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Abstract: Compression is a fundamental goal of both human language and digital communication,
yet natural language is very different from compression schemes employed by modern computers. We
partly explain this difference using the fact that information theory generally assumes a common prior
probability distribution shared by the encoder and decoder, whereas human communication has to be
robust to the fact that a speaker and listener may have different prior beliefs about what a speaker may
say. We model this information-theoretically using the following question: what type of compression
scheme would be effective when the encoder and decoder have (boundedly) different prior probability
distributions. The resulting compression scheme resembles natural language to a far greater extent than
existing digital communication protocols. We also use information theory to justify why ambiguity is
necessary for the purpose of compression.
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1 Introduction
It is well-known that information theory sheds

light on natural language in the following sense.
Common words, such as “as” and “and” tend
to be shorter than less frequent words such as
“biomimicry.” In this paper, we aim to strengthen
the connection between information theory and
the study of human communication. First, we
point out that information theory justifies ambigu-
ity, pervasive in natural language, by showing that
it is necessary for efficient compression. Second,
we design a compression scheme that bears a re-
semblance to natural language, to an extent well
beyond that of existing compression and error-
correcting schemes. Unlike standard compression
schemes, it is robust to variations in the prior prob-
ability distribution between sender and receiver.

∗Supported by NSF award CCF-0939370.
†Supported in part by NSF Awards CCF-0635084 and IIS-

0904314.

Natural language is ambiguous. One sentence
could mean a variety of things in different con-
texts. At first thought, it is not clear that ambiguity
serves any purpose, and communication may seem
best when everything has the precision of math-
ematics with (ideally) exactly one interpretation.
On such grounds, Wasow et al. (2005) call the ex-
istence of ambiguity in language surprising, and
moreover, note that the relative lack of work or in-
terest in the ambiguity of language by linguists is
also surprising. Cohen (2006) discusses the var-
ious theories proposed for why language is am-
biguous, but he concludes, “As far as I can see,
the reason for the ambiguity of language remains a
puzzle we simply don’t know why language is am-
biguous.” According to Chomsky (2008), ambi-
guity illustrates that natural language was “poorly
designed for communicative efficiency.”

speculates that the primary purpose of ambigu-
ity in language is not for succinct communication
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but for, “minimizing the complexity of rule sys-
tems.”

However, it is easy to justify ambiguity to any-
one who is familiar with information theory. Typ-
ical sentences, such as, Alice said that Bob lied
to Eve, are ambiguous but shorter than clearer al-
ternatives.1 In context, the intended meaning is
often clear, and hence shorter communication is
preferred. This is exactly what information the-
ory predicts – optimal compression is possible
when there is a known prior probability distribu-
tion, p, over what is to be communicated. The
common prior shared by a pair of communicat-
ing parties may be viewed as the shared context
between them. The following manner of commu-
nicating would be essentially optimal in terms of
minimizing expected communication length. For
any natural number, n, a speaker who had in mind
a certain thought would say n and mean the nth
most likely thought according to our shared prior
distribution.

Two problems with the above compression
scheme stand out. First, it is very brittle in the
sense that if the speaker and listener have even
slightly different priors, every transmission may
be completely erroneous. (This is true of Huff-
man coding as well.) Second, it clearly does not
resemble human communication of any form. We
show that these two problems are related by giving
a compression scheme which is (a) robust to differ-
ences in priors, and (b) resembles human language.

1.1 The scheme and similarity to human
disambiguation

We consider one-way (non-interactive) commu-
nication, in which there is a set of messages, rep-
resenting what the sender would like to commu-
nicate (an idea, the true intended meaning of the
communication). There is also a set of encod-
ings, which represent the actual communication.
For simplicity, we may think of the encoding as a
single written sentence, but it could equally be an
email, an elaborate hand gesture, or an utterance of
arbitrary length. Some encodings are longer than
others, and it is desirable to (a) ensure that the re-

1The sentence Alice said, “Bob lied to Eve” implies a di-
rect quotation and therefore has a different meaning than the
intended, Alice said something to someone, and that something
was that Bob lied to Eve.

ceivers recover the intended message, and (b) min-
imize the encoding length.

