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Abstract— Scientific workflow management systems are in-
creasingly providing the ability to manage and query the prove-
nance of data products. However, the problem of differencing the
provenance of two data products produced by executions of the
same specification has not been adequately addressed. Although
this problem is NP-hard for general workflow specifications, an
analysis of real scientific (and business) workflows shows that
their specifications can be captured as series-parallel graphs
overlaid with well-nested forking and looping. For this natural
restriction, we present efficient, polynomial-time algorithms for
differencing executions of the same specification and thereby
understanding the difference in the provenance of their data
products. We then describe a prototype called PDiffView built
around our differencing algorithm. Experimental results demon-
strate the scalability of our approach using collected, real
workflows and increasingly complex runs.

I. INTRODUCTION

Answering scientific questions frequently involves conduct-
ing a complex set of analysis or “in-silico” experiments. Such
experiments are typically defined as workflows and executed
repeatedly. Each execution may vary the parameters and data
inputs to the tools used as modules in the workflow; fur-
thermore, alternative paths of the workflow may be followed.
In this process, the scientist’s goal is to identify executions
which lead to “good” biological results. Comparing workflow
runs and understanding the difference between them is thus of
paramount importance to scientists.

To manage these complex experiments as well as the large
number of intermediate and final data products they produce,
a number of workflow systems have been developed for scien-
tific applications which provide support to track provenance
of derived data products. To understand the similarities and
differences of these systems with respect to provenance, a
Provenance Challenge Workshop was held [1]. One of the
challenge queries was the differencing problem for a dataflow,
the execution model commonly supported in scientific work-
flow systems. While most of the participating systems gave
reasonable answers for this simple model, the techniques used
do not extend to more complex execution models, i.e., those
that support forked executions over an unknown number of
elements of an input set (implicit iteration), looping until some
condition is met (explicit iteration), and parallel executions.

As an example of a complex workflow, consider a classi-
cal scientific analysis involving protein annotation shown in
Fig. 1(a). The aim of this analysis is to infer the biological
function of a new sequence from other sequences. While the
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Fig. 1. Protein annotation workflow specification and runs

details of the scientific analysis are not important, the structure
of the workflow is, and is shown using a modified dataflow
notation annotated with control flow information for forks and
loops. A loop is indicated by a dotted backarrow, e.g., from
module 6 (collectTop1&Compare) to module 2 (FastaFormat),
and forking is indicated by a dotted oblong, e.g., the oblong
around module 3 (BlastSwP) indicates that similar proteins
can be searched for simultaneously. Multiple outgoing edges
from a node indicate (non-exclusive) choice. Note that this
workflow could also be expressed using BPEL [2], a standard
which is becoming increasingly popular within bioinformatics.
However, to simplify the presentation we will use a simpler
notation that is also closer to what is used in most scientific
workflow systems.

In a run, loops are unrolled and the number of fork execu-
tions is given explicitly. For example, two runs of the protein
annotation workflow specification are shown in Fig. 1(b) and
(c). Observe that Run (b) has two fork executions between
modules 6 and 15, while Run (c) has two executions of the
loop from module 6 to module 2.

In a dataflow execution, module names do not repeat and
there is an immediate pairing between nodes in the two exe-
cutions. Therefore, the naive approach of taking the difference
of the nodes and edges in the two runs to calculate their
difference works well. However, for the runs in Fig. 1 this
approach does not work since node names repeat and hence
there are many possible ways of pairing nodes. To determine
the best pairing of nodes, a global computation must be
performed to match copies that are most similar overall in
terms of the control structure and dataflow.
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The difference or edit distance between a pair of valid
runs of the same specification is defined as a minimum cost
sequence of edit operations that transforms one run to the
other. While many edit operations could be considered (e.g.,
insert or delete a node, and insert or delete an edge), it is
important that they transform a valid run to another valid
run, are atomic, and are complete. While inserting or deleting
a node or an edge are atomic operations that can be used to
transform between any two valid runs, they do not guarantee
the validity of intermediate results. We therefore use as edit
operations the insertion or deletion of elementary paths.

This notion of edit distance has a simple appealing inter-
pretation: It is the shortest path connecting the given pair of
runs in the space of all valid runs, where two valid runs are
adjacent iff they differ by a single elementary path.

While the differencing problem is NP-hard for general
graphs [3], the structure of most workflows can be captured
as a series-parallel graph (SP-graph) overlaid with well-nested
forks and loops. Such graphs capture the structure of most
scientific workflows we have encountered in practice (e.g., that
in Fig. 1) as well as well-structured business process and other
workflows [4]. For this natural restriction, we present efficient,
polynomial-time algorithms for differencing workflow runs
of the same specification. The algorithms are based on a
well-known tree representation of SP-graphs in which internal
nodes are annotated with series (in which case the children are
ordered) or parallel (in which case the children are unordered).
We then add annotations to represent loop (ordered) and fork
(unordered) executions (annotated SP-trees).

In addition to capturing well-structured workflows, SP-
graphs are in some sense the most complex graphs that allow
efficient differencing algorithms: The simplest graph that is
not an SP-graph has four nodes, and the differencing problem
already becomes NP-hard on this graph [3].

An equally important difference in the provenance of two
data products are parameter settings and input data sets.
Two executions could have exactly the same control flow
but produce very different results due to the data used. Data
affects the differencing problem in two ways: It is a factor in
the matching between nodes in the executions; and once the
matching is done the data differences can be highlighted as
annotations on nodes (for parameter settings) and edges (for
data flowing between modules). For simplicity of presentation,
however, we will focus solely on control flow in this paper.

A. Contributions and Overview
Our contributions are four-fold: First, we present a model of

workflows that is sufficiently general to capture workflows that
we have encountered in practice and collected from articles
and sample workflows on the web (Section III). Second, for
this model of workflows we present efficient, polynomial-
time algorithms for differencing workflow executions, first
considering forks (Sections IV and V), and then extending the
techniques for loops (Section VI). Our algorithms work under
fairly general cost models, allowing us to capture a variety of
application-specific notions of distance. Third, we describe a

prototype called Provenance Difference Viewer (PDiffView)
built around our differencing algorithm (Section VII). Fourth,
we provide experimental results showing the scalability of our
approach and the effect of the cost model (Section VIII).

II. RELATED WORK

The tree edit distance problem has been extensively studied.
[5] first formulated this problem for ordered trees as a gener-
alization of the string edit distance problem [6]. Their model
considers basic edit operations over individual nodes, such as
deleting a node in a tree and making the children of this node
become the children of its parent. [7] develops a dynamic
programming algorithm that solves this problem efficiently.
Other edit operations have also been proposed. For instance,
[8] and [9] restrict insert and delete operations to leaves, and
[10], [11] introduce more complex operations such as subtree
move, subtree copy and subtree glue, which are meaningful
to describe changes made in structured data. The edit distance
problem for unordered trees is shown to be NP-hard [12].
However, by constraining the possible mappings between the
two trees so that disjoint subtrees are mapped to disjoint
subtrees, a polynomial-time algorithm can be given [13].

