
Perfect Matchings in O(n log n) Time in Regular Bipartite
Graphs

Ashish Goel
∗

Departments of Management
Science and Engineering and

(by courtesy) Computer
Science, Stanford University,

Stanford, CA, USA
ashishg@stanford.edu

Michael Kapralov
†

Institute for Computational and
Mathematical Engineering,

Stanford University,
Stanford, CA, USA

kapralov@stanford.edu

Sanjeev Khanna
‡

Department of Computer and
Information Science,

University of Pennsylvania,
Philadelphia, PA, USA

sanjeev@cis.upenn.edu

ABSTRACT
In this paper we consider the well-studied problem of finding
a perfect matching in a d-regular bipartite graph on 2n nodes
with m = nd edges. The best-known algorithm for gen-
eral bipartite graphs (due to Hopcroft and Karp) takes time
O(m

√
n). In regular bipartite graphs, however, a matching

is known to be computable in O(m) time (due to Cole, Ost,
and Schirra). In a recent line of work by Goel, Kapralov,
and Khanna the O(m) time bound was improved first to
Õ

(
min{m, n2.5/d}

)
and then to Õ

(
min{m, n2/d}

)
.

In this paper, we give a randomized algorithm that finds a
perfect matching in a d-regular graph and runs in O(n log n)
time (both in expectation and with high probability). The
algorithm performs an appropriately truncated alternating
random walk to successively find augmenting paths. Our
algorithm may be viewed as using adaptive uniform sam-
pling, and is thus able to bypass the limitations of (non-
adaptive) uniform sampling established in earlier work. Our
techniques also give an algorithm that successively finds a
matching in the support of a doubly stochastic matrix in
expected time O(n log2 n), with O(m) pre-processing time;
this gives a simple O(m+mn log2 n) time algorithm for find-
ing the Birkhoff-von Neumann decomposition of a doubly
stochastic matrix.

We show that randomization is crucial for obtaining o(nd)
time algorithms by establishing an Ω(nd) lower bound for
deterministic algorithms. We also show that there does not
exist a randomized algorithm that finds a matching in a
regular bipartite multigraph and takes o(n log n) time with
high probability.

∗Research supported in part by NSF award IIS-0904325.
†Research supported by a Stanford Graduate Fellowship
‡Supported in part by NSF Awards CCF-0635084 and IIS-
0904314.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Algorithms, Theory

Keywords
graph algorithms, matchings, bipartite regular graphs,
Birkhoff-von Neumann decomposition

1. INTRODUCTION
A bipartite graph G = (P, Q, E) with vertex set P ∪Q and

edge set E ⊆ P×Q is said to be d-regular if every vertex has
the same degree d. We use m = nd to denote the number of
edges in G and n to represent the number of vertices in P (as
a consequence of regularity, P and Q have the same size).
Regular bipartite graphs have been studied extensively, in
particular in the context of expander constructions, schedul-
ing, routing in switch fabrics, and task-assignment [13, 1,
6].

A regular bipartite graph of degree d can be decomposed
into exactly d perfect matchings, a fact that is an easy con-
sequence of Hall’s theorem [3] and is closely related to the
Birkhoff-von Neumann decomposition of a doubly stochas-
tic matrix [2, 15]. Finding a matching in a regular bipartite
graph is a well-studied problem, starting with the algorithm
of König in 1916 [12], which is now known to run in time
O(mn). The well-known bipartite matching algorithm of
Hopcroft and Karp [11] can be used to obtain a running
time of O(m

√
n). In graphs where d is a power of 2, the

following elegant idea, due to Gabow and Kariv [8], leads
to an algorithm with O(m) running time. First, compute
an Euler tour of the graph (in time O(m)) and then fol-
low this tour in an arbitrary direction. Exactly half the
edges will go from left to right; these form a regular bi-
partite graph of degree d/2. The total running time T (m)
thus follows the recurrence T (m) = O(m) + T (m/2) which
yields T (m) = O(m). Extending this idea to the general
case proved quite hard, and after a series of improvements
(e.g. by Cole and Hopcroft [5], and then by Schrijver [14]
to O(md)), Cole, Ost, and Schirra [6] gave an O(m) algo-
rithm for the case of general d. Their main interest was in

39

edge coloring of general bipartite graphs, where finding per-
fect matchings in regular bipartite graphs is an important
subroutine.

Recently, Goel, Kapralov, and Khanna [10], gave a sampling-
based algorithm that computes a perfect matching in d-

regular bipartite graphs in O(min{m, n2.5 log n
d }) expected

time, an expression that is bounded by Õ(n1.75). The algo-
rithm of [10] uses uniform sampling to reduce the number of
edges in the input graph while preserving a perfect match-
ing, and then runs the Hopcroft-Karp algorithm on the sam-
pled graph. The authors of [10] also gave a lower bound of

Ω̃
(
min{nd, n2

d }
)

on the running time of an algorithm that

uses non-adaptive uniform sampling to reduce the number
of edges in the graph as the first step. This lower bound
was matched in [9], where the authors use a two stage sam-
pling scheme and a specialized analysis of the runtime of the
Hopcroft-Karp algorithm on the sampled graph to obtain a

runtime of Õ
(
min{nd, n2

d }
)
.