The sender has a prior probability distribution,
p over messages. This prior distribution is deter-
mined by the context in which the discussion takes
place, and to some extent the speaker’s knowledge
and all of her own experiences. The sender also
chooses a parameter α ≥ 1 reflecting how broad
an audience to whom her communication must be
clear. For example, if the sender is writing a pa-
per for people within her community, she would
choose a smaller α then if she were writing for an
interdisciplinary audience. The receiver has a po-
tentially different prior distribution, q. The com-
munication will be clear as long as q is within an α
factor of p, i.e., 1

αp(m) ≤ q(m) ≤ αp(m) for all
messages m.

Figure 1 depicts an underlying a bipartite graph
between messages and encodings. This graph can
be viewed as a dictionary: for each encoding it
specifies a set of possible messages (meanings). It
is assumed that this underlying graph (we postpone
describing how it is chosen) is commonly known
to both people and serves roughly the same pur-
pose as a language. The receiver’s decoding pro-
cedure is natural: given a received encoding, he
chooses the most likely compatible message ac-
cording to his distribution, i.e., the message most
likely under q which has an edge to the received
encoding. The sender, assuming that q is within
a factor of α of p, chooses a minimal-length en-
coding that will guarantee correct decoding for all
such q. This amounts to being the shortest en-
coding where the intended message has a signifi-
cantly higher (α2 factor) probability than any an-
other possible interpretation.

The bipartite graph (i.e., dictionary) is chosen
based upon some parameters. We give two instan-
tiations. The first is simpler but has infinitely many
parameters. The second is based upon universal
hash functions and has parameters that require a
number of bits which is logarithmic in the num-
ber of messages. This mirrors the Principles and
Parameters Theory of linguistics (see, e.g., Chom-
sky and Lansik, 1993), which states that a small
number of parameters characterize each language.
In natural language, it would be infeasible to print
a “sentence dictionary” of what every sentence or
document might mean in any context. However,
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Figure 1: In our compression schemes, there is a common-knowledge “dictionary,” a bipartite graph connecting
encodings to possible messages. The messages, on the left side, are the possible ideas that the sender may wish to
convey. The right side has each possible encoding, e.g., written sentences, longer units of text, or any other form of
communication across a medium. Each person has a private prior distribution over messages. The bipartite graph
has an edge between an encoding and each meaning that it might plausibly represent. In our scheme, the decoder
simply chooses the most likely message that is adjacent to the transmitted encoding, according to the receivers prior.
The sender chooses the shortest encoding which is guaranteed to be correctly decoded.

such a mapping is, to some extent, implicitly com-
putable in people’s mind. People would largely
agree that the sentence Alice said that Bob lied to
Eve could mean that Alice said that (Bob lied to
Eve) or that Alice told Eve that Bob lied. Of course,
there will never be perfect agreement on the com-
plete set of possibilities, just as different dictio-
naries do not agree on definitions or even the set
of legal words. In this example, some may argue
that, in the above, Alice might be indicating that
Bob was lying (on a bed, perhaps), and avoided the
grammatically correct version: Alice said that Bob
lay to Eve. While there will always be gray areas
and exceptions to most linguistic rules, to a first
approximation this dictionary model of language
is more faithful than either of the two extremes:
each sentence has exactly one interpretation (like
an ideal computer programming language), or any
sentence can mean anything in the right context (as
in compression schemes such as Huffman coding).

We feel that this procedure also resembles hu-
man language both in terms of listening and speak-
ing, or at least to a greater extent than existing
compression schemes. In terms of disambigua-
tion, it seems natural for a listener to take the most
likely plausible interpretation in the “dictionary,”
under his prior over what he expects the speaker to

mean. Conversely, it is the speaker’s duty to com-
municate in such a manner that any listener in her
audience will believe that the intended message is
the most likely interpretation of what is said. And
of course it is ambiguous – a certain encoding may
be decoded differently depending on the decoder’s
prior (context). Furthermore, these properties arise
naturally out of a mathematical goal of provable
efficiency in encoding length.