These techniques do not apply to our workflow difference
problem, since we consider series-parallel graphs rather than
trees, and use elementary paths in the edit operations. Observe
that although our differencing algorithm relies on a tree repre-
sentation of series-parallel graphs, and the corresponding tree
edit distance problem is similar to [13], the transformed tree
edit operations are different as is the differencing algorithm.

Other related work includes process mining [14], [15],
which develops a notion of quantified process equivalence.
Work on recording the edit history between workflow versions
has also been studied [16] and extended to runs of different
specifications [17]. These works compare different models
(specifications), whereas we compare different executions of
the same model.

III. MODEL AND PROBLEM STATEMENTS

In this section, we introduce the general workflow model,
and formulate the workflow difference problem. We then
develop in some detail a natural restriction of the general
problem, called the SP-workflow difference problem, that is
studied in detail in the remainder of this paper.

A. Definitions and Notation

Given a node-labeled directed graph G, we let V (G) denote
the set of all nodes in G and E(G) denote the set of all edges
in G. For any node v in V (G), let Label(v) denote the label
on v. In addition, let s(G) and t(G) denote the unique source
node and unique sink node in G.

Definition 3.1: A flow network is a directed graph G in
which there exist a single source node s(G) ∈ V (G) and a
single sink source node t(G) ∈ V (G), and every node v ∈
V (G) lies on some path from s(G) to t(G).
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A sub-class of flow networks that naturally arises when
modeling program control and dataflow are series-parallel
graphs.

Definition 3.2: A series-parallel graph (also called SP-
graph) is a directed multigraph G with a single source s and
a single sink t (two terminals) that can be produced by a
sequence of the following operations:

• Basic SP-graph: Create a new graph consisting of a
single edge directed from node s to node t.

• Series Composition: Given two SP-graphs G1 and G2

with sources s1, s2 and sinks t1, t2 respectively, form
a new graph G = S(G1, G2) by identifying s = s1,
t1 = s2 and t = t2.

• Parallel Composition: Given two SP-graphs G1 and G2

with sources s1, s2 and sinks t1, t2 respectively, form a
new graph G = P (G1, G2) by identifying s = s1 = s2

and t = t1 = t2.
In this definition, S and P are two functions that take a

pair of SP-graphs as input and produce their series or parallel
composition as output. A straightforward induction on the
number of operations used to produce the SP-graph shows
that every SP-graph is an acyclic flow network.

The inductive definition of SP-graphs given above naturally
lends itself to two special classes of subgraphs of SP-graphs.

Definition 3.3: Given an SP-graph G, a subgraph H of
G is said to be a series (parallel) subgraph if H is the
series (parallel) composition of two SP-graphs and G can
be constructed from H by applying a sequence of series or
parallel compositions with other SP-graphs. In addition, we
say any single edge (basic SP-graph) of G is a series subgraph.
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Fig. 2. SP-workflow specification and runs

Example 3.1: We will use the simplified SP-workflow ex-
ample shown in Fig. 2 in the remainder of this paper. All
four graphs shown are SP-graphs, ignoring the dotted line and
oblongs in (a). The number inside the circle indicates the label
on the node. We use a superscript on labels to obtain a unique
identifier for each node in a run.

B. General Workflow Model
A workflow model has two components: a specification that

serves as a template for executions, and the set of valid runs for
the given specification. Informally, a workflow specification
consists of a set of different modules and defines the order in

which they can be executed. A workflow run is a partial order
of steps where each step is an instance of a module defined
in the underlying specification, and the partial order conforms
to the ordering constraints in the given specification.

Formally, a workflow specification is given by a flow
network G with unique labels on the nodes. Given a workflow
specification G, a flow network R with labels on the nodes (not
necessarily unique) is said to be a valid run with respect to G
if R is acyclic, and there exists a homomorphism h : V (R) →
V (G) such that 1) ∀v ∈ V (R), Label(v) = Label(h(v)); 2)
h(s(R)) = s(G), h(t(R)) = t(G); and 3) ∀(u, v) ∈ E(R),
(h(u), h(v)) ∈ E(G).

Notice that even if the specification G has cycles, a valid
run R is always acyclic, since we unfold the cycles in the
specification to capture the sequential order of all iterations in
a workflow run. Consequently, the node labels in a run R are
not necessarily unique.

C. The Workflow Difference Problem

The goal of the workflow difference problem is to find
the edit distance and a path edit script between two valid
runs of the same specification. We begin by defining two edit
operations, and then propose a cost model for them. Our notion
of edit distance has a simple appealing interpretation: It is the
shortest path connecting the given pair of valid runs in the
space of all valid runs, where two valid runs are adjacent iff
one can be transformed into another by a single edit operation
and the length of each edge is given by the cost model.

1) Edit Operations and Edit Script: In the following, we
assume that R1 and R2 are valid runs with respect to the same
specification G, and use the notion of an elementary path:

Definition 3.4: Given a valid run R with respect to a
specification G, a path p is said to be an elementary path
in R iff 1) each internal node on p has exactly one incoming
edge and one outgoing edge; and 2) s(p) has at least two
outgoing edges and t(p) has at least two incoming edges.

An edit operation ω applied to a valid run R1 to produce
another valid run R2 with respect to a specification G is
written as R1

ω−→
G

R2. We consider the following two path
edit operations:

• Path Insertion: A path insertion operation creates a new
(elementary) path p between two existing nodes and is
denoted by Λ → p. The restriction we impose on p is
that it is an elementary path in R2.

• Path Deletion: This operation is the inverse of the path
insertion operation. A path deletion operation is denoted
by p → Λ, where p is an elementary path to be deleted
from a given run.

We define an edit script to be a sequence of zero or more
edit operations. Formally, a sequence of path edit operations
E = ω1,ω2, . . . ,ωk is said to be an edit script from R1 to
R2, written as R1

E−→
G

R2, if there exists a sequence of valid
runs with respect to G, say S0, S1, . . . , Sk, such that S0 =
R1, Sk = R2 and Si−1

ωi−→
G

Si for 1 ≤ i ≤ k.
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Fig. 3. A path edit script from R1 to R2

Example 3.2: A path edit script from R1 to R2 (see Fig. 2)
is shown in Fig. 3. Note that each intermediate graph is a valid
run with respect to the specification G (see Fig. 2).

There are several principles that motivate our choice of
edit operations. Firstly, they preserve the validity of the run.
Other edit operations, such as inserting or deleting a node,
may violate the validity of the run, and hence make the
notion of distance meaningless with respect to the underly-
ing specification. Secondly, they are atomic. More complex
operations can be decomposed to a sequence of elementary
path edit operations. For example, one could define a path
replacement operation that replaces one path by another or a
subgraph insertion operation that creates an SP-graph between
two nodes in one step. Such operations may be detected by
post-processing the output of our algorithm. Finally, they are
complete. Every pair of valid runs can be transformed from
one to another by this set of operations. These two elementary
path edit operations are therefore a natural choice.