For sub-linear (in m) running time algorithms, the exact
data model is important. In this paper, as well as in the
sub-linear running time algorithms mentioned above, we as-
sume that the graph is presented in the adjacency array
format, i.e., for each vertex, its d neighbors are stored in
an array. This is the most natural input data structure for
our problem. Our algorithms will not make any ordering
assumptions within an adjacency array.

Given a partial matching in an undirected graph, an aug-
menting path is a path which starts and ends at an un-
matched vertex, and alternately contains edges that are out-
side and inside the partial matching. Many of the algorithms
mentioned above work by repeatedly finding augmenting
paths.

1.1 Our Results and Techniques
Our main result is the following theorem.

Theorem 1. There exists a randomized algorithm for find-
ing a perfect matching in a d-regular bipartite graph G =
(P, Q, E) given in adjacency array representation, and takes
time O(n log n) time both in expectation as well as with high
probability.

The algorithm is very simple: the matching is constructed
by performing one augmentation at a time, and new aug-
menting paths are found by performing an alternating ran-
dom walk with respect to the current matching. The al-
ternating random walk on G, defined in Section 2, can be
viewed as a random walk on a modified graph that en-
codes the current matching. The random walk approach
may still be viewed as repeatedly drawing a uniform sample
from the adjacency array of some vertex v; however this ver-
tex v is now chosen adaptively, thus allowing us to bypass

the Ω̃
(
min{nd, n2

d }
)

lower bound on non-adaptive uniform

sampling established in [10]. Somewhat surprisingly, we
show that the total time taken by these random augmen-
tations can be bounded by O(n log n) in expectation, only
slightly worse than the Ω(n) time needed to simply output a
perfect matching. The proof involves analyzing the hitting
time of the sink node in the random walk. We also estab-
lish that randomization is crucial to obtaining an o(nd) time
algorithm.

Theorem 2. For any 1 ≤ d < n/12, there exists a family
of d-regular graphs on which any deterministic algorithm for
finding a perfect matching requires Ω(nd) time.

We also give a lower bound on the running time of any
randomized algorithm for finding a perfect matching in d-
regular bipartite multigraphs, even with edge multiplicities
bounded above by d/2:

Theorem 3. Let A be any randomized algorithm that finds
a matching in a d-regular bipartite multigraph with n nodes
and edge multiplicities bounded above by d/2. Then there ex-
ists a family of graphs for which A probes at least (γ/64)n ln n
locations in the input adjacency arrays with probability at
least n−γ .

We note that the algorithm of Theorem 1 takes O(n log n)
time with high probability on multigraphs with edge multi-
plicities less than d/2 and hence, the lower and upper bounds
are tight in this particular case. It is also interesting to con-
trast Theorem 3 with the result of [16], which shows that
sampling a constant number of edges incident to every vertex
of a complete bipartite graph yields a subgraph that contains
a perfect matching with high probability, i.e. the sampling
complexity is O(n) even if a high probability result is de-
sired. The lower bound on the randomized algorithm is not
as comprehensive as the deterministic lower bound: it holds
only for very specific values of d (specifically, d = Θ(n)), it
bounds the “with high probability”-running time as opposed
to the expected running time, and it works for multi-graphs.
Obtaining tight upper and lower bounds for the entire range
of parameters and for expected running time remains an in-
teresting open problem.

Our techniques also extend to the problem of finding a per-
fect matching in the support of a doubly-stochastic matrix,
as well as to efficiently compute the Birkhoff-von-Neumann
decomposition of a doubly stochastic matrix.

Theorem 4. Given an n×n doubly-stochastic matrix M
with m non-zero entries, one can find a perfect matching in
the support of M in O(n log2 n) expected time with O(m)
preprocessing time.

In many applications of Birkhoff von Neumann decompo-
sitions (e.g. routing in network switches [4]), we need to find
one perfect matching in a single iteration, and then update
the weights of the matched edges. In such applications, each
iteration can be implemented in O(n log2 n) time (after ini-
tial O(m) preprocessing time), improving upon the previous
best known bound of O(mb) where b is the bit precision.

Corollary 5. For any k ≥ 1, there exists an O(m +
kn log2 n) expected time algorithm for finding k distinct match-
ings (if they exist) in the Birkhoff-von-Neumann decompo-
sition of an n× n doubly stochastic matrix with m non-zero
entries.

Finally, we note that an application of Yao’s min-max
theorem (see, for instance, [13]) to Theorem 1 immediately
yields the following corollary:

Corollary 6. For any distribution on regular bipartite
graphs with 2n nodes, there exists a deterministic algorithm
that runs in average time O(n log n) on graphs drawn from
this distribution.

A similar corollary also follows for doubly stochastic matri-
ces.

40

1.2 Organization
Section 2 gives the O(n log n) time algorithm to find a

perfect matching, and establishes Theorem 1. Building on
the ideas developed in Section 2, we present in Section 3.1
algorithms for finding matchings in doubly-stochastic matri-
ces, and computing a Birkhoff-von-Neumann decomposition,
establishing Theorem 4 and Corollary 5. In Section 4, we
present an Ω(nd) lower bound for any deterministic algo-
rithm that finds a perfect matching in a d-regular graph.
Finally, in Section 5 we present an Ω(n log n) lower bound
for any algorithm that finds a matching in a regular bipartite
multigraph with high probability.