Finally, we also mention a technique whereby
one can reduce the dictionary size. This pruning
step only leads to a slight improvement in effi-
ciency. However it also resembles an effect that
occurs in language. It takes advantage of the fact
that a speaker would not normally use an unnec-
essarily complicated expression for a simple idea
that could be described in a shorter unambiguous
fashion. In mathematics, consider the two defini-
tions,

H(p)
.
=
∑
x

p(x) log 1/p(x)

f(x)
.
= log x/x

Here, mathematically sophisticated readers
will naturally interpret log 1/p(x) as meaning
log(1/p(x)) rather than log(1)/p(x) = 0. On the
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other hand, the log x/x will be log(x)/x rather
than log(x/x) = 0. In both cases, the listener is
performing higher-order reasoning. In particular,
the listener would have expected a simpler, unam-
biguous definition, like f(x)

.
= 0, if the intended

meaning were 0. While the savings in communica-
tion is modest, such short-cuts are regularly used
by mathematicians, who generally have a strong
desire to avoid ambiguity. For an English exam-
ple, consider the example of sentence, You may
step forward when your number is called. The im-
plication is that you may not step forward before
your number is called, for if that was not the in-
tention, the sentence You may step forward at any
time could have been used.

Such instances where listeners use higher-order
reasoning to determine a meaning of an utterance
beyond what the utterance literally suggests were
first studied by Grice (1975), who called this pro-
cess “conversational implicature.” In Grice’s the-
ory, he put forward the cooperative principle that
supposed that speakers adhered to a list of max-
ims – including, “Make your contribution as in-
formative as required” and “Be brief (avoid un-
neccessary prolixity),” among many others – and
he argued that listeners will logically infer the
speaker’s true meaning by taking the speaker’s
adherence to these maxims as axioms. Grice’s
maxims were subsequently reformulated into a
few more coherent principles by numerous authors
(Levinson (2000) gives a nice summary). Our
model suggests a simpler alternative account of
many instances of conversational implicature: the
speaker simply says as little as possible to over-
come the disagreement with the listener’s prior,
trusting the listener to reason that any other (un-
intended) likely meanings would have had shorter
expressions, e.g., as done by our second decoding
scheme.

Other authors have noticed that conversa-
tional implicature might arise from the desire to
communicate more efficiently—Sperber and Wil-
son (1995) in particular dwell on this point; con-
versely, many authors also noticed that conversa-
tional implicatures might be closely related to am-
biguity, specifically that they might exist for sim-
ilar reasons and employ similar mechanisms. In-
deed, for all the bitter disagreements that appear
to exist between Sperber and Wilson and Levin-

son (2000), they strongly agree on these points.
The difference in our work is that while on the
one hand we make no promises about being able to
account for vast ranges of phenomena like Levin-
son or Sperber and Wilson do, on the other hand
we show that effects like conversational implica-
ture can arise from surprisingly minimial and un-
controversial considerations. Indeed, our model
is consistent with the premises laid out by Sper-
ber and Wilson prior to the point where they be-
gin speculating about cognitive architectures, and
is arguably “more obvious” (in hindsight) than the
model they end up with.2

1.2 Interpretation and applications
Designing and recognizing the similarity be-

tween nature and engineering informs our under-
standing of both. Consider, for example, the strik-
ing similarity between the camera and human eye.
These similarities suggest that certain aspects of
the eye are not artifacts of poor evolution, but in-
stead may serve a purpose. In the same way as
connections between photography and human vi-
sion deepen our understanding, we hope that ro-
bust compression schemes may help connect in-
formation theory and the study of human commu-
nication.

Second, there may be situations where two com-
puter systems need to communicate in a com-
pressed fashion, but they do not share exactly the
same prior. Consider, for example, a computer
compressing a document to be sent to a printers.
Now, a fixed compression scheme could be agreed
upon in advance. However, for compatibility rea-
sons, this compression scheme would remain fixed
for many years, and it may become poorly suited
for a certain category of documents that emerge
years later. For example, if many people started
printing many documents with the same fixed logo
on it, the computers and printers may adapt.

The idea here is that computers and printers
could learn and periodically update their priors

2

Although the model presented by Sperber and Wilson (1995)
is rather informal, the formalizations based on information the-
ory presented by, e.g., Blutner (1998), and formalizations based
on game theory presented by, e.g., Parikh (1992), Merin (1997),
and van Rooy (2001) naturally end up being on the one hand
more intricate, but again, on the other hand are intended to deal
with a wider range of effects, and therefore generally incompa-
rable.
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based on the documents they transmit, so that they
may continue to compress well under changing en-
vironment. The following modification here may
be useful. Suppose there is a simple way to verify
if the correct document was reconstructed, which
may be achieved by a checksum or more elabo-
rate mechanism. Then notice that the parameter
α can be tuned adaptively: communication with
a smaller α may be attempted first, and if that
fails, a retry with a larger α may be used, and
so forth. Such a system would be adaptive in the
sense that, years down the road, any computer and
printer employing this protocol could communi-
cate succinctly, even if they had never previously
encountered each other, with a logarithmic over-
head in terms of how different the documents they
had seen were. This type of copying nature for en-
gineering purposes has been recently popularized
under the term biomimicry.

