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Abstract. Given a metric space on n points, an α-approximate univer-
sal algorithm for the Steiner tree problem outputs a distribution over
rooted spanning trees such that for any subset X of vertices containing
the root, the expected cost of the induced subtree is within an α factor
of the optimal Steiner tree cost for X. An α-approximate differentially
private algorithm for the Steiner tree problem takes as input a subset
X of vertices, and outputs a tree distribution that induces a solution
within an α factor of the optimal as before, and satisfies the additional
property that for any set X ′ that differs in a single vertex from X, the
tree distributions for X and X ′ are “close” to each other. Universal
and differentially private algorithms for TSP are defined similarly. An
α-approximate universal algorithm for the Steiner tree problem or TSP
is also an α-approximate differentially private algorithm. It is known
that both problems admit O(log n)-approximate universal algorithms,
and hence O(log n) approximate differentially private algorithms as well.

We prove an Ω(log n) lower bound on the approximation ratio achiev-
able for the universal Steiner tree problem and the universal TSP, match-
ing the known upper bounds. Our lower bound for the Steiner tree prob-
lem holds even when the algorithm is allowed to output a more general
solution of a distribution on paths to the root. We then show that when-
ever the universal problem has a lower bound that satisfies an additional
property, it implies a similar lower bound for the differentially private
version. Using this converse relation between universal and private algo-
rithms, we establish an Ω(log n) lower bound for the differentially private
Steiner tree and the differentially private TSP. This answers a question
of Talwar [19]. Our results highlight a natural connection between uni-
versal and private approximation algorithms that is likely to have other
applications.

1 Introduction

Traditionally, in algorithm design one assumes that the algorithm has complete
access to the input data which it can use unrestrictedly to output the optimal, or
near optimal, solution. In many applications, however, this assumption does not
hold and the traditional approach towards algorithms needs to be revised. For
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instance, let us take the problem of designing the cheapest multicast network
connecting a hub node to a set of client nodes; this is a standard network design
problem which has been studied extensively. Consider the following two situa-
tions. In the first setting, the actual set of clients is unknown to the algorithm,
and yet the output multicast network must be “good for all” possible client sets.
In the second setting, the algorithm knows the client set, however, the algorithm
needs to ensure that the output preserves the privacy of the clients. Clearly, in
both these settings, the traditional algorithms for network design don’t suffice.

The situations described above are instances of two general classes of prob-
lems recently studied in the literature. The first situation needs the design of
universal algorithms; algorithms which output solutions when parts of the input
are uncertain or unknown. The second situation needs the design of differen-
tially private algorithms; algorithms where parts of the input are controlled by
clients whose privacy concerns constrain the behaviour of the algorithm. A natu-
ral question arises: how do the constraints imposed by these classes of algorithms
affect their performance?

In this paper, we study universal and differentially private algorithms for two
fundamental combinatorial optimization problems: the Steiner tree problem and
the travelling salesman problem (TSP). The network design problem mentioned
above corresponds to the Steiner tree problem. We resolve the performance ques-
tion of universal and private algorithms for these two problems completely by
giving lower bounds which match the known upper bounds. Our techniques and
constructions are quite basic, and we hope these could be applicable to other
universal and private algorithms for sequencing and network design problems.

Problem formulations. In both the Steiner tree problem and the TSP, we are
given a metric space (V, c) on n vertices with a specified root vertex r ∈ V .
Given a subset of terminals, X ⊆ V , we denote the cost of the optimal Steiner
tree connecting X ∪ r by optST (X). Similarly, we denote the cost of the optimal
tour connecting X ∪ r by optTSP (X). If X is known, then both optST (X) and
optTSP (X) can be approximated up to constant factors.

A universal algorithm for the Steiner tree problem, respectively the TSP,
does not know the set of terminals X , but must output a distribution D on
rooted trees T , respectively tours σ, spanning all vertices of V . Given a termi-
nal set X , let T [X ] be the minimum-cost rooted subtree of T which contains
X . Then the cost of the universal Steiner tree algorithm on terminal set X is
ET←D[c(T [X ])]. We say the universal Steiner tree algorithm is α-approximate,
if for all metric spaces and all terminal sets X , this cost is at most α ·optST (X).
Similarly, given a terminal set X , let σX denote the order in which vertices
of X are visited in σ, and let c(σX) denote the cost of this tour. That is,
c(σX) := c(r, σX(1)) +

∑|X|−1
i=1 c(σX(i), σX(i + 1)) + c(σX(|X |), r). The cost of

the universal TSP algorithm on set X is ET←D[c(σX)], and the approximation
factor is defined as it is for the universal Steiner tree algorithm.

