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Abstract

In the stochastic knapsack problem, we are given a set of
items each associated with a probability distribution on sizes
and a profit, and a knapsack of unit capacity. The size
of an item is revealed as soon as it is inserted into the
knapsack, and the goal is to design a policy that maximizes
the expected profit of items that are successfully inserted
into the knapsack. The stochastic knapsack problem is a
natural generalization of the classical knapsack problem, and
arises in many applications, including bandwidth allocation,
budgeted learning, and scheduling.

An adaptive policy for stochastic knapsack specifies the
next item to be inserted based on observed sizes of the
items inserted thus far. The adaptive policy can have an
exponentially large explicit description and is known to be
PSPACE-hard to compute. The best known approxima-
tion for this problem is a (3 + €)-approximation for any
€ > 0. Our first main result is a relaxed PTAS (Polyno-
mial Time Approximation Scheme) for the adaptive policy,
that is, for any ¢ > 0, we present a poly-time computable
(1+ €)-approximate adaptive policy when knapsack capacity
is relaxed to 1+e€. At a high-level, the proof is based on trans-
forming an arbitrary collection of item size distributions to
canonical item size distributions that admit a compact de-
scription. We then establish a coupling that shows a (1 + €)-
approximation can be achieved for the original problem by
a canonical policy that makes decisions at each step by ob-
serving events drawn from the sample space of canonical size
distributions. Finally, we give a mechanism for approximat-
ing the optimal canonical policy.

Our second main result is an (8/3 + ¢)-approximate
adaptive policy for any e > 0 without relaxing the knapsack
capacity, improving the earlier (3 + ¢€)-approximation result.
Interestingly, we obtain this result by using the PTAS
described above. We establish an existential result that the
optimal policy for the knapsack with capacity 1 can be folded
to get a policy with expected profit 30PT/8 for a knapsack
with capacity (1 —€), with capacity relaxed to 1 only for the
first item inserted. We then use our PTAS result to compute
the (1 + e)-approximation to such policy.

Our techniques also yield a relaxed PTAS for non-
adaptive policies. Finally, we also show that our ideas can
be extended to yield improved approximation guarantees for
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multi-dimensional and fixed set variants of the stochastic
knapsack problem.

1 Introduction

The knapsack problem is a fundamental and widely
studied optimization problem [GJ79, KK82]. We are
given a set of items each associated with a size and a
profit, and the objective is to find a maximum profit
set of items with total size at most 1. When the
item sizes are not fixed and are instead given by a
probability distribution, the problem is broadly referred
to as the stochastic knapsack problem. The size of
an item is revealed as soon as it is inserted into the
knapsack. If the knapsack capacity is not violated
by the inserted item, the insertion is referred to as
a successful insertion. No item insertions are allowed
after an unsuccessful insertion, and the goal is to
maximize the expected profit of successfully inserted
items. The stochastic knapsack problem and its variants
naturally arise in many scenarios, including bandwidth
allocation, budgeted learning, and scheduling. For
instance, a prototypical example is deadline-scheduling
of a maximum value subset of jobs on a single machine.
Even though the underlying distribution of processing
times for each job is known, the actual processing time
is revealed only when the job finishes execution.

Unlike the deterministic knapsack problem, the
order in which the items are chosen for insertion plays a
crucial role in determining the expected profit. Thus a
solution to the stochastic knapsack problem corresponds
to a policy that specifies the next item to be inserted.
A non-adaptive policy specifies a fixed permutation of
items for insertion into knapsack. An adaptive policy
chooses the next item to be inserted based on realized
sizes of the items inserted thus far. It is easy to see that
the stochastic knapsack problem is NP-hard in both
adaptive and non-adaptive settings since either setting
generalizes the classical knapsack problem. We note
that in the adaptive version of the problem, just the
description of an optimal policy can be exponentially
large. Indeed, Dean, Goemans, and Vondrdk [DGVO0S]
show that several variants of the adaptive stochastic
knapsack problem are PSPACE-hard.

Much work on this problem has thus focused on



polynomial-time approximation algorithms. The cur-
rent best known approximation ratios for stochastic
knapsack are due to Dean et al [DGV08|; they give
a (3 4 ¢)-approximation to the optimal adaptive and
non-adaptive policies for any € > 0. When the knap-
sack capacity is relaxed to (1 + €) for some 0 < € <
1, the techniques of [DGVO08] imply a (3 — O(e))-
approximation. There are no better approximation re-
sults known for even for commonly studied distributions
such as Bernoulli or exponential, even when the knap-
sack capacity is relaxed to 1 4+ ¢. More generally, we
are not aware of any approximation schemes for adap-
tive policies for scheduling and packing problems when
an unbounded number of adaptive decision points are
allowed, as in the stochastic knapsack problem.

1.1 Our Results and Techniques

Stochastic Knapsack with (1 + ¢) Space: Our
first main result is an approximation scheme for the
stochastic knapsack problem, in both adaptive and
non-adaptive settings for arbitrary size distributions of
items, provided the knapsack is allowed an arbitrarily
small extra space.

THEOREM 1.1. For any € > 0, there ts a poly-time
computable (1 + €)-approzimate adaptive policy for the
adaptive stochastic knapsack problem when knapsack
capacity is relaxed to 1 + €. A similar result holds for
non-adaptive policies.

The starting point for this result is a reduction of
the given arbitrary collection of size distributions to a
small number of distributions. Since an optimal policy
realization may potentially insert all n items, a (1 + €)-
approximate solution would seem to require (1 + €/n)-
approximate representation of probabilities. This yields
Q(n/e) groups just for one size and thus n®(°sn/)
different size distributions overall; too large for our
purposes. Our first technical contribution is a sequence
of transformations that discretize the given distributions
into 2P°W(1/€) Jog n different canonical distributions; the
size realized by an item under a canonical distribution is
referred to as its canonical size. Observe that an optimal
adaptive policy on canonical distributions may behave
completely differently from an optimal adaptive policy
on real size distributions. We establish a coupling that
relates events drawn from canonical size distributions
to actual size realizations. Note that any discretization
errors need to be analyzed over all execution paths.
Towards this end, we frequently utilize the following
paradigm: for each source of discretization error, we
identify a good event (an event that fills the knapsack
without error) that occurs at a much higher rate than

the discretization error. Thus any profit lost due to
discretization error can be charged to the good event.
We also derive and use a tail bound for an adaptive
sequence of random variables when both the sum of
expectations of random variables in any realization and
the maximum realized value of a random variable are
bounded.

We next focus on computation of a near-optimal
adaptive policy using canonical size distributions. It is
worth noting that even for canonical size distributions,
there are instances where just the description of the op-
timal adaptive policy is super-polynomial. We overcome
this difficulty by introducing the notion of block-adaptive
policies, that allow us to reduce the number of adaptive
decision points. Broadly speaking, a block-adaptive pol-
icy makes adaptive decisions only after playing a sub-
set of items whose profit is Q(poly(e)OPT). Our sec-
ond technical contribution is to show that there exists a
(1 + O(e))-approximate block adaptive policy when we
are allowed O(e) extra space. We then show that we
can enumerate over all block adaptive policies in poly-
nomial time to find a (1 + O(e))-approximate policy. In
implementing this step, we use a technique of Chekuri
and Khanna [CKO00] to reduce quasi-polynomially many
possibilities to polynomially many possibilities by ex-
ploiting their inter-dependence.

We note here that it is known [DGVO08] that there
exists an absolute constant ¢y > 0 such that no non-
adaptive policy can approximate an adaptive policy to
better than a factor of (1+ ¢p) even when the knapsack
is allowed (1 4+ €g) space. Thus even with (1 + €) space,
design of an approximation scheme inherently requires
us to explicitly consider adaptive policies.

Stochastic Knapsack without Extra Space: Our
second main result is an improvement of the (3 + ¢)-
approximation result of Dean et al [DGVO08] when
knapsack capacity is not relaxed.

THEOREM 1.2. For any ¢ > 0, there is a poly-time
computable (% + €)-approzimate adaptive policy for the
adaptive stochastic knapsack problem.

Somewhat surprisingly, we obtain this result by
using Theorem 1.1. We consider the set of adaptive
policies for a knapsack of capacity 1 — € with the
following special property: if the first item inserted by
the policy realizes to a size between (1 — €) and 1, then
the policy does not treat it as an overflow, but it can not
insert any more items. We show that the optimal policy
under this setting achieves an 8/3 approximation to an
optimal policy for the original knapsack capacity of 1.
Given this existential result, we can use Theorem 1.1
to compute a (1 4 €)-approximation to such a policy.



The total space used by such a policy will be at most
1 — €+ e =1. The only modification we need to make
to the dynamic program is to increase the profit of the
first item placed in the knapsack to also include profit
from the event where this item realizes to a size between
(1 —¢) and 1.

The existential proof is based on a conceptual
experiment where we simulate the optimal policy o for a
knapsack of capacity 1 using two knapsacks of capacity
1 — € by charging each item placed by the optimal
policy to one of the knapsacks. We transition between
knapsacks to determine which knapsack the item gets
charged. The transition events between the knapsacks
are dynamically determined based on the realized sizes
of the inserted items. We refer to this simulation as
the two knapsack experiment, and the output of this
experiment is a pair of adaptive policies, one for each
knapsack. By using suitable choice of parameters and
transition points, we show that better of the two policies
captures a (%)—fraction of the optimal profit.

Multi-Dimensional Stochastic Knapsack Prob-
lem: In the multidimensional stochastic knapsack
problem with d dimensions, each item is associated with
a size distribution in each of d dimensions. The objec-
tive is to maximize the expected profit of items success-
fully inserted subject to the capacity constraint in each
dimension. Dean et al [DGV05] note that this problem
is a stochastic variant of the Packing Integer Program,
namely, the problem of finding maximum value 0/1 vec-
tor satisfying Az < b with A and b non-negative.