1.3 Related work
In recent independent work, Piantadosi et al

(2010) justify ambiguity in natural language as we
do by an information-theoretic argument, but do
not enter into the realm of different priors. A simi-
lar technical question about compressing with dif-
ferent priors, arises in recent independent work by
Braverman and Rao (2010). The focus of their
work is attaining optimal bounds for reducing in-
teractive communication complexity, rather than
modeling human communication. A related no-
tion, the quantity relative entropy, answers the fol-
lowing question. When two parties communicate
using a protocol designed for common prior q, how
long will messages be when the encoder actually
chooses them from p? In this case, the encoder
must know q exactly, which is unrealistic in many
settings.

Universal compression schemes, such as the
Lempel-Ziv (1978) scheme, compress without
knowledge or dependence on a prior, so it is uni-
versal for all sources. Asymptotically optimal
compression is guaranteed for ergodic sources,
e.g., those generated by small state Markov chain.
However, any such prior-free encoding will fail to
take advantage of the rich shared knowledge base
that enables two parties to communicate a signifi-
cant amount of information in a short document or
even a single sentence. In short, existing compres-
sion schemes, including Huffman, Lempel-Ziv, or

algebraic codes that we have not described, are
clearly poorly suited for human communication.

Other prior work has also explored communica-
tion in the setting where the sender and receiver
are somehow different. For instance, Juba and Su-
dan (2008) and Goldreich, Juba and Sudan (2009)
considered how interacting pairs may achieve cer-
tain goals that can be achieved only by communi-
cation. Our work, while inspired by such work, is
different in several aspects: It focusses on a dif-
ferent objective, namely to reduce the number of
bits used to communicate the message. Also, we
focus on the non-interactive setting, and the quan-
titative bit-efficiency of our protocol is central to
our quest. Finally, our goal is to capture phenom-
ena that may explain some of the apparent artifacts
of natural language.

2 Formal model
There is a set of expressions which we denote by

X , and a set of meanings which we denote by M .
We assume that M is finite or countably infinite
and, for clarity, we take X = {0, 1}∗.3 A context
provides a probability distribution over meanings,
and ∆(M) denotes the set of probability distribu-
tions over M .

We assume that the encoding scheme and de-
coding scheme may share a common parameter
θ ∈ Θ, chosen from some probability distribution
µ. In our schemes, this parameter corresponds to
the aforementioned bipartite graph. An encoder
is a function, E : M × ∆(M) × Θ → X , writ-
ten Eθ(m, p), from meanings to expressions. Sim-
ilarly, a decoder D : X × ∆(M) × Θ → M ,
written Dθ(m, p), is a function from expressions
and contexts to meanings. Note that the parame-
ter θ is chosen without regard to p or q. When θ
is clear from context, we will write E(m, p) and
D(x, q). A randomized compression scheme is a
sextuple (X,M,Θ, E ,D, µ), where µ is a proba-
bility distribution over Θ. Two probability distri-
butions, p, q ∈ ∆(M) are called α-close, for am-
biguity parameter α ≥ 1, if p(m) ≤ αq(m) and
q(m) ≤ αp(m) for all m ∈M .

Definition 1. A randomized compression scheme
is called α-robust if for any α-close pair, (p, q) and

3While we recognize that set of all finite binary strings is
clearly different than the richly-structured sets used in real lan-
guage, our choice of X will suffice to make our main points.
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any m ∈ M , Prθ∼µ[Dθ(Eθ(m, p), q) = m] = 1.
The entropy of the scheme (on p) is defined to be
Eθ∼µ,m∼p[|Eθ(m, p)|].

Note that it typically suffices to describe a de-
coding procedureD(x, q) since the optimal match-
ing compression function E(m, p) simply selects
the shortest string x such that D(x, q) = m for all
q that are α-close to p. (Recall that the encoder is
assumed to know α in advance.)