A differentially private algorithm for Steiner trees and TSPs, on the other
hand, knows the set of terminals X ; however, there is a restriction on the solution
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that it can output. Specifically, a differentially private algorithm for the Steiner
tree problem with privacy parameter ε, returns on any input terminal set X a
distribution DX on trees spanning V , with the following property. Let X ′ be
any terminal set such that the symmetric difference of X ′ and X is exactly one
vertex. Then,

Pr
DX′

[T ] · exp(−ε) ≤ Pr
DX

[T ] ≤ Pr
DX′

[T ] · exp(ε),

where PrD[T ] is the probability of getting tree T when drawn from distribution
D. The cost of the algorithm on set X is ET←DX [c(T [X ])] as before, and the
approximation factor is defined as that for universal trees. Differentially private
algorithms for the TSP are defined likewise. To gain some intuition as to why
this definition preserves privacy, suppose each vertex is a user and controls a bit
which reveals its identity as a terminal or not. The above definition ensures that
even if a user changes its identity, the algorithm’s behaviour does not change by
much, and hence the algorithm does not leak any information about the user’s
identity. This notion of privacy is arguably the standard and strongest notion of
privacy in the literature today; we point the reader to [4] for an excellent survey
on the same. We make two simple observations; (a) any universal algorithm is a
differentially private algorithm with ε = 0, (b) if the size of the symmetric differ-
ence in the above definition is k instead of 1, then one can apply the definition
iteratively to get kε in the exponent.

For the Steiner tree problem, one can consider another natural and more
general solution space for universal and private algorithms, where instead of
returning a distribution on trees spanning V , the algorithm returns a distribution
D on collections of paths P := {pv : v ∈ V }, where each pv is a path from v
to the root r. Given a single collection P , and a terminal set X , the cost of
the solution is c(P [X ]) := c(

(⋃
v∈X E(pv)

)
, where E(pv) is the set of edges

in the path pv. The cost of the algorithm on set X is EP←D[c(P [X ])]. Since
any spanning tree induces an equivalent collection of paths, this solution space
is more expressive, and as such, algorithms in this class may achieve stronger
performance guarantees. We show that this more general class of algorithms has
the same asymptotic lower bound as the class of algorithms that are restricted
to output a spanning tree.

1.1 Previous Work and Our Results

A systematic study of universal algorithms was initiated by Jia et al. [12], who
gave O(log4 n/ log log n)-approximate universal algorithms for both the Steiner
tree problem and the TSP. Their algorithms were deterministic and returned
a single tree and tour respectively. The authors also noted that results of [2,5]
on probabilistically embedding general metrics into tree metrics imply random-
ized O(log n)-approximate universal algorithms for these problems. Using prop-
erties of the embeddings of [5], Gupta et al.[7] gave deterministic O(log2 n)-
approximate universal algorithms for both problems.
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Jia et al. [12] observe that a lower bound for online Steiner tree algorithms
implies a lower bound for universal Steiner tree algorithms; thus, following the
result of Imase and Waxman [11], one obtains a lower bound of Ω(log n) for any
universal Steiner tree algorithm. It is not hard to see that the [11] lower bound
also holds for algorithms returning a collection of vertex-to-root paths. Jia et
al. [12] explicitly leave lower bounds for the universal TSP as an open problem.
Hajiaghayi et al. [9] make progress on this by showing an Ω

(
6
√

log n/ log log n
)

lower bound for universal TSP; this holds even in the two dimensional Euclidean
metric space. [9] conjecture that for general metrics the lower bound should be
Ω(log n); in fact, they conjecture this for the shortest path metric of a constant
degree expander. Very recently, this conjecture was proven by Gorodezky et al.
[6]; we discuss and compare this particular result and ours at the end of this
subsection.

