak. Active Ranking using Pairwise Comparisons. In NIPS,
2011.

Minje Jang, Sunghyun Kim, Changho Suh, and Sewoong Oh. Top-k Ranking from Pairwise Com-
parisons: When Spectral Ranking is Optimal. arXiv preprint arXiv:1603.04153, 2016. URL
http://arxiv.org/abs/1603.04153.

Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, and Xiaojin Zhu. Top Arm Identification in
Multi-Armed Bandits with Batch Arm Pulls. In AISTATS, 2016.

Shivaram Kalyanakrishnan and Peter Stone. Efficient Selection of Multiple Bandit Arms: Theory
and Practice. In ICML, 2010.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. PAC Subset Selection in
Stochastic Multi-armed Bandits. In ICML, 2012.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost Optimal Exploration in Multi-Armed
Bandits. In ICML, 2013.

16

http://arxiv.org/abs/1606.08842
http://arxiv.org/abs/1306.3917
http://arxiv.org/abs/1306.3917
http://arxiv.org/abs/1603.04153

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In SODA, 2007.

Emilie Kaufmann, Olivier Cappé, and Aurlien Garivier. On the Complexity of Best-Arm Identifi-
cation in Multi-Armed Bandit Models. Journal of Machine Learning Research, 17:1–42, 2016.

Matthew L Malloy, Gongguo Tang, and Robert D. Nowak. Quickest search for a rare distribution.
In Information Sciences and Systems (CISS). IEEE, 2012.

Shie Mannor and John N Tsitsiklis. The Sample Complexity of Exploration in the Multi-Armed
Bandit Problem. Journal of Machine Learning Research, 5:623–648, 2004.

Sahand Negahban, Sewoong Oh, and Devavrat Shah. Iterative ranking from pair-wise comparisons.
In NIPS, 2012.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit prob-
lems. In COLT, 2015.

Nicholas Pippenger. Sorting and selecting in rounds. SIAM J. Comput., 16(6):1032–1038, 1987.

Arun Rajkumar and Shivani Agarwal. A statistical convergence perspective of algorithms for rank
aggregation from pairwise data. In ICML, 2014.

Nihar B. Shah and Martin J. Wainwright. Simple, Robust and Optimal Ranking from Pairwise
Comparisons. arXiv preprint arXiv:1512.08949, 2015. URL http://arxiv.org/abs/
1512.08949.

Leslie G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing, 4(3):348–355,
1975.

17

http://arxiv.org/abs/1512.08949
http://arxiv.org/abs/1512.08949

AGARWAL AGARWAL ASSADI KHANNA

Appendix A. Tools From Information Theory

Our lower bound proof relies on basic concepts from information theory. For a broader introduction
to the field, and proofs of the claims below, we refer the reader to the excellent text by Cover and
Thomas (2006).

We denote the Shannon Entropy of a random variable A by H(A) and the mutual information of
two random variables A and B by I(A ; B) = H(A)−H(A | B) = H(B)−H(B | A). Additionally,
H2(·) denotes the binary entropy function: for any real number δ ∈ (0, 1), H2(δ) := H(A) where
A ∼ B(δ). We use the following basic facts about entropy and mutual information in this paper.
The proofs can be found in Cover and Thomas (2006), Chapter 2.

Fact 1 Let A, B, and C be three (possibly correlated) random variables.

(a) 0 ≤ H(A) ≤ log |A|, and H(A) = log |A| iff A is uniformly distributed over its support.

(b) I(A ; B | C) ≥ 0. The equality holds iff A and B are independent conditioned on C.

(c) Conditioning can only drop the entropy: H(A | B,C) ≤ H(A | B). The equality holds iff
A ⊥ C | B.

(d) Chain rule of mutual information: I(A,B ; C) = I(A ; C) + I(B ; C | A).

The following Fano’s inequality states that if a random variable A can be used to estimate the
value of another random variable B, then A should “consume” most of B’s entropy.

Fact 2 (Fano’s inequality) Let A,B be random variables and f be a function that given A predicts
a value for B. If Pr (f(A) 6= B) ≤ δ, then H(B | A) ≤ H2(δ) + δ · log |B|.

For two distributions µ and ν over the same probability space, the Kullback-Leibler divergence
between µ and ν is defined as D(µ || ν) := Ea∼µ

[
log

Prµ(a)
Prν(a)

]
. For our proofs, we need the following

relation between mutual information and KL-divergence.

Fact 3 For random variables A,B,C,

I(A ; B | C) = E
(b,c)∼dist(B,C)

[
D(dist(A | C = c) || dist(A | B = b,C = c))

]
.

The following fact can be proven by bounding the KL-divergence by χ2-distance (see, e.g., Gibbs
and Su (2002), Theorem 5).

Fact 4 For any two parameters 0 < p, q < 1,

D(B(p) || B(q)) ≤ (p− q)2

q · (1− q)

We denote the total variation distance between two distributions µ and ν over the same proba-
bility space Ω by ‖µ− ν‖tvd = 1

2 ·
∑

x∈Ω |Prµ(x)− Prν(x)|. We have,

Fact 5 Suppose µ and ν are two distributions for an event E , then, Prµ(E) ≤ Prν(E) + ‖µ− ν‖tvd.

18

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Finally, we use the following auxiliary lemma that allows us to decompose the distribution of
any random variable with high entropy to a convex combination of a small number of near uniform
distributions plus a low probability “noise term”. A similar lemma was proven in (the full version
of) Assadi et al. (2017) (see Lemma 2.4). We provide a self-contained proof of this lemma here for
completeness.

Lemma 8 Let A ∼ D be a random variable on [n] with H(A) ≥ log n−γ for some γ ≥ 1. For any
ε > exp (−γ), there exists ` + 1 distributions ψ0, ψ1, . . . , ψ` on [n] along with ` + 1 probabilities
p0, p1, . . . , p` (

∑
i pi = 1) for some ` = O(γ/ε3) such that D =

∑`
i=1 pi · ψi, p0 = O(ε), and for

any i ≥ 1,

1. log |supp(ψi)| ≥ log n− γ/ε.

2. ‖ψi − Ui‖tvd = O(ε) where Ui denotes the uniform distribution on supp(ψi).

Proof We partition supp(D) into `′ sets S0, S1, . . . , S`′ for `′ = O(γ/ε3) that S0 contains every
element a ∈ supp(D) such that either Pr (A = a) ≤ ε/n or Pr (A = a) ≥ 22γ/ε/n, and for each
i ≥ 1, Si contains every element a ∈ supp(D) where (1 + ε)−(i+1) ≤ Pr (A = a) < (1 + ε)−i. For
any i ≥ 1, we say that a set Si is large if |Si| ≥ 2(logn− γ

ε) and is small otherwise. Let L (resp. S)
denote the set of all elements that belong to a large set (resp. a small set). Moreover, let ` be the
number of large sets and without loss of generality, assume S1, . . . , S` are these large sets.

We define the ` + 1 distributions in the lemma statement as follows. Let ψ0 be the distribution
D conditioned on A being in S0 ∪ S , and let p0 := PrD (A ∈ S0 ∪ S). For each i ≥ 1, let ψi be the
distribution D conditioned on A being in Si, i.e., the i-th large set and let pi := PrD (A ∈ Si).