The best known approximation guarantee for d-
dimensional stochastic knapsack problem is a (6d + 1)-
approximation [DGV05]. Even in the deterministic set-
ting, this problem is known to be hard to approximate
within a factor of O(d'~¢)[DGV05]. Our techniques can
be extended to obtain a relaxed PTAS for the multi-
dimensional generalization of stochastic knapsack prob-
lem.

THEOREM 1.3. For any fized d, there is a PTAS for
the adaptive d-dimensional stochastic knapsack problem
when capacity is relaxed to 1 + € in each dimension.
With no relaxation in capacity, there is a poly-time
computable (2d + 1 + €)-approximate adaptive policy. A
stmilar result holds in the non-adaptive setting.

Fixed Set Models of Stochastic Knapsack Prob-
lem: In the fived set models of the stochastic knapsack
problem, the goal is to output a suitable set of items as
opposed to a policy. We consider two such models.

In the bounded overflow probability model, the ob-
jective is to find a maximum profit subset of items such

that Pr (Elgig\sl X, > 1) <7, where Xy, Xy, ..., X|g

are random variables corresponding to the sizes of items
in S, and v is an input parameter, referred to as
the overflow probability. This variant is motivated by
the problem of allocating bandwidth to bursty connec-
tions [KRT97]. Kleinberg et al [KRT97] gave a log(1/7)-
factor approximation algorithms when items sizes have
Bernoulli size distribution. Later, Goel et al [GI99] gave
PTAS and QPTAS results for restricted classes of dis-
tributions, namely Bernoulli, Exponential and Poisson
distribution. These results require the knapsack capac-
ity and the overflow probability to be relaxed by a (1+¢)
factor, and the algorithm requires v to be a constant
for Bernoulli distributions. There are no results known
for this problem with arbitrary size distributions, even
when the knapsack capacity and the overflow proba-
bility are relaxed. We give a PTAS for arbitrary size
distributions in this model.

THEOREM 1.4. There is a PTAS for the bounded over-
flow probability model when the knapsack capacity and
the overflow probability are relazed by a (1 + €) factor.

In the All-or-None model [DGVO08], we get profit
for all items in the output subset S when all items in
S fit in the knapsack, and otherwise we get zero profit.
Dean et al [DGV08] gave a factor 9.5 approximation for
this model. Our techniques can be used to get a PTAS
for this model when knapsack capacity is relaxed.

THEOREM 1.5. There is a PTAS for for the All-or-
None model when knapsack capacity is increased to 1+e€.

1.2 Other Related Work We briefly highlight some
other related work on variations of the stochastic knap-
sack problem and adaptivity in stochastic optimiza-
tion. The stochastic knapsack problem with deter-
ministic sizes and random profits has been studied in
[CSW93], [Hen90], [Sne80], [SP79]; the objective is to
find a set which maximizes the probability of achieving
some threshold profit value. These works primarily fo-
cus on heuristic approaches for this problem. Derman et
al. [DLR78] consider the knapsack cover problem, where
multiple copies of the same item can be used and the ob-
jective is to fill the knapsack with minimum cost. They
show that when item sizes follow exponential distribu-
tions, a greedy scheduling strategy solves the problem
optimally.

The stochastic knapsack has also been studied
in an ordered adaptive model where we are given a
fixed sequence of items. Each item in the sequence
is associated with a size distribution. For each item
in the sequence, we have a choice of either inserting
or neglecting the item based on previous realizations
of items. The objective is to maximize the expected



profit. Dean et al [DGV08] show that optimum profit
can be achieved when the capacity is relaxed to 1 +
o(1). Halman et al [HKLOSO08] show that a (1 + ¢)
approximation to the optimum can be achieved with a
strict knapsack capacity constraint.

Adaptivity has been also studied in the framework
of two-stage stochastic optimization (see, for instance,
[IKMMO4], [RS04], [ShmO04]). In this setting, there
is only a single level of adaptive recourse in contrast
to the adaptive stochastic knapsack problem where an
adaptive choice can be made after every item insertion.

1.3 Organization Section 2 presents notation, def-
initions, and some useful properties of (1 + ¢€)-
approximate policies. In Section 3, we sketch the dis-
cretization of size distributions of items; complete de-
tails are deferred to Appendix A. The transformations
performed in this section allow us to restrict our search
space to canonical policies that use O(e) extra space.
In Section 4, we show how to exploit the structure of
canonical policies to get an approximation scheme for
the adaptive stochastic knapsack problem. In Section 5,
we show how the techniques developed in Section 3 and
4 can be used to design a (8/3 + €)-approximate policy
under a strict capacity constraint.

In Section 6, we show that our techniques also yield
an approximation scheme for non-adaptive stochastic
knapsack when the capacity is relaxed to (1 + e).
Finally, Sections 7 and 8, describe our results for
the multidimensional and the fixed set variants of the
stochastic knapsack problem respectively.

2 Preliminaries

Let B = {b1,ba,...,b,} be the set of items where the
profit of item b; is denoted by p;. We will denote by 7*
the original vector of size distributions for items in B
with size distribution of item b; being 7. We assume
that the input size distributions of items are arbitrary.

We will perform a sequence of discretization steps
that will transform 7* to a vector of canonical size
distributions, that we denote by 7¢. In general, given
any vector of size distributions m, the size distribution
of item b; is indicated by 7;, the expected size u, of an
item b; is defined to be p; = Ex,~n, [X;], and profit
density of item b; is defined to be l’:— '

We use the notation ]P)((L’/T,(ij) to indicate the
expected profit of the policy o with knapsack of capacity
C and distributions on items 7. We will denote by OPT
the profit of an optimal policy given size distributions
7* and knapsack capacity 1. For any given a > 1,
a policy is called a-approximate if its expected profit
is at least OPT/a. In course of performing various
transformations for our algorithm, we will increase the

knapsack capacity by O(e) a constant number of times.
Let the final knapsack capacity be Cqp = 1+ O(€); we
assume w.l.o.g. that € is small enough so that C,,,4. < 2.

Adaptive Policy and Its Representation: An
adaptive policy is a function o : 2"l xR — [n] that maps
the set of available items and the remaining knapsack
capacity to next item to be inserted into the knapsack.
An adaptive policy may be equivalently viewed as a
decision tree which encodes all possible execution paths
in different realizations of the policy. The root node
corresponds to the first item to be played by the policy,
every other node corresponds to an item to be played
given the path of size realizations from the root to the
node. An edge from a node v to a child node may
be viewed as labeled with the size realized when the
item at node v is played. Since a path from root to
any node implicitly encodes both the available items
and the residual knapsack capacity, each node in the
decision tree needs to be only labeled with an item to
be played. A leaf in the decision indicates the end of
the policy, and sum of sizes of items on any root leaf
path (other than potentially the last item) is no more
than the knapsack capacity.

Structured Near-Optimal Policies: We sketch here
a few simple transformations that allow us to restrict
our attention to near-optimal policies with certain use-
ful structural properties. The first transformation be-
low allows us to bound the maximum possible size of
any item. Given size distribution «; of an item b;, its
truncated distribution 7 is:

Pr (X/=s5= Pr (X;=s), Vs<1 and
X:’\lﬂ: Xinvmr

Pr (X! =Cpuz+e)= Pr (X;>1)
X:’\/ﬂ'; Xi~~my

Clearly, the truncation does not affect the expected
profit of the optimal policy. With the truncated size
distribution, the maximum size to which an item can
realize is C,,q. + €. Here onwards, we thus assume
truncated size distributions. The lemma below holds
for truncated size distributions and its proof is similar
to the Lemma 3.1 in [DGV08S].

LEMMA 2.1. For a stochastic knapsack of capacity C
where 1 < C' < Chae and any adaptive policy, let S
denote the (random) set of items the policy attempts to
insert. Then Es[} 2, cg pi] < C+ Cpaz + €= O(1).

Next we show that item profits can be assumed to
be bounded by OPT/e. We define an item to be a
huge profit item if it has profit greater than or equal
to OPT/e. Given the initial vector of size distributions
7* on items, for any huge profit item b;, we define a new



. . . . /
size distribution m; as follows:

and
Pr , (Xz/ = Cnaz + 5) =
Xi~~m;
€Pi
1-2 (x}irw; (Xi=9) OPT>

s<1

We now scale the profit of the item b; by OPT/(ep;);
thus the profit of b; is OPT/e after scaling. In Lemma
2.2 and 2.3, we show that that this transformation can
be performed with only an O(e) loss in the optimal
profit.

LEMMA 2.2. There is a (1 + €)-approximate policy that
plays at most one huge profit item in any realization,
and that also always at the end of the policy.

Proof. Let E be the event where an optimal policy
successfully inserts a huge profit item. Clearly, Pr(E) <
e. If S is the (random) set of items which an optimal
policy attempts to inserts after successfully inserting the
first huge item, then the expected profit contributed
by items in S conditioned on the event E is at most
OPT, otherwise policy is not optimal. Hence the
expected profit contributed by items in S is at most
Pr(E) - OPT = ¢OPT. O

LEMMA 2.3. Restricted to the set of policies that play
at most one huge profit item in any realization and that
also at the end, the expected profit before and after the
profit and size scaling operation for huge profit items is
the same.

Proof. Conditioned on the event that the policy does
not attempt to insert any huge item, the expected profit
of the policy remains unaffected by scaling. We will
analyze the profit of the policy conditioned on the event
that the policy attempts to insert b; at the end, where
b; is a huge profit item. The proof follows if we show
that the claim holds true for every choice of b;.