3 Our compression scheme
In this compression scheme, we assume that the

encoder and decoder share a common infinite pa-
rameter sequence 〈r(i)m 〉∞i=1, where r(i)m ∈ {0, 1}i
for each m ∈ M , chosen uniformly at random
and independently. In other words, for each mes-
sage and each length i = 1, 2, . . ., an indepen-
dent random binary string of length i is chosen and
shared between the encoder and decoder.4 This de-
termines a bipartite graph between messages and
{0, 1}∗ by connecting each message m to r(i)m , for
each i. As mentioned, this is similar to a dictio-
nary. In section 6, we give a more practical scheme
that requires a number of random bits that is loga-
rithmic in the number of messages.

On encoding x of length i = |x|, the decoder
chooses the most likely messagem (that of greatest
q(m)) among those messages such that r(i)m = x.
Formally, the scheme is as follows.

Compression scheme. The encoding algorithm
and decoding algorithm share randomness, namely
infinite sequences of random strings θ = 〈r(i)m 〉∞i=1.
To encode m ∈M :
• Send r(i)m where i is the smallest natural num-

ber such that: p(m) > α2p(m′) for all mes-
sages m′ where r(i)m = r

(i)
m′ .5

To decode x ∈ {0, 1}∗:
• Let i = |x| and S = {m ∈ M | r(i)m = x}.

Output arg maxm∈S q(m).6

4For simplicity, the algorithms are described using infinitely
many random bits. More practical versions are possible.

5In the (zero probability) event where there is no such num-
ber, send 0.

6To formally define D, we must define how the decoding
scheme behaves if there is not a unique maximum (or S = ∅).
In this case, we could designate a fixed message m0 and output
that message.

Observation 1. For any α > 1, and uniformly
random r

(i)
m ∈ {0, 1}i, the compression scheme is

α-robust. For any p ∈ ∆(M), its entropy is at
most H(p) + 2 lg(α) + 2.

In the above, H(p) is the standard en-
tropy of probability distribution p, defined by∑
m p(m) lg 1/p(m).

Proof. The correctness of decoding follows from
the fact that for any α-close p and q, if p(m) >
α2p(m′) then q(m) ≥ p(m)/α > αp(m′) ≥
q(m′). With probability 1, there will be such an
i that p(m) > α2p(m′) for all messages m′ where
r
(i)
m = r

(i)
m′ . So with probability 1, the message that

was encoded is necessarily the most likely m ∈ S
for decoding.

It suffices to show that the expected encoding
length of a message m is at most lg(α2/p(m)) +
2. To see this, note that there are less than
α2/p(m) messages, different from m, with prob-
ability at least p(m)/α2. Call this set T and
let s = |T | < α2/p(m). Consider the prob-
ability that any other message m′ ∈ T collides
with m on the i-bit encoding (r(i)m = r

(i)
m′ ). For

i = dlg(s)e + k, by the union bound, this prob-
ability is at most s2−(lg(s)+k) ≤ 2−k. Using the
fact that for any nonnegative integer random vari-
able V , E[V ] =

∑∞
i=1 Pr[V ≥ i], we have that

the expected number of bits in common is at most
dlg(s)e+

∑∞
k=0 2−k ≤ lg(s) + 2.

It is not difficult to show that no α-robust
scheme can achieve entropy better than H(p) +
lg(α) for all p. On the other hand, we show be-
low that there exist distributions for which the en-
tropy bound achieved by our scheme isH(p)+(2−
o(1)) lg(α) (i.e. our analysis is essentially tight).

Claim 1. For any ε ∈ (0, 1), there exists a dis-
tribution p and an α = α(ε) such that the en-
tropy of the above compression scheme is at least
H(p) + (2− ε) lgα.

Proof. Fix k = d3/εe, and α = 2k
2

. Now con-
sider a distribution p defined as follows: for each
i ∈ {1, 2, . . . , k}, the distribution p contains α2i

messages that each have probability 1/kα2i. Then
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H(p) =
1

k

(
k∑
i=1

lg(kα2i)

)
= (k+ 1) lgα+ lg k.

On the other hand, the entropy of the compres-
sion scheme is bounded from below by,

1

k

(
k−1∑
i=1

lg(α2i+2) + lg(α2k)

)
=

(k + 1) lgα+2 lgα− 2 lgα

k
.