2) Cost Model and Edit Distance: Given two valid runs,
there may be many edit scripts that transform one to another.
Among them, we are interested in finding one with the
minimum cost. To this end, we introduce a cost model for
edit operations and edit scripts.

There is a tradeoff between the generality of the cost model
and the difficulty in computing a minimum-cost edit script.
For example, a simple unit cost model would assign each edit
operation a cost of one, and the cost of an edit script would be
the number of its operations. On the other hand, a very general
cost model would have a user-defined function to determine
the cost of each edit operation, based on the type of the edit
operation, as well as the particular path on which it operates.
However, since the number of paths in an SP-graph can be
exponentially large, we need a cost function with a compact
representation that is still general.

The model we will therefore use is that the cost of each edit
operation is given by a function γ that is determined by both
the length of the elementary path to be edited, and the labels
on its two terminals. That is, for all elementary paths p,

γ(Λ → p) = γ(|p|, Label(s(p)), Label(t(p))) (1)

In addition, we constrain γ to be a distance metric with respect
to elementary path insertions and deletions, which satisfies the
following conditions:

1) non-negativity: γ(Λ → p) ≥ 0;
2) identity: γ(Λ → p) = 0 iff |p| = 0 and s(p) = t(p);
3) symmetry: γ(Λ → p) = γ(p → Λ); and
4) quadrangle inequality: for all elementary paths p1, p2,

p′2, p3 such that p1 ◦ p2 ◦ p3 and p1 ◦ p′2 ◦ p3 are well-
defined, γ(Λ → p1 ◦ p2 ◦ p3) ≤ γ(Λ → p1 ◦ p′2 ◦ p3) +
γ(Λ → p2) + γ(p′2 → Λ).

The quadrangle inequality essentially says that the cost of
inserting an elementary path p directly is never more than the
cost of inserting another elementary path p′, and then replacing
a part of p′ to make it identical to p.

Our cost model is general enough to capture a wide spec-
trum of cost functions. For example, any sublinear function
γ(l, A, B) = lε where ε ≤ 1 is eligible. When ε = 0, this is
exactly the unit cost function mentioned above.

Finally, the cost of an edit script is the sum of the costs of
its individual operations. To express this, we extend the cost
function γ to an edit script E by letting γ(E) =

∑
ω∈E γ(ω).

Definition 3.5: Given a cost function γ, the edit distance
between R1 and R2, denoted by δ(R1, R2), is defined as the
minimum cost of an edit script from R1 to R2. Formally,
δ(R1, R2) = min{γ(E) | R1

E−→
G

R2}.
Problem Statement: Given two valid runs R1 and R2

with respect to a specification G, and a cost function γ, we
want to compute the edit distance δ(R1, R2) as well as the
corresponding minimum-cost edit script from R1 to R2.

D. The SP-Workflow Difference Problem
The problem of computing the workflow difference under

a general workflow model is at least as hard as subgraph
isomorphism, a well known NP-hard problem. Fortunately, the
structure of most scientific workflows in practice – and busi-
ness process and other workflows, see [4] – can be captured
by a restricted model where the specification graphs are SP-
graphs overlaid with well-nested forking and looping. We will
refer to this model as the SP-workflow model. In Sections IV
and V, we first discuss in some detail the difference problem
under a basic SP-workflow model which considers only well-
nested forking, and then outline how to extend this framework
to handle looping in Section VI.

To define well-nested forking (and eventually, looping), we
use the notion of a laminar family [18]:

Definition 3.6: Let F be a collection of subsets over a
ground set U . Then F is a laminar family if for any pair of
sets H1, H2 in F , one of the following is true: (i) H1 ⊂ H2;
or (ii) H2 ⊂ H1; or (iii) H1 ∩ H2 = ∅.

In the basic model, an SP-workflow specification is then
given by a pair (G,F), where G is an SP-specification graph
with unique labels on the nodes, and F is a laminar family
of series subgraphs of G describing the well-nested set of
allowed fork executions. Furthermore, we consider three kinds
of executions for an SP-workflow specification (G,F):

• Series Execution: For any series subgraph H of G,
a series execution of H executes its two sequential
components in series. In the case where H is a basic
SP-graph, it returns H itself as a valid run.
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• Parallel Execution: For any parallel subgraph H of G,
a parallel execution of H executes either one of or both
of its two branches in parallel.

• Fork Execution: For any series subgraph H of G be-
longing to F , a fork execution of H replicates one or
more copies of H and executes them in parallel: They
are split at the forking point (source) s(H) and then
joined together at the synchronization point (sink) t(H),
generating the parallel composition of one or more valid
runs with respect to H . Note that these runs (graphs) may
differ from each other as long as they are all valid with
respect to the same part of the specification. The fork
execution is defined over series subgraphs of G, since a
forking over a parallel subgraph is equivalent to forking
over each of its series component subgraphs.

We may abstract the above three executions by a nondeter-
ministic recursive function, called an execution function (see
Fig. 4), from SP-graphs to SP-graphs:

f(H) =






H if H = (s(H), t(H))
S(f(H1), f(H2)) if H = S(H1, H2)
f(H1) or f(H2) if H = P (H1, H2)
or P (f(H1), f(H2))

P (f(H), f(H)) if H ∈ F
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Fig. 4. Execution function f

A valid workflow run is now naturally defined as a graph
that can be produced by applying a sequence of series, parallel,
and fork executions recursively on the given SP-specification.
Formally, given an SP-specification (G,F), a node-labeled
directed acyclic graph R is said to be a valid workflow run
with respect to (G,F) if R = f(G) where f is the execution
function for (G,F).

Example 3.3: Fig. 2 shows a pair of valid runs R1 and R2

that are both produced from the SP-specification (G,F) by
applying a sequence of series, parallel and fork executions.
Note that in Fig. 2(a) the fork executions are defined over
the series subgraphs (2, 3, 6), (2, 4, 6), (2, 5, 6) and the entire
graph G. We defer the discussion of the loop implied by the
dotted line to Section VI.

One can show by induction that any graph f(G) generated
above is an SP-graph and admits a graph homomorphism to the
specification graph G. Thus, this new definition of the validity
is consistent with our original definition for the general model.
However, it further restricts the class of valid runs.

IV. AN EQUIVALENT PROBLEM

We now describe a well-known tree representation of SP-
graphs [19]. By using SP-trees for both specifications and
valid runs, we convert the SP-workflow difference problem
into an equivalent edit distance problem on SP-trees. Details
of algorithms and proofs of claims can be found in [3].

A. SP-trees

The SP-tree representation T (a.k.a. tree decomposition) of
an SP-graph G [19] captures the sequence of operations used
to construct G as follows:

• If G is a basic SP-graph, then T is a single node v with
Type(v) = Q.