When the metric space has certain special properties (for instance if it is the
Euclidean metric in constant dimensional space), Jia et al. [12] give an improved
universal algorithms for both Steiner tree and TSP, which achieves an approx-
imation factor of O(log n) for both problems. Furthermore, if the size of the
terminal set X is k, their approximation factor improves to O(log k) – a signif-
icant improvement when k ! n. This leads to the question whether universal
algorithms exist for these problems whose approximation factors are a non-trivial
function of k alone. A k-approximate universal Steiner tree algorithm is trivial;
the shortest path tree achieves this factor. This in turn implies a 2k-approximate
universal TSP algorithm. Do either of these problems admit an o(k)-approximate
algorithm? The constructions of [11] achieving a lower bound of Ω(log n) for uni-
versal Steiner tree require terminal sets that are of size nΩ(1), and do not rule
out the possibility of an O(log k)-approximation in general. In fact, for many
network optimization problems, an initial polylog(n) approximation bound was
subsequently improved to a polylog(k) approximation (e.g., sparsest cut [13,14],
asymmetric k-center [18,1], and more recently, the works of Moitra et al. [16,17]
on vertex sparsifiers imply such a result for other many cut and flow problems).
It is thus conceivable that a polylog(k)-approximation could be possible for the
universal algorithms as well.

We prove Ω(log n) lower bounds for the universal TSP and the Steiner tree
problem, even when the algorithm returns vertex-to-root paths for the latter (The-
orems 2 and 1). Furthermore, the size of the terminal sets in our lower bounds
is Θ(log n), ruling out any o(k)-universal algorithm for either of these problems.
Private vs universal algorithms. The study of differentially private algorithms for
combinatorial optimization problems is much newer, and the paper by Gupta
et al. [8] gives a host of private algorithms for many optimization problems.
Since any universal algorithm is a differentially private algorithm with ε = 0,
the above stated upper bounds for universal algorithms hold for differentially
private algorithms as well. For the Steiner tree problem and TSP, though, no
better differentially private algorithms are known. Talwar, one of the authors
of [8], recently posed an open question whether a private O(1)-approximation
exists for the Steiner tree problem, even if the algorithm is allowed to use a more
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general solution space, namely, return a collection of vertex-to-root paths, rather
than Steiner trees [19].

We observe that a simple but useful converse relation holds between universal
and private algorithms: “strong” lower bounds for universal algorithms implies
lower bounds for differentially private algorithms. More precisely, suppose we can
show that for any universal algorithm for the Steiner tree problem/TSP, there
exists a terminal set X , such that the probability that a tree/tour drawn from
the distribution has cost less than α times the optimal cost is exp(−ε|X |) for a
certain constant ε. Then we get an Ω(α) lower bound on the performance of any
ε-differentially private algorithm for these problems. (Corollary 1). Note that this
is a much stronger statement than merely proving a lower bound on the expected
cost of a universal algorithm. The expected cost of a universal algorithm may
be Ω(α), for instance, even if it achieves optimal cost with probability 1/2, and
α times the optimal cost with probability 1/2. In fact, none of the earlier works
mentioned above [11,12,9,6] imply strong lower bounds. The connection between
strong lower bound on universal algorithms and lower bounds for differentially
private algorithms holds for a general class of problems, and may serve as a
useful tool for establishing lower bounds for differentially private algorithms
(Section 3).

All the lower bounds we prove for universal Steiner trees and TSP are strong
in the sense defined above. As corollaries, we get lower bounds of Ω(log n) on
the performance of differentially private algorithms TSP and the Steiner tree
problem, even when the algorithm returns a collection of paths. This answers the
question of Talwar [19] negatively. (Corollaries 1 and 2).

The metric spaces for our lower bounds on universal Steiner tree and TSP are
shortest path metrics on constant degree expanders. To prove the strong lower
bounds on distributions of trees/tours, it suffices, by Yao’s lemma, to construct
a distributions on terminal sets such that any fixed tree/tour pays, with high
probability, an Ω(log n) times the optimum tree/tour’s cost on a terminal set
picked from the distribution. We show that vertices on a sufficiently long random
walk suffices in the Steiner tree case, while for TSP, we choose the client set from
two independent random walks.
Comparison of our results with [6]: As mentioned above, Gorodezky et al. [6]
obtain an Ω(log n) lower bound for universal TSP. Their result also gives an Ω(k)
lower bound on the performance of a universal TSP algorithm where k is the
number of terminals. Although [6] do not address universal Steiner tree problem
directly, the Ω(k) lower bound for universal TSP implies an Ω(k) lower bound
for universal Steiner tree as well, only when the algorithm returns spanning trees.
However, this doesn’t work for algorithms that return collections of vertex-to-
root paths. Our result gives the first Ω(k) lower bound for the universal Steiner
tree problem when the algorithm is allowed to return a collection of vertex-to-
root paths.