Since (2 lgα)/k + lg k ≤ ε lgα for our choice
k and α, the claim follows.

An interesting question is if there is a compres-
sion scheme that matches theH(p)+lg(α) bound.

4 The need for ambiguity
In this section, we show that any unambiguous

compression scheme requires many bits to com-
municate. This holds even for nonrobust commu-
nication, i.e., for α=1. Formally, say an encoder
is unambiguous if for all θ ∈ Θ, m,m′ ∈ M ,
and p, p′ ∈ ∆(M), if Eθ(m, p) = Eθ(m′, p′) then
m = m′. Define the dirac probability distribution
δm by δm(m) = 1 and δm(m′) = 0 for m′ 6= m.

Observation 2. For any unambiguous encoder on
finite message set M , there is a message m such
that δm has expected entropy of lg

(
|M |

)
− 1.

Hence, the trivial encoding scheme of encod-
ing each message by a unique length-lgM bi-
nary string, independent of p, is essentially opti-
mal even for probability distributions δm, where
H(δm) = 0.

Proof. Note that for any θ, the function f(m) =
Eθ(m, δm) is injective. Hence, by a stan-
dard counting argument, for any fixed θ,
Em∈UM [ |Eθ(m, δm)| ] ≥ lg

(
|M |

)
− 1, where

the expectation of is taken over uniformly random
m ∈M . Thus

Em∈UM,θ∼µ[ |Eθ(m, δm)| ] ≥ lg
(
|M |

)
− 1.

Hence, there exists some message m such that
Eθ∼µ[ |Eθ(m, δm)| ] ≥ lg

(
|M |

)
−1, as is claimed.

5 Higher-order disambiguation and
pruning the dictionary

If a message m has a unique encoding of length
i, then it seems unnecessary to disambiguate be-
tween m and other messages on encodings of
length greater than i. This idea can be used to de-
crease the number of edges in the bipartite graph
as well as average number of bits communicated.
Given parameter vector θ = 〈r(i)m 〉∞i=1, where
r
(i)
m ∈ {0, 1}i for each m ∈M , we choose the fol-

lowing pruned vector θ̂ = 〈r̂(i)m 〉∞i=1, constructed
as follows. Define M1 = M and,

Mi+1 = {m ∈Mi | ∃m′ ∈Mi s.t. m′ 6= m

and r(i)m = r
(i)
m′}.

Mi are the set of messages that do not have a
completely unambiguous encoding of length less
than i. Finally, for each m and i, set,

r̂(i)m =

{
r
(i)
m if m ∈Mi

−1 otherwise.

In other words, a message which has a unam-
biguous encoding of length i will be not have any
encodings of greater length.

Observation 3. For any α > 1, our compression
scheme using r̂ instead of r is α-robust and has
entropy no greater than the entropy when using r.
There are probability distributions p for which it
has strictly lower entropy.

As can be seen from the proof below,
“most” nontrivial probability distributions will
have strictly lower entropy in the higher order
scheme.

Proof. The proof of α-robustness is exactly the
same as in the first case. Clearly, the encoding of
any message cannot be longer than that of the sec-
ond compression scheme, if the two share the same
random strings. Finally, take three messages M =
{a, b, c} and p(a) = p(b) = p(c) = 1/3. With
positive probability, r(1)a = 0, r(1)b = r

(1)
c = 1,

r
(2)
a = r

(2)
b = 00, and r(2)c = 01. In this case,

the compression scheme encodes b by a string
of length greater than 2 while the higher-order
scheme encode b by 00.
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6 Using fewer random bits
As stated, our compression scheme requires in-

finite randomness, for finite message spaces, M .
We now give a variation with O(log(|M |)) ran-
dom bits, using Universal Hash Functions (Carter,
and Wegman, 1979). Again, we do not change
the compression scheme but simply the dictionary,
i.e., we apply the compression scheme described
earlier with a different 〈r(i)m 〉.