2. MATCHINGS IN d-REGULAR BIPARTITE
GRAPHS

2.1 The Basic Algorithm
Let G = (P, Q, E) denote the input d-regular graph and

let M be a partial matching in G. We first describe the al-
ternating random walk on G with respect to M . We assume
that the algorithm has access to the function SAMPLE-
OUT-EDGE that takes a vertex u ∈ P and returns a uni-
formly random unmatched edge going out of u. The imple-
mentation and runtime of SAMPLE-OUT-EDGE depend on
the representation of the graph. It is assumed in Theorem 1
and in this section that the graph G does not have paral-
lel edges and is represented in adjacency array format, in
which case SAMPLE-OUT-EDGE can be implemented to
run in expected constant time. In Theorem 4, however, a
preprocessing step will be required to convert the matrix to
an augmented binary search tree, in which case SAMPLE-
OUT-EDGE can be implemented to run in O(log n) time.

The alternating random walk starts at a uniformly ran-
dom unmatched vertex u0 ∈ P and proceeds as follows:

1. Set v :=SAMPLE-OUT-EDGE(uj);

2. If v is matched, set uj+1 := M(v), otherwise termi-
nate.

Note that an augmenting path with respect to M can be
obtained from the sequence of steps taken by the alternating
random walk by removing possible loops.

We now state a basic version of our algorithm:

Algorithm 1

Input: A d-regular bipartite graph G = (P, Q, E) in adja-
cency array format.

Output: A perfect matching of G.

1. Set j := 0, M0 := ∅.

2. Run the alternating random walk starting from a random
unmatched vertex in P until it hits an unmatched ver-
tex in Q.

3. Denote the augmenting path obtained by removing possi-
ble loops from the sequence of steps taken by the walk
by p. Set Mj+1 := Mj∆p.

4. Set j := j + 1 and go to step 2.

We prove in the next section that this algorithm takes
O(n log n) time in expectation. The high probability result
is obtained in section 2.3 by performing appropriately trun-
cated random walks in step 2 instead of a single untruncated
walk.

2.2 Expected Running Time Analysis
The core of our analysis is the following lemma, which

bounds the time that it takes an alternating random walk
in G with respect to a partial matching M that leaves 2k
vertices unmatched to reach an unmatched vertex.

Lemma 7. Let G = (P, Q, E) be a d-regular bipartite graph
and let M be a partial matching that leaves 2k vertices un-
matched. Then the expected number of steps before the al-
ternating random walk in G reaches an unmatched vertex is
at most 1 + n/k.

Proof. It will be convenient to use the auxiliary notion
of a matching graph H(G, M) which will allow us to view
alternating random walks in G with respect to M as random
walks in H(G, M) starting from a special source node s and
hitting a special sink node t. We then get the result by
bounding the hitting time from s to t in H(G, M).

The matching graph corresponding to the matching M is
defined to be the directed graph H obtained by transforming
G as follows:

1. Orient edges of G from P to Q;

2. Contract each pair (u, v) ∈ M into a supernode;

3. Add a vertex s connected by d parallel edges to each
unmatched node in P , directed out of s;

4. Add a vertex t connected by d parallel edges to each
unmatched node in Q, directed into t.

We now state some properties of the graph H. The graph
H has n + k + 2 nodes and n(d− 1) + k(2d + 1) edges. Note
that for every vertex v ∈ H, v += s, t the in-degree of v is
equal to its out-degree. The out-degree of s equals dk, as
is the in-degree of t. Finally, a random walk in H starting
from s reaches t with probability 1, and, most importantly,
such a walk corresponds to an alternating random walk in
G with respect to M .

We now prove that the expected time that it takes a ran-
dom walk in H(G) starting from s to reach t is at most
1 + n/k.

For a vertex i ∈ V (H), we denote its out-degree by deg(i).
Also, let P denote the transition matrix of the random walk,
that is:

Pij =

{
1/ deg(i) when (i, j) ∈ E(H)
0 otherwise.

Denote the vector of out-degrees by deg(·), the standard
basis vector corresponding to a vertex j by ej . Note that
in fact the out-degree of the nodes of H can only assume
4 values: (1) the starting vertex s has deg(s) = dk, (2) all
unmatched nodes u have deg(u) = d, (3) all supernodes v
have deg(v) = d− 1, and (4) deg(t) = 0.

We assume wlog that all vertices are reachable from s
since those that are not do not influence the runtime of the
algorithm. It then follows that t is reachable from any vertex

41

of H in at most n + 3 steps, i.e. ||(PT)n+4||∞ < 1, so
(I−PT)−1 exists. The expected number of visits to a vertex
j ∈ V (H) during the random walk is given by

eT
j

∑

k≥0

(PT)k

 es = eT
j

[
I−PT

]−1
es. (1)

Hence, the expected number of steps before reaching t is

∑

j∈V (H),j %=s,t

eT
j

[
I−PT

]−1
es.

