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Abstract. We study social welfare in one-sided matching markets where
the goal is to efficiently allocate n items to n agents that each have
a complete, private preference list and a unit demand over the items.
Our focus is on allocation mechanisms that do not involve any monetary
payments. We consider two natural measures of social welfare: the ordinal
welfare factor which measures the number of agents that are at least as
happy as in some unknown, arbitrary benchmark allocation, and the
linear welfare factor which assumes an agent’s utility linearly decreases
down his preference lists, and measures the total utility to that achieved
by an optimal allocation.

We analyze two matching mechanisms which have been extensively
studied by economists. The first mechanism is the random serial dictator-
ship (RSD) where agents are ordered in accordance with a randomly cho-
sen permutation, and are successively allocated their best choice among
the unallocated items. The second mechanism is the probabilistic se-
rial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a
fractional allocation that can be expressed as a convex combination of
integral allocations. The welfare factor of a mechanism is the infimum
over all instances. For RSD, we show that the ordinal welfare factor is
asymptotically 1/2, while the linear welfare factor lies in the interval
[.526,2/3]. For PS, we show that the ordinal welfare factor is also 1/2
while the linear welfare factor is roughly 2/3. To our knowledge, these
results are the first non-trivial performance guarantees for these natural
mechanisms.

1 Introduction

In the one-sided matching market problem!, the goal is to efficiently allocate
n items, I, to n unit-demand agents, A, with each agent a having a complete
and private preference list >, over these items. The problem arises in various
applications such as assigning dormitory rooms to students, time slots to users of
a common machine, organ allocation markets, and so on. Since the preferences

* Supported in part by NSF Awards CCF-0635084 and I1S-0904314.
! In the literature, the problem has been alternately called the house allocation or
assignment problem.
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are private, we focus on truthful (strategyproof) mechanisms in which agents
do not have an incentive to misrepresent their preferences. One class of such
mechanisms involve monetary compensations/payments among agents. However,
in many cases (e.g., in the examples cited above), monetary transfer may be
infeasible due to reasons varying from legal restrictions to plain inconvenience.
Hence, we focus on truthful mechanisms without money.

A simple mechanism for the one-sided matching problem is the following:
agents arrive one-by-one according to a fixed order o picking up their most pre-
ferred unallocated item. This is called as a serial dictatorship mechanism. The
random serial dictatorship (RSD) mechanism picks the order o uniformly at
random among all permutations. Apart from being simple and easy to imple-
ment, RSD has attractive properties: it is truthful, fair, anonymous/neutral, non-
bossy?, and returns a Pareto optimal allocation. In fact, it is the only truthful
mechanism with the above properties [26], and there is a large body of economic
literature on this mechanism (see Section 1.2).

Despite this, an important question has been left unaddressed: how efficient
is this mechanism? To be precise, what is the guarantee one can give on the
social welfare obtained by this algorithm when compared to the optimal social
welfare? As computer scientists, we find this a natural and important question,
and we address it in this paper.

The usual recourse to measure the social welfare of a mechanism is to assume
the existence of cardinal utilities u;; of agent 4 for item j with the semantic that
agent 4 prefers item j to £ iff u;; > wi. A mechanism has welfare factor o if
for every instance the utility of the matching returned is at least « times that
of the optimum utility matching. There are a couple of issues with this. Firstly,
nothing meaningful can be said about the performance of RSD if the utilities are
allowed to be arbitrary. This is because the optimum utility matching might be
arising due to one particular agent getting one particular item (a single edge),
however with high probability, any random permutation would lead to another
agent getting the item and lowering the total welfare by a lot 3. Secondly, the
assumption of cardinal utilities inherently ties up the performance of the algo-
rithm with the ‘cardinal numbers’ involved; the very quantities whose existence
is only an assumption. Rather, what is needed is an ordinal scale of analyzing the
quality of a mechanism; a measure that depends only on the order/preference
lists of the agents rather than the precise utility values.