By construction, we have D =
∑

i pi · ψi. Moreover, for each i ≥ 1, since the support of
ψi is a large set, we have log |supp(ψi)| ≥

(
log n− γ

ε

)
. Finally, since each a ∈ supp(ψi) has

PrD (A = a) ∈ [(1 + ε)−(i+1), (1 + ε)−i), it is straightforward to verify that ‖ψi − Ui‖tvd = O(ε).
In the following, we prove that p0 = O(ε) which finalizes the proof.

We first bound the probability that A belongs to the set S0.

Claim 3 Pr (A ∈ S0) ≤ 2ε.

Proof Let L be the set of elements a with Pr (A = a) ≤ ε/n and H be the set of elements a with
Pr (A = a) ≥ 22γ/ε/n; hence Pr (A ∈ S0) = Pr (A ∈ L)+Pr (A ∈ H). It is clear that Pr (A ∈ L) ≤
ε. We further prove that Pr (A ∈ H) ≤ ε also.

Assume by contradiction that Pr (A ∈ H) > ε. We have |H| ≤ n/22γ/ε as otherwise the
probability of being in H would be more than one. Let B ∈ {0, 1} be a random variable denoting
whether or not A ∈ H . We have,

H(A | B) ≥Fact 1-(b) H(A)−H(B) ≥Fact 1-(a) H(A)− 1 ≥ log n− γ − 1 (7)

On the other hand,

H(A | B) = Pr (A ∈ H) ·H(A | B = 1) + Pr (A /∈ H) ·H(A | B = 0)

<Fact 1-(a) Pr (A ∈ H) · log |H|+ Pr (A /∈ H) · log n

≤ ε · (log n− 2γ/ε) + ε · log n

= log n− 2γ ≤ log n− γ − 1 (γ ≥ 1)

19

AGARWAL AGARWAL ASSADI KHANNA

contradicting Eq (7).

Next, we bound the probability that A belongs to a small set.

Claim 4 Pr (A ∈ S) ≤ 2ε.

Proof Suppose by contradiction that Pr (A ∈ S) > 2ε. Let B ∈ {0, 1} be a random variable that
denotes whether A chosen from D belongs to L or S. We have,

H(A | B) ≥Fact 1-(b) H(A)−H(B) ≥Fact 1-(a) H(A)− 1 ≥ log n− γ − 1 (8)

The total number of elements belonging to small sets is at most,

|S| ≥ O(γ/ε3) · 2(logn− γ
ε) = 2(logn− γ

ε
+logO(γ/ε3)) (9)

Hence,

H(A | B) = Pr (A ∈ S) ·H(A | B = 1) + Pr (A /∈ S) ·H(A | B = 0)

<Fact 1-(a) 2ε · log |S|+ (1− 2ε) · log n

≤Eq (9) 2ε ·
(

log n− γ

ε
+ logO(γ/ε3)

)
+ (1− 2ε) · log n

= log n− 2γ + logO(γ/ε3) < log n− γ (as logO(γ/ε3) < γ since ε > exp (−γ))

contradicting Eq (8).

To conclude,

p0 = Pr (A ∈ S0) + Pr (A ∈ S) ≤ 4ε

finalizing the proof.

Appendix B. Details of the Algorithm for Finding the Most Biased Coins

We present the proof of Theorem 1 in details in this section. Throughout this section, for any algo-
rithm A, cost(A) denotes the query complexity of A and deg(A) denotes the degree of adaptivity
it uses, i.e., its round complexity. We start by providing a high level overview of the proof.

Overview: To illustrate the main ideas behind our algorithm, we focus on the case that k = 1.
Consider the following type of input for best k coins problem: there exists a single heavy coin and
n− 1 light coins with the gap of ∆ between the bias of the heavy coin and any light coin. It follows
from a simple application of the Hoeffding’s bound that for any δ ∈ (0, 1), O(log (1/δ)/∆2) coin
tosses are sufficient to distinguish whether a single coin is heavy or not with probability 1− δ. We
can now use this simple observation to design an r-round algorithm for each number of rounds r.

The case of r = 1 is quite simple: simply set δ = Θ(1
n) and a union bound ensures that with

some constant probability, every coin is distinguished correctly, which allows us to output the heavy
coin correctly. Now consider the case when r = 2. Here, the limited budget for 2-round algorithms

20

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

in Theorem 1 does not allow us to distinguish every coin correctly in the first round of coin tossing.
Instead, we make the following simple yet crucial observation: it is enough for us to only classify
the heavy coin and a large fraction of light coins correctly in the first round. Indeed by setting the
parameter δ = Θ(1

logn) (i.e., performing O(n log logn/∆2) coin tosses in the first round), we can
reduce the set of possible choices for the heavy coin to roughly n/ log n coins. But then our budget
allows us to run the previous 1-round algorithm in the second round on this smaller set of coins
to find the heavy coin. This results in the total number of coins tosses being O(n log log n/∆2)
(in the first round) plus O

(
(n/ log n) · log (n/ log n)/∆2

)
= O(n/∆2) (in the second run), which

matches the bounds for the r = 2 case in Theorem 1.
This discussion leads us to the following generic r-round algorithm: perform a number of coin

tosses in the first round to recover a sufficiently smaller set that almost surely contains the heavy
coin; recursively solve the problem on the remaining coins using the (r − 1)-round version of the
algorithm in the subsequent rounds. Here, “sufficiently smaller set” should be chosen such that
the query complexity of an (r − 1)-round algorithm on this set is within the budget of the r-round
algorithm (over the original set of coins). Exploiting this approach to its fullest allows us to design
our r-round algorithm for any number of rounds r and prove Theorem 1.

We now proceed to formalize the above discussion. Throughout this section, for simplicity of
exposition, we will assume that the coins are indexed such that pi ≥ pi+1, ∀i ∈ [n−1], in which case
the set of k most biased coins would be [k]. Note that the algorithm does not know this indexing.
We provide our algorithm in Section B.1 and its analysis in Section B.2.

B.1. Algorithm

We design a recursive algorithm for proving Theorem 1. The pseudo-code is given in Algorithm 1.
There are two main parameters in the input to Algorithm 1: a set S ⊆ [n] of m candidate coins for
the top k coins and a parameter r denoting the number of rounds of adaptivity the algorithm can
use. In addition, the algorithm is given the confidence parameter δ ∈ (0, 1) and a lower bound on
the gap parameter ∆ ≤ ∆k. Given this input, Algorithm 1 works as follows:

1. Estimation phase: The algorithm first tosses each coin

t = O

(
1

∆2
·
(

ilog(r)(m) + log (k/δ)
))

many times and estimate the bias of each coin.
2. Elimination phase: Next, the algorithm identifies a set S′ of O(m

ilog(r−1)(m)
) coins with the

largest estimated bias and recursively solve the problem for the set S′ in r − 1 rounds.

We point out that the estimation phase of algorithm is allowed to be erroneous, i.e., there might
be large deviations between the estimated biases and the true biases for a relatively large fraction of
coins. The elimination phase is then designed to be robust to such error by selecting a suitably large
subset for the next round. As rounds progress, the set of candidates for k most biased coins shrinks
more and more such that in the last round, the algorithm can estimate the bias of each candidate
with high confidence and return the k most biased coins. We should also point that in any round, if

21

AGARWAL AGARWAL ASSADI KHANNA

the input set S is too small, i.e., of size O(k), then Algorithm 1 bypasses the subsequent rounds and
simply run the 1-round algorithm on this set to recover the top k coins.

B.2. Analysis

We establish the correctness of Algorithm 1 by proving Lemma 3 and then providing a bound on the
number of coin tosses it makes in Lemma 9. We recall Lemma 3 (first appeared in Section 2.1.2).