Note that for all j += t we have

eT
j

∑

k≥0

(PT)k

 et = eT
j et + eT

j

∑

k≥0

(PT)k

 PT et = 0 (2)

since eT
i PT et = Pti = 0 for all i.

Hence, we can rewrite (1) as

eT
j

∑

k≥0

(PT)k

 es = eT
j

∑

k≥0

(PT)k

 (es − et)

= eT
j

[
I−PT

]−1
(es − et).

(3)

However, we have that

(I−PT)−1(es − et) =
deg(·)

dk
. (4)

To verify equation (4), we calculate

(I−PT)
deg(·)

dk
=

deg(·)
dk

−PT deg(·)
dk

= es − et,

which follows from the following case analysis:

Case (1): j += s, t Then

eT
j PT deg(·) =

∑

l

Plj deg(l)

=
∑

l∈V (H):(l,j)∈E(H)

1
deg(l)

deg(l) = deg(j)

since the in-degree of every j ∈ V (H), j += s, t, is equal
to its out-degree.

Case (2): j = s Then

eT
s PT deg(·) =

∑

l

Pls deg(l) = 0.

Case (3): j = t Then

eT
t PT deg(·) =

∑

l

Plt deg(l)

=
∑

l∈V (H):(l,t)∈E(H)

1
deg(l)

deg(l) = dk

since the in-degree of t is dk.

Hence, the contribution from vertex j is

eT
j

[
I−PT

]−1
(es − et) =

deg(j)
dk

,

so the expected number of steps before the random walk
reaches t is at most

∑

j∈V (H),j %=s,t

deg(j)
dk

≤ (n− k) + 2k
k

= 1 +
n
k

.

We can now prove

Theorem 8. Algorithm 1 finds a matching in a d-regular
bipartite graph G = (P, Q, E) in expected time O(n log n).

Proof. By Lemma 7 it takes at most 1 + n/(n − j) ex-
pected time to find an augmenting path with respect to
partial matching Mj . Hence, the expected runtime of the
algorithm is bounded by

n−1∑

j=0

1 + n/(n− j) = n + nHn = O(n log n),

where H(n) := 1+1/2+1/3+. . .+1/n is the n-th Harmonic
number.

2.3 Truncated Random Walks and High Prob-
ability Analysis

We now show how Algorithm 1 can be modified by intro-
ducing truncated random walks to obtain a running time of
O(n log n) whp.

Algorithm 2

Input: A d-regular bipartite graph G = (P, Q, E) in adja-
cency array format.

Output: A perfect matching of G.

1. Set j := 0, M0 := ∅.

2. Repeatedly run alternating random walks for 2
(
1 + n

n−j

)

steps until a successful run is obtained.

3. Denote the augmenting path obtained by removing possi-
ble loops from the sequence of steps taken by the walk
by p. Set Mj+1 := Mj∆p.

4. Set j := j + 1 and go to step 2.

We now analyze the running time of our algorithm, and
prove Theorem 1.
Proof of Theorem 1:

We now show that Algorithm 2 takes time O(n log n) whp.
First note that by Lemma 7 and Markov’s inequality, a trun-
cated alternating random walk in step 2 succeeds with prob-
ability at least 1/2. Let Xj denote the time taken by the
j-th augmentation. Let Yj be independent exponentially

distributed with mean µj :=
bj

ln 2 . Note that

Pr[Xj ≥ qbj] ≤ 2−q = exp

[
−qbj ln 2

bj

]
= Pr[Yj ≥ qbj]

for all q > 1, so

Pr[Xj ≥ x] ≤ Pr[Yj ≥ x] (5)

for all x > bj . We now prove that Y :=
∑

0≤j≤n−1 Yj ≤
cn log n w.h.p. for a suitably large positive constant c. De-
note µ := E[Y]. By Markov’s inequality, for any t, δ > 0

Pr[Y ≥ (1 + δ)µ] ≤ E[etY]

et(1+δ)µ
.

42

Also, for any j, and for t < 1/µj , we have

E[etYj] =
1
µj

∫ ∞

0

etxe−x/µj dx =
1

1− tµj
.

The two expressions above, along with the fact that the Yj ’s
are independent, combine to give:

Pr[Y ≥ (1 + δ)µ] ≤ e−t(1+δ)µ

∏n−1
j=0 (1− tµj)

. (6)

Observe that µn−1 is the largest of the µj ’s. Assume that
t = 1

2µn−1
, which implies that (1−tµj) ≥ e−tµj ln 4. Plugging

this into equation 6, we get:

Pr[Y ≥ (1 + δ)µ] ≤ e−(1+δ−ln 4)µ/(2µn−1). (7)

Further observe that µ = 2n/ ln 2 + (µn−1 − 2/ ln 2)H(n) ≥
µn−1H(n), where H(n) := 1 + 1/2 + 1/3 + . . . + 1/n is the
n-th Harmonic number. Since H(n) ≥ ln n, we get our high
probability result:

Pr[Y ≥ (1 + δ)µ] ≤ n−(1+δ−ln 4)/2. (8)

Since µ = O(n log n), this completes the proof of Theorem 1.