• If G is the series or parallel composition of G1 and G2,
then T has a root v with Type(v) = S or P , and its two
children are the SP-trees for G1 and G2. The children of
an S node are ordered while the children of a P node
are unordered.

A linear time algorithm for the tree decomposition problem
has been given by [19]. We abstract the decomposition as a
recursive function g from SP-graphs to SP-trees:

g(G) =






Q() if G = (s(G), t(G))
S(g(G1), g(G2)) if G = S(G1, G2)
P (g(G1), g(G2)) if G = P (G1, G2)

In this definition, the Q, S and P functions applied to SP-trees
create a new node with the corresponding type as the root, and
make all input SP-trees the children of this root. Note that
we use the same name as the S and P functions (applied to
SP-graphs) defined in Definition 3.2, because they essentially
perform the same compositions but on different domains.

A key observation is that the SP-tree representation of SP-
graphs is not unique. We therefore compress a binary SP-tree
into a canonical SP-tree by repeatedly merging two adjacent
nodes with the same type. The canonical SP-tree representation
of SP-graphs is unique [19] up to reordering of the children
of a P node.

Example 4.1: The canonical SP-tree T for the SP-
specification graph G (see Fig. 2(a)) is shown in Fig. 5(a).
In this figure, we use a pair of node identifiers to denote the
edge represented by each Q node (leaf).

B. Annotated SP-trees for Specifications

Recall that an SP-specification is given by a pair (G,F).
The canonical SP-tree for the SP-graph G essentially captures
the series and parallel executions implied by this specification.
To capture allowed fork executions, we therefore annotate the
tree using the given laminar family F .

Given an SP-specification (G,F), the annotated SP-tree
for (G,F) is obtained as follows: We first construct the
canonical SP-tree for G, and then, for each series subgraph
in F , insert an F node as a parent of the root of the subtree
which represents this series subgraph.
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Fig. 5. Tree representation of SP-workflow specification and runs

Example 4.2: The annotated SP-tree TG for the SP-
specification (G,F) (see Fig. 2(a)) is shown in Fig. 5(b).

The annotated SP-tree is a semi-ordered tree: For an S node
the left-to-right order among its children is significant, but for
a P or an F node it is irrelevant.1 We thus say two annotated
SP-trees T and T ′, are equivalent, T ≡ T ′, if they differ only
in the order of children of P or F nodes.

Lemma 4.1: The annotated SP-tree representation of an SP-
specification is unique. That is, if two annotated SP-trees TG

and T ′
G for the same SP-specification (G,F) are produced,

then TG ≡ T ′
G.

C. Annotated SP-Trees for Valid Runs
We now define a tree execution function f ′ that takes the

annotated SP-tree for a specification as input and produces as
output the annotated SP-tree for a valid run. Formally, f ′ is
a nondeterministic recursive function from annotated SP-trees
to annotated SP-trees:

f ′(T ) =






T if T = Q()
S(f ′(T1), . . . , f ′(Tk)) if T = S(T1, . . . , Tk)
P (f ′(Ti1), . . . , f ′(Tij )) if T = P (T1, . . . , Tk)
F (f ′(T1), . . . , f ′(T1)) if T = F (T1)

where {i1, . . . , ij} is a nonempty subset of {1, . . . , k} and F
takes one or more copies of f ′(T1) as input.

Given a valid run R with respect to an SP-specification
(G,F), the annotated SP-tree for R is obtained as follows:
We start by constructing the annotated SP-tree TG for (G,F)
and the canonical SP-tree T ′

R for R, and then generate the
annotated SP-tree TR for R by a deterministic variant of
the tree execution function f ′′ such that f ′′(TG, T ′

R) = TR.
Intuitively, f ′′ simulates the original nondeterministic tree
execution function f ′ and leads the tree derivation to the
corresponding annotated SP-tree in terms of the given valid
run. In each step of the tree derivation described in f ′, we
make the decision (e.g. which subset of children is chosen for
a P node, or how many copies are replicated for an F node)
by doing a case analysis on the current TG and T ′

R, matching
zero or more subtrees in T ′

R with each subtree in TG based
on the leaves contained in each subtree. Note that even with
a series composition, there may be multiple matches in the
subtrees of T ′

R due to a fork execution.

1In the specification, F nodes can only have one child, however in a run
they can have multiple children.

Example 4.3: The annotated SP-trees T1 and T2 for the runs
R1 and R2 (see Fig. 2(b) and (c)) are shown in Fig. 5(c) and
(d) respectively.

Lemma 4.2: The annotated SP-tree representation of a valid
run is unique. That is, if two annotated SP-trees TR and T ′

R
for the same valid run R with respect to an SP-specification
(G,F) are produced, then TR ≡ T ′

R.

D. Edit Distance on Annotated SP-trees
Based on the tree representation of SP-workflows, we now

propose an edit distance problem on annotated SP-trees that
is equivalent to our SP-workflow difference problem.

In the following, for any annotated SP-tree T , let Graph(T )
denote the graph from which T is constructed. In addition, let
T [v] denote the subtree rooted at a node v in T and let p(v)
denote the parent of node v.

Definition 4.1: Given an annotated SP-tree T , T [v] is said
to be an elementary subtree in T iff 1) T [v] does not contain
any P or F node that has more than one child; and 2) p(v)
is a P or an F node that has more than one child.

We consider two subtree edit operations over the annotated
SP-trees: Subtree Insertion and Subtree Deletion. Following
the notation for path edit operations, we denote a subtree
insertion by Λ → T [v] and a subtree deletion by T [v] → Λ,
where T [v] is an elementary subtree to be edited. The follow-
ing lemma shows the correspondence between an elementary
subtree and an elementary path.

Lemma 4.3: Given the annotated SP-tree T for a valid run
R, if T [v] is an elementary subtree in T , then p = Graph(T [v])
is an elementary path in R. Conversely, if p is an elementary
path in R, then there exists an elementary subtree T [v] in T
such that p = Graph(T [v]).

Given a cost function γ over path edit operations, we extend
γ to subtree edit operations by letting

γ(Λ → T [v]) = γ(Λ → Graph(T [v]))

By Lemma 4.3 and Eq. 1 in Section III-C.2, we have the
following appealing interpretation of γ on trees: For any
elementary subtree T [v], we have

γ(Λ → T [v]) = γ(|T [v]|, Label(s(v)), Label(t(v)))

where |T [v]| is the number of leaves (Q nodes) of T [v] and
s(v), t(v) are two terminals of Graph(T [v]). Note that s(v)
and t(v) are two invariants associated with each node v and
will not be changed by any subtree edit operation.