With unscaled size distributions on items, let
I(X;,c) be the indicator variable of the event that be-
fore b; is inserted, amount of space left in the knapsack
is ¢ and b; realizes to size X; < c. Similarly we define
I'(X;, c) for the scaled distributions. Since there is no
other huge item which the policy has already inserted
into the knapsack and there is no change in the distri-
butions of the non-huge items, we get,

ElI(X;,0)) = S

With unscaled distributions on items, the expected
profit contributed by b; conditioned on the event that
b; is the huge profit item that policy has attempted to
insert, is

With scaled distributions, the expected profit con-
tributed by b; conditioned on the event that b; is the
huge profit item that the policy has attempted to in-
sert, is

OPT - E[I'(X;, c)]

€

= pi E[1(X;, 0)].
This completes the proof. O

Here onwards, all references to w* will refer to
the distributions with the above two properties. The
preceding transformations allow us to establish the
useful lemma below.

LEMMA 2.4. Given a size distribution vector m* and
knapsack capacity 1, there is a (1 + O(€))-approximate
policy o that satisfies the following properties: (1) in
any realization, o achieves profit O(OPT/¢), (2) in any
realization, the sum of expected sizes of items that o
inserts is O(1/€), and moreover, (3) o never plays an
item with profit density less than eOPT.

Proof. To prove the first property, let E; be the event
where the policy successfully inserts items with profit
O(OPT/e). Clearly Pr(Ey) < e. Let S; be the
(random) set of items which an optimal policy attempts
to inserts after successfully inserting items with total
profit OPT/e. Then the expected profit contributed by
items in S conditioned on the event F; is at most OPT
(otherwise the original policy is not optimal). Hence
expected profit contributed by items in S; is at most
Pr(E;) - OPT = ¢OPT, which is the profit lost if the
policy stops in the event Ej.

To prove the second property, let E5 be the event
where the policy successfully inserts items with the
sum of expected sizes (1/e). Clearly, Pr(E2) < O(e)
by Lemma 2.1. Let S2 be the (random) set of items
which the optimal policy attempts to insert, after
successfully inserting items with sum of expected sizes
3/e. Then the expected profit contributed by items
in Sy conditioned on the event F, is at most OPT
(otherwise the original policy is not optimal). Hence
expected profit contributed by items in S5 is at most
Pr(E2) - OPT = O(eOPT). Now, there is one more
claim that we have to make to complete the proof. The
maximum size to which an item can realize is O(1),
and hence the very last item that gets inserted does not
violate the guarantee in the lemma.



Using Lemma 2.1, for any policy, the expected
profit contributed by items with profit density less than
eOPT is O(eOPT), this proves the third property in the
lemma. g

Lemma 2.4 is crucial to the analysis of the dis-
cretization step, where the hard upper bounds on the
maximum possible profit in any realization, and on the
sum of expected sizes of items any policy attempts to
insert in any realization are repeatedly used to bound
the loss in expected profit because of error events.

We note that even though some steps in our algo-
rithm, e.g. the scaling operation on huge profit items,
assume knowledge of OPT, their correctness does not
rely on exact knowledge of OPT. In particular, it suf-
fices to use the (3 + €)-approximate estimate of OPT
given by [DGVO08]. In the final approximation ratio of
(14 O(e)), this affects the multiplier of € by a constant
factor.

3 Discretization of Distributions: A Sketch

We perform a number of transformations to discretize
the size distributions of items, while ensuring that there
remains a (1 + €)-approximate adaptive policy that
uses only O(e) extra space. We provide here a high-
level sketch, with a view towards explaining how these
transformations relate to each other and to the rest of
the algorithm, and to highlight the novel elements in our
discretization scheme. Details of these transformations
and full proofs are deferred to Appendix A.

We first divide the size distribution of each item
into two regions, a large size region where sizes > €°
and a small size region which corresponds to sizes < €.
With reference to size distribution w; for an item b,
we will use notation 7, (large), m;(small), p,(small) to
indicate the probability that an item b; realizes to a
large size, probability that b; realizes to a small size, and
the expected size of b; conditioned on the event that b;
realizes to a small size respectively. For any size s > 0,
we will use notation 7,(s) to indicate Prx,~r (X; = s).
Also, given two size distributions m; and 7} for an item
b;, we will use notation A(m,,n}) to denote their total
variation distance, i.e. A(m;,m}) = > |m;(s) —mi(s)].

We now describe the discretization steps. At the
end of the discretization, we reduce the possible size
distributions to 2P°*¥(1/¢) log n while ensuring that there
is still a (1 4+ O(e))-approximate adaptive policy when
knapsack capacity is relaxed to (1 + O(e)). Proofs of
these steps crucially depends the fact that policy in con-
sideration satisfies the properties given in Lemma 2.4.

Step 1: Discretizing large sizes: Since the size
of any item is O(1) after truncation, the range of large
sizes is [€°, O(1)]. We discretize these sizes to powers of

(1+4€), resulting in ¢’ = poly(1/e) sizes and in no loss of
profit for an optimal policy if we increase the knapsack
capacity by a factor of (1 + ¢).

Step 2: Coupled discretization of large-size prob-
abilities: This step is quite involved, and shows that
not just the sizes of the items, but the entire large-size
distribution can be discretized into a small number of
classes. Observe that each individual probability value
7;(s) can legitimately lie in the range [©(€2/n), O(1)] as
the policy can potentially insert n items.

We use a coupling argument to show that for any
change in the distributions of items in the large size
region such that variation distance for any item b; is
O(e8m;(large)), the expected profit reduces by only
O(eOPT). Thus, we can discretize the probability
values for a single size to the powers of (1 + poly(e)).
If we store discretized individual probability values, we
would get Q((logn)Petv(1/9) different size distributions.
To get around this problem, we represent ;(s) for any
large size s as being relative to m;(large), so that it
has only O(poly(1/e)) values. We show that this can
be achieved while keeping the total variation distance
between the original and new distributions small.

After the first two steps, the number of possible large-
size distributions is as desired, i.e., 2P°(1/€) Jogn. We
next show that the number of size-distributions can be
similarly bounded even if we take the small sizes into
account. For this, we will show (in steps 3 and 4) that
for any item, either we need to store only the large-
size distribution, or only the small-size distribution, or
wi(small) is within a poly(1/€) factor of m,(large).

Step 3: Upper-bounding p;(small). We show
that if p;(small) is larger than 2m,(large)/e3 then for
such items, the small size distribution stochastically
dominates the large size distribution and we can ignore
the large size distribution while reducing the optimal
profit by only O(eOPT).

Step 4: Lower-bounding p;(small). We show that if
pi(small) is smaller than €, (large), then by relaxing
the knapsack capacity by €, we can ignore the small-size
distribution of such items while reducing the optimal
profit by only O(eOPT).

Step 5: Dealing with the small-size distribution.
This is the most critical step in the discretization pro-
cess since we are dealing with adaptive policies. We
replace the small size distribution of an item b; by a
single size p;(small) and the corresponding probability
m;(small). Let m and 7’ be the vectors of size distribu-
tions before and after the discretization change in this
step. Observe that, this is the only step where the real
size of an item and the corresponding discretized size



are not within [1/(1 + €), 1] times of each other and we
need to show the existence of an adaptive policy ¢ such
that P(c¢,7',14+0(€)) > (1 —O(e))OPT. Furthermore,
we also need to analyze the performance of such a policy
on items from .

To begin with, we note that the canonical size
associated with a size realization s of an item b; is
(a) pi(small), if s is in the small size region, and (b)
the discretized size in large size region in the range
(s/(1+e€),s), if s is in the large size region.

We now introduce the notion of a canonical policy to
handle the discretized item sizes. Given a knapsack of
capacity (14 O(e))C, a policy is said to be a canonical
policy if (a) for any item b; inserted into the knapsack,
the policy observes its canonical size; and (b) the policy
stops if either the total canonical size of items inserted
exceeds C or the total real size exceeds (1 + O(e))C.

To summarize, for an adaptive canonical policy, the
decisions are purely based on observed canonical sizes.
At the end of the policy, it observes the real sizes of all
items inserted and if the difference between the sum of
real and canonical sizes of items inserted is more than
O(e), it discards the entire profit of all items inserted.
We now show two important properties of the canonical
policies.

LEMMA 3.1. There exists an adaptive canonical policy
o such that P(c¢,7',1+0(€)) > (1—O(€e))OPT. More-
over, for any adaptive canonical policy o¢, P(o¢, 7, (1 +
0(e))C) > P(o°,n’,C) — O(e)OPT where C =1+ O(e).

We briefly outline the proof. The detailed proof
can be found in Appendix A.5. We first consider
the existence of a canonical policy o¢ for items in 7’
whose expected profit is (1 — O(e))OPT. Let T be the
decision tree of the optimal policy for items with size
distributions 7 (for the knapsack of capacity 1). Each
root-leaf path in T is associated with a (fixed) set of
items and their (fixed) realized sizes. Thus for a given
leaf in T, the difference between the sum of realized
and expected sizes (in the small size region) of items
realizing to small size is fixed quantity. We call a leaf
to be a good leaf if this difference is less than O(e), and
a bad leaf otherwise. Given distribution 7, each leaf
is associated with a probability of reaching that leaf,
that we refer to as its weight. We show that at least
(1 — O(€?))-fraction of the leaves (by weight) are good
leaves. Note that, standard tail bounds like Chernoff’s
bound or Azuma’s inequality do not suffice to establish
this, due to adaptive nature of the policy.