3. MATCHINGS IN DOUBLY-STOCHASTIC
MATRICES AND REGULAR BIPARTITE
MULTIGRAPHS

3.1 Doubly-Stochastic Matrices
We now apply techniques of the previous section to the

problem of finding a perfect matching in the support of an
n×n doubly stochastic matrix M with m non-zero entries. A
doubly-stochastic matrix can be viewed as a regular graph,
possibly with parallel edges, and we can thus use the same
algorithm and analysis as above, provided that SAMPLE-
OUT-EDGE can be implemented efficiently. We start by de-
scribing a simple data structure for implementing SAMPLE-
OUT-EDGE. For each vertex v, we store all the outgoing
edges from v in a balanced binary search tree, augmented so
that each node in the search tree also stores the weight of
all the edges in its subtree. Since inserts into, deletes from,
and random samples from this augmented tree all take time
O(log n) [7], we obtain a running time of O(n log2 n) for
finding a matching in the support of a doubly stochastic
matrix.

Superficially, it might seem that initializing the balanced
binary search trees for each vertex takes total time Θ(m log n).
However, note that there is no natural ordering on the out-
going edges from a vertex, and we can simply superimpose
the initial balanced search tree for a vertex on the adjacency
array for that vertex, assuming that the underlying keys are
in accordance with the (arbitrary) order in which the edges
occur in the adjacency array.

The complete Birkhoff-von Neumann decomposition can
be computed by subtracting an appropriately weighted match-
ing matrix from M every time a matching is found, thus de-
creasing the number of nonzero entries of M. Note that the
augmented binary search tree can be maintained in O(log n)
time per deletion. This yields the algorithm claimed in
Corollary 5.

3.2 Regular Bipartite Multigraphs
For regular bipartite multigraphs with edge multiplicities

at most d/2, Algorithm 2 still takes time at most O(n log n)
with high probability, since SAMPLE-OUT-EDGE can be
implemented by sampling the adjacency list of the appropri-
ate vertex in G until we find an unmatched edge. Each sam-
ple succeeds with probability at least 1/2 since the matched
edge can have multiplicity at most d/2. Here, we assume
that an edge with multiplicity k occurs k times in the adja-
cency arrays of its endpoints.

We also note that our algorithm can be implemented to
run in O(n log n) time without any assumptions on multi-
plicities if the data layout is as follows. For each vertex
we have an adjacency array with edges of multiplicity k ap-
pearing as contiguous blocks of length k. Also, each ele-
ment in the adjacency array is augmented with the index
of the beginning of the block corresponding to its edge and
the index of the end of the block. Assuming this data lay-
out, SAMPLE-OUT-EDGE can be implemented in O(1) ex-
pected time regardless of edge multiplicities: it is sufficient
to sample locations outside the block corresponding to the
currently matched edge.

It remains to note that when the size of the support of
the set of edges, which we denote by ms, is small, then the
data representation used in finding a matching in a doubly-
stochastic matrix can be used to find a matching in time
O(ms + n log2 n). It is interesting to compare this runtime
to the result of [6]. The runtime of their matching algorithm
is stated as O(m + n log3 d) = O(m), but it is easy to see
that it can be implemented to run in O(ms +n log3 d) time.

Remark 9. Our algorithm can be used to obtain a sim-
ple algorithm for edge-coloring bipartite graphs with maxi-
mum degree d in time O(m log n) (slightly worse than the
best known O(m log d) dependence obtained in [6]). In the
first step one reduces the problem to that on a regular graph
with O(m) edges as described in [6]. The lists of neigh-
bors of every vertex of the graph can then be arranged in a
data structure that supports sampling and deletion in O(1)
amortized time. It remains to find matchings repeatedly, tak-
ing O(n log n) time per matching. This takes O(nd log n) =
O(m log n) time overall.

4. AN Ω(nd) LOWER BOUND FOR DETER-
MINISTIC ALGORITHMS

In this section, we will prove Theorem 2. We will show
that for any positive integer d, any deterministic algorithm
to find a perfect matching in a d-regular bipartite graph re-
quires Ω(nd) probes, even in the adjacency array represen-
tation, where the ordering of edges in an array is decided by
an adversary. Specifically, for any positive integer d, we con-
struct a family G(d) of simple d-regular bipartite graphs with
O(d) vertices each that we refer to as canonical graphs. A
canonical bipartite graph G(P∪{t}, Q∪{s}, E) ∈ G(d) is de-
fined as follows. The vertex set P = P1∪P2 and Q = Q1∪Q2

where |Pi| = |Qi| = 3d for i ∈ {1, 2}. The vertex s is con-
nected to an arbitrary set of d distinct vertices in P1 while
the vertex t is connected to an arbitrary set of d distinct
vertices in Q2. In addition, G contains a matching M ′ of
size d that connects a subset Q′

1 ⊆ Q1 to a subset P ′2 ⊆ P2,
where |Q′

1| = |P ′2| = d. The remaining edges in E connect
vertices in Pi to Qi for i ∈ {1, 2} so as to satisfy the property
that the degree of each vertex in G is exactly d. It suffices

43

to show an Ω(d2) lower bound for graphs drawn from G(d)
since we can take Θ(n/d) disjoint copies of canonical graphs
to create a d-regular graph on n vertices.