813813



F

S

Q Q

S

Q

F

P

F

Q

S

Q Q

S

Q Q

(1a,2a)

(2a,3b) (3b,6a) (2a,3a) (3a,6a) (2a,4a) (4a,6a)

(6a,7a)

T1 T[v1]!!

v1

F

S

Q Q

S

Q

F

P

F

Q

S

Q Q

(1a,2a)

(2a,3a) (3a,6a) (2a,4a) (4a,6a)

(6a,7a)

F

S

Q Q

S

Q

F

P

F

Q

S

Q Q

S

Q Q

(1a,2a)

(2a,3a) (3a,6a) (2a,4a) (4a,6a) (2a,4b) (4b,6a)

(6a,7a)

v2

!!T[v2]

F

S

Q Q

S

Q

P

FF

Q

S

Q Q
(2b,4c) (4c,6b) (2b,5a) (5a,6b)

S

Q Q

S

Q

F

P

F

Q

S

Q Q

S

Q Q

T2
F

S

Q Q

S

Q

P

F

Q

(1a,2b)

(2b,4c) (4c,6b)

(6b,7a)

S

Q Q

S

Q

F

P

F

Q

S

Q Q

S

Q Q

(1a,2a) (6a,7a)

!!T[v4]

v4

!!T[v3]
v3

(2a,3a) (3a,6a) (2a,4a) (4a,6a) (2a,4b) (4b,6a)(2a,3a) (3a,6a) (2a,4a) (4a,6a) (2a,4b) (4b,6a)

(1a,2a) (6a,7a) (1a,2b) (6b,7a)

Fig. 6. A subtree edit script from T1 to T2

Example 4.4: Fig. 6 shows a subtree edit script from T1 to
T2 (see Fig. 5) which corresponds to the path edit script (see
Fig. 3) between the underlying runs R1 and R2.

Definition 4.2: Given a cost function γ, the edit distance
between T1 and T2, denoted by δ(T1, T2), is defined as the
minimum cost of a subtree edit script from T1 to T2. Formally,
δ(T1, T2) = min{γ(E) | T1

E−−→
TG

T2}.
The following theorem shows that the two edit distance

problems are equivalent.
Theorem 1: Let R1 and R2 be a pair of valid runs and

let T1 and T2 be their annotated SP-trees respectively. Then
δ(R1, R2) = δ(T1, T2).

V. ALGORITHM

The algorithm to compute the edit distance as well as the
corresponding minimum-cost edit script between two valid
runs R1 and R2 with respect to an underlying SP-specification
(G,F) has two steps:

1) Generating the annotated SP-trees TG, T1 and T2 for the
specification (G,F) and the pair of valid runs R1 and
R2 respectively.

2) Computing the edit distance δ(T1, T2) as well as the
corresponding minimum-cost edit script from T1 to T2.

The first subproblem was solved in the previous section. We
now study the second subproblem. For clarity of exposition,
we focus on computing the edit distance, since the corre-
sponding minimum-cost edit script can be easily produced by
bookkeeping.

A. Well-formed Mapping
We now formalize the notion of mapping implied by an edit

script, and show the correspondence between them. Intuitively,
an edit script transforming a tree T1 to another tree T2 keeps
some of the nodes in T1 unchanged and inserts and deletes
other nodes to create a tree T ′

2 that is isomorphic to T2. The
bijection between T ′

2 and T2 gives rise to a partial one-to-one
mapping between the nodes of T1 and T2.

Example 5.1: The dashed lines between T1 and T2 in Fig. 5
show a mapping that corresponds to the subtree edit script
shown in Fig. 6.

For any node v in Ti(i = 1, 2), let h(v) be the node in TG

such that Ti[v] is derived from TG[h(v)]. Formally, Ti[v] =
f ′(TG[h(v)]) where f ′ is the tree execution function defined in
Section IV-C. In addition, for any pair of nodes (v1, v2) in T1

and T2, we say v1 and v2 are homologous if h(v1) = h(v2).
That is, T1[v1] and T2[v2] represent two valid runs with respect
to the same part of a specification.

Definition 5.1: A set M of pairs of nodes is said to be a
well-formed mapping from T1 to T2 iff

1) one-to-one: M is a one-to-one mapping from T1 to T2.
Formally, for any pair of (v1, v2) ∈ M and (v′

1, v
′
2) ∈

M , v1 = v′
1 iff v2 = v′

2;
2) root mapped: The roots of T1 and T2 are mapped by M .

Formally, (r1, r2) ∈ M , where r1 and r2 are the roots
of T1 and T2 respectively;

3) specification preserved: If a pair of nodes is mapped
by M , then they are homologous. Formally, for any
(v1, v2) ∈ M , h(v1) = h(v2);

4) parent preserved: If a pair of nodes is mapped by M ,
then their parents are also mapped. Formally, for any
(v1, v2) ∈ M , (p(v1), p(v2)) ∈ M ; (recall that p(v)
denotes the parent of a node v) and

5) children of an S node preserved: If a pair of S nodes
is mapped by M , then each pair of their children is
also mapped. Formally, for any (v1, v2) ∈ M such that
Type(v1) = Type(v2) = S, (ci(v1), ci(v2)) ∈ M for all
i, where ci(v) denotes the i’th child of a node v.

Definition 5.2: Let M be a well-formed mapping from T1

to T2. A pair of nodes (v1, v2) in M is said to be unstably
matched iff 1) (v1, v2) is a pair of P nodes; and 2) both
v1 and v2 have only one child, and this pair of children is
homologous and not mapped by M . A pair in M that is not
unstably matched is called stably matched.

Given a well-formed mapping M from T1 to T2 and a pair
of nodes (v1, v2) in M , let M(v1, v2) be the corresponding
mapping from T1[v1] to T2[v2]. We then define its cost
γ(M(v1, v2)) as follows:

if (v1, v2) is stably matched then
∑

(c1,c2)∈M

γ(M(c1, c2)) +
∑

c1 %∈I1

XT1(c1) +
∑

c2 %∈I2

XT2(c2) (2)

if (v1, v2) is unstably matched then

XT1(c1) + XT2(c2) + 2 ∗ WTG(h(v1), h(c1)) (3)

where c1 and c2 are the children of v1 and v2 respectively,
I1 and I2 are the sets of nodes mapped by M in T1 and
T2 respectively, XT (c) is the minimum cost of deleting the
subtree T [c], and WTG(h(v1), h(c1)) is the minimum cost of
deleting an elementary subtree rooted at a child of h(v1) that
is distinct from the subtree rooted at h(c1) in TG.