In this paper, we propose such a measure which we call the ordinal social
welfare of a mechanism. Given an instance of items and agents with their prefer-
ence lists, we assume that there exists some benchmark matching M*, unknown
to the mechanism. We stress here this can be any matching. We say that the
ordinal welfare factor of a (randomized) mechanism is «, if for any instance and

2 A mechanism is neutral if the allocation of items doesn’t change with renaming, and
is non-bossy if no agent can change his preference so that his allocation remains
unchanged while someone else’s changes.

3 The reader may notice similarities of RSD with online algorithms for bipartite match-
ing problems. We elaborate on the connection in Section 2.2.
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every matching M*, at least an agents (in expectation) get an item which they
prefer at least as much as what they get in M*.

A discussion of this measure is in order. Firstly, the measure is ordinal and
is well defined whenever the utilities are expresses via preference lists. Secondly,
the notion is independent of any ‘objective function’ that an application might
give rise to since it measures the ordinal social welfare with respect to any
desired matching. One disadvantage of the concept is that it is global: it counts
the fraction of the total population which gets better than their optimal match.
In other words, if everyone is ‘happy’ in the benchmark matching M*, then a
mechanism with the ordinal welfare factor o will make an « fraction of the agents
happy. However if M* itself is inefficient, say only 1% of the agents are ‘happy’ in
M*, then the ordinal welfare factor does not say much. For instance, it does not
help for measures like “maximize number of agents getting their first choice”,
for in some instances, this number could be tiny in any M*. Furthermore, it
does not say anything about the “fairness” of the mechanism, e.g. a mechanism
may have the ordinal welfare factor close to 1, but there may exists an agent
who is almost always allocated an item that he prefers less than M™. Finally,
we observe that the ordinal welfare factor of any mechanism, even ones which
know the true preference lists, cannot be larger than 1/2. The reason for this is
that the allocation must be competitive with respect to all benchmark matchings
simultaneously, and it can be seen (Theorem 8) that in the instance when all
agents have the same preference list, if M* is chosen to be a random allocation,
then no mechanism can have an ordinal welfare factor better than 1/2. Our first
result is that the ordinal welfare factor of RSD is in fact asymptotically 1/2.

Theorem 1. The ordinal welfare factor of RSD is at least 1/2 — o(1).

Till now we have focussed on the RSD mechanism since it is a simple (and essen-
tially unique) truthful mechanism for the matching market problem. A mech-
anism is called truthful if misrepresenting his preference list doesn’t strictly
increase the total utility of an agent, where the utility is defined as the cardi-
nal utility obtained by the agent on getting his allocated item. However, when
the utilities of agents are represented as preference lists, one needs a different
definition. In light of this, Bogomolnaia and Moulin [8] proposed a notion of
truthfulness based on the stochastic dominance: for an agent a random alloca-
tion rule stochastically dominates another if the probability of getting one of
his top k choices in the first rule is at least that in the second, for any k. A
mechanism is called (weakly) truthful if no agent can obtain a stochastically
dominating allocation by misreporting his preference list. With this definition,
the authors propose a mechanism called the probabilistic serial (PS) algorithm,
and prove that it is weakly truthful; the mechanism is illustrated in Section 1.1.

PS and RSD are incomparable and results on RSD do not a priori imply those
for PS, nevertheless, PS has an ordinal welfare factor of 1/2 as well.

Theorem 2. The ordinal welfare factor of PS algorithm is at least 1/2.

Ordinal Welfare Factor and Popular Matchings Our notion of ordinal welfare
factor is somewhat related to the notion of popular matchings [14,3,21]. Given



90 A. Bhalgat, D. Chakrabarty, and S. Khanna

preference lists of agents, a matching M is said to be more popular than M’ if
the number of agents getting strictly better items in M is at least the number
of agents getting strictly better items in M’. A matching is popular if no other
matching is more popular than it. Thus while comparing a matching M to M’,
the notion of popular matchings distinguishes between agents that prefer M and
agents that are neutral, unlike in the case of ordinal welfare factor.