Overview: Let D be a deterministic algorithm for find-
ing a perfect matching in graphs drawn from G(d). We will
analyze a game between the algorithm D and an adaptive
adversary A whose goal is to maximize the number of edges
that D needs to examine in order to find a perfect matching.
In order to find a perfect matching, the algorithm D must
find an edge in M ′, since s must be matched to a vertex in
P1, and thus in turn, some vertex in Q1 must be matched
to a vertex in P2. We will show that the adversary A can
always force D to examine Ω(d2) edges in G before revealing
an edge in M ′. The specific graph G ∈ G(d) presented to the
algorithm depends on the queries made by the algorithm D.
The adversary adaptively answers these queries while main-
taining at all times the invariant that the partially revealed
graph is a subgraph of some graph G ∈ G(d). The cost of
the algorithm is the number of edge locations probed by it
before A reveals an edge in M ′ to D.

In what follows, we assume that the adversary reveals s, t
and the partition of remaining vertices into Pi, Qi for 1 ≤
i ≤ 2, along with all edges from s to P1 and all edges from
t to Q2, to the deterministic algorithm D at the beginning.
The algorithm pays no cost for this step.

Queries: Whenever the algorithm D probes a new location
in the adjacency array of some vertex u ∈ P ∪ Q, we will
equivalently view D as making a query Q(u) to the adversary
A, in response to which the adversary outputs a vertex v
that had not been yet revealed as being adjacent to u.

Subgraphs consistent with canonical graphs: Given a
bipartite graph G′(P ∪{t}, Q∪{s}, E′), we say that a vertex
u ∈ P ∪Q is free if its degree in G′ is strictly smaller than d.
We now identify sufficient conditions for a partially revealed
graph to be a subgraph of some canonical graph in G(d).

Lemma 10. Let Gr(P ∪ {t}, Q ∪ {s}, Er) be any simple
bipartite graph such that

(a) the vertex s is connected to d distinct vertices in P1

and the vertex t is connected to d distinct vertices in
Q2,

(b) all other edges in Gr connect a vertex in Pi to a vertex
in Qi for some i ∈ {1, 2},

(c) degree of each vertex in Gr is at most d, and

(d) at least 5d
2 vertices each in both Q1 and P2 have degree

strictly less than d
5 .

Then for any pair u, v of free vertices such that u ∈ Pi

and v ∈ Qi for some i ∈ {1, 2}, and (u, v) +∈ Er, there exists
a canonical graph G(P ∪ {t}, Q ∪ {s}, E) ∈ G(d) such that
that Er ∪ (u, v) ⊆ E.

Proof. Let G′(P∪{t}, Q∪{s}, E′) be the graph obtained
by adding edge (u, v) to Gr, that is, E′ = Er∪{(u, v)}. Since
u and v are free vertices, all vertex degrees in G′ remain
bounded by d. We now show how G′ can be extended to a
d-regular canonical graph.

We first add to G′ a perfect matching M ′ of size d connect-
ing an arbitrary set of d free vertices in Q1 to an arbitrary

set of d free vertices in P2. This is feasible since G′ has at
least 5d

2 free vertices each in both Q1 and P2. In the result-
ing graph, since the total degree of all vertices in Pi is same
as the total degree of all vertices in Qi, we can repeatedly
pair together a vertex of degree less than d in Pi with a ver-
tex of degree less than d in Qi until degree of each vertex
becomes exactly d, for i ∈ {1, 2}. Let E′′ be the set of edges
added to G′ ∪ M ′ in this manner, and let G′′ be the final
graph. The graph G′′ satisfies all properties of a canonical
graph in the family G(d) except that it may not be a simple
graph. We next transform G′′ into a simple d-regular graph
by suitably modifying edges in E′′.

Given any graph H(VH , EH), we define

Φ(H) =
∑

(x,y)∈VH×VH

max{0, η(x, y)− 1},

where η(x, y) denotes the number of times the edge (x, y)
appears in H. Note that Φ(H) = 0 iff H is a simple graph.
Consider any edge (u, v) that has multiplicity more than one
in G′′. It must be that (u, v) ∈ E′′ since G′ is a simple graph.
Assume w.l.o.g. that u ∈ P1 and v ∈ Q1. Let X ⊂ P1 and
Y ⊂ Q1 respectively denote the set of vertices adjacent to v
and u in G′′. Using condition (d) on the graph Gr, we know
that

|E′′ ∩ (P1 ×Q1)| ≥
(

5d
2

) (
4d
5

+ 1

)
− (d + 1) > 2d2.

Since |X| < d and |Y | < d, it follows that there must
exist an edge (u′, v′) ∈ E′′ ∩ (P1 × Q1) such that u′ +∈ X
and v′ +∈ Y . We can thus replace edges {(u, v), (u′, v′)}
in E′′ with edges {(u, v′), (u′, v)} without violating the d-
regularity condition. It is easy to verify that the exchange
reduces Φ(G′′) by at least one, and that all edges involved
in the exchange belong to the set E′′. We can thus repeat
this process until the graph G′′ becomes simple, and hence
a member of the family G(d).