Furthermore, even though our approach is somewhat similar, our proofs are
simpler and the results are stronger in that we prove that the probability any
randomized algorithm pays o(log n) times the optimum for a certain subset is ex-
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ponentially small in the size of the client set. As explained earlier, these stronger
lower bounds are crucial to our technique for proving privacy lower bounds. In
particular, to our knowledge, no lower bounds for differentially private Steiner
tree (even for weaker algorithms returning spanning trees instead of vertex-to-
root paths) and TSP can be deduced from results of [6].
Organization. In Section 2, we establish an Ω(log n) lower bound for the univer-
sal Steiner tree problem and the universal TSP. As mentioned above, the lower
bound for the Steiner tree problem is for a more general class of algorithms
which return a collection of paths instead of a single tree. The lower bound es-
tablished are strong in the sense defined earlier, and thus give an Ω(log n) lower
bound for private Steiner tree as well as private TSP. We formalize the connec-
tion between strong lower bounds for universal problems and approximability of
differentially private variants in Section 3. Finally, in interest of space, certain
proofs have been omitted from the abstract and can be found in the full version
of the paper [3].

2 Lower Bound Constructions

The metric spaces on which we obtain our lower bounds are shortest path metrics
of expander graphs. Before exhibiting our constructions, we state a few known
results regarding expanders that we use. An (n, d, β) expander is a d regular, n
vertex graph with the second largest eigenvalue of its adjacency matrix β < 1.
The girth g is the size of the smallest cycle and the diameter ∆ is the maximum
distance between two vertices. A t-step random walk on an expander picks a
vertex uniformly at random, and at each step moves to a neighboring vertex
uniformly at random.

Lemma 1. [15] For any constant k, there exist (n, d, β) expanders, called Ra-
manujan graphs, with d ≥ k, β ≤ 2√

d
, girth g = Θ(log n/ log d), and diameter

∆ = Θ(log n/ log d).

Lemma 2. (Theorem 3.6, [10]) Given an (n, d, β) expander, and a subset of
vertices B with |B| = αn, the probability that a t-step random walk remains
completely inside B is at most (α + β)t.

Lemma 3. (Follows from Theorem 3.10, [10]) Given an (n, d, β) expander, a
subset of vertices B with |B| = αn, and any γ, 0 ≤ γ ≤ 1, the probability that a
t-step random walk visits more than γt vertices in B is at most 2t · (α + β)γt.

2.1 Steiner Tree Problem

We consider a stronger class of algorithms that are allowed to return a distribu-
tion D on collections of paths P := {pv : v ∈ V }, where each pv is a path from v
to the root r. As stated in the introduction, this class of algorithms captures as
a special case algorithms that simply return a distribution on collection of span-
ning trees, since the latter induces a collection of paths. We prove the following
theorem.
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Theorem 1. For any constant ε > 0 and for large enough n, there exists a
metric space (V, c) on n vertices such that for any distribution D on collections
of paths, there is a terminal set X of size Θ(log n), such that

Pr
P←D

[
c(P [X ]) = o

(
log n

1 + ε

)
optST (X)

]
≤ 1

2
exp(−ε|X |) (1)

At a high-level, the idea underlying our proof is as follows. We choose as our
underlying graph a Ramanujan graph G, and consider the shortest path metric
induced by this graph. We show that for any fixed collection P of vertex-to-
root paths, a terminal set generated by a random walk q of length Θ(log n) in
G has the following property with high probability: the edges on q frequently
“deviate” from the paths in the collection P . These deviations can be mapped
to cycles in G, and the high-girth property is then used to establish that the cost
of the solution induced by P is Ω(log n) times the optimal cost. Before proving
Theorem 1, we establish the following corollaries of it.