It can be easily seen that any popular matching has an ordinal welfare factor
of at least 1/2, however, (a) not every input instance has a popular matching,
and (b) no truthful algorithms are known to compute them when they exist.
A few modified measures such as unpopularity factor, unpopularity margin and
popular mixed matching have also been studied in the literature [22,17,21].

Linear Utilities. We also analyze the performance of RSD and PS mechanisms
when agents’ utilities are linear - arguably, one of the most commonly studied
special case of cardinal utilities. In this model, we assume that the utility for
an agent for his i*" preference is "‘T“Ll Observe that any serial dictatorship
mechanism achieves a welfare of at least (n 4 1)/2 since the agent at step ¢ gets
his ¢** choice or better, giving him a utility of at least (1 — (t—1)/n). How much
better does RSD do? Intuitively, one would expect the worst case instance would
be one where each agent gets one of his top o(n) choices; that would make the
optimum value n — o(n). We call such instances as efficient instances since there
is an optimum matching where every one gets their (almost) best choice. We
show that for efficient instances, RSD’s utility is at least 2% — o(n), and there

3
exists instances where RSD does no better. These bounds hold for PS as well.

Theorem 3. With linear utilities and efficient instances, RSD has linear wel-
fare at least 2/3 — o(1), and there exist efficient instances for which this is tight.

Theorem 4. With linear utilities and efficient instances, PS has linear welfare
at least 2/3 — o(1), and there exist efficient instances for which this is tight.

The following theorem summarizes our results on general instances, and we refer
the reader to the full version of this paper [6] for its proof.

Theorem 5. On general instances, the linear welfare factors of RSD and PS
algorithms are at least 0.526 and 0.6602 respectively.

Extensions. We consider two extensions to our model and focus on the perfor-
mance of RSD, leaving that of PS as an open direction. In the first, we let the
preference lists be incomplete. The proof of Theorem 1 implies that the ordinal
welfare factor of RSD remains unchanged. For linear utilities, we generalize the
definition as follows: for an agent with a preference list of length £, the i** choice
gives him a utility of (¢ —i+1)/¢. We show that RSD doesn’t perform very well.

Theorem 6. For linear utilities, RSD gets at least f)(n_l/?’) fraction of the
social optimum. Furthermore, there are instances, where the welfare of RSD is
at most O(n=1/3) fraction of the social optimum.
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In the second extension, we let the demand of an agent be for sets of size K
or less, for some K > 1. Agents now arrive and pick their best ‘bundle’ among
the unallocated items. The ordinal welfare factor of a mechanism is now « if
at least an « fraction of agents get a bundle that is as good (assuming there
is a complete order on the set of bundles) as what they got in an arbitrary
benchmark allocation. We show that RSD has ordinal welfare factor ©(1/K).

Theorem 7. In the case when each agent has a mazximum demand of K items,
the ordinal welfare factor of RSD is ©(1/K).

1.1 Preliminaries

Utility Models, Truthful Mechanisms, Welfare Factors. As stated above, we con-
sider two models for utilities of agents. In the cardinal utility model, each agent
a has a utility function u, : I — Ryo, with the property that j >, ¢ iff
ua(j) > uq(f). Given a distribution on the matchings, the utility of agent a
is uq (M) =3 pre p P(M)uo (M (a)), where p(M) is the probability of matching
M. In this paper, we focus on the special case of linear utility model where the
ith ranked item for any agent a gives him a utility of (1 — (i — 1)/n). We call an
instance efficient, if there is a matching which matched every agent to an item
in his top o(n) (for concreteness, let’s say this is n'/) choices. In the ordinal
utility model, each agent a represents his utility only via his complete preference
list >, over the items. A mechanism A is truthful if no agent can misrepresent
his preference and obtain a better item. In the cardinal utility model this im-
plies that for all agents a and utility functions u,, u, we have uy (M) > uy (M)
where M = A(uy,...,u,) and M’ = A(uy,...,ul,...,u,). A mechanism has
linear welfare factor of « if for all instances the (expected) sum of linear utilities
of agents obtained from the allocation of the mechanism is at least o times the
optimal utility allocation for that instance. A mechanism has ordinal welfare
factor of « if for all instances, and for all matchings M*, at least a fraction of
agents (in expectation) get an item at least as good as that allocated in M™*.