This alone does not imply the existence of (1 +
O(e))-approximate policy for items with size distribu-
tions 7’ with O(e) relaxation in then knapsack capacity.

We then show that T can be transformed to create a
policy (i.e. the corresponding decision tree) for items in
7’ such that with extra O(€) space, the expected profit
of the policy is (1 — O(e))OPT. This proves the first
claim in the lemma.

The second part of the lemma follows by decou-
pling the discretized and real distributions and use
of standard tail bounds. Note that, in contrast, for
non-adaptive policies, the proofs of both claims in
Lemma 3.1 immediately follow by a careful application
of Chernoff’s bound.

Number of Size Distributions: Now we count the
number of distinct size distributions. First we observe
that when we have to remember both the small-size
and large-size distributions for an item, m;(small) is in-
herent in the large-size distribution (since m;(small) =
1 — m;(large)) and need not be explicitly remembered.
Next, we observe that when we are storing the small-
size distribution alone, m;(small) is implicitly 1, and
need not be explicitly remembered. Similarly, when we
are remembering both distributions, u;(small) is within
poly(1/e) of m,(large) and increases the number of pos-
sible distributions by only poly(1/€) when appropri-
ately discretized. When we are only storing the small-
size distribution, p;(small) can be easily discretized
into O(poly(1/e)logn) values. Thus, we can discretize
the entire large-size distribution as well as the values
7;(small) and p;(small) into a total of 2P°W(1/€) logn
different values.

LEMMA 3.2. Total number of different size distribu-
tions is 2P°W(1/) Jog n.

4 An Approximation Scheme for Adaptive
Stochastic Knapsack Problem

By the discretization scheme of Section 3, we know that
there exists an adaptive canonical policy ¢¢ with ex-
pected profit (1 — O(€))OPT that uses C = (1 + O(e))
space and satisfies the constraints of Lemma 2.4. We
aim to guess the decision tree of such policy by enumer-
ating over decision trees of all canonical policies. This
cannot be done in polynomial time as even with canoni-
cal distributions, just the description of a single canoni-
cal policy i.e. the its decision tree is of super-polynomial
size. Hence we restrict to the set of canonical policies
with weak adaptivity, where the policies insert a block
of items with total profit Q(poly(e)OPT) together and
take the decision based on the sum of canonical size real-
ization of all items in the block. We refer to such policies
as block-adaptive policies. In Lemma 4.1, we show that
to find a policy with expected profit (1 — O(€))OPT,
it is sufficient to restrict the enumeration of all poli-
cies to the set of block-adaptive policies. We then show



that the set of all block-adaptive can be enumerated in
polynomial time. The best policy found by this process
is guaranteed to be a (1 4+ O(e))-approximation to the
adaptive optimum.

LEMMA 4.1. An optimal canonical adaptive policy o€
can be transformed into a block-adaptive policy with ex-
pected profit (1—O(e))OPT when the capacity constraint
1s further relaxed by eC.

In the remainder of section, we prove Lemma 4.1.
We will denote by & the block-adaptive policy obtained
by suitably transforming ¢¢. We highlight two keys is-
sues that arise in transforming o€ to o. One, since the
decision tree of o¢ can have an arbitrarily complex struc-
ture, at any node in the decision tree, the remainder of
the policy may be completely different based on two dif-
ferent size realizations of the corresponding item. Thus
if we inserting a block of items together, the policy &
may end up inserting items that ¢¢ would not have in-
serted for some size realizations for items in the block.
Second, we need to identify a block of items to be played
together even when decision branches emanating from a
node in ¢ might insert distinctly different sets of items.

We now describe a transformation of ¢¢ into a &
that addresses both issues above using eC space. For
the purpose of analysis, it will be convenient to express
o as a policy that uses two knapsacks, a main knapsack
of capacity C and an auxiliary knapsack of capacity eC.
Clearly, ¢ can be implemented in a single knapsack of
capacity (1 + ¢)C. The core step in our transformation
is the idea of tiling the decision tree of the policy
with segments. A path in the decision tree is called
a small realization path if either every edge on the path
corresponds to a small realization or the path contains
a single node. Our starting point is a partition of nodes
in ¢¢ into small realization paths, called segments such
that if a segment has more than one node, the profit
of the segment (sum of profits of items on it) is at
most 2¢'*OPT, and otherwise, the single node in the
segment satisfies one of the following conditions: (i) it
either has a profit is at least ¢!*OPT, or (ii) it does not
a child node corresponding to a small size realization.
It is easy to see that such a partition always exists.
At a high level, & inserts all items in a single segment
of o¢ together. To compare realizations of ¢¢ and o,
if all items in a segment realize to a small size, then
items inserted in ¢ match the items inserted in ¢, and
when any item in a segment realize to large size, then &
may have inserted extra items which ¢¢ would not have
inserted. Thus in a given realization of ¢¢, we need
to account for extra space required by the items over
all segments in which there is a large size realization.
It is interesting to note that, such transformation can

be done for canonical policies as for any node their
decision tree, the remainder of the policy is uniquely
defined when the corresponding item realizes to a small
size. It is not clear how to apply such transformation to
adaptive policies which look at real sizes of items. The
transformation is explained in detail in Algorithm 4.1.

Algorithm 4.1 Policy &

1. Initially, S = ¢. S represents the set of items

added to the auxiliary knapsack.

2. Set ¢ = ¢ and compute the segments on the

decision tree of o.

repeat
3.1 Follow the policy o by continually adding items
to main knapsack until at some node v, the item
corresponding to v, say b,, realizes to a large size,
say s.
3.2 If any items remain in the segment containing
v, add these items, say S’, to set S. Add items in
S’ to auxiliary knapsack and the profit of items in
S’ to the profit collected.
3.3 Let ¢’ be the remainder of policy in o corre-
sponding to b, realizing to (large) size s. Note that
items in S’ can be present in ¢’. For each node v/ in
o’ which corresponds to an item in S, replace the
subtree rooted v’ by the subtree rooted at the child
node of v/ corresponding to small size realization of
the item at v/’

until the policy o is over.

4. If the auxiliary knapsack overflows, then discard

the entire profit of the realization.

Observe that ¢ inserts items in one segment of o
together. The lemma below establishes useful properties
of & and lower bounds the expected profit of .

LEMMA 4.2. In any realization of &, the sum of profit
of items successfully inserted is O(OPT/¢€); the sum of
expected sizes of items in S at the end of the policy is
O(€®); the sum of expected sizes of items is O(1/€); and
the expected profit of & is (1 — O(€*))OPT.

Proof. The maximum profit in any realization of & is
bounded by the maximum profit in any realization of o
plus total profit of items in S. The former is bounded by
O(OPT/e). The total profit of items in S is bounded by
O(e°OPT), since there are O(1/€®) realizations of items
to a large size before the main knapsack overflows and
with each large realization, items added to S have total
profit O(e**OPT).

The sum of expected sizes of items in .S is bounded
by O(€®), since there are O(1/€°) realizations of items
to a large size before the main knapsack overflows and S



does not contain any item with profit density less than
eOPT.

The sum of expected sizes of items o attempts
to insert in any realization is bounded by the sum of
expected sizes of items in any realization of o¢ plus sum
of expected sizes of items in S. The former is bounded
by O(1/¢) while the later is bounded by O(€®) as argued
above.

To prove the fourth claim, we start by noting that
if we do not terminate the policy & due to either a
large size realization for an item added to auxiliary
knapsack or an overflow of the auxiliary knapsack, then
the expected profit of 7 is at least the expected profit of
o¢. Hence to compare the expected profits of ¢ and o¢,
it suffices to analyze the probability of the event that
either in some segment two or more items realize to large
size, or the auxiliary knapsack overflows before the main
knapsack. Note that since for any item, the canonical
size taken in a small realization is a fixed value (its
expected size conditioned on being small), the auxiliary
knapsack overflows only if some item added to it takes
a large size. The sum of expected sizes of items in S in
any realization is O(e%). Hence by Markov’s inequality,
the probability that in any realization some item in
S realizes to a large size is O(€®). It follows that the
expected profit of & is (1 — O(e?))OPT by Lemma 4.2.
O

We now list important structural properties of the
decision tree of 7.

1. The policy is decomposed into segments such that
each segment is a path in the tree. A segment
with one item has profit at least ¢!*OPT, and for
a segment with multiple items, sum of profits is
at most 2(e'*OPT). Each node in a segment has
exactly one child node in the decision tree, with
the exception of the last node in a segment that
can have poly(1/¢) children.

2. For any two consecutive segments, say s’ and s”
where on a root-leaf path (other than last segment
on the path) in the decision tree, either (a) the sum
of the profits of s’ and s” is at least e!*OPT, or (b)
s corresponds to one of the possible next segments
in the remainder of the policy to be followed when
at least one of the item in s’ realize to a large size.

3. When at least one item in a segment realizes to
large size, the remainder of the policy is decided by
the first item in the segment that realizes to large
size along with the size to which it realizes. Since
in lower bounding the profit of & we discarded the
profit from realizations where more than one item
realizes to a large size in a segment, the expected

profit of 7 is at least (1—O(€))OPT even if items are
arbitrarily permuted within each segment of &. For
the same reason, the expected profit of the policy,
where remainder of the policy for any segment is
chosen based on total canonical size used by items
in the segment even when there are multiple large
size realizations, is no worse.

Now we establish the bound on number of segments
in the decision tree of .

LEMMA 4.3. Any root-leaf path in the decision tree of
G has O(1/€'®) segments. The number of children the
last node of any segment can have is poly(1/e). There
are 2P°W1/€) seqments in the decision tree of .