Lemma 3 Suppose S is any subset of coins [n] with size m and gap parameter ∆ ≤ ∆k such that
[k] ⊆ S. For any number of rounds 1 ≤ r ≤ log∗ (m)−3 and any confidence parameter δ ∈ (0, 1),
Algorithm 1 returns the set of k most biased coins w.p. at least 1− δ.

Before proving Lemma 3, we need the following simple claim. In the remainder of this section,
we fix ε := ∆/2.

Claim 1 For any round r ≥ 1, and any coin i ∈ Sr,

Pr (|p̂i − pi| ≥ ε) ≤
δ

4k · ilog(r−1)(m)
.

Proof By Hoeffding’s inequality, we have,

Pr (|p̂i − pi| ≥ ε) ≤ 2 exp
(
−2ε2 · tr

)
≤ 2 exp

(
−
(

ilog(r)(m) + log(8k/δ)
))
≤ δ

4k · ilog(r−1)(m)

as ilog(r)(m) = log ilog(r−1)(m).

In the following, for any integer r ≥ 1, we use Ar to denote Algorithm 1 with r number of
rounds. We now prove Lemma 3.
Proof [of Lemma 3.]

The proof is by induction on the number of rounds r.

Base case: The base case follows immediately from Claim 1. Indeed for r = 1, Claim 1 ensures
that for any i ∈ S1,

Pr (|p̂i − pi| ≥ ε) ≤
δ

4k · ilog(0)(m1)
≤ δ

m1

as ilog(r−1)(m1) = m1 by definition. By taking a union bound over all m1 coins, we obtain that
w.p. 1− δ, simultaneously for all coins i ∈ S1, |p̂i − pi| < ε. This implies that w.p. 1− δ,

∀i ∈ [k] p̂i > pi − ε = pi −∆/2 ≥ pk −∆/2

∀j ∈ S1 \ [k] p̂j < pj + ε ≤ pj + ∆/2 ≤ pk+1 + ∆/2

As ∆ ≤ pk − pk+1, we obtain that the returned set of k most biased coins according to p̂-values is
the correct answer, finalizing the proof of the base case.

22

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Induction step: Suppose the lemma is true for all number of rounds smaller than r ≤ log∗ (m)−3
and we prove it for the case of r rounds, i.e., for Ar. In particular, we need to show that Ar returns
the set of k most biased coins with probability at least 1− δ.

Let I = {i ∈ [k] : p̂i < pi − ε} and J = {j ∈ Sr \ [k] : p̂j > pj + ε}. We know that for all
i ∈ [k] and j ∈ Sr \ [k], pi− pj ≥ 2ε. As the algorithm identifies a set of mr−1 = k+ mr

ilog(r−1)(mr)

coins with the highest estimated biases (according to p̂) to recurse upon, we have,

Pr (Ar errs) ≤ Pr (|I| > 0) + Pr
(
|J | > mr

ilog(r−1)(mr)

)
+ Pr (Ar−1 errs | E) (10)

where E denotes the event that |I| = 0 and |J | ≤ mr
ilog(r−1)(mr)

, i.e., the complement of the first two
events above.

In the following, we bound probability of each event above. We first have,

Pr (|I| > 0) ≤
∑
i∈[k]

Pr (p̂i < pi − ε) ≤Claim 1 k ·
δ

4k · ilog(r−1)(mr)
≤ δ

4
(11)

where the last inequality is true because ilog(r−1)(mr) ≥ 1.
We next bound the probability that |J | > mr

ilog(r−1)(mr)
. For all j ∈ Sr \ [k], we define an

indicator random variable Yj which is 1 iff p̂j > pj + ε. We further define Y :=
∑

j Yj . We have,

E [Y] =
∑
j

E [Yj] =
∑
j

Pr (p̂j > pj + ε) ≤Claim 1

∑
j

δ

4k · ilog(r−1)(mr)
≤ δ ·mr

4 · ilog(r−1)(mr)

Notice that Y = |J |; hence,

Pr
(
|J | > mr

ilog(r−1)(mr)

)
≤ Pr

(
Y >

4

δ
· E [Y]

)
≤ δ

4
(12)

where the last inequality is by Markov bound.
Finally, we calculate the probability of error of Ar−1 conditioned on that none of the two

events above happens (i.e., the event E). In that case, we have [k] ⊆ Sr−1 and that ∆ ≤ ∆k.
As r ≤ log∗ (mr) − 3 (by the lemma statement), we have r − 1 ≤ (log∗ (mr)− 1) − 3 ≤
log∗ (logmr) − 3 ≤ log∗ (mr−1) − 3. Therefore, the input to Ar−1 satisfies the assumptions
in the lemma statement as well and since the confidence parameter for Ar−1 is δ/2, we obtain that
Pr (Ar−1 errs | E) ≤ δ/2. By plugging in this bound, together with Eq (11) and Eq (12) to Eq (10),
we obtain that Ar is also a δ-error algorithm, finalizing the proof of induction step.

Next, we prove an upper bound on the query complexity of Ar for any r ≥ 1.

Lemma 9 Suppose the input to Algorithm 1 satisfies the assumptions in Lemma 3; then Algorithm 1
makes at most 10m

∆2 ·
(

ilog(r)(m) + log (8k/δ)
)

many coin tosses.

Proof The proof is again by induction on the number of rounds r. The base case of r = 1 is trivially
true. Now suppose the bounds are true for all integers smaller than r ≤ log∗ (m)− 3 and we prove
the lemma for the case of r rounds, i.e., for Ar. Note that the total number of coin tosses in Ar is
the sum of coins tosses in step 3 (which is m · tr) and the coins tosses in the recursive call which we
bound bellow. For the recursive call there are two cases to consider depending on which of step 12
(Case 1) or step 14 (Case 2) in Algorithm 1 is being executed.

23

AGARWAL AGARWAL ASSADI KHANNA

Case 1: In this case A1 is called with the confidence parameter δ/2 on at most 2k coins. We do
not use the induction hypothesis here and instead argue directly that,

cost(Ar) = m · tr + cost(A1)

≤ m · tr +
4k

∆2
· (log (2k) + log (16k/δ))

≤ m · tr +
8k

∆2
· log (8k/δ)

≤ m · tr +
8m

∆2
· log (8k/δ) (as k ≤ m)

=
2m

∆2
·
(

ilog(r)(m) + log (8k/δ)
)

+
8m

∆2
· log (8k/δ)

(by plugging in the value of tr)

<
10m

∆2
·
(

ilog(r)(m) + log (8k/δ)
)

which proves the induction step in this case.

Case 2: In this case, Ar−1 is called with the confidence parameter δ/2 on at most 2m
ilog(r−1)(m)

coins. Hence, by induction, the total number of coin tosses made in recursive calls is

cost(Ar) = m · tr + cost(Ar−1)

≤ m · tr +
20m

∆2 · ilog(r−1)(m)
·
(

ilog(r−1)(2m) + log (16k/δ)
)

≤ m · tr +
20m

∆2 · ilog(r−1)(m)
·
(

ilog(r−1)(m) + 1 + log (8k/δ) + 1
)

< m · tr +
20m

∆2
+

22m · log (8k/δ)

∆2 · ilog(r−1)(m)

<
2m

∆2
·
(

ilog(r)(m) + log (8k/δ)
)

+
8m · ilog(r)(m)

∆2
+

8m · log (8k/δ)

∆2

where in the last inequality we used the bound on tr plus the fact that ilog(r)(m) ≥ 16 as r ≤
log∗ (m)− 3. This concludes the proof of Lemma 9.