A short explanation follows. For a pair of stably matched
nodes (v1, v2), we sum up the cost of all mappings between
their children and the minimum cost of deleting or inserting all
unmapped children (see Eq. 2); for a pair of unstably matched

814814



nodes (v1, v2) (see Fig. 7), by Definition 5.2 both of them
must have only one child, say c1 and c2, and this pair of
children is homologous and not mapped by M . Now consider
an edit script from T1[v1] to T2[v2] that deletes T1[c1] and
inserts T2[c2]. Observe that v1 will either have no children
(if we delete T1[c1] first) or have two homologous children
(if we insert T2[c2] first) at some intermediate state of the
transformation. Both will violate the validity of the tree due
to the fact that v1 is a P node. Hence, the minimum-cost edit
script from T1[v1] to T2[v2] must be constructed as follows:
insert TG[c]; delete T1[c1]; insert T2[c2]; and delete TG[c]
(inserted in the first step), where TG[c] is an elementary subtree
rooted at a child c of h(v1) that is distinct from h(c1) in TG.
This leads to the cost given by Eq. 3.

(b) T1

P

(a) TG

P Pv1 v2

c1 c2

h(v1)

h(c1) c

(c) T2
Fig. 7. Unstably matched nodes

Finally, let γ(M) denote the cost of a well-formed mapping
M from T1 to T2, then we have γ(M) = γ(M(r1, r2)), where
r1 and r2 are the roots of T1 and T2 respectively.

Theorem 2: Let T1 and T2 be the annotated SP-trees for
a pair of valid runs. Then δ(T1, T2) = min{γ(M) | M is a
well-formed mapping from T1 to T2}.

B. Edit Distance on SP-Trees
As a preprocessing step, we sketch an idea for computing

the minimum cost of deleting a subtree. Note that the quadran-
gle inequality of our cost model guarantees that the minimum-
cost subtree deletion is always achieved by a sequence of
elementary subtree deletions. Recall that XT (v) denotes the
minimum cost of deleting the subtree T [v]. We therefore
compute XT (v) for each node v in T in a bottom-up manner:
for each Q node, XT (v) is given by the cost model; for each
P or F node, XT (v) is equal to the sum of XT (c)’s for all
children c of v; and for each S node, dynamic programming
is used to compute the minimum cost of reducing each of its
first i children into a branch-free tree with a total of l leaves.

We are now ready to give the algorithm which computes the
edit distance δ(T1, T2). We do a bottom-up computation on T1

and T2, and compute the minimum-cost well-formed mapping
M∗(v1, v2) from T1[v1] to T2[v2] for each pair of homologous
nodes (v1, v2). Note that by Definition 5.1 (root mapped) v1

and v2 are always mapped by M∗(v1, v2) [Line 1]. Based on
their types, we have four cases:

Case 1 [Lines 2–4] If (v1, v2) is a pair of Q nodes, then
M∗(v1, v2) consists only of a pair of nodes (v1, v2).

Case 2 [Lines 5–9] If (v1, v2) is a pair of S nodes, then
they agree in the number of children. Moreover, each pair of
their children are homologous. By Definition 5.1 (children of
an S node preserved) they must be all mapped by M∗(v1, v2).

Algorithm 1 Edit-Distance-on-Trees
Input: T1[v1] and T2[v2] such that h(v1) = h(v2)
Output: M∗(v1, v2): the minimum-cost well-formed mapping
from T1[v1] to T2[v2]

1: add (v1, v2) to M∗(v1, v2)
2: if Type(v1) = Type(v2) = Q then
3: return M∗(v1, v2)
4: end if
5: if Type(v1) = Type(v2) = S then
6: for each pair of children (c1, c2) of v1 and v2 do
7: add M∗(c1, c2) to M∗(v1, v2)
8: end for
9: end if

10: if Type(v1) = Type(v2) = P then
11: if both v1 and v2 have only one child, say c1 and c2,

and h(c1) = h(c2) then
12: if γ(M∗(c1, c2)) ≤ XT1(c1) + XT2(c2) + 2 ∗

WTG(h(v1), h(c1)) then
13: add M∗(c1, c2) to M∗(v1, v2)
14: end if
15: else
16: for each pair of children (c1, c2) of v1 and v2 such

that h(c1) = h(c2) and γ(M∗(c1, c2)) ≤ XT1(c1) +
XT2(c2) do

17: add M∗(c1, c2) to M∗(v1, v2)
18: end for
19: end if
20: end if
21: if Type(v1) = Type(v2) = F then
22: B∗ := the minimum-cost bipartite matching
23: for each pair of children (c1, c2) of v1 and v2 such that

(c1, c2) ∈ B∗ do
24: add M∗(c1, c2) to M∗(v1, v2)
25: end for
26: end if
27: return M∗(v1, v2)

Case 3 If (v1, v2) is a pair of P nodes, we consider the
following two subcases: Case 3a [Lines 11–14] If both v1 and
v2 have only one child and they are homologous, say c1 and
c2, then the pair (c1, c2) will be included in M∗(v1, v2) only if
the minimum cost of a well-formed mapping between them is
no greater than the minimum cost of deleting and inserting the
corresponding subtrees plus the cost of inserting and deleting
a minimum-cost elementary subtree rooted at a child of v1

that is not homologous to c1, denoted by WTG(h(v1), h(c1)).
It is straightforward to compute this using our cost model.
Case 3b [Lines 15–19] Otherwise, note that for each child of
v1, there exists at most one child of v2 that is homologous
to it, and vice versa. A pair of homologous children will be
included in M∗(v1, v2) only if the minimum cost of a well-
formed mapping between them is no greater than the minimum
cost of deleting and inserting the corresponding subtrees.
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Case 4 [Lines 21–26] If (v1, v2) is a pair of F nodes, then
all children of v1 and v2 are homologous, and we need to find
the minimum-cost matching between them. This is done by
setting up the following bipartite graph between children of
v1 and v2: Each pair of children of v1 and v2 are connected
by an edge associated with the minimum cost of a well-
formed mapping between them; each child of v1 has an edge
to a special node “ − ” associated with the minimum cost of
deleting the corresponding subtree; and each child of v2 has
an edge to a special node “ + ” associated with the minimum
cost of inserting the corresponding subtree. Now let B∗ be the
minimum-cost bipartite matching in this graph. Then a pair of
children of v1 and v2 will be included in M∗(v1, v2) only if
they are matched by B∗.

Pseudo code of this algorithm is given in Algorithm 1.
Note that by Theorem 2 δ(T1, T2) = γ(M∗(r1, r2)), where
r1 and r2 are the roots of T1 and T2 respectively, and the
corresponding minimum-cost edit script can be easily derived
from M∗(r1, r2).

v5 v6

+
v3

-

!(M*(v5, v6)) = 2
!(M*(v5, v3)) = 3

X
T1(v5) = 3 XT2

(v6)
= 3

XT2(v3
) = 2

Fig. 8. Bipartite matching for F nodes

Example 5.2: The roots r1 and r2 of T1 and T2 (see Fig. 5)
are a pair of F nodes. The bipartite graph for matching their
children is shown in Fig. 8. Observe that r1 has only one child
v5, while r2 has two children v6 and v3. The minimum-cost
bipartite matching is shown in solid lines. The unit cost model
is used in this example, and the corresponding edit distance
δ(T1, T2) = γ(M∗(r1, r2)) = γ(M∗(v5, v6)) + XT2(v3) = 4.
This is confirmed by our edit script shown in Fig. 6.