Proof. The first property follows from the fact that the
sum of profit of items on any path from root to leaf is
O(OPT/e) and each pair of consecutive segments either
contributes a profit of O(¢'*OPT), or represents the
event that some item realized to a large size. The
number of pairs of the former type is bounded by
O(1/€'®) while the number of pairs of the latter type
can not exceed O(1/€%).

For the second property, note that in the policy tree
of 7, for each segment s, there is a fixed child segment
which corresponds to the first segment in the remainder
of the policy to be followed when all items in s realize to
small size. All remaining child segments of s correspond
to first segment in the remainder of the policy when
at least one item in s’ realizes to a large size, and are
simply labeled with a distinct large size value. Thus
the number of child segments for any segment can be
bounded by poly(1/e).

The third property is an immediate corollary of first
two claims. O

Thus any such policy has fi(e) = 2°°v(1/9) seg-
ments. Now we enumerate over all block-adaptive poli-
cies and select the policy with the maximum expected
profit. The PTAS follows from the lemma below.

LEMMA 4.4. The set of block-adaptive canonical poli-
cies can be enumerated in polynomial time.

Proof. To enumerate all policies, we will explicitly
enumerate in top down manner choices of items for each
segment. We will show that there are n/2(¢ choices
for each segment, where fa(e) = 2°°¥(1/¢) yielding an
algorithm with running time nf2(1

We classify items based on their discretized size
distribution. The items belonging to same size class
have same discretized distribution. We can assume
w.l.o.g. that for any pair of items b; and b; same size
class, o always inserts an item with higher profit first.



Thus items can be assumed to be arranged in non-
increasing order of profit in each size class. We have
shown that for the policies in consideration, items can
be permuted within a segment.

We are now ready to describe the enumeration
process for a given segment. For any given segment,
there are two possible choices, either it has only one item
or it has at least two items. Total number of choices for
a segment when the segment has only one item is n.
We now focus on the case when there are at least two
items in the segment; total profit of items in any such
segment is bounded by 2¢'*OPT. It is sufficient to show
that number of choices for each segment is n2"

This technique is similar to one used in [CK00]. For
any segment which has profit less than 2¢'*OPT, we
assume that remaining profit is coming from a dummy
class of items. The items in the dummy class do not
contribute any profit while computing the expected
profit of the policy and they have zero size. For any size
class j, let P; be the profit contributed by the items in
size class j to the current segment. For each size class
J, we define o = L%J. We only consider classes j
with «; > 1. Total loss in profit by this step because
of floor operation is at most €!'®OPT per segment. By
Lemma 4.3, this will reduce the profit by O(eOPT).

Now the problem is to distribute i—g among q classes.

Number of ways of doing this is at most (2‘1/ ;2+q) which
is at most

(24/€* + q)°
(q/e)7
Now, for every size class j, we allocate items to the

given segment in the decreasing order of profits until
the sum of profits is more than a;e'"OPT/2q. There
is one more issue that we have to consider here. Since
the weight of the items from the class may not exactly
add up to profit allocated to the class, we consider both
allocations, first being maximum profit possible such
that it is not more than allocated profit and lowest

profit possible which is not less than allocated profit.
gpoly(l/e)
n to

O(log n)

< (3e/e%)T < (1/)wniis = 20"

This adds a multiplicative factor of 2¢ =
the number of combinations that need to be tried per

segment. Thus the lemma follows. O
5 An (% + ¢)-Approximation for Adaptive

Stochastic Knapsack without Extra Space

In this section, we give a polynomial-time algorithm to
compute an (% + ¢)-approximate adaptive policy when
there is no relaxation in the knapsack capacity. Our
result is based on the following lemma.

LEMMA 5.1. There exists an adaptive policy with ex-
pected profit (30PT)/8 which uses a knapsack of capac-

ity (1 — €) with the following exception: if the very first
item inserted into the knapsack realizes to a size between
(1 —¢€) and 1, then this insertion is still considered a
success, and the policy terminates.

Given the lemma above, we can use Theorem 1.1
to compute a canonical policy which is a (1 + e)-
approximation to such a policy; the only modification
is that the dynamic program adds (p; - Prx;~xs (1 —€ <
X; < 1)) to the profit of the very first item b; it in-
serts into the knapsack. The total real knapsack ca-
pacity required for this canonical policy to compensate
for discretization will be 1 — € + ¢ = 1 and hence, The-
orem 1.2 follows. In the remainder of the section, we
prove Lemma 5.1.

Recall that 7* is the vector of original size distribu-
tions on items. Let ¢* be the optimal adaptive policy
for the knapsack of capacity 1, thus P(c*,7*,1) = OPT.
For any item b;, we define its scaled profit', denoted by
i, as (pi Pry,~q (Xi < 1)) Thus, maximum contri-
bution by b; towards the expected profit of any policy
for a knapsack of capacity 1 is pj°. We now explain the
two knapsack erperiment in Lemma 5.2.

LEMMA 5.2. Given any C < 1 — € such that 2C > 1,
and any adaptive policy o such that the mazximum scaled
profit of any item played by o is p;<,., there exists a
policy o’ such that

IP)(U, W*a 1) - pfﬁaz
2

P(o’,7*,C) >

Proof. We simulate realizations of o for a knapsack
of capacity 1 in two knapsacks, each of capacity C.
We follow the decision tree associated with ¢ for the
knapsack of capacity 1 assigning each item dynamically
to one of the two knapsacks. Here onwards, any
reference to o will be to the associated decision tree
for the knapsack of capacity 1.

We start adding items according to ¢ to the first
knapsack, until the sum of sizes of inserted items is at
least (1 —C). Then we start adding the items to second
knapsack until the end of the policy o. Note that,
(1-C)+C =1 and 2C > 1. Thus, the two knapsacks
together have enough capacity to accommodate all
items in any realization of o for a knapsack of capacity
1. We now want to compare the expected profit of
the items inserted into the first and second knapsack
to P(o, *,1).

In any realization of o, all items which contribute
towards the profit of ¢ also contribute towards the profit
of one of the two knapsacks, with a possible exception

TTo clarify, this scaling operation is different than the scaling

operation on huge profit items, mentioned in Section 2.



of the last item added to the first knapsack. The last
item added to the first knapsack may cause an overflow
in the first knapsack which is not an overflow in . Thus
the expected profit lost in the two knapsack experiment
is py¢... Hence, for at least one of the two knapsacks,
the expected profit is at least % O
If the given set of items contains any item with
scaled profit more than 30PT/8, then we can simply
play that item in the knapsack of capacity 1 and achieve
the required profit. W.lLo.g. assume that the scaled
profit of any item is at most 30PT/8. We classify items
into three types based on profits and size distributions.
We say an item b; is of type Ty if pi® < OPT/4; it is
of type Ty if pf® > OPT/4 and Prx,~n (X; <e)>2/3;
and finally, it is of type T3 if pf¢ > OPT/4 and
Prx,~z+(X; <€) < 2/3. Now we consider two cases
based on whether or not the given set of items contains
an item of type To. We will prove Lemma 5.1 in each
case by showing the existence of the desired policy.

Case 1: There is at least one item of type Ts,
say b;, in the given set of items. Clearly, there exists
a policy o1 which never plays b, and P(o1,7%,1) >
OPT — pf°. Now using Lemma 5.2 with C = 1 — 2¢,
there exists a policy o5 such that

P(oy,7*,1) — 30PT/8
2
S OPT — pf¢ — 30PT/8
- 2
We now design a policy with expected profit at least
(30PT)/8. The policy starts by playing item b;. If
item b; realizes to a size less than ¢, then we add items
according to oo for a knapsack of capacity 1 — 2e. Now
we compute the expected profit of such a policy. We
get profit pi¢ from item b; (recall that the first item can
realize to size up to 1), and when b; realizes to a size of
at most €, we get an additional profit of P(oq, 7%, 1— 2¢).
Thus using the fact that pf¢ > OPT/4, we get the
expected profit of the policy is

P(og, 7", 1 — 2¢) >

2
pfc +3 (P(0277T*7 1- 26))

3
.. OPT — pi® — 30PT/8 _ 30PT
Zp; + 3 > 3

The space used by the policy when it attempts to insert
two or more items is no more than e +1 —2e =1 —e.

Case 2: There is no item of type T in the given
set of items. We perform a modified version of the
two knapsack experiment to simulate realizations of ¢*
for a knapsack of capacity 1 in two knapsacks, each of
capacity 1 —e.

Step (1): Start inserting items to the first knap-
sack according to ¢* until the total size of items in the
first knapsack is at least €, or the next item to be in-
serted is of type T3. At this point we switch to the
second knapsack and follow Step (2a) if it is applicable.
If not, then we follow Step (2b).

Step (2a): If we switched to the second knapsack
because the total size of items in the first knapsack is at
least €, then we insert items into the second knapsack
until the end of the policy.

Step (2b): If we switched to the second knapsack
because the next item to be inserted according to o*
is a type T3 item, then we continue inserting items
into the second knapsack until the total size of items
in the second knapsack is at least e. Then we switch
back to the first knapsack and insert items into the first
knapsack until the end of the policy. While adding the
first item in Step (2b), we assume the knapsack capacity
to be 1, not 1 — €. After adding the first item, we treat
knapsack capacity to be 1 —e.

Thus in each of the two knapsacks, the space used
by the policy is 1 —e, with the possible exception for the
first item inserted into the second knapsack in Step (2b).
Note that if the first item realizes to a size more than e,
then then we switch back to the first knapsack and it is
the only item which is inserted into the second knapsack.
Now we establish the lower bound on the expected profit
for the better of two knapsacks in Lemma 5.3.