Adversary strategy: For each vertex u ∈ P ∪{t}, Q∪{s},
the adversary A maintains a list N(u) of vertices adjacent to
u that have been so far revealed to the algorithm D. Wlog
we can assume that the algorithm D never queries a vertex
u for which |N(u)| = d. At any step of the game, we denote
by Gr the graph formed by the edges revealed thus far. We
say the game is in evasive mode if the graph Gr satisfies
the condition (a) through (d) of Lemma 10, and is in non-
evasive mode otherwise. Note that the game always starts
in the evasive mode, and then switches to non-evasive mode.

When the game is in the evasive mode, in response to a
query Q(u) by D for some free vertex u ∈ Pi (i ∈ {1, 2}), A
returns an arbitrary free vertex v ∈ Qi such that v +∈ N(u).
The adversary then adds v to N(u) and u to N(v). Similarly,
when D asks a query Q(u) for some free vertex u ∈ Qi

(i ∈ {1, 2}), A returns an arbitrary free vertex v ∈ Pi such
that v +∈ N(u). It then adds v to N(u) and u to N(v) as
above.

As the game transitions from evasive to non-evasive mode,
Lemma 10 ensures existence of a canonical graph G ∈ G(d)
that contains the graph revealed by the adversary thus far as
a subgraph. The adversary answers all subsequent queries
by D in a manner that is consistent with the edges of G. The
lemma below shows that the simple adversary strategy above
forces Ω(d2) queries before the evasive mode terminates.

44

Lemma 11. The algorithm makes Ω(d2) queries before the
game enters non-evasive mode.

Proof. The adversary strategy ensures that conditions
(a) through (c) in Lemma 10 are maintained at all times as
long as the game is in the evasive mode. So we consider the
first time that condition (d) is violated. Since each query
answered by the adversary in the evasive mode contributes
1 to the degree of exactly one vertex in Q1 ∪ P2, A always
answers at least Ω(d2) queries before the number of vertices
with degree less than d

5 falls below 5d
2 in either Q1 or P2.

The lemma follows.

Since A can not discover an edge in M ′ until the game
enters the non-evasive mode, we obtain the desired lower
bound of Ω(d2).

5. AN Ω(n log n) HIGH PROBABILITY
LOWER BOUND

In this section we prove the lower bound on the running
time of a randomized algorithm for finding a matching in
a regular bipartite multigraph stated in Theorem 3. We
first reiterate that even though the algorithm obtained in
section 2 is stated for simple graphs, the same runtime anal-
ysis applies for multigraphs as long as edge multiplicities
are bounded above by d/2. The restriction on maximum
edge multiplicity is necessary to ensure that SAMPLE-OUT-
EDGE takes O(1) time in expectation. In this section we
show that every algorithm that finds a matching in a d-
regular multigraph (even with edge multiplicities bounded
above by d/2) probes at least (γ/64)n ln n locations in the in-
put adjacency arrays with probability at least n−γ (on some
fixed family of distributions). The lower bound instances
use d = Θ(n).

We first introduce the following problem, which we will
refer to as BIPARTITE-DISCOVERY(d).

Definition 12. (BIPARTITE-DISCOVERY(d))
Let G = (P, Q, E) be a bipartite multigraph with |P | =

4d and |Q| = d. The set of edges E(G) is constructed as
follows. For each u ∈ Q choose d neighbors in P uniformly
at random with replacement. A node u∗ ∈ Q is then marked
as special, and edges incident to the special node are referred
to as special. The graph G is presented in adjacency array
format with edges appearing in random order in adjacency
lists. When an algorithm A queries a neighbor of a vertex
u ∈ Q or v ∈ P , an incident edge is returned uniformly at
random among the yet undiscovered edges. The location of
the edge in the adjacency arrays of both endpoints is revealed
to A, i.e. it is no longer considered undiscovered when any
of its endpoints is queried. The algorithm is not allowed to
query the special node directly.

Algorithm A solves BIPARTITE-DISCOVERY(d) if it finds
an edge incident to the special node. The cost of A is defined
as the number of queries that it makes before discovering an
edge to the special node.

We show the following:

Lemma 13. Any algorithm that solves BIPARTITE-
-DISCOVERY(d) makes at least (γ/2)d ln d queries with prob-
ability at least d−γ for any γ > 0.

Proof. Suppose that the algorithm has discovered J edges
of G. Then the probability of the next query not yielding a

special edge is at least d2−d−J
d2−J

, independent of the actual set
of edges of G that have already been discovered. Hence, the
probability of not discovering a special edge after J < d2/3
queries is at least

J∏

j=0

d2 − d− j
d2 − j

≥
J∏

j=0

2d2/3− d
2d2/3

≥ e−2J/d

for sufficiently large d. Hence, we have that the probability
of not finding a special edge after (γ/2)d ln d queries is at
least d−γ .