C. Algorithm Complexity
The main cost of Algorithm 1 is solving the weighted

bipartite matching problem (a.k.a. the assignment problem) for
each pair of F nodes. The overall time complexity of this step
is bounded by O(|E|3), using the Hungarian algorithm [20],
where |E| is the total number of edges in both R1 and R2.

VI. EXTENDED SP-WORKFLOW MODEL

We now outline an extended SP-workflow model capable
of expressing both fork and loop executions. In the extended
model, an SP-workflow specification is given by a triple
(G,F ,L) where F and L represent well-nested forking and
looping imposed over an SP-specification G as a set of
subgraphs, such that (1) F ∩ L = ∅; and (2) the edge sets
of F ∪L form a laminar family. As before, elements of F are
series subgraphs. Elements of L are complete subgraphs. A
complete subgraph of G is either a series subgraph or a parallel
subgraph of G and contains all the paths from its source to

its sink. In the canonical SP-tree for G, it corresponds to a
nonempty proper subset of consecutive children of an S node.

Intuitively, a loop execution of H ∈ L replicates one or
more copies of H and executes them in series: They are
concatenated by an implicit edge from the sink of one copy to
the source of the next copy, generating the series composition
of one or more valid runs with respect to H along with all
implicit edges (t(H), s(H)) between them. As before, we may
abstract the loop execution by the execution function f below:

f(H) = S(f(H), (t(H), s(H)), f(H)) if H ∈ L

Example 6.1: Fig. 2(d) shows a run R3 in which the loop
has been executed twice; note the implicit edge (6a, 2b).

The annotated SP-trees for the specification (G,F ,L) and
the valid run R are then constructed as before, adding L nodes
to represent allowed loop executions in L. In particular, when
generating the annotated SP-tree for R, we may capture the
implicit edges from the sink of one iteration to the source of
the next iteration by the order of children of an L node.

While subtree insertion and deletion over annotated SP-trees
remain the same, the corresponding operations over SP-graphs
are more complicated since iterations are connected in series
by implicit edges. However, to preserve the atomicity of our
edit operations, at most one iteration of a loop should be
inserted or deleted by a single edit operation. We therefore
introduce two more path edit operations:

• Path Expansion: A path expansion operation creates a
new iteration of a loop by inserting an elementary path
between two existing consecutive iterations. Note that this
operation also involves a set of necessary insertion and
deletion of implicit edges.

• Path Contraction: This operation is the inverse of the
path expansion operation. Intuitively, a path contraction
operation removes an iteration of a loop by contracting
the last elementary path.

Example 6.2: To delete the second iteration of the loop
in R3 (see Fig. 2(d)), we first delete the path (2b, 5a, 6b),
then contract the path (2b, 4c, 6b) by replacing the path
(6a, 2b, 4c, 6b, 7a) with the edge (6a, 7a).

To extend our differencing algorithm to handle loops, we
do one more case analysis in Algorithm 1: If (v1, v2) is
a pair of L nodes, we set up the same bipartite graph
between children of v1 and v2 as described in the case of F
nodes. However, instead of finding a minimum-cost bipartite
matching for F nodes, we will compute a minimum-cost non-
crossing bipartite matching for L nodes, since the children
of an L node are ordered. This problem can be efficiently
solved by dynamic programming in O(|E|2) time. Therefore,
the computation for F nodes still dominates the cost. With
this framework and minor changes to our algorithms, we can
obtain an efficient, polynomial time differencing algorithm for
workflows characterized as SP-graphs with well-nested forking
and looping. More details can be found in [3].
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VII. PROTOTYPE–PDIFFVIEW

We have developed a prototype system called Provenance
Difference Viewer (PDiffView)2 which allows users to view,
store, generate and import/export SP-specifications and their
associated runs. The user may then see the difference between
two runs of the same specification by stepping through the
set of edit operations in the minimum-cost edit script, or by
seeing an overview. Since the graphs can be large, users may
successively cluster modules in the specification to form a
hierarchy of composite modules. The difference between two
runs of that specification can then be viewed at any level in
the defined hierarchy, giving the user the ability to zoom in
on composite modules that indicate a large amount of change
and ignore others that indicate no change.

Fig. 9. PDiffView snapshot

A snapshot of our prototype system is shown in Fig. 9.
The big pane on the left-hand side shows the source run, with
green edges indicating inserted paths and red edges indicating
deleted paths in the edit script. The target run is shown in the
big pane on the right-hand side. The small pane on top shows
the specification, and the small pane on the top right gives
the context for the edit operation being applied. The small
panes on the bottom right and left corners display miniatures
of the respective runs, and brief summaries of their statistics
are listed above.

VIII. EVALUATION

We empirically evaluate our differencing algorithm on both
real and synthetic datasets. All experiments were performed on
a local Pentium IV 2.8GHZ PC with 2GB memory running
Fedora Core 6 with kernel version 2.6.20. The algorithm is
implemented in Java 6, and specifications and runs are stored
as XML files. In all experiments, the time to parse the XML
file is omitted.

2Available at http://db.cis.upenn.edu/.

A. Real Scientific Workflows
In the first set of experiments, we evaluate the performance

of our differencing algorithm over six collected, real scientific
workflows3. Characteristics of these specifications are listed
in Table I. |F| and |L| are the number of forks and loops
annotated in the specification, respectively, and ||F|| and ||L||
are the total number of edges in the forks and loops. For
each specification, we randomly generate a pair of valid runs,
varying their total number of edges from 200 to 2000, and
then measure the execution time of computing the minimum-
cost edit script under the unit cost model. Each point is an
average over 100 sample pairs.

TABLE I
CHARACTERISTICS OF REAL WORKFLOW SPECIFICATIONS

WORKFLOW |V | |E| |F| ||F|| |L| ||L||
PA 11 13 3 6 1 6

EMBOSS 17 22 4 10 2 10
SAXPF 27 36 7 18 1 7

MB 17 19 2 6 1 6
PGAQ 37 41 4 22 2 26
BAIDD 29 36 8 17 2 12

Fig. 10 shows that our differencing algorithm performs well
even on large runs. In the worst case, we can compute the edit
distance between a pair of PGAQ workflow runs with a total of
2000 edges in less than one minute. In practice, most workflow
runs have fewer than 200 edges, which can be done in less
than one second.

Fig. 10 also shows that the execution time varies between
specifications. However, it is hard to understand this variation
using only the statistics listed in Table I. In the remainder of
this section, we will show the effect of other factors.