LEMMA 5.3. At least one of the two knapsacks achieves
an ezxpected profit of (30PT)/8 or more.

Proof. We define two disjoint events in the realization
of the policy o* for a knapsack of capacity 1.

1. We define an event E; when there is an overflow
in the first knapsack in step 1. This is always
associated with an item of type T7.

2. We define an event F5 when the realization of o*
enters step 2b. Note that if we enter step 2b, then
there has been no overflow in the first knapsack in
step 1.

We define an event Fo; which is a sub event of Fs,
where the first item of type T3 inserted into the
second knapsack realizes to size at least €. In this
event there is no profit lost in the two knapsack
experiment, since if the first item realizes to size
more than 1, then there is overflow both in second
knapsack and o*. Similarly, when the first item
realizes to a size between ¢ and 1, there is no
overflow in the second knapsack and items in the
remainder of the policy in ¢* now get added to the



first knapsack with their total size no more than
free space available in first knapsack.

Now we want to compute the total profit lost in
the two knapsack experiment, by computing the profit
of the items which cause an overflow in one of the two
knapsacks but with no associated overflow in o*. The
overflow in the two knapsack experiment which is not
associated with an overflow in ¢* can only occur in
knapsack 1 in step 1 or in knapsack 2 in step 2b, but
not both.

Now we compute the profit lost in the two knapsack
experiment compared to ¢* in a knapsack of capacity
1. Observe that the events E; and F, are disjoint.
The expected profit lost in event F; is at most OPT/4.
In event Fy — Fsp, the expected profit lost is at most
30PT/8. Hence, total profit lost is

PI‘(El)OPT (PI‘(EQ) - PI‘(EQl))gOPT
+ 8

As Pr(FE21) > Pr(FE>)/3, the total profit lost is at most
OPT
1

Thus in at least one of the two knapsacks, the

expected profit is at least OPT*QOPT/ 4 _ 308PT_ 0

Thus in each of two cases, we have established the
existence of a policy as required in Lemma 5.1.

6 An Approximation Scheme for Non-Adaptive
Policies

In this section, we briefly outline the PTAS for non-
adaptive policies. Let OPT’ be the profit of the optimal
non adaptive policy for knapsack capacity 1 and size
distributions 7*. Let ¢° be the optimal non-adaptive
policy for size distributions 7¢ and knapsack capacity
C = 1 4 € such that it satisfies the properties in
Lemma 2.4. It is easy to see that the ordered set of items
chosen by ¢¢ can be partitioned into contiguous sets of
items called blocks that satisfy the following properties:

1. A block with exactly one item has profit at least
e¢OPT’, while a block with at least two items has
total profit at most 2(eOPT").

2. Sum of the profits of any two consecutive blocks is
at least 2(eOPT').

3. Number of blocks is O(1/€?).

The last property follows as sum of profits of items in
o¢ is at most O(OPT'/e) and sum of profits of two
consecutive blocks in o€ is at least (eOPT).
Furthermore, any policy that agrees with ¢¢ on
items played in each block but not necessarily on the

order in which the items are played collects (1—2¢)OPT’
profit since it can at most fail to collect the profit from
the last block played in any realization of ¢¢. Thus to
(1 + O(e))-approximate o€, it suffices to merely guess
items played in each block of ¢€¢, ignoring the order in
which they are played. We can perform this guessing in
polynomial time, at expense of losing another O(eOPT’)
profit, as explained next.

We can assume w.l.o.g. that o¢ plays items with
same size distribution in non-increasing order of profit.
We can now use a similar enumeration scheme as used in
the adaptive case to obtain a (1 + O(e))-approximation
to o°.

7 Stochastic Multidimensional Knapsack

We briefly outline the proof of Theorem 1.3. By apply-
ing our discretization technique to each dimension, then
we get 27°¥(1/€) Jogn size distributions in each dimen-
sion. Thus if there are d dimensions, then the number

d
of size distributions increases to (2""1“1/ ) log n) . We

will now show how to reduce it to 27°¥(@/€) Jogn.

For an item b;, let p,(small,j) and m,(large, j)
indicate the expected size in the small size region
and the probability in the large size region in the j**
dimension. For any item b;, we perform additional
discretization steps as follows.

Step a: Similar to step 2 of the discretization for one
dimension, probability values for all large sizes across
all dimensions can be stored in a relativized manner of
the maximum among them. The profit lost in this step
is O(deOPT). So the number of size distributions over
all dimensions will be 2°°%(4/€) Jog n.

Step b: Let ky = argmax;{u,;(small, j)m,(small, j)}.
For all dimensions j such that

p;(small, §)m,(small, 5) < €3, (small, ky)m,(small, ky),

we neglect the small size distribution.

To prove that this discretization change does not
reduce the expected profit by more than O(deOPT),
we introduce an auxiliary knapsack of capacity € in
each dimension. We charge to the auxiliary knapsack,
realization to small size of any item in the dimension
with small size distribution neglected. It can be shown
that, in any realization of the policy, the overflow
probability of the auxiliary knapsack before the end of
the policy is O(e?), which imply a loss of O(eOPT) per
dimension.

This enables us to store small size distributions
over all dimensions in a relativized manner, and there
are at most poly(1/e) possible values of the small size
distribution for any dimension other than the dimension
in which the small size distribution is stored explicitly.



Step c: Similar to steps 3 and 4 in discretization, it
can be shown that, either the large size distribution or
the small size distribution need to stored explicitly, and
given a value for one of them, there are only 2r¥(4/€)
possible values for the other.

Thus the number of size distributions reduce to
2pv(d/€) Jog . It can be shown that, with constant
number of dimensions, there exists a block adaptive
policy which gives a (1 + O(e)) approximation to the
adaptive optimum and we get a PTAS by enumerating
over all such policies.

Now we briefly sketch the result with no extra space
in knapsack. For this purpose, consider a generaliza-
tion of the two knapsack experiment where we have
two knapsacks in each dimension. We start by adding
items according to the optimum policy, with items be-
ing added to the first knapsack in each dimension. If the
first knapsack is more than ¢ full in any dimension, we
switch to the second knapsack in that dimension. We
continue adding items until the end of the policy. We
lose profit of at most d items in any realization, namely
the last item in first knapsack in each dimension. The
experiment partitions the policy into (d+1) parts, along
with d items whose profit is lost in two knapsack exper-
iment. Thus we get a factor (2d + 1 4 €) approximation
with no extra space.

8 Approximation Schemes for the Fixed Set
Models for Stochastic Knapsack

In this section, we give a PTAS for the fixed set models
of stochastic knapsack, establishing Theorems 1.4 and
1.5.

8.1 The Bounded Overflow Probability Model
Recall that in this model, the objective is to identify
subset of items S with maximum total profit subject to
the constraint

Pr

Y Xi>1| <y

1<i<|s|

for some constant v, that is referred to as the overflow
probability. Here X1, X, ..., X|g| are the random vari-
ables corresponding to the sizes of items in S. We
now state our result for this model.

THEOREM 8.1. For any fixred € > 0, for any constant
overflow probability -y, there is a polynomial time algo-
rithm to compute a set of items S such that the sum of
profits of items in S is (1—¢) factor of the optimum and
its overflow probability for a knapsack capacity (1 + €)
is at most (1 + ¢€)y.

Proof. We assume that v < 1/(1 + €); otherwise the
problem admits a trivial solution. Since we are only
interested in the deviation in the probability for a set
of items for realizing to size more than 1 and the
probability of an item realizing to size more than 1 is
crucial in this formulation, we do not scale profits of
huge profit items. In Lemma 8.1, we limit the sum of
expected sizes of items in a set subject to the constraint
that its overflow probability is less than 1 — €, so that
we can use the discretization process in Section 3.

LEMMA 8.1. For any set S with overflow probability
v < 1/(1 + €), the sum of expected sizes of items in
S is O(1/e).

Proof. By Lemma 2.1, the sum of expected sizes of
items successfully inserted into the knapsack is at most
O(1). Hence if the sum of expected sizes of items in S
is more than O(1/€), then by Markov’s inequality, the
probability that all items in S fit in the knapsack is less
than €, which is a contradiction, since we have assumed
that overflow probability of S is no more than 1/(1+¢).
O

We choose ¢ = ey/2, and use € as the parame-
ter for the discretization process in Section 3. The dis-
cretization process ensures that for any set S with sum
of expected sizes of items at most O(1/¢')

1. Pr(Xe(S)>1+¢) <Pr(X*(S)>1)+¢
2. Pr(X*(S) >1+4+2€¢) <Pr(X¢(S)>1+¢€)+¢€

where X*(S) and X¢(S) are the random variables
indicating the sum of sizes of items in S with original
and discretized distributions.

We enumerate over all possible sets to guess the
optimal set when the overflow probability is (1+€')y and
the knapsack capacity is (1 + €’). With 2Pv(1/€) Jogn
types of items, this can be done in time nQpOZy(l/e)
The overflow probablhty of the set computed with
distributions 7* on items and the knapsack capacity
(14 2€) is (y + 2€¢') = (1 4+ €)y. This completes the
proof. O
8.2 The All-or-None Model In the model, the

objective is to identify the set S which maximizes

Pr| Y X;<1|:(Profit of items in S)
1<i<|S|
where X7, Xo, ..., X|g| are the random variables corre-

sponding to the sizes of items in S. For this model,
Dean et al [DGVO08] gives a factor 9.5 approximation.
We now state our result for this model.



THEOREM 8.2. For any fized ¢ > 0, there is a poly-
nomial time algorithm to compute a set of items S with
total profit is at least (1—¢€) factor of the optimum when
the knapsack capacity is relazed to (1 + €).