The Probabilistic Serial Mechanism. The probabilistic serial (PS) mechanism was
suggested by Bogomolnaia and Moulin [8]. The mechanism fractionally allocates
items to agents over multiple phases, we denote the fraction of the item 7 al-
located to an agent a by z(a,i). These fractions are such that > ., x(a,i) =
> icrz(a,i) =1 for all agents a and items 7. Thus this fractional allocation de-
fines a distribution on integral matchings.Initially, z(a,i) = 0 for every agent a
and item i. We say that an item 4 is allocated if ) 4 z(a, i) = 1, otherwise we
call it to be available. The algorithm grows z(a, ¢)’s in phases, and in each phase
one or more items get completely allocated. During a phase of the algorithm,
each agent a grows z(a,4) at the rate of 1 where i is his best choice in the set of
available items. The current phase completes and the new phase starts when at
least one item that was available in the current phase, gets completely allocated.
The algorithm continues until all items are allocated.

We make a few observations about the above algorithm which will be useful in
our analysis: (a) the algorithm terminates at time ¢ = 1, at which time all agents
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are fractionally allocated one item, that is, Y. ; z(a, i) = 1, (b) any phase lasts
for time at least 1/n and at most 1, and (c¢) by time < j/n for any 1 < j < mn,
at most (j — 1) phases are complete.

1.2 Other Related Work

There is a huge amount of literature on matching markets starting with the
seminal paper of Gale and Shapley [13], see [24,25,2] for detailed surveys. The
one-sided matching market design problem was first studied by Hylland and
Zeckhauser [18] who propose a mechanism to find a distribution on matchings
via a market mechanism. Their mechanism returns Pareto optimal, envy-free
solutions, but is not truthful. Zhou [27], showed that there can be no truthful
mechanism which is anonymous/neutral and satisfies ex ante Pareto optimality.
Svensson [26] showed that serial dictatorship mechanisms are the only truthful
mechanisms which are (ex post) Pareto optimal, non bossy, and anonymous.

The study of mechanisms with ordinal utilities for this problem was started
by Bogomolnaia and Moulin[8]. The PS mechanism was proposed in an earlier
paper by Cres and Moulin [11]. Following the work of [8], there was a list of
work characterizing stochastic dominance [1,9], and generalizing it to the case
of incomplete preference lists [20], and to multiple copies of items [10]. The
study of mechanism design without money has also been of recent interest in the
computer science community, see e.g. [23,5,12,16].

2 Ordinal Welfare Factor of RSD and PS Mechanisms

In this section, we prove Theorems 1 and 2. We first show that the ordinal welfare
factor of any mechanism is at most 1/2 in the instance where every agent has
the same preference list.

Theorem 8. If every agent has the same preference list (1,2,...,n), then the
ordinal welfare factor of any mechanism is at most 1/2+1/2n.

Proof. A mechanism returns a probability distribution on matchings which we
will interpret as a distribution of permutations. Let D be that distribution. We
choose the benchmark matching M* to be a random perfect matching. It suffices
to show that for any fixed permutation o € D, the expected number of agents
a such that o(a) < 7w(a) is (n 4+ 1)/2. Since 7 is chosen uniformly at random,
the probability that 7m(a) < o(a) is precisely (o(a) — 1)/n, and so the expected
number of happy people for the permutation o is (n +1)/2.

2.1 Ordinal Welfare Factor of RSD

In this section, we prove Theorem 1. Let M* be the unknown benchmark match-
ing. We call an agent a dead at time ¢ if he hasn’t arrived yet and all items as
good as M*(a) in his preference list has been allocated. Let D; be the expected
number of dead agents at time t. Let ALG; be the expected number of agents who
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get an item as good as their choice in M™* by time ¢. From the above definition,

we get
D,

1
p— (1)

We will now bound D; from above which along with (1) will prove the theorem.