Theorem 1 now follows immediately from Lemma 3 and Lemma 9.

Appendix C. Details of the Lower Bound for the Most Biased Coins Problem

In this section, we provide the complete proof of Theorem 4. We first prove Theorem 4 for the
case of k = 1, i.e., the case of finding the most biased coin and then show that a simple reduction
extends this result to all possible values of k. Throughout this section, for any algorithmA, cost(A)
denotes the query complexity of A and deg(A) denotes the degree of adaptivity it uses, i.e., its
round complexity. We start by providing a high level overview of our proof.

24

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Overview. Consider the following input for the best coins problem introduced earlier in Section B:
we have a collection of n − 1 light coins and single heavy coin with the difference of ∆ between
the bias of the heavy coin and any light coin. A textbook result is that to classify a single coin as
heavy or light correctly with sufficiently large constant probability Ω(1/∆2) coins tosses are needed
(see, e.g., Chernoff (1972)). Using this, it is possible to argue that Ω(n/∆2) coin tosses are needed
in these instances to recover the heavy coin. However notice that Theorem 4 is proving a stronger
result on the query complexity of r-round algorithms for any r ≤ log∗ n − log∗Θ(log∗ n). To
achieve this stronger bound, we take on a different approach as described below. For the purpose of
the following discussion, it would be convenient to see ∆ as some constant and hence suppress the
bounds on ∆ in asymptotic notation. We emphasize that this assumption is only for the purpose of
following discussion and is not needed in our proof.

Our starting point is the following key claim that we prove: intuitively speaking, if an algorithm
only tosses n · s coins in the first round, then it can only reduce the set of candidate coins (for being
heavy) to n/2Θ(s) possible coins. More formally, this means that conditioned on the outcome of the
first n · s coin tosses, the heavy coin is still distributed (almost) uniformly at random over a set of
n/2Θ(s) possible coins.

Having this result, it is then easy to argue that one needs to set s = Ω(log n) to recover the
heavy coin in one round, resulting in an Ω(n log n) lower bound on the query complexity of 1-round
algorithms. There is also a more important takeaway from this discussion: any r-round algorithm
that does not spend relatively large number of coin tosses in its first round is forced to find the heavy
coin from a large pool of candidates (with essentially no further information) in the next (r − 1)
rounds. Consequently, we can prove Theorem 4 inductively, by showing that if the number of coin
tosses of an r-round algorithm is o(n · ilog(r−1)(n)), then in particular by setting s = o(ilog(r)(n))

in the above argument, we end up with≈ n/
√

ilog(r−1)(n) possible choices for the heavy coin after
the first round that needs to be further pruned in the subsequent (r − 1) rounds. But by induction,
we need ,

Ω(

(
n/

√
ilog(r−1)(n)

)
· ilog(r−1)(n) = Ω(n ·

√
ilog(r−1)(n)) = ω(n · ilog(r)(n))

many coin tosses to solve the problem in (r − 1) rounds (over n/
√

ilog(r−1)(n) coins), a contra-
diction with the bounds on the query complexity of the r-round algorithm.

To make the latter intuition precise we use a “round elimination” argument. We show that
given any “good” r-round algorithm (i.e., a one with better query complexity than the bound in
Theorem 4), there should exists a set of observed coins tosses outcome in the first round, such that
conditioned on these coin tosses being the outcome of the first round two events simultaneously
happens: (i) the algorithm still outputs a correct answer with essentially the same probability even
after this conditioning, and (ii), the distribution of the heavy coin is close to uniform (in total
variation distance) on a “large” subset of coins. Having this, we create a “good” (r − 1)-round
algorithm (defined as before) which “embed” its set of coin in the support of the distribution for
heavy coin in above discussion and simulates the “missing input” (on the larger domain) for the
r-round algorithm using independent randomness, which contradicts the induction step.

We now formalize the proof outlined above. Fix any arbitrary value ∆ ∈ (0, 1/2) (possibly
a function of n) and a constant p < 1 − ∆. Our hard input distribution is defined based on the
parameters ∆ and p.

25

AGARWAL AGARWAL ASSADI KHANNA

Distribution D∆,p
n . A hard input distribution on n coins for finding the most biased coin with the

gap parameter ∆1 = ∆.

• Sample an index i? ∈ [n] uniformly at random.

• Let pi? = p+ ∆ and pi = p for any i 6= i? in [n].

• Return the coins [n] with biases {pi}ni=1.

It is immediate to see that in any instance sampled from D∆,p
n , ∆1 = ∆. Moreover, one can see

that finding the most biased coin in this family of instances is equivalent to determining the value
of i?. We use this fact to prove a lower bound on the query complexity of any algorithm for these
instances.

Define the recursive function e(r) = e(r − 1) + o(1/r2) with e(1) = 0. The following lemma
is the main result of this section (which first appeared in Section 2.2).

Lemma 6 Fix any integers n, r ≥ 1. Suppose Ar is an r-round algorithm that given an instance
sampled from D∆,p

n outputs the most biased coin correctly w.p. at least 2/3 + e(r); then,

cost(Ar) = Ω(
n

∆2 · r4
· ilog(r)(n)).

Fix n, r ≥ 1 and algorithm Ar as in Lemma 6. Note that by an averaging argument, we can
assume w.l.o.g that Ar is deterministic. Indeed, for any randomized algorithm that errs w.p. at
most δ on the distribution D∆,p

n , there exists a choice of random bits (used by the algorithm) that
conditioned on, the error probability of algorithm is still at most δ where the probability is taken over
the randomness of the distribution and observed outcomes. Hence, by conditioning on these random
bits we obtain a deterministic algorithm with the same performance guarantee. Consequently, in the
following, we assume that the algorithm Ar is deterministic.

To continue, we need some notation. Recall that S1 denotes the multi-set of coins tossed in
the first round by Ar. Let s1 denote the size of S1 counting the multiplicities. We define the
outcome profile of S1 as the s1-dimensional tuple T = ((i1, θ1), (i2, θ2), . . . , (is1 , θs1)), whereby
for any j ∈ [s1], ij and θj , denote, respectively, the index of the j-th coin in S1 and its value,
i.e., heads or tails. We use I to denote the random variable for the index i? in D∆,p

n , and T to
denote the random variable for the vector T . We further use Θj , for any j ∈ [s1], to denote the
random variable for parameter θj defined above. We let Θ := (Θ1, . . . ,Θs1). Finally, for any
k-dimensional tuple X = (X1, . . . , Xk) and index i ∈ [k], we define X<i = (X1, . . . , Xi−1) and
X−i := (X1, . . . , Xi−1, Xi+1, . . . , Xk).

Notice that random variables Θ1, . . . ,Θs1 are in general correlated in the distribution D∆,p
n .

However, we argue that for any j ∈ [s1], Θj and Θ−j are independent conditioned on I. Indeed,
conditioning on I fixes the distribution of the coins: Bernoulli B(p+∆) for the coin i? and Bernoulli
B(p) for the remaining coins. Therefore, since for all j ∈ [s1], Θj is sampled from the distribution
of the coin ij , we have,

Θj ⊥ Θ−j | I (13)

The following lemma bounds the “information” revealed about the index i? (i.e., the most biased
coin) in the first round based on the number of coin tosses done by Ar in this round.

26

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Lemma 7 I(I ; T) = O(s1 ·∆2/n).