Corollary 1. (a) There is no o(log n)-approximate universal Steiner tree algo-
rithm. (b) There is no o(k)-approximate universal Steiner tree algorithm where
k is the size of the terminal set. (c) For any ε > 0, there is no o(log n/(1 + ε))-
approximate private algorithm with privacy parameter ε.

Proof. The proofs of (a) and (b) are immediate by fixing ε to be any constant.
The universal algorithm pays at least Ω(log n) times the optimum with high
probability, thus giving a lower bound of Ω(log n) on the expected cost. To see
(c), consider a differentially private algorithm A with privacy parameter ε. Let D
be the distribution on the collection of paths returned by A when the terminal
set is ∅. Let X be the subset of vertices corresponding to this distribution in
Theorem 1. Let P := {P : c(P [X ]) = o( log n

1+ε ) ·optST (X)}; we know PrP←D[P ∈
P ] ≤ 1

2 exp(−ε|X |). Let D′ be the distribution on the collection of paths returned
by A when the terminal set is X . By the definition of ε-differential privacy, we
know that PrP←D′ [P ∈ P ] ≤ exp(ε · |X |) ·

(
1
2 exp(−ε|X |)

)
≤ 1/2. Thus with

probability at least 1/2, the differentially private algorithm returns a collection
of path of cost Ω

(
log n
1+ε

)
· optST (X), implying the lower bound.

Note that the statement of Theorem 1 is much stronger than what is needed to
prove the universal lower bounds. The proof of part (c) of the above corollary
illustrates our observation that showing strong lower bounds for universal prob-
lems imply lower bounds for privacy problems. This holds more generally, and
we explore this more in Section 3. We now prove Theorem 1.
Proof of Theorem 1: Consider an (n, d, β) expander as in Lemma 1 with
degree d ≥ 2K(1+ε), where K is a large enough constant. The metric (V, c) is the
shortest path metric induced by this expander. The root vertex r is an arbitrary
vertex in V . We now demonstrate a distribution D′ on terminal sets X such that
ε|X | ≤ C0 log n, for some constant C0, and for any fixed collection of paths P ,

Pr
X←D′

[
c(P [X ]) = o

(
log n

1 + ε

)
optST (X)

]
≤ 1

2
exp(−C0 log n). (2)
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The lemma below is essentially similar to Yao’s lemma [20] used for establish-
ing lower bounds on the performance of randomized algorithms against oblivious
adversaries; its proof is omitted.

Lemma 4. Existence of a distribution D′ satisfying (2) proves Thm 1.

The distribution D′ is defined as follows. Recall that the girth and the diameter
of G are denoted by g and ∆ respectively, and both are Θ

(
log n
log d

)
. Consider a

random walk q of t-steps in G, where t = g/3, and let X be the set of distinct
vertices in the random walk. This defines the distribution on terminal sets. Note
that each X in the distribution has size |X | = O(log n/ log d). We define C0

later to be a constant independent of d, and thus since d is large enough, ε|X | ≤
C0 log n.

Fix a collection of paths P . Since we use the shortest path metric of G, we may
assume that P is a collection of paths in G as well. Let (v, v1) be the first edge
on the path pv, and let F := {(v, v1) : v ∈ V } be the collection of all these first
edges. The following is the crucial observation which gives us the lower bound.
Call a walk q = (u1, . . . , ut) on t vertices good if at most t/8 of the edges of the
form (ui, ui+1) are in F , and it contains at least t/2 distinct vertices.

We are now ready to complete the proof using the lemma below.

Lemma 5. Let G be an (n, d, β) expander where d is a large constant (≥ 2100,
say) and β = 2√

d
. Suppose we mark an arbitrarily chosen subset of n edges in G

as bad. Then the probability that a t step random walk contains at most t/8 bad
edges and covers at least t/2 distinct vertices is at least (1 − d−Ω(t)).

Lemma 6. Let q be a good walk of length t = g/3 and let X be the set of distinct
vertices in q. Then c(P [X ]) = Ω(|X |g).