ALGt+1 - ALGt =1-

Lemma 1. Dtg%forlgtgn.

Before proving the lemma, note that adding (1) for ¢t =1 to n — 1 gives ALG,, —

ALG; > Z?;ll ( _ %ﬁl), implying ALG,, — ALG; > n/2 — 2n/n. This proves that

the ordinal welfare factor of RSD is at least 1/2 — o(1) proving Theorem 1.

Proof. Let us start with a few definitions. For an item ¢ and time ¢, let ALL;
be the event that item ¢ is allocated by time ¢. For an agent a and time ¢, let
LATE, ; be the event that a arrives after time ¢. The first observation is this: if
an agent a is dead at time ¢, then the event ALLj;(q),; and LATE,; must have
occurred. Therefore we get

Dy <Y Pr[ALLy(q)¢ A LATE, ] (2)
acA
Note that Pr[LATE, ] is precisely (1 —¢/n). Also, note that »_,_, Pr[ALL; ] = t.

This is because all agents are allocated some item. Now suppose incorrectly that
ALLps(q),+ and LATE, ; were independent. Then, (2) would give us

Dy < (1— %) > Pr{ALLys(a).] = (1 — %) > PrlALL,] = t(nn_ :

a€A i€l

3)

which is at most the RHS in the lemma. However, the events are not independent,
and one can construct examples where the above bound is indeed incorrect. To
get the correct bound, we need the following claim.

Claim.

Pr[ALLys(q); A LATEq] _ Pr[ALLys(a)0+1 A LATEq 1]
(n—1) - (t+1)

Proof. This follows from a simple charging argument. Fix a relative order of all
agents other than a and consider the n orders obtained by placing a in the n
possible positions. Observe that if the event ALLpz(4), A LATE,+ occurs at all,
it occurs exactly (n — t) times when a’s position is ¢ + 1 to n. Furthermore,
crucially observe that if the position of a is 1 to ¢ + 1, the item M (a) will still
be allocated. This is because the addition of a only leads to worse choices for
agents following him and so if M (a) was allocated before, it is allocated even
now. This proves that for every (n — ¢) occurrences of ALL M(a),t N\ LATEq, ¢, we
have (¢ + 1) occurrences of the event ALLys(q) 441 A LATEq ¢41. The claim follows
as it holds for every fixed relative order of other agents.
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Now we can finish the proof of the lemma. From Claim 2.1, we get

t+1
m 'PI‘[ALLAI(a>,t A LATant] S PI'[ALLM(G),t+1] —PI‘[ALLM<G)7t+1 A LATEa7t+1]

Taking the second term of the RHS to the LHS, adding over all agents, and
invoking (2), we get
t+1
—— Dy + Dy <t +1 (4)
n—t
Using the fact that D41 > D, — 1 (the number of dead guys cannot decrease
by more than 1), and rearranging, proves the lemma.

2.2 RSD and Online Bipartite Matching

In this section, we highlight the relation between RSD and algorithms for on-
line bipartite matching. In fact, the analysis of RSD above can be seen as a
generalization of online bipartite matching algorithms.

In the online bipartite matching problem, vertices of one partition (think of
them as agents) are fixed while vertices of the other partition (think of them as
items) arrive in an adversarial order. Karp, Vazirani and Vazirani [19] gave the
following algorithm (KVV) for the problem: fix a random ordering of the agents,
and when an item arrives give it to the first unmatched agent in this order. They
proved? that the expected size of the matching obtained is at least (1—1/e) times
the optimum matching. The KVV theorem can be ‘flipped around’ to say the
following. Suppose each agent has the preference list which goes down its desired
items in the order of entry of items. Then, if agents arrive in a random order and
pick their best, unallocated, desired item, in expectation an (1 — 1/e) fraction
of agents are matched. That is, if we run RSD on this instance (with incomplete
lists), an (1 — 1/e) fraction of agents will get an item.