We assume w.l.o.g. that each message corre-
sponds to an `-bit string where ` = dlog(M + 1)e,
that is, m ∈ {0, 1}`. Let π be any prime in the
interval [2`, 2`+1) (it exists by Bertrand’s postu-
late). The language will have a pair a, b of ran-
dom parameters where a ∈ {1, 2, . . . , π − 1}, and
b ∈ {0, 1, 2, . . . , π − 1}. We view each message
m as an integer in {0, 1, . . . , 2` − 1}, and define,

r(i)m =


(
(am+ b)(mod π)

)
(mod 2i) if i ≤ `

m if i = `+ 1

−1 if i > `+ 1

Observation 4. Let a ∈ {1, 2, . . . , π − 1} and
b ∈ {0, 1, 2, . . . , π − 1} be chosen uniformly at
random. Then the compression scheme with r as
defined above is α-robust and, for any p ∈ ∆(M),
has expected entropy H(p) + 2 lgα+ 2.

Proof. By construction, every message has a dif-
ferent r

(`+1)
m , hence no message will require

more than ` + 1 bits to encode and the proto-
col is α-robust. It suffices to show that the ex-
pected encoding length of a message m is at most
lg(α2/p(m)) + 2.

To see this, again note that there are less than
α2/p(m) messages, different from m, that have
probability at least p(m)/α2. Call this set T and
let s = |T | < α2/p(m). Notice that a fixed
m′ ∈ T collides with m on the i-bit encoding,
when r

(i)
m = r

(i)
m′ which happens iff (am + b)

(mod π) and (am′+b) (mod π) agree on the last
i bits. So the collisions are correlated, and in par-
ticular any two messages will collide on r(i)m for
i = 1, 2, . . . , up to the number of trailing bits
that they agree on. A simple and standard ar-
gument shows that for any pair of distinct mes-
sages m,m′, as a ranges over {1, 2, . . . , π − 1}
and b ranges over {0, 1, 2, . . . , π − 1}, we have (i)

(am+b) (mod π) 6= (am′+b) (mod π), and (ii)
((am+ b) (mod π), (am′ + b) (mod π)) range
over all possible π(π − 1) pairs of values. Thus
over random choice of a, b, for any i ≤ ` + 1, we
have that Pr[r

(i)
m = r

(i)
m′ ] ≤ 2−i. Hence for i =

dlg(s)e + k, by the union bound, the probability
that any message in T agrees with m on i bits is at
most s

(
2−(lg(s)+k)

)
≤ 2−k. As before, using the

fact that for any nonnegative integer random vari-
able V ∈ {1, 2, . . . , `+1}, E[V ] =

∑`+1
i=1 Pr[V ≥

i], we have that the expected encoding length is at
most dlg(s)e+

∑`
k=0

(
2−k

)
≤ lg(s) + 2.

Thus O(log |M |) random bits suffice.

7 Conclusions
We have shown that ambiguity is necessary

for compression, and that a natural variation on
Shannon-type of communication leads to robust
compression schemes that are more similar to how
humans communicate. The case of α = 1 cor-
responds to classical compression with a com-
mon prior. In this case, for Shannon’s funda-
mental question of how many bits are required
to compress a message from a single distribution,
the beautiful answer is Huffman coding (Huffman,
1952). However Huffman coding is not robust to
different priors. It is not even clear what metric
should be used to judge optimality with respect to
robust compression.

Second, our model is unrealistic in many ways.
For example, the encoder must choose a single α
and is required to be precise to all α-close priors.
In some cases, an encoder may consider some mis-
interpretations to be more “costly” than others, i.e.,
there may be a cost function c : M ×M → R+

(c(m,m′) is the cost of interpreting message m to
be m′, and c(m,m) = 0), and an encoder choos-
ing amongst ambiguities may wish to avoid cer-
tain mistakes. For example, the sentence, he is a
tireless student and brilliant researcher, could po-
tentially mean he is a tireless student, and he is
a great researcher or he is a tireless student, and
he is a tireless great researcher, but a confusion
would not be serious. On the other hand, the sen-
tence, you would be lucky to get him to work for
you is ambiguous and the difference in meaning is
very important.
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Finally, we have not considered computational
efficiency. Day to day, it does not seem that com-
putational limitations are the cause of most fail-
ures to communicate. However, there are some
sentences that are notoriously difficult to parse,
called garden path sentences, such as the clas-
sic sentence, The horse raced past the barn fell.
Similarly, riddles are computationally challeng-
ing to solve. It would be very interesting to de-
sign computationally-efficient robust compression
schemes.
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