Proof Recall that Ar is a deterministic algorithm. This means that the multi-set S1 of the coins
being tossed in the first round by Ar is fixed apriori. As such, the random variable T is only a
function of the vector Θ = (Θ1, . . . ,Θs1). We have,

I(I ; T) = I(I ; Θ) =Fact 1-(d)

s1∑
j=1

I(I ; Θj | Θ<j) =

s1∑
j=1

H(Θj | Θ<j)−H(Θj | Θ<j , I)

≤
s1∑
j=1

H(Θj)−H(Θj | I) =

s1∑
j=1

I(I ; Θj) (14)

where the inequality is true since: (i) H(Θj | Θ<j) ≤ H(Θj) as conditioning can only drop the
entropy (Fact 1-(c)), and (ii) H(Θj | Θ<j , I) = H(Θj | I) since by Eq (13), Θj ⊥ Θ<j | I and
hence further conditioning on Θ<j does not change the entropy of Θj conditioned on I (again by
Fact 1-(c)). We now bound each term I(I ; Θj) in the above sum. In order to do this, we write,

I(I ; Θj) = E
i?∼U([n])

[D(dist(Θj) || dist(Θj | I = i?))] (15)

as i? is chosen uniformly at random from [n] in D∆,p
n .

The following claim bounds each term above individually.

Claim 5 For any j ∈ [s1],

D(dist(Θj) || dist(Θj | I = i?)) =

{
O(∆2) if ij = i?

O(∆2/n2) otherwise

Proof Fix any j ∈ [s1]. By definition of D∆,p
n , we have,

dist(Θj) = B(p+ ∆/n), dist(Θj | I = ij) = B(p+ ∆), and dist(Θj | I 6= ij) = B(p).

Suppose first ij = i?. In this case,

D(dist(Θj) || dist(Θj | I = i?)) = D(B(p+ ∆/n) || B(p+ ∆))

≤Fact 4
(p+ ∆/n− (p+ ∆))2

(p+ ∆) · (1− (p+ ∆))
= O(∆2)

since p+ ∆ and (1− (p+ ∆)) are both constants bounded away from zero.
Similarly, if ij 6= i?,

D(dist(Θj) || dist(Θj | I = i?)) = D(B(p+ ∆/n) || B(p))

≤Fact 4
(p+ ∆/n− p)2

p · (1− p)
= O(∆2/n2)

27

AGARWAL AGARWAL ASSADI KHANNA

By plugging in the bounds established in Claim 5 to Eq (15), we have,

I(I ; Θj) =
1

n
· D(dist(Θj) || dist(Θj | I = ij)) +

n− 1

n
· D(dist(Θj) || dist(Θj | I 6= ij))

=Claim 5 O(∆2/n) +O(∆2/n2) = O(∆2/n)

Finally, we can plug this in Eq (14) and obtain that I(I ; T) ≤
∑s1

j=1O(∆2/n) = O(s1 · ∆2/n),
proving the lemma.

We are now ready to prove Lemma 6. The proof is by induction (on the number of rounds r).
In the following claim, we prove the base case of this induction.

Claim 6 With the assumption and notation of Lemma 6, cost(A1) = Ω(n
∆2 · log n).

Proof We use Fano’s inequality (Fact 2) to prove this claim. Let δ = 1/3−e(1) = 1/3. Recall that
algorithm A1 tosses the coins S1 and given the value of these coin tosses in the outcome profile T
determines the most biased coin w.p. at least 1− δ = 2/3. As argued earlier, determining the most
biased coin in distribution D∆,p

n is equivalent to determining the value of index i?. As such, T is an
δ-error estimator for I. Hence,

δ · |I|+H2(δ) ≥Fact 2 H(I | T) = H(I)− I(I ; T)

Now notice that |I| = H(I) = log n by Fact 1-(a) as I is uniform over [n]. Moreover, by Lemma 7,
I(I ; T) = O(s1 ·∆2/n). By reordering the terms above, we obtain that s1 = Ω(n

∆2 · log n). Noting
that cost(A1) = s1 finalizes the proof.

Now assume inductively that Lemma 6 is true for all integers smaller than r and we want to
prove this for r-round algorithms. The proof of induction step is by contradiction. We show that
if there exists an algorithm Ar with smaller query complexity than the bounds stated in Lemma 6
for D∆,p

n , then there also exists an (r− 1)-round algorithm Ar−1 with smaller query complexity on
distributionD∆,p

m for some appropriately chosenm ≤ n, which contradicts the induction hypothesis.
Lemma 7 essentially implies that if the number of coin tosses in the first round is small, then

the outcome profile T, on average, does not reveal much information about the identity of the
most biased coin, i.e., I. More formally, if we assume (by way of contradiction) that cost(Ar) =
o(n

∆2·r4 · ilog(r)(n)), we have,

H(I | T) = H(I)− I(I ; T) =Fact 1-(a) log n− I(I ; T) =Lemma 7 log n− o(ilog(r)(n)/r4) (16)

where in the last part we used the fact that s1 ≤ cost(Ar). Now consider any fixed possible outcome
profile T for Ar in round one, i.e., any possible value for T. We say that T is uninformative iff
H(I | T = T) = log n− o(ilog(r)(n)/r2). Roughly speaking, whenever the outcome profile in the
first round is uninformative, the algorithm is quite “uncertain” about the identity of the most biased
coin, and hence needs to find it among a large pool of candidate coins in the next (r − 1) rounds.
This we argue is not possible as by induction hypothesis the available budget is not large enough to
solve the problem in (r − 1) rounds on such a large domain (by induction hypothesis).

We start by showing that our assumption on query complexity of Ar implies that there exists
an uninformative outcome profile in the first round which still results in a good output by Ar in the
subsequent rounds.

28

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Claim 7 There exists an uninformative outcome profile Tui of coin tosses in the first round of Ar
such that,

Pr (Ar errs | T = Tui) ≤ δ + o(1/r2).

Proof Let C := log n−H(I | T). By Eq (16), C = o(ilog(r)(n)/r4). For any ε > 0, we have,

Pr
T

(
log n−H(I | T = T) ≥ r2

ε
· C
)
≤ ε · ET [log n−H(I | T = T)]

r2 · C

=
ε · (log n−H(I | T))

r2 · C
=

ε

r2

(by the choice of C = log n−H(I | T))

This means that w.p. at least 1 − ε/r2, H(I | T = T) ≥ log n − 1
ε · o(ilog(r)(n)/r2). By taking ε

small enough, we have that the probability that T is uninformative is 1− o(1/r2).
Using this, we can write,

Pr (Ar errs | T is uninformative) ≤ Pr (Ar errs) + Pr (T is not uninformative) ≤ δ + o(1/r2)

The assertion of the claim now follows by an averaging argument.

Let Tui be the uninformative outcome profile in Claim 7 and define ψ := dist(I | T = Tui).
As H(I | T = Tui) = log n − o(ilog(r)(n)/r2), we can apply Lemma 8 on random variable
I | T = Tui with parameters γ = o(ilog(r)(n)/r2) and ε = o(1/r2) to express its distribution
ψ as a convex combination of distributions ψ0, ψ1, . . . , ψk, i.e., ψ =

∑
i qi ·ψi (for

∑
i qi = 1) such

that q0 = o(1/r2) and for all i ≥ 1,

|supp(ψi)| ≥ 2(logn−o(ilog(r)(n))) ≥ n(
ilog(r−1)(n)

)o(1)
(17)

‖ψi − Ui‖tvd = o(1/r2) (18)

where Ui is the uniform distribution on supp(ψi). With this notation,

δ + o(1/r2) ≥Claim 7 Pr (Ar errs | T = Tui) =
∑
i

qi · Pr (Ar errs | T = Tui, I ∼ ψi)

As q0 = o(1/r2), by an averaging argument, we have that there exists a distribution ψi for some
i ≥ 1 such that Pr (Ar errs | T = Tui, I ∼ ψi) ≤ δ + o(1/r2). Without loss of generality let this
distribution be ψ1 and define m := |supp(ψ1)|. We now use the fact that ψ1 is close to a uniform
distribution on supp(ψ1) (in total variation distance) together with an embedding argument to show
that,

Claim 2 There exists a deterministic (r− 1)-round δ+ o(1/r2)-error algorithm for the best coins
problem on D∆,p

m with query complexity at most equal to cost(Ar) on D∆,p
n .