B. Series vs Parallel
In the second set of experiments, we compare series spec-

ifications with parallel specifications. Let r be the ratio of
series compositions to parallel compositions used to construct
the specification. For instance, when r = +∞ the (series)
specification becomes a single path, and when r = 0 the
(parallel) specification consists only of two vertices and a
set of multi-edges between them. First of all, we randomly
generate a synthetic workflow specification with no forks and
loops, varying the number of edges from 100 to 1000 and
setting r to be 3, 1 and 1

3 respectively. For each specification,
we randomly generate a pair of valid runs with probp = 95%,
where probp is the probability that each parallel branch in
the specification is taken by the run. We then measure the
execution time and edit distance under the unit cost model.
Each point is an average over 200 sample specifications.

Fig. 11 shows that computing the edit distance between
a pair of runs of a series specification is expensive: Since
there are no forks and loops in the specification, finding the
minimum-cost mapping entails computing the minimum cost
of deleting a subtree rooted at an S node using dynamic

3Real workflows can be found at http://www.myexperiment.org/.
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Fig. 15. Varying cost models

programming (O(|E|3)). In contrast, the minimum cost of
deleting a subtree rooted at a P node can be easily computed
in linear time O(|E|).

Fig. 11 also shows that the execution time increases with
the size of specification, confirming our polynomial time
complexity result. More interestingly, comparing Fig. 11 with
Fig. 10, we observe that forks and loops bring a significant
complexity to the differencing problem. Note that each run is
randomly generated by taking on average 95% of branches in
the specification, thus making Fig. 11 comparable to Fig. 10.

Fig. 12 shows that a pair of runs of a series specification
have a smaller edit distance than a pair of runs of a parallel
specification. There are two reasons for this: 1) deleting a long
path only incurs a cost of one under the unit cost model; and 2)
fewer parallel branches in the series specification means that
the runs generated will be more similar. Comparing Figs. 12
and 11, we conclude that there is little correlation between the
running time of the algorithm and the edit distance.

C. Fork vs Loop

In the third set of experiments, we compare forks with loops.
First, we randomly generate a synthetic workflow specification
with 100 edges and a series/parallel ratio of 0.5, annotating
it with 5 forks and 5 loops. To generate a random valid run,
we use the following parameters: 1) maxF and maxL are
the maximum number of copies replicated by each fork and
loop executions respectively; and 2) probF and probL are the
probabilities that each fork and loop copy is taken by the run,
respectively. For instance, the product of maxF and probF

is the average number of copies in a fork execution. We now
fix probp = 1 and maxF = maxL = 20, and randomly
generate a run with many forks (and no loops) by varying
probF from 0 to 1 and setting probL to be 0. Similarly, we

generate a run with many loops (and no forks). Finally, we
measure the execution time and edit distance between different
combinations of runs under the unit cost model. Each point is
an average over 200 sample specifications.

Fig. 13 shows that computing the edit distance between a
pair of runs with many forks is extremely expensive when
probF is high, and that computing the edit distance between
one run with many forks and one run with many loops is
cheapest. This is because we do a minimum-cost bipartite
matching to pair fork copies across the runs (our implementa-
tion uses the Bellman-Ford algorithm [21] and therefore takes
O(|E|4) time), whereas to pair loop copies we calculate a
minimum-cost non-crossing bipartite matching (it is solved by
dynamic programming in O(|E|2) time). Furthermore, when
we pair a run with many forks and a run with many loops, the
bipartite matching instances are small because forked copies
are never matched with loop copies.

Fig. 14 shows that the edit distance between a pair of runs
with many forks (loops) will eventually drop to 0 when the
fork (loop) probability approaches 1: Each fork copy will be
replicated exactly maxF times, and the runs generated will
have the same shape. In contrast, the edit distance between
one run with many forks and one run with many loops mono-
tonically increases, since a higher fork and loop probability
results in a larger difference between the two runs. Comparing
Figs. 14 and 13 again confirms that there is little correlation
between running time and edit distance.

D. Influence of Cost Model on Edit Scripts

In the last set of experiments, we evaluate the influence of
varying cost models on the minimum-cost edit script produced.
Recall that any sublinear function γ(l) = lε, where ε ≤ 1 and
l is the length of path to be edited, can be used.
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Example 8.1: As shown in Fig. 16(a), two edit scripts that
transform R1 to R2 are: E1 = {(1, 2, 3, 5) → Λ, (1, 4, 5, 6) →
Λ} and E2 = {(1, 4, 5) → Λ, (1, 2, 3, 5, 6) → Λ}. Which
script is better depends on ε: 1) when ε = 0 (unit cost) or
1 (cost equal to length), γ(E1) = γ(E2); 2) when 0 < ε< 1,
γ(E1) > γ(E2); and 3) when ε < 0, γ(E1) < γ(E2). Thus
different cost models may lead to different minimum-cost edit
scripts between the same pair of valid runs.

To empirically evaluate the effect of different cost mod-
els, we use the synthetic workflow specification shown in
Fig. 16(b). The specification G contains a fork subgraph
connecting a pair of nodes u and v by 10 parallel paths. The
length of the ith path is i2. We now randomly generate a
pair of valid runs by setting maxF = 5, probF = 1 and
probP = 0.5. Each random run then contains exactly 5 fork
copies, and each copy includes a random subset of roughly 5
parallel paths. We then compute the minimum-cost edit scripts
between a pair of runs under different cost models, by varying
ε from 0 to 1. Finally, we measure the percent error between
the edit distance (i.e., the minimum cost) and the cost of these
edit scripts under the unit (ε = 0) and length (ε = 1) cost
models. We test for 100 pairs of sample runs and evaluate
both average and worst-case errors.

Fig. 15 shows that the minimum-cost edit script produced by
one cost model may be suboptimal for another, and that the
corresponding cost may be far away from the edit distance
(i.e., the minimum cost). As shown in Fig. 15, the average
error under the unit cost model monotonically increases, while
the average error under the length cost model monotonically
decreases. The minimum-cost edit script produced by the
length cost model has an average error of 14% and worst case
of 50% under the unit cost model; the minimum-cost edit script
produced by unit cost model has an average percent error of
16% and worst case of 64% under the length cost model. Not
surprisingly, the minimum-cost edit scripts produced by other
cost models show a tradeoff between the errors with respect
to the unit and length cost models. This is due to the way in
which fork copies of H are matched: In the unit cost model,
copies which agree on the largest number of paths are matched,
ignoring the lengths of unmatched paths. In the length cost
model, matched copies may differ in many paths but agree on
some of the longer paths.

IX. CONCLUSIONS

We show that the problem of differencing workflow runs
of the same specification, described by series-parallel graphs
overlaid with well-nested forks and loops, can be efficiently
solved in O(|E|3) time, where |E| is the total number of edges
in both graphs. The edit distance between a pair of valid runs

is naturally defined as a minimum-cost sequence of elementary
path insertions and deletions that transforms the first run into
the second run, and preserves the validity of each intermediate
run. The cost function used for each edit operation is compact
yet general, allowing us to capture a variety of application-
specific notions of distance, and depends on the start and end
nodes as well as the length of the path. Experimental results
demonstrate the scalability of our approach.
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