The above result does not a priori imply an analysis of RSD, the reason being
that in our problem an agent a, when he arrives, is allocated an item even if that
item is worse than what he gets in the benchmark matching M*. This might
be bad since the allocated item could be ‘good’ item for agents to come. In
particular, if the order chosen is not random but arbitrary, the performance of
the algorithm is quite bad; in contrast, the online matching algorithm still has a
competitive ratio of 1/2. Nevertheless, similar techniques prove both the results
and our analysis can be tailored to give a proof of the online bipartite matching
result (See [6] for details).

2.3 Ordinal Welfare Factor of PS

In this section, we prove Theorem 2. We suggest the reader to refer to the
algorithm and its properties as described in Section 1.1. In particular, we will
use the following observation.

4 In 2008, a bug was found in the original extended abstract of [19], but was soon
resolved. See [15,7,4] for discussions and resolutions.
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Observation 1: By time < j/n, for any 1 < j < n, at most (j — 1) items are
completely allocated.

Let M* be the unknown benchmark matching. For an agent a, let ¢, be the time
at which the item M*(a) is completely allocated. Observe that the probability
agent a gets an item M*(a) or better is precisely ¢,, since till this time z(a, )
increases for items ¢ >, M*(a). Summing up all agents, we see that the ordinal
welfare factor of the PS mechanism is Za tqe- The observation above implies at
most (j — 1) agents have t, < j/n.So, 32, ta > 37 (n—j+1)/n>n/2+1/2.
This completes the proof of Theorem 2.

3 Linear Welfare Factor of RSD and PS

In this section, we establish bounds on the linear welfare factor of RSD and PS
mechanisms. We first prove Theorem 3 in two lemmas. Recall that an instance
is called efficient if there exists a matching in which every agent is matched to
an item in his top o(n) choices.

Lemma 2. When the instance is efficient, the linear welfare factor of RSD is
at least (2/3 — o(1)).

Proof. The proof follows from Lemma 1. Let U; denote the expected utility
obtained by time t. Consider the agent coming at time ¢ 4 1. If he is not dead
already, then he will get a utility of at least (1 — o(1)) (since the instance is
efficient). If he is dead, then he will get a utility of at least (1 — ¢/n). This is
because only ¢ items have been allocated and this agent takes an item (¢ + 1)th
ranked or higher. Therefore,

Do q—tmyz1-omy - L 2

Dy
Uipr — U > (1 — (1 —o(1
1 t_< > ( 0( ))+n—t n n—t

n—t
Using Lemma 1, we get Ugr1 — Uy > 1—o0(1) — ;E:fl)) . Summing over all ¢, we get
that the total utility of RSD is at least (1—o(1))n—(n/340(n)) = (2/3—o(1))n.

The above analysis can be modified via a ‘balancing trick’ to give a strictly better
than 50% guarantee for all instances. We refer the reader to [6] for details.

Lemma 3. When the utilities are linear, there exists an efficient instance for
which RSD gets a utility of at most (2/3 + o(1))n.

Proof. Partition n agents and items into ¢ blocks of size n/t each, where t = n'/%.
We denote the j** block of agents and items by Aj and I; respectively, and they

number from (@ + 1) to %

We now illustrate the preference lists of agents. Fix an agent a in block A;.
Let he be the k*" agent in the block, where 1 < k < n/t, i.e. his agent number is
(j—1)n/t+k. A random set of t® items is picked from each of blocks Iy, ..., I;_1,
and these form the first (j — 1)¢® items in his preference list, in increasing order
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of item number. The item (j — 1)n/t + k is his (( — 1)#3 + 1)** choice. His
remaining choices are the remaining items considered in increasing order. This
completes the description of the preference lists of the agents.

Note that if every agent a is assigned the corresponding item with the same
number, then each agent gets one of his top ¢* choices, leading to a utility of at
least (1 — %) =1—0(1). So, the instance is indeed efficient. We now show that
RSD gets utility at most 2n/3 + o(1).

Let o be a random permutation of the agents. We divide o into ¢ chunks of
n/t agents, with the j** chunk, S;, consisting of agents o( G=ln 1) +1) to o(%)
Note that with high probability (> (1 — 1/¢%)), we have that for any block A;
and chunk S;, [4; N S| € [(1— %)% ,(1+ £)Z]. Since agents prefer items in
‘higher’ blocks to ‘lower’ blocks, we claim the following.