Proof Let Ar,Tui be an (r − 1)-round algorithm obtained by running Ar from the second round
onwards assuming that the outcome profile in the first round was Tui. We use Ar,Tui to design a
randomized algorithm A′ for D∆,p

m .

29

AGARWAL AGARWAL ASSADI KHANNA

Given any instance sampled fromD∆,p
m ,A′ maps [m] to supp(ψ1) (using any arbitrary bijection).

Next, it runs Ar,Tui as follows: if Ar,Tui choose to toss a coin in supp(ψ1), A′ also choose the
corresponding coin in [m]; otherwise, if Ar,Tui choose to toss a coin in [n] \ supp(ψ1), A′ simply
toss a coin from the distribution B(p) and return the result to Ar,Tui . Finally, if Ar,Tui outputs a
coin from supp(ψ1), A′ returns the corresponding coin in [m] and otherwise A′ simply return an
arbitrary coin in [m] as the answer.

It is trivially true that cost(A′) ≤ cost(A). Hence, in the following we prove the correctness of
A′. Let D′ be the distribution of underlying instances on [n] created by A′. Let U1 be the uniform
distribution on supp(ψ1). It is straightforward to verify that D′ = D∆,p

n | I ∼ U1, and that D′ is a
deterministic function of I. As such,

Pr
D∆,p
m

(
A′ errs

)
= Pr
D′

(
Ar,Tui errs

)
= Pr
D∆,p
n

(
Ar,Tui errs | I ∼ U1

)
≤Fact 5 Pr

D∆,p
n

(
Ar,Tui errs | I ∼ ψ1

)
+ ‖ψ1 − U1‖tvd

=Eq (18) Pr
D∆,p
n

(Ar errs | I ∼ ψ1,T = Tui) + o(1/r2)

≤ δ + o(1/r2)

To finalize the proof, note that by an averaging argument, there exists a fixing of the randomness in
A′ that results in the same error guarantee. But by fixing the randomness in A′ we obtain a deter-
ministic (r − 1)-round algorithm A′′ that errs on D∆,p

m w.p. at most δ + o(1/r2).

We are now ready to conclude the proof of Lemma 6. By Claim 2, there exists an (r− 1)-round
algorithm Ar−1 that errs w.p. at most δ + o(1/r2) = 1/3 − e(r) + o(1/r2) = 1/3 − e(r − 1) on
instances of D∆,p

m such that cost(Ar−1) ≤ cost(Ar). But by induction hypothesis (as Ar−1 is an
(r − 1)-round algorithm), we know,

cost(Ar−1) = Ω

(
m

∆2 · (r − 1)4
· ilog(r−1)(m)

)

=Eq (17) Ω

 1

∆2 · (r − 1)4
· n(

ilog(r−1)(n)
)o(1)

· ilog(r−1)(n)


= Ω

(
n

∆2 · r4
·
(

ilog(r−1)(n)
)1−o(1)

)
= Ω

(n

∆2 · r4
· ilog(r)(n)

)
(as ilog(r)(n) = log(ilog(r−1)(n)))

which is in contradiction with cost(Ar−1) ≤ cost(Ar) = o
(

n
∆2·r4 · ilog(r)(n)

)
. This finalizes the

proof of Lemma 6.
We can now conclude the proof of Theorem 4.

Proof [of Theorem 4] Fix parameters ∆ and integers n, k. For simplicity, we assume k divides n.
We further pick a constant p < 1−∆. Create distribution D as follows:

1. Partition the set [n] of coins into k equal size subsets N1, . . . , Nk each of size t := n/k.

30

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

2. For any j ∈ [k], we sample the bias of the coins in Nj from D∆,p
t .

Notice that in any instance sampled from distributionD, there are k coins with bias p+∆ and n−k
coins with bias p, and hence ∆k = ∆. Additionally, each of the coins with bias p+ ∆ belongs to a
separate subset Nj . Hence, finding the top k most biased coins in distribution D amounts to finding
the most biased coins in k independent instances sampled from D∆,p

t . We now use this to prove the
lower bound.

Let A be a (1/4)-error r-round algorithm for finding the top k most biased coins in D, and
assume by contradiction that cost(A) = o

(
n

∆2 · ilog(r)(nk)
)

. This means that there exists at least

one index j ∈ [k], such that in expectation, only o(n
k·∆2 · ilog(r)(nk)) coins are being tossed in the

coins in Nj . By Markov inequality, we have that w.p. 1− o(1), only o(n
k·∆2 · ilog(r)(nk)) coins are

being tossed in Nj ; for brevity, let E denote this event. We have,

Pr (A finds the most biased coin in Nj | E) ≥ 3/4− o(1)

This means that A when restricted to the coins in Nj , finds the top most biased coin w.p. at least
3/4−o(1) using at most o(t

∆2 ·ilog(r)(t)) many coin tosses (recall that t = n/k). On the other hand,
by Lemma 6, any algorithm for finding the most biased coins in instances sampled from D∆,p

t w.p.
at least 2/3 + e(r) = 2/3 +

∑r
i=1 o(1/i

2) = 2/3 + o(1) < 3/4− o(1), requires Ω(t
∆2 · ilog(r)(t))

many coin tosses, a contradiction.

Appendix D. Extension to Multi-Armed Bandits with Sub-Gaussian Rewards

In this section we discuss the problem of best arms identification in multi-armed bandits with sub-
gaussian reward distributions defined as:

Definition 10 (Sub-Gaussian Distributions) For any b > 0, we say a distribution D on R is b-sub-
gaussian if for the random variable X drawn from D and any t ∈ R, we have that

E [exp(t · X− tE[X])] ≤ exp(b2 · t2/2) .

The Bernoulli distribution is a special case of the 1-sub-Gaussian distribution. Any distribu-
tion with support in [0, b] is a b-sub-Gaussian distribution. The b-sub-Gaussian family also contains
many unbounded distributions such as the Gaussian distribution. We next give a version of Hoeffd-
ing’s inequality for b-sub-Gaussian distributions.

Lemma 11 (Hoeffding’s inequality) Let X1, . . . ,Xm be an i.i.d. sequence of random variables
drawn from a b-sub-Gaussian distribution D with µ = EX∼D[X]. Then for any ε > 0, we have

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−mε

2

2b2

)
We are given n arms, and the reward that we get on pulling each arm is a b-sub-Gaussian random

variable with unknown mean. Let µi be the mean reward of arm i ∈ [n]. We define the problem of
k best arms identification as:

31

AGARWAL AGARWAL ASSADI KHANNA

Problem 1 (Best Arms) Given arms [n] with (unknown) mean rewards {µi}ni=1, a parameter k ∈
[n], the goal is to identify a set of k best arms in terms of mean rewards. We will assume that the set
of k best arms is unique.