For any set of items S, let f(S) be the probability
that the items in S fit in the knapsack and P(S) be the
sum of profits of items in S . Let OPT’ be the expected
profit of the optimal set and Sopts be the corresponding
set. Thus OPT' = P(SOPT/)f(SOPT’)- The overflow
probability of SOPT/ isl— f(SOPT/).

In Section 8.1, given an overflow probability v, we
looked at the problem of finding a subset with maximum
total profit and the overflow probability at most (1+€)~.
We cannot use it directly to compute the maximum
profit set for the overflow probability 1 — f(Sop1/)
even if we could guess the value of f(Sopr), because
the solution found in section 8.1 increases the overflow
probability by (1 + €) factor, which can arbitrarily
reduce the probability of fitting a set of items into the
knapsack when the overflow probability is close to 1.
Also when the value of f(Sopr/) is arbitrarily close
to 1, the overflow probability can be arbitrarily small
and running time of the algorithm given in Section 8.1
depends exponentially on overflow probability. We first
establish an useful property of the optimal solution in
all-or-none-model in Lemma 8.2.

LEMMA 8.2. For the set Sopts, either f(Sopt/) > €
or it contains an item such that only playing that item
achieves expected profit (1 — O(e))OPT’

Proof. We only need to consider the case when
f(Sopt) < €. Order the items in Sopt in decreasing
order of profit. Partition the items in Sopt/ into two
sets S1 and Sy as follows. We add items from Soprs
in the decreasing order of profit to S; until the sum of
profits of items in S; is more than P(Sopt/)/3. Re-
maining items in Soprs are moved to S;. Expected
profit achieved by only using S; is P(S7)f(S1). Sim-
ilarly the expected profit achieved by only using S5 is
P(82) f(52). Clearly, f(Sopt/) < f(51)f(S2)-

We consider various cases based on the values of
f(S1) and f(S2). In the first case, both f(S7) and f(S2)
are less than 1/2. In this case, the expected profit of
Sopt is at most (P(S1) + P(S2))f(S1)f(S2) which is
less than at least one of P(S7)f(S1) and P(S2)f(S2),
hence it contradicts that Sopt is the optimal set.

When f(S1) > 1/2, the expected profit by only
playing items from S; is P(S1)/2 > P(Sopt/)/6 >
f(Sopt/)P(Sopt) for small enough €, as f(Sopr) < €,
hence it contradicts that Sopts is the optimal set.

Now the remaining case is when f(S2) > 1/2.
In this case, we consider two sub cases. If P(S2) >

2¢P(Sopt’), then the expected profit of S is more
than 2€P(SOPT/)/2 > f(SopT/)P(SOPT/), hence it
contradicts that Sopt/ is the optimal set. Otherwise,
P(SQ) S QGP(SOPT/). Hence, P(Sl) 2 (1—26)P(SOPT/)
and the expected profit by only playing S; is (1 —
QG)P(SOPT/)f(Sl) > (1 — 2€)P(SopTl)f(SopT/). Now
we have to show that S7 contains only one item. This
follows from the definition of S7, when € is small enough.
Items from Soprs are added in descending order of profit
and we stop adding items to S1, when for the first time
the items in S; have profit more than P(Sopr/)/3. O

Now we consider the problem of computing such
set S. The only interested case is when f(Sopr/) > €.
We select ¢ = €2 as approximation parameter for the
bounded overflow probability problem and we solve it
for each value of overflow probability between € and 1—¢
in the geometric group which is powers of 1/(1 + ¢€’) for
approximation factor ¢ and take the maximum of the
product of sum of profits of items and probability of all
items fitting the knapsack,

Now we establish a lower bound on the expected
profit of the set computed by the algorithm. Notice
that, the sum of profits of items in the optimal solution
for the bounded overflow probability problem never
decreases with an increase in the overflow probability.
We consider two cases. In the first case, f(Sopt/) <
1 — e In this case, f(Sopr) > e There is an
overflow probability value between (1 — f(Sopr/)) and
(1 — f(Sop1))(1 + €) for which we have computed
the approximate solution for the bounded overflow
probability problem. Let S be that set. We get,
P(S) > (1 — €)P(Sopr/) and its overflow probability
is at most (1+€')(1— f(Sopt)). Hence f(S) is at least
(1 - E)f(SOPT/), as € = 62 and f(SOPT’) Z e. Thus
the expected profit of items in S is f(5)P(S), which is
(1 = e)f(Sopt ) P(Sopt).

In the second case, f(Sopr/) > 1 — €. In this
case, the set computed for the overflow probability e
approximates the optimal solution within a factor of

(1—ce).
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A Discretization of Distributions: The Full

Process

We now provide a detailed description of the trans-
formations to discretize the size distributions of items.

For each step in the discretization, we will use nota-
tion 7 and 7’ to indicate the vector of size distributions
on items before and after performing the discretization
mentioned in the given step, i.e. for an item b;, size
distributions before and after the discretization changes
mentioned in the given step are m; and 7T; respectively.
All references for C i.e. the capacity of knapsack will
be for any C,1 < C < C,q,- Also, we restrict the al-
lowed set of policies to ones which satisfy the constraints
mentioned in section 2.

A.1 Step 1 We discretize the sizes in the large size
region into geometric groups. For each item, Vj > 1,5 €
N,1/(1+ €)= > ¢, all probability mass between sizes
[1/(1+€)7,1/(1 +€)i71) is assigned to size 1/(1 + €)7.
Thus for an item b;, its new distribution in the large
size region is

1
PI‘ X’L/ = =
xjrr, (1+¢)’
1 1
P X; € -, - ,
&, (%l )
1
Vi>1,—— >

(I1+e)i-t —
The number of different sizes for which size distribution
is defined is
log(1/€%)
log(1 +¢€)

We will use ¢’ to denote this number.
Clearly for any policy o, P(o,7',C) > P(c,w,C)
and P(o, 7, (14 ¢€)C) > P(o,n’,C).

= 0(1/€%)

A.2 Step 2 Now we discretize the probability distri-
bution in the large size region. For this purpose, we
establish an important property in Lemma A.1.

LEMMA A.1. Given a vector of distributions w on items
and a knapsack of capacity C (1 < C < Cypaz), consider
any change in the large size distributions of items to '
such that for any item b;

e For any s5(# 0),m,(s) > m,(s) and
o A(m;,m;) < ém,(large)

o For each item b;, the probability for size 0 is
increased in m; to compensate for the probability
mass reduced elsewhere.

Then for any policy o,
1. P(o,n',C) > P(o,7,C) and
2. P(o,7,C) > P(o,7’',C) — O(eOPT)



Proof. First claim is trivial since for each item b;, the
distribution 7; dominates m, for every positive size
realization.

Now we prove the second claim. To compute the
loss in profit for the policy ¢ when items come from 7
compared to when items come from 7/, we are interested
in finding the probability of the event that, any item,
say b;, realizes to different values under distributions
7, and 7, before the policy terminates. If such event
happens, then we discard the current item and stop the
policy. By Lemma 2.4, the total profit in any realization
is O(OPT/e), hence to prove the lemma, it suffices to
show that probability of this event is O(€?).

For any item b;, p; > e’ (large). Let S be the
(random) set of items which the policy has attempted
to insert. By Lemma 2.4,

> =

b, €S

O(1/e)

Hence

Z e, (large) =

b, €S

O(1/e)

By assumptions of the lemma on 7 and «’, we get

A(r., ;)
Z (eJB 4 >65 =0(1/e)
b, €S
Z Ay, 7)) = 0(e%)
b;eS
This completes the proof. |

We now use Lemma A.1 to discretize the probability
values in the large size region.

1. For every item, we round down the probability for
each discretized size in the large size region to the

nearest power of ) +58) Clearly for each item b;,

A(?Ti,ﬂ'i) < 8, (large)

2. Recall that there are ¢’ different sizes in the large
size region for which the distribution is defined. For
each item b;, for each size s in these ¢’ different
sizes, if m;(s) < M, we make m,(s) zero.
Clearly for each item b;, A(m;, ;) < e, (large).
This helps us to indicate the large size distribution
relative of the maximum probability for any size in
the large size region.

We perform one more change. For each item b;,
if for any discretized size s in the large size region
mi(s) <
total probability mass which is neglected is O(€?) and
the expected profit is reduced by O(eOPT).

2 .
ng > then we make 7;(s) zero. Over all items,

By representing the probability values in the large
size region relative of the highest value, we get following
lemma.

LEMMA A.2. Number of possible different values of
large size distributions is 2P°Y(1/) logn

A.3 Step 3 For any item b;, if m(large) <
e3p;(small) /2, then we neglect its large size distribu-
tion. The new distribution 7’ for any such item b;
will have zero probability in the large size region. For
any policy o, create a policy o’ as follows: ¢’ follows
o with the exception that it stops when an item b;
with m,(large) < €3, (small)/2 realizes to a large size.
Clearly, P(o’,7n',C) > P(o,7,C). In Lemma A.3, we
establish that P(o’,7,C) > P(¢’, 7', C) — O(eOPT).

LEMMA A.3. P(¢/,m,C) > P(¢/,7’',C) — O(eOPT).