Proof. Let X ′ be the vertices in X which do not traverse edges in F in the
random walk q. Thus |X ′| ≥ |X |− 2t/8 ≥ |X |/2. We now claim that c(P [X ′]) ≥
|X ′|g/3 which proves the lemma. For every u ∈ X ′, let p′u be the first g/3 edges
in the path pu (if pu’s length is smaller than g/3, p′u = pu). All the p′u’s are vertex
disjoint: if p′u and p′v intersect then the union of the edges in p′u, p′v and the part of
the walk q from v to u contains a cycle of length at most g contradicting that the
girth of G is g. Thus, c(P [X ′]), which is at least c(

⋃
u∈X′ p′u) ≥ |X ′|g/3 ≥ |X |g/6.

Call the set of edges F bad; note that the number of bad edges is at most n.
Lemma 5 implies that the probability a t-step random walk is good is at least
(1− d−Ω(t)). Observe that this expression is (1− exp(−C0 log n)) for a constant
C0 independent of d. Furthermore, whenever q is a good walk, the set of distinct
vertices X in q are at least t/2 in number; therefore optST (X) ≤ t+∆ = Θ(|X |)
since one can always connect X to r by travelling along q and then connecting
to r. On the other hand, Lemma 6 implies that c(P [X ]) = Ω(|X |g) = Ω( log n

log d ) ·
optST (X) = Ω( log n

1+ε ) · optST (X), by our choice of d. This gives that

Pr
X←D′

[c(P [X ]) ≤ o

(
log n

1 + ε

)
optST (X)] ≤ 1

2
exp(−C0 log n)
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where C0 is independent of d. Thus, D′ satisfies (2), implying, by Lemma 4,
Theorem 1. !

2.2 Traveling Salesman Problem

We now show an Ω(log n) lower bound for the traveling salesman problem. In
contrast to our result for the Steiner tree problem, the TSP result is slightly
weaker result in that it precludes the existence of o(log n)-approximate private
algorithms for arbitrarily small constant privacy parameters only.

We remark here that a lower bound for universal TSP implies a similar lower
bound for any universal Steiner tree algorithm which returns a distribution on
spanning trees. However, this is not the case when the algorithm returns a col-
lection of paths; in particular, our next theorem below does not imply Theorem
1 even in a weak sense, that is, even if we restrict the parameter ε to be less
than the constant ε0.

Theorem 2. There exists a metric space (V, c) and a constant ε0, such that for
any distribution D on tours σ of V , there exists a set X ⊆ V of size Θ(log n)
such that

Pr
σ←D

[c(σX) = o(log n) · optTSP (X)] ≤ 1
2

exp(−ε0|X |)

At a high level, the idea as before is to choose as our underlying graph a Ra-
manujan graph G, and consider the shortest path metric induced by this graph.
We show that for any fixed permutation σ of vertices, with high probability a
pair of random walks, say q1, q2, has the property that they frequently alternate
with respect to σ. Moreover, with high probability, every vertex on q1 is Ω(log n)
distance from every vertex in q2. The alternation along with large pairwise dis-
tance between vertices of q1 and q2 implies that on input set defined by vertices
of q1 and q2, the cost of the tour induced by σ is Ω(log n) times the optimal
cost.

As stated in the Introduction, Gorodezky et al. [6] also consider the shortest
path metric on Ramanujan expanders to prove their lower bound on universal
TSP. However, instead of taking clients from two independent random walks,
they use a single random walk to obtain their set of ‘bad’ vertices. Seemingly, our
use of two random walks makes the proof easier, and allows us to make a stronger
statement: the RHS in the probability claim in Theorem 2 is exponentially small
in |X |, while [6] implies only a constant. This is not sufficient for part (c) of the
following corollary.

As in the case of Steiner tree problem, we get the following corollaries of the
above theorem.

Corollary 2. (a) There is no o(log n)-approximate universal TSP algorithm.
(b) There is no o(k)-approximate universal TSP algorithm where k is the size
of the terminal set. (c) There exists ε0 > 0 such that there is no o(log n)-
approximate private algorithm with privacy parameter at most ε0.
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3 Strong Universal Lower Bounds Imply Privacy Lower
Bounds

Suppose Π is a minimization problem whose instances are indexed as tuples
(I, X). The first component I represents the part of the input that is accessible
to the algorithm (and is public); for instance, in the Steiner tree and the TSP
example, this is the metric space (V, c) along with the identity of the root.
The second component X is the part of the input which is either unknown
beforehand, or corresponds to the private input. We assume that X is a subset
of some finite universe U = U(I). In the Steiner tree and TSP example, X is
the set of terminals which is a subset of all the vertices. An instance (I, X) has
a set of feasible solutions S(I, X), or simply S(X) when I is clear from context,
and let S :=

⋃
X⊆U S(X). In the case of Steiner trees, S(X) is the collection

of rooted trees containing X ; in the case of TSP it is the set of tours spanning
X ∪ r. Every solution S ∈ S has an associated cost c(S), and opt(X) denotes
the solution of minimum cost in S(X).