For any 0 < δ < 1, a δ-error algorithm A for solving this problem is allowed to pull the arms
in [n] and based on the outcomes of these pulls, return a set of arms which is the set of top-k arms
w.p. at least 1− δ.

We now define the gap parameter for an instance of this problem in terms of the differences in
mean rewards. For any i ∈ [n], let,

∆i =

{
µ[i] − µ[k+1] if i ≤ k
µ[k] − µ[i] otherwise

.

The gap parameter is then ∆k, which is the difference between the mean rewards of k-th and
(k + 1)-th best arms.

We consider algorithms that in each round chooses a multi-set of arms to pull. The choice of this
multi-set is adaptive, i.e. it is dependent on the history of rewards in previous rounds. Following the
coin tossing problem, we denote by deg(A) the round complexity of algorithm A, and by cost(A)
the total number of arms pulled. We are interested in algorithms for solving this problem which have
low round complexity. In particular, given a parameter r we are interested in δ-error algorithms A
which have deg(A) ≤ r.

D.1. Related Work

Multi-armed bandit problems have been widely studied in the machine learning and operations
research community. These problems find applications in settings where there are a number of
alternatives (arms) with unknown reward and the goal is to explore and then exploit the alternatives
with the best rewards. This has mostly been studied under different objectives- 1) maximize the
reward over the sequence of exploration (regret minimization), 2) find the best set of arms (best arm
identification). Our focus is on the latter objective.

The best arms identification problem has also been widely studied over the past few years, start-
ing from the work of Even-Dar et al. (2006). This paper gave a δ-error algorithm that finds the best
arm in O(n

∆2
k

log(1
δ)) pulls. While their setting is a fully adaptive in which the algorithm pulls 1

arm in each round, we note that their algorithm can be parallelized with Θ(log(n)) rounds of adap-
tivity. Later, Kalyanakrishnan and Stone (2010) generalized this to best k arm identification which
uses O(n

∆2
k

log(kδ)) pulls and Θ(log(n)) rounds of adaptivity. Subsequently, Kalyanakrishnan et al.
(2012) showed that the number of pulls achieved by the algorithm of Kalyanakrishnan and Stone
(2010) is optimal in terms of worst-case query complexity. We give an algorithm for this problem
that is optimal in terms of worst-case query complexity but also in terms of round complexity.

The latter work in this area has focussed on designing instance-optimal algorithms Kalyanakr-
ishnan et al. (2012); Gabillon et al. (2012); Jamieson et al. (2013); Bubeck et al. (2013); Karnin
et al. (2013); Chen and Li (2015); Kaufmann et al. (2016); Chen et al. (2017), i.e. algorithms whose
sample complexity is closely tied to the bandit instance and is better than the worst case complex-
ity for ‘easy’ bandit instances. While there has been significant progress on this front, these the
algorithms typically have Ω(log(n)) rounds of adaptivity. Some of this work also studies a limited

32

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

budget setting, but for a reasonably good confidence δ the number of rounds of adaptivity again
needs to be Ω(log(n)).

There are other multi-armed bandit settings which focus on limiting the adaptivity of an algo-
rithm. One example is the delayed feedback setting in which the reward of pulling an arm in round
t is shown in some later round τt. We note that our setting of limited adaptivity can be simulated
in this setting, by taking an appropriately high value of τt. However, to the best of our knowledge
most of the results in this setting focus on regret minimization and not on identifying the top arms.

Another example is the semi-bandit feedback setting in which in each round the algorithm is
allowed to chose a subset of the arms to pull. However, in each round a particular arm can be pulled
at most once. A trivial lower bound on the number of rounds required in this setting is Ω(∆−2

k)
since one need these many pulls of the k-th arm to distinguish whether it is one of the top-k arm or
not. This is not interesting when the number of arms is not large.

A recent work by Jun et al. (2016) is the most closely related to our work. The authors consider
algorithms that pull a multi-set of arms in each round. There is bound on the number of pulls that
the algorithm is allowed to pull in each round, and also the number of times an individual arm is
pulled in each round. However, the number of rounds required by their algorithm in the worst case
is at least Ω(log(n)) irrespective of the bound we set on the number of pulls.

Table 3 summarizes some of these results, and Table 4 gives related lower-bounds.

D.2. Our results on Best Arms Identification

We show that Algorithm 1 can be extended to solve the problem of best-arms identification in multi-
armed bandits. This is easy to see if the reward distributions are Bernoulli. For sub-Gaussian reward
distributions we prove the following theorem:

Theorem 12 There exists an algorithm that given any number of rounds r ≥ 1, integer k ≥
1, n arms with b-sub-Gaussian rewards with b > 0, and the gap parameter ∆k ∈ (0, 1), and
confidence parameter δ ∈ (0, 1), finds the set of the k best arms w.p. 1 − δ in r rounds with
O
(
b2n
∆2
k
·
(

ilog(r)(n) + log (k/δ)
))

pulls.

To prove the above theorem, the only change required in Algorithm 1 is that the number of pulls
in each round also depends on the parameter b of the sub-Gaussian distribution. Specifically, we set

tr :=
8b2

∆2
·
(

ilog(r)(m) + log (8k/δ)
)
,

in step 2 of Algorithm 1, while all the other steps remain the same. We first prove a claim on
the estimation of rewards of sub-Gaussian rewards. This is similar to Claim 1 for the coin problem
and we define ε in the same way as done in the proof of Theorem 1.

Claim 8 For any round r ≥ 1, and any arm i ∈ Sr, Pr (|µ̂i − µi| ≥ ε) ≤ δ
4k·ilog(r−1)(m)

.

Proof By Hoeffding’s inequality for b sub-Gaussians Lemma 11, we have,

Pr (|µ̂i − µi| ≥ ε) ≤ 2 exp

(
−ε

2 · tr
2b2

)
≤ 2 exp

(
−
(

ilog(r)(m) + log(8k/δ)
))
≤ δ

4k · ilog(r−1)(m)

33

AGARWAL AGARWAL ASSADI KHANNA

Table 3: Summary of some multi-armed bandit results for top-k arm identification

Algorithm # Rounds of Sample
Adaptivity Complexity

k = 1

Median Elimination Θ(log(n)) O(n log(1/δ)
∆2

1
)

Even-Dar et al. (2002)

Successive Rejects Θ(n) O
(∑n

i=1 ∆−2
i · log2(nδ)

)
Audibert and Bubeck (2010)

Exp-Gap Elimination Ω(log(n)) O
(∑n

i=1 ∆−2
i · log(

log(∆−1
i)

δ)
)

Karnin et al. (2013)

PRISM Ω(log(n)) O
(∑n

i=1 ∆−2
i · log(∆−1

i · log(1/δ))
)

Jamieson et al. (2013)

Distr-Based Elimination Ω(log(n)) O
(∑n

i=1 ∆−2
i · log(

log(min{n,∆−1
i })

δ)
)

Chen and Li (2015)

Any k ∈ [n]

Halving Θ(log(n)) O(n log(k/δ)
∆2

k
)

Kalyanakrishnan and Stone (2010)

LUCB Ω
(

∆−2
k log(

∑n
i=1 ∆−2

i

δ)
)

O

(∑n
i=1 ∆−2

i · log(
∑n

j=1 ∆−2
j

δ)

)
Kalyanakrishnan et al. (2012)

UGapE Ω
(

∆−2
k log(

∑n
i=1 ∆−2

i

δ)
)

O

(∑n
i=1 ∆−2

i · log(
∑n

j=1 ∆−2
j

δ)

)
Gabillon et al. (2012)

Successive Accepts Θ(n) O
(∑n

i=1 ∆−2
i · log2(nδ)

)
& Rejects

Bubeck et al. (2013)

This paper log∗(n) O(n log(k/δ)
∆2

k
)

as ilog(r)(m) = log ilog(r−1)(m).