Proof. Let S be the (random) set of items which policy
o’ attempts to insert such that the large size distribution
of these items is neglected. We discard the entire profit
of a realization if any item in S realizes to large size
before the policy terminates. It is sufficient to show that
the probability of this event is at most O(e?), which by
Lemma 2.4 would imply a loss of O(eOPT) in the profit.
We know that,

Z w; (small)m

b, eS

(small)

<>

b;eS

By Lemma 2.4, we get,

> p=

b, €S

O(1/e)

Thus we have,

Z w; (small)m

b;eS

O(1/e)

(small) =

Since for any item b; in S, 7;(large) < €3u,;(small)/2,
we get,

27, (large)m;(small)

Y TS
€3

b,eS

= 0(1/e)

Since m;(large) < €3, (small)/2 and p,;(small) < € we
can assume that m;(large) < 1/2 and since m,;(large) +
m;(small) = 1, hence 7;(small) > 1/2. We get,

Z 7;(large)

b, €S

= 0(é?)

Thus the probability that any item in S realizes to a
large size is at most O(e?). This completes the proof.
O



A.4 Step 4 For each item b;, if p;(small) <
e7;(large), then we neglect its small size distribution.
The new distribution 7, for any such item b; remains
unchanged in the large size region and b; takes size 0
w.p. m;(small).

For any policy o, create a policy o’ as follows. o’ is
identical to o with one exception. For any item b; with
w;(small) < €¥m,(large), if b; realizes to a small size,
then ¢’ follows the remainder of the policy assuming b;
has realized to size 0. Clearly, P(¢’, 7', C) > P(o, 7, C).
We need to show that, P(o’, 7, (14+¢€)C) > P(o’,#n",C) —
O(eOPT).

LEMMA A4. P(o’,7,(1 + €C) >
O(eOPT).

Proof. Let S be the (random) set of items b; which o’
has attempted such that u,(small) < o7;(large). In
addition to the main knapsack of capacity C, we create
an auziliary knapsack. If any item b; with u,(small) <
€7, (large) realizes to a small size (i.e. p,(small)), we
charge it to the auxiliary knapsack, otherwise we put
it into the main knapsack. Other items, i.e. items b;
with p,;(small) > €, (large), are always put into main
knapsack. We need to compute the sufficient size for
the auxiliary knapsack when the permitted policies are
constrained by Lemma 2.4. By Lemma 2.4, for any
policy

P(o’, 7', C) —

S = 0(1/¢)

b, €S
By conditions on items in S, we get

z w; (small) < Z Em,(large)

b, eS b;eS

By definition of large size region, for any item b;, p; >
e’ (large). Thus

Z pi(small) < Z etu;, = O(€®).

b;eS b;eS

If we limit the size of the auxiliary knapsack to €, then
by Markov’s inequality, w.p. (1 — O(€?)) there is no
overflow in the auxiliary knapsack. Using Lemma 2.4,
the profit lost is O(eOPT) O

A.5 Step 5 Now we discretize the probability dis-
tribution in the small size region. For each item b;,
we replace the probability distribution in the small size
region by a single size p,(small) i.e. with probability
m;(small), b; realizes to size u,;(small).

Recall that canonical policies treat small size real-
izations by their expected sizes when small. Thus the
decision taken by the policy is based on the canonical
sizes of items already inserted, not the true space used
in the knapsack.

LEMMA A.5. 1. For any policy o, there exists a
canonical policy o€ such that P(o¢, 7', (1 + ¢)C) >
P(o,m,C) — O(eOPT).

2. For any canonical policy o¢, P(c¢, 7, (1 4+ €)C) >
P(o¢,n’,C) — O(eOPT).

Proof. For any leaf in the decision tree of o for the size
distributions 7 and the knapsack capacity C, we define
its weight to be the probability of reaching that leaf
when the policy is executed on items with distributions
m. Recall that any path from root to leaf is associated
with a size realization for each intermediate node. For
any given leaf, let S = {b1,b2,...,b;5/} be the set of
items on the path which realize to small size and let the
corresponding sizes be si, s2, ..., 5|5 We call a leaf to
be a bad leafif | 3 ° 1, c 5y (1i(small) — s;)| > €, otherwise
we call it to be a good leaf.

We will prove the lemma in three steps.

Step a: We first show that in the decision tree of o, the
total weight of bad leaves is O(€?). Thus the expected
profit of the policy restricted to the paths ending in
good leaves is P(o,m,C) — O(eOPT).

Step b: We then show that there is a randomized policy
which for items with size distributions = achieves the
expected profit P(o, 7, C) —O(eOPT) with € extra space
in the knapsack. This also implies the existence of a
deterministic policy in such setting, thus establishing
the part 1 of the lemma.

Step c: To prove the part 2 of the lemma, we
show that if we use the canonical policy ¢¢ for items
with size distributions 7, then with € extra space
in the knapsack, the expected profit of the policy is
P(o¢,#',C) — O(eOPT).

Proof of Step a: For a node v, let S be the random
set of items which is played by the policy after reaching
node v (including the item at node v). We define the
random variable R, as

R, = Z (Xi — pi(small)| X; < €°)
b, €S

We denote its variance by var(v).
and

var(v) = FE <Z

b, €S

Clearly, E[R,] =0

2
(X — pi(small)| X; < 65)>

Similarly, we define the variance of an item b; as

var(b;) = Ex,~n, [(Xz — pi(small)| X; < €5>2:|



Clearly, var(b;) < € u;(small). We will use w(v) to
indicate maximum total expected size of items on any
path starting at node v to a leaf. We will inductively
show that, for any node v in the decision tree, var(v) <
e®w(v). Since for any path in the decision tree, the
sum of expected size of items is bounded by O(1/e), the
variance of the root node is O(e*). We can then apply
Chebychev’s inequality to show that total weight of bad
leaves is O(€?).

Now we prove the inductive claim where the in-
duction is applied bottom up in the decision tree of
the policy ¢. The induction claim is trivially true for
the leaf nodes. Let v be a node in consideration. Let
the corresponding item be b,, si,S2,...,Sx be its pos-
sible small size realizations, the corresponding prob-
abilities be m,(s1),m,(s2),...,m(sx) and the roots of
the remainder of the policy for these realizations be
Vg, s Vsy, -, Vs, Tespectively. Let Iy, ls, ..., 1, be its possi-
ble large size realization, the corresponding probabilities
be 7, (l1), 7, (l2), ..., 7, (lkr), and the roots of the remain-
der of the policy for these realizations be v, v, , ..., 1,
respectively.

The variance of a random variable R, is,

)= X8 [t (o, 55—l

i,1<i<k

S E [w(zi) (Rwi)Q]

i,1<i<k’

The first term simplifies as follows.

S B [m(si) (Ry., +si— uu(small))z]

i,1<i<k
2
= Y Elmb) (R)’]
i,1<i<k
+ Z E [ﬂy(si)(si — pu(small))z]
i,1<i<k
+ Z 27, (8:) (s — po (small))E [Rvsi]
i,1<i<k
< Z m(si)var(vs,) | +var(b,) +0
i,1<i<k
Thus we get,
var(v) < my(si)var(vs;) | +

Using the fact that

Z m(si) + Z m (L) =1

i,1<i<k i1<i<k’

)

we get
var(v) <max{maz(; 1<i<p)(var(vs,)),

maz ;1 <i<pry (var(v,))} + €, (small)
The proof follows by applying the inductive assumption.

Proof of Step b: Consider a randomized policy o°
for items in 7¢ that is generated from o by following
random process. When an item realizes to a large size,
it follows the remainder of the policy as specified by
o. When an item realizes to a small size, it decides
the remainder of policy as follows. Let v be the
node and b, be the item corresponding to it. Let
81, 82, ..., S_are possible small size realizations of b, as
per size distribution 7 and let m,(s1), 7, (82)..., 7 (Sk)
be the corresponding probabilities. Hence at node
v, if b, realizes to a small size, we choose one of
the branches corresponding to sizes s, Sa,..., Sk W.p.
0 (81), T (82)..., ™ (8k) (normalized) respectively.

In this randomized policy, for any leaf in o, the
probability of reaching the leaf remains same as in o
if we discount the difference between sum of canonical
and true sizes of items. For any good leaf, the sum
of canonical and true sizes of items differ by at most
€. Since the weight of bad leaves is O(€?) and any
realization has profit O(OPT/e), the total profit lost
is O(eOPT).

Proof of Step c: Given an arbitrary canonical
policy ¢¢, consider any leaf v in its decision tree. Let
S = {b1,b2, ..., b 5} be the set of items realizing to small
size on the path from root to this leaf. Consider a
scenario when we use ¢¢ for items with distributions 7
and we reach leaf v during the execution of the policy.
Let X1, X3, ..., X|g| be the random variables indicating
the sizes to which items in S have realized. We get
the profit if > ¢ ) (Xs — pi(small)) < € as we are
relaxing the knapsack capacity by e. Notice that, since
we have arrived at leaf v, Vb; € S, X; < € E[X;] =
wi(small),var(X;) < €u;(small) (items in S have to
realize to small size to ensure that correct branch is
taken in decision tree to reach leaf v).

For any given leaf v, we define a random variable
X = > (p,es1(Xi — pi(small)). The variance of X is
€’ - (1/€) = €*. Note, the set S is fixed for a leaf, hence
the variance of X is the addition of variances of items
(conditioned on the event that they realize to small size)
in S . By Chebychev’s inequality, Pr(|X| > €) = O(€?).
The error probability for each leaf is O(e?). Hence profit
lost is O(e?) - O(OPT/¢) = O(eOPT). O



Proof of Lemma 3.1: The lemma follows as an
immediate corollary of Lemma A.5 by selecting o to
be the optimal adaptive policy for a knapsack capacity
C and size distributions 7. |

Now we discretize the expected sizes of items in
the small size region into the geometric group which is
powers of 1%“ with values below e¢/n made zero. Thus
by increasing the space in the knapsack by a factor of

O(e), the expected profit is unaffected. Total number of
log(1/€)+log(n) - 2log(n)
log(1+€) —= e

different sizes =