We assume that the solutions to instances of Π have the following projection
property. Given any solution S ∈ S(X) and any X ′ ⊆ X , S induces a unique
solution in S(X ′), denoted by πX′(S). For instance, in case of the Steiner tree
problem, a rooted tree spanning vertices of X maps to the unique minimal rooted
tree spanning X ′. Similarly, in the TSP, an ordering of vertices in X maps to the
induced ordering of X ′. In this framework, we now define approximate universal
and differentially private algorithms.

An α-approximate universal algorithm for Π takes input I and returns a dis-
tribution D over solutions in S(U) with the property that for any X ⊆ U ,
ES←D[c(πX(S))] ≤ α · opt(I, X). An α-approximate differentially private al-
gorithm with privacy parameter ε for Π takes as input (I, X) and returns a
distribution DX over solutions in

⋃
Y ⊇X S(Y ) that satisfies the following two

properties. First, for all (I, X), ES←DX [c(πX(S))] ≤ α · opt(I, X). Second, for
any set of solutions F and for any pair of sets X and X ′ with symmetric differ-
ence exactly 1, we have

exp(−ε) · Pr
S←DX′

[S ∈ F ] ≤ Pr
S←DX

[S ∈ F ] ≤ exp(ε) · Pr
S←DX′

[S ∈ F ]

It is easy to see that any α-approximate universal algorithm is also an α-
approximate differentially private algorithm with privacy parameter ε = 0; the
distribution DX := D for every X suffices. We now show a converse relation:
lower bounds for universal algorithms with a certain additional property imply
lower bounds for private algorithms as well. We make this precise.

Fix ρ : [n] → [0, 1] to be a non-increasing function. We say that an (α, ρ)
lower bound holds for universal algorithms if there exists I with the following
property. Given any distribution D on S(U), there exists a subset X ⊆ U such
that

Pr
S←D

[c(πX(S)) ≤ α · opt(I, X)] ≤ ρ(|X |) (3)
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We say that the set X achieves the (α, ρ) lower bound. It is not hard to see that
when ρ is a constant function bounded away from 1, an (α, ρ) lower bound is
equivalent to an Ω(α) lower bound on universal algorithms.

Theorem 3. Suppose there exists a (α, ρ) lower bound for universal algorithms
for a problem Π. Then any ε-private algorithm for Π with
ε ≤ ε0 := infX

1
|X| ln

(
1

2ρ(|X|)

)
has an approximation factor of Ω(α).

Proof. Let I be an instance that induces the (α, ρ) lower bound. Consider the
output of a differentially private algorithm A with privacy parameter ε < ε0,
on the input pair (I, ∅). Let D be the distribution on the solution set S. We
first claim that all S in the support of D lie in S(U). Suppose not and suppose
there is a solution S ∈ S(Z) \ S(U), for some Z ⊂ U , which is returned with
non-zero probability. By the definition of differential privacy, this solution must
be returned with non-zero probability when A is run with (I, U), contradicting
feasibility since S /∈ S(U).

Thus, D can be treated as a universal solution for Π . Let X be the set which
achieves the (α, ρ) lower bound for D, and let F := {S ∈ S(X) : c(S) ≤
α · opt(I, X)}. By the definition of the lower bound, we know that PrS←D[S ∈
F ] ≤ ρ(|X |). Let D′ be the output of the algorithm A when the input is (I, X).
By definition of differential privacy, PrS←D′ [S ∈ F ] ≤ exp(ε·|X |)·ρ(|X |) ≤ 1/2,
from the choice of ε. This shows a lower bound on the approximation factor of
any differential private algorithm for Π with parameter ε < ε0.
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