The rest of the proof is exactly the same as the proof of Theorem 1. The lower bound follows
from the fact that Bernoulli distributions are a special case of the 1-sub-Gaussian distributions.

Appendix E. Extension to Top-k Ranking Using Pairwise Comparison

We show here how to extend the lower bound in Theorem 4 (and Corollary 5) for best coins problem
to the problem of finding top-k elements according to Borda scores. Consider any instance of the
best coins problem with probabilities {pi}ni=1 and gap parameter ∆k. As shown in Section 3, not
all instances of best coins problem can be mapped to an instance of the ranking problem. However,

34

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Table 4: Lower bounds for top-k arm identification in multi-armed bandits
Algorithm Setting Lower

Bound

k = 1

Mannor and Tsitsiklis (2004) Fully Adaptive Ω(n log(1/δ)
∆2

1
)

Mannor and Tsitsiklis (2004) Fully Adaptive Ω
(∑n

i=1 ∆−2
i · log(1/δ)

)
Instance-wise

Chen and Li (2015) Fully Adaptive Ω
(∑n

i=1 ∆−2
i · log(log(n)

δ)
)

Any k ∈ [n]

Kalyanakrishnan et al. (2012) Fully Adaptive Ω(n log(k/δ)
∆2

k
)

This paper Θ(log∗(n)) Ω(n log(k/δ)
∆2

k
)

rounds of adaptivity

in the following, we show that if for all coin i the bias pi ∈ [1
2 ,

3
4)5, then we can indeed map the

instance of coin tossing problem on n coins to an instance of the ranking problem on 2n items
such that each coin toss can be simulated via a single comparison and further on finding the top
k coins is equivalent to finding the top k items according to Borda score. Note that by setting the
parameter p = 1/2 in the distribution D∆,p used in proving the lower bound for best coins problem
in Section 2.2, we obtain a family of instances satisfying the assumption above. As such we can
apply our lower bound in Theorem 4 (and Corollary 5) in a black-box fashion to obtain that,

Theorem 13 For any parameter ∆ ∈ (0, 1/4) and any integers n, k ≥ 1, any r-round algorithm
for finding the top-k items according to Borda score that succeed w.p. at least 3/4 on instances with
n items and gap parameter ∆k = ∆, has query complexity Ω

(
n

∆2·r4 · ilog(r)(nk)
)

.
In particular, (log∗ (n)− log∗ (Θ(log∗ n))) rounds of adaptivity is required by any algorithm

that uses only O(n
∆2) pairwise comparisons, i.e., has the optimal worst-case query complexity for

constant k.

Proof Consider the following mapping between any instance {pi}ni=1 of best k coins problem to an
instance of the ranking problem on 2n items: we create two disjoint sets of items S and T each of
size n. For each i ∈ [n], suppose pi = 1/2 + εi for some εi ∈ [0, 1/4). We define the preference
matrix P ∈ R2n×2n as follows:

Pi,j =


1/2 if i ∈ S, j ∈ S
1/2 if i ∈ T, j ∈ T
1/2 + 2(1− 1

2n) · εi if i ∈ S, j ∈ T

5. We note that the upper bound of 3/4 in this range is not necessary and can be switched to any other constant smaller
than 1 by increasing the size of the constructed ranking instance by a constant factor. However, the lower bound of
1/2 is crucial for the purpose of the reduction.

35

AGARWAL AGARWAL ASSADI KHANNA

Table 5: Summary of some top-k ranking results. In this table by passive we mean settings where
there is an oracle that generates a (random) comparison graph G = ([n], E) which is an
undirected graph on n vertices. It then samples ` comparisons between items i and j if
there is an edge (i, j) ∈ E, for some ` ≥ 1. It then reports all these comparisons to the
algorithm. Note that the algorithm has no control on which items will be compared, and
therefore, the comparison graph must satisfy certain properties (for example connectivity)
to infer meaningful rankings from these comparisons. Note that this is different from non-
adaptive settings, i.e. r = 1, where the algorithms is at least able to choose the samples in
one round.

Pairwise Comparison # Rounds of Sample
Model Adaptivity Complexity

Chen and Suh (2015) BTL Non-adaptive O
(

n log(n/δ)
(w[k]−w[k+1])2

)
Jang et al. (2016) BTL Non-adaptive O

(
n log(n/δ)

(w[k]−w[k+1])2

)
Braverman et al. (2016) NP 4 O

(
n log(n/δ)
(1−2p)2

)
Shah and Wainwright (2015) General Non-adaptive O(n log(n/δ)

∆2
k

)

Busa-Fekete et al. (2013) General Ω
(
∆−2
k · log(n)

)
O
(∑n

i=1 ∆−2
i · log(n

δ∆i
)
)

Heckel et al. (2016) General Ω
(
∆−2
k · log(n)

)
O
(∑n

i=1 ∆−2
i · log(n

δ∆i
)
)

This paper General Θ(log∗(n)) O(n log(k/δ)
∆2

k
)

Under this transformation, the Borda score of each item i ∈ S is

τi =
1

2n− 1
·
∑
j 6=i

Pi,j =
1

2n− 1
·
(

(|S| − 1) · 1

2
+ |T | · (1

2
+ 2εi −

1

n
)

)

=
1

2n− 1
·
(
n− 1

2
+
n

2
+ (2n− 1) · εi

)
=

1

2
+ εi

Moreover, it is straightforward to verify that for each item j ∈ T , τj < 1/2. Consequently, the set
of top k items in [2n] coincides with the set of top k most biased coins in [n].

We now argue that one can construct this instance implicitly given the set of n coins with
unknown biases. Indeed we map the set of n coins to the set S of items and create n new items T .
Then, any comparison between i and j can be simulated by (i) independently sampling from the

36

LEARNING WITH LIMITED ROUNDS OF ADAPTIVITY

Bernoulli distribution B(1
2) whenever i, j are both in S, or are both in T , or (ii) tossing the i-th coin

in [n] and declaring i beats j iff the coins tosses head whenever i ∈ S and j ∈ T .
With this transformation, one can use any algorithm for the ranking problem to solve the in-

stances of best coins problem that satisfy the aforementioned property with the same query and
round complexity. Theorem 13 now follows immediately from Theorem 4 as the instances in the
distribution D in Theorem 4 satisfy the needed property (by setting the parameter p = 1/2).

37

	Introduction
	Related Work
	Notation

	Finding the k Most Biased Coins / k Best Arms
	A Limited-Adaptivity Algorithm for Finding the k Most Biased Coins
	Algorithm
	Analysis

	A Lower Bound for the k Most Biased Coins Problem
	Proof Sketch for k=1

	Top-k Ranking from Pairwise Comparisons
	Conclusion
	Tools From Information Theory
	Details of the Algorithm for Finding the Most Biased Coins
	Algorithm
	Analysis

	Details of the Lower Bound for the Most Biased Coins Problem
	Extension to Multi-Armed Bandits with Sub-Gaussian Rewards
	Related Work
	Our results on Best Arms Identification

	Extension to Top-k Ranking Using Pairwise Comparison