Claim. With high probability, at least (1 t3) fraction of the items in the first ¢
blocks have been allocated after arrival of first ¢ chunks. (Proof omitted; see [6].)

Now we are ready to analyze RSD. Consider the (i + 1)** chunk of agents. With
high probability, there are at least % (1 — %) agents from each block Ay, ..., A;
in S;y1. Since only in/t? items remain from the first i block of items, at least
Z(1 — &) — & of these agents must get an item from blocks (i + 1) or higher.
However, this gives them utility at most (1 — "Z/ ) > 1—i/t. That is, the drop in
their utility to what they get in the optimum is at least i/¢t. Summing the total
drop over all agents and all chunks, we get that the difference between RSD and

the optimum is at least
t Z n n
> E=(170(1))—3212=n/3

i=1 i=1

g.

~
)
H—I»—l

Therefore, the social welfare of RSD is at most (2/3 + o(1))n.

Linear Welfare Factor of PS Mechanism We establish the lower bound in this
abstract, and the upper bound instance, which is similar to that for RSD, can
be found in [6]. As in the case of RSD, we focus on efficient instances.

Lemma 4. For efficient instance, the linear welfare factor of PS > 2/3 — o(1).

Proof. Let o, denote the utility obtained by agent a in the utility optimal match-
ing. Since the instance is efficient, o, = 1 — o(1) for all agents a.

Consider the j*" phase of PS, and suppose it lasts for time A;. Observation 1
implies that » .., A; > ¢/n. Furthermore, in phase j, at least (n j+1) agents
obtain utility at a rate higher than their utility in the optimal matching. This is
because at most (j — 1) items have been allocated. Also, the remaining (j — 1)
agents are getting utility at a rate at least (1 —(j —1)/n) since they are growing
their 2(a, i) on their j** choice or better. So, the total utility obtained by PS is
at least 22:1 Aj-(n—j+1)-1-o(1)+(G-1)-(1— %)) which evaluates

to Y27, 4; (==L ) —on)
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The above summation is smallest if A; is as small as possible, modulo which,
Ay is as small as possible and so on. Given the constraint on Aj;’s, we get that

o noon?o(i-1)? _
this is at least > 7, ——5—— =2n/3 — o(n).

4 Concluding Remarks

We first give very brief sketches of the proofs of Theorems 6 and 7. Full proofs
can be found in [6].

Incomplete Preference Lists. The ordinal welfare factor of RSD remains
the same, however, the linear welfare factor of RSD drops to ©(1/n'/3). This
is because some agents can have ‘long’ preference lists and some agents have
‘short’ preference lists, and in a random order the long preference list agents can
take away items of the short preference list ones. However, if the lengths of the
preference lists of the ‘long agents’ are ‘too long’, they get an item with high
enough linear utility. The correct balancing argument gives the é(ﬁ) factor.
Non-unit demands. Note that a single agent’s choice can disrupt the choices
of K other agents. Therefore, it is not too difficult to construct an example
which shows that the ordinal welfare factor of RSD is O(1/K). On the other
hand, by the time ¢ agents arrive, at most Kt agents are disrupted, and so in a
random permutation the (¢ + 1)th agent is unhappy with probability < Ui%i)t
Integrating, this gives that 5% — o(4) agents are happy in expectation.

To conclude, in this paper we studied the social welfare of two well studied
mechanisms, RSD and PS, for one-sided matching markets. We focussed on two
measures: one was the ordinal welfare factor, and the other was the linear utilities
measure. We performed a tight analysis of the ordinal welfare factors of both
mechanisms, and the linear welfare factor in the case of efficient instances. An
open problem is to perform a tighter analysis of linear welfare factor in general
instances.We think the notion of ordinal welfare factor will be useful for other
problems as well where the utilities are expressed as preference lists rather than
precise numbers. Examples which come to mind are scheduling, voting, and
ranking.
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