We now give a reduction from BIPARTITE-DISCOVERY(d)
to the problem of finding a matching in a regular bipartite
multigraph with edge multiplicities bounded by d/2:

Proof of Theorem 3:
Let A be an algorithm that finds a matching in a regular

bipartite multigraph with edge multiplicities bounded above
by d/2 and makes fewer than
(γ/64)n ln n queries with probability at least 1 − n−γ on
every such graph. We will give an algorithm A′ that solves
BIPARTITE-DISCOVERY(d) and makes fewer than
(γ/2)d ln d queries with probability strictly larger than 1−
d−γ .

Consider an instance G = (P, Q, E) of BIPARTITE-
-DISCOVERY(d). Algorithm A′ first checks if the degrees
of all nodes in P are smaller than d/2. If there exists a node
with degree strictly larger than d/2, A′ queries all edges of
all vertices in P and thus finds a special edge in at most 2d2

queries. Note that since the expected degree of vertices in P
is d/4, the probability of this happening is at most e−d for
sufficiently large d by an application of the Chernoff bound
with a union bound over vertices of P .

Now suppose that degrees of all nodes in P are at most
d/2. A′ adds a set of 3d vertices Q′ to the Q side of the par-
tition of G and connects nodes in Q′ to nodes in P to ensure
that the degree of every vertex in P and Q′ is exactly d (it
can be shown using an argument similar to the one in the
proof of Lemma 10 that this can be done without introduc-
ing double edges). Denote the resulting regular multigraph
by G+ = (P, Q ∪Q′, E ∪ E′). Note that G+ has 4d vertices
in each part, and one vertex in the Q part of the bipartition
is marked special together with its d adjacent edges. Now
A′ constructs the final graph by putting together two copies
of G+. In particular, we denote by G− a mirrored copy of
G+, i.e. G− = (Q ∪ Q′, P, E ∪ E′), and finally denote by
G∗ the graph obtained by taking the union of G+ and G−,
removing the two special nodes and identifying special edges
in G+ with special edges in G−. Note that any matching in
G∗ contains a special edge, so algorithm A necessarily finds
a special edge. Note that a query to an adjacency list in G+

or G− can be answered by doing at most one query on G.
The number of vertices in each bipartition of G∗ is 8d − 1
and the degree of each node is d.

By assumption, algorithm A does not make more than
(γ′/64)n ln n queries with probability at least 1 − n−γ′ for
any γ′ > 0. Setting n = 8d − 1 and γ′ = 2γ, we get that
A does not need more than (2γ/64)8d ln(8d) ≤ (γ/2)d ln d
queries with probability at least 1− (8d− 1)−2γ ≥ 1− d−2γ

for sufficiently large d. Hence, we conclude that A′ probes
at most (γ/2)d ln d locations with probability at least 1 −
d−2γ + e−d > 1− d−γ , contradicting Lemma 13.

45

6. REFERENCES
[1] G. Aggarwal, R. Motwani, D. Shah, and A. Zhu.

Switch scheduling via randomized edge coloring.
FOCS, 2003.

[2] G. Birkhoff. Tres observaciones sobre el algebra lineal.
Univ. Nac. Tucumán Rev. Ser. A, 5:147–151, 1946.

[3] B. Bollobas. Modern graph theory. Springer, 1998.
[4] C. Chang, D. Lee, and Y. Jou. Load balanced

birkhoff-von neumann switches, part i: one-stage
buffering. Computer Communications, 25(6):611–622,
2002.

[5] R. Cole and J. Hopcroft. On edge coloring bipartite
graphs. SIAM J. Comput., 11(3):540–546, 1982.

[6] R. Cole, K. Ost, and S. Schirra. Edge-coloring
bipartite multigraphs in O(E log D) time.
Combinatorica, 21(1):5–12, 2001.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms (3rd Ed). MIT Press, 2009.

[8] H. Gabow and O. Kariv. Algorithms for edge coloring
bipartite graphs and multigraphs. SIAM J. Comput.,
11(1):117–129, 1982.

[9] A. Goel, M. Kapralov, and S. Khanna. Perfect
matchings in Õ(n1.5) time in regular bipartite graphs.
http: // arxiv. org/ abs/ 0902. 1617v2 , 2009.

[10] A. Goel, M. Kapralov, and S. Khanna. Perfect
matchings via uniform sampling in regular bipartite
graphs. Proceedings of the twentieth annual
ACM-SIAM symposium on Discrete algorithms, pages
11–17, 2009.

[11] J. Hopcroft and R. Karp. An n
5
2 algorithm for

maximum matchings in bipartite graphs. SIAM J.
Comput., 2(4):225–231, 1973.

[12] D. König. Uber graphen und ihre anwendung auf
determinententheorie und mengenlehre. Math.
Annalen, 77:453–465, 1916.

[13] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[14] A. Schrijver. Bipartite edge coloring in O(∆m) time.
SIAM J. on Comput., 28:841–846, 1999.

[15] J. von Neumann. A certain zero-sum two-person game
equivalent to the optimal assignment problem.
Contributions to the optimal assignment problem to
the Theory of Games, 2:5–12, 1953.

[16] D. W. Walkup. Matchings in random regular bipartite
graphs. Discrete Math, 31:59–64, 1980.

46

