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Abstract— In the Survivable Network Design problem (SNDP),
we are given an undirected graph G(V, E) with costs on edges,
along with a connectivity requirement r(u, v) for each pair u, v of
vertices. The goal is to find a minimum-cost subset E∗ of edges,
that satisfies the given set of pairwise connectivity requirements.
In the edge-connectivity version we need to ensure that there are
r(u, v) edge-disjoint paths for every pair u, v of vertices, while in
the vertex-connectivity version the paths are required to be vertex-
disjoint. The edge-connectivity version of SNDP is known to have a
2-approximation. However, no non-trivial approximation algorithm
has been known so far for the vertex version of SNDP, except for
special cases of the problem.

We present an extremely simple algorithm to achieve an
O(k3 log |T |)-approximation for this problem, where k denotes the
maximum connectivity requirement, and T is the set of vertices
that participate in one or more pairs with non-zero connectivity
requirements. We also give a simple proof of the recently discov-
ered O(k2 log |T |)-approximation algorithm for the single-source
version of vertex-connectivity SNDP. Our results establish a natu-
ral connection between vertex-connectivity and a well-understood
generalization of edge-connectivity, namely, element-connectivity,
in that, any instance of vertex-connectivity can be expressed by a
small number of instances of the element-connectivity problem.
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1. INTRODUCTION

In the Survivable Network Design problem (SNDP), we
are given an undirected graph G(V,E) with costs on edges,
and a connectivity requirement r(u, v) for each pair u, v
of vertices. The goal is to find a minimum cost subset
E∗ of edges, such that each pair (u, v) of vertices is
connected by r(u, v) paths. In the edge-connectivity version
(EC-SNDP), these paths are required to be edge-disjoint,
while in the vertex-connectivity version (VC-SNDP), they
need to be vertex-disjoint. It is not hard to show that EC-
SNDP can be cast as a special case of VC-SNDP. We
denote by n the number of vertices in the graph and by
k the maximum pairwise connectivity requirement, that is,
k = maxu,v∈V {r(u, v)}. We also define a subset T ⊆ V
of vertices called terminals: a vertex u ∈ T iff r(u, v) > 0
for some vertex v ∈ V .
∗Research supported in part by NSF CAREER award CCF-0844872.
†Research supported in part by a Guggenheim Fellowship, an IBM
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General VC-SNDP: While a celebrated result of Jain [16]
gives a 2-approximation algorithm for EC-SNDP, no non-
trivial approximation algorithms are known for VC-SNDP,
except for restricted special cases. Agrawal et. al. [1] showed
a 2-approximation algorithm for the special case when
maximum connectivity requirement k = 1. For k = 2, a 2-
approximation algorithm was given by Fleischer [11]. The
k-vertex connected spanning subgraph problem, a special
case of VC-SNDP where for all u, v ∈ V ru,v = k,
has been studied extensively. Cheriyan et al. [2], [3] gave
an O(log k)-approximation algorithm for this case when
k ≤

√
n/6, and an O(

√
n/ε)-approximation algorithm for

k ≤ (1−ε)n. For large k, Kortsarz and Nutov [20] improved
the preceding bound to an O(ln k · min{

√
k, n

n−k ln k})-
approximation. Fakcharoenphol and Laekhanukit [10] im-
proved it to an O(log n log k)-approximation, and further
obtained an O(log2 k)-approximation for k < n/2. Very
recently, Nutov [25] improved this to O(log k · log n

n−k )-
approximation.

Kortsarz et. al. [18] showed that VC-SNDP is hard to ap-
proximate to within a factor of 2log1−ε n for any ε > 0, when
k is polynomially large in n. This result was subsequently
strengthened by Chakraborty et. al. [4] to a kε-hardness for
all k > k0, where k0 and ε are fixed positive constants.
However, the existence of good approximation algorithms
for small values of k has remained an open problem, even
for k ≥ 3. In particular, when each connectivity requirement
ru,v ∈ {0, 3}, the best known approximation factor is
polynomially large (Õ(n) to best of our knowledge) while
only an APX-hardness is known. The main result of our
paper is an O(k3 log |T |)-approximation algorithm for VC-
SNDP.

Single-Source VC-SNDP: A special case of VC-SNDP that
has received much attention recently is the single-source
version. In this problem there is a special vertex s called the
source, and all non-zero connectivity requirements involve
s, that is, if u '= s and v '= s, then r(u, v) = 0. Kortsarz
et. al [18] showed that even this restricted special case of
VC-SNDP is hard to approximate up to factor Ω(log n), and
recently Lando and Nutov [22] improved this to (log n)2−ε-
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hardness of approximation for any constant ε > 0. We note
that both results only hold when k is polynomially large
in n. On the algorithmic side, Chakraborty et. al. [4] gave
an 2O(k2) log4 n-approximation for the problem. This result
was later independently improved to an O(kO(k) log n)-
approximation by Chekuri and Korula [5], and to an
O(k2 log n)-approximation by Chuzhoy and Khanna [8], and
by Nutov [23]. Recently, Chekuri and Korula [6] simplified
the analysis of the algorithm of [8]. We note that for the
uniform case, where all non-zero connectivity requirements
are k, Chuzhoy and Khanna [8] show a slightly better
O(k log n)-approximation algorithm, and the results of [6]
extend to this special case. In this paper we give a sim-
ple O(k2 log |T |)-approximation algorithm for single-source
VC-SNDP.

Element-Connectivity SNDP: A closely related problem to
EC-SNDP and VC-SNDP is the element-connectivity SNDP.
The input to the element-connectivity SNDP is the same as
for EC-SNDP and VC-SNDP. As before, we define the set
T ⊆ V of terminals to be vertices that participate in one or
more pairs with a positive connectivity requirement. Given
a problem instance, an element is any edge or any non-
terminal vertex in the graph. We say that a pair (s, t) of
vertices is k-element connected iff for every subset X of at
most (k− 1) elements, s and t remain connected by a path
when X is removed from the graph. In other words, there
are k element-disjoint paths connecting s to t; these paths
are allowed to share terminals. Observe that if a pair (s, t)
is k-vertex connected, then it is also k-element connected,
and similarly, if a pair (s, t) is k-element connected, then
it is also k-edge connected. But the converse relationships
do not hold, that is, if a pair (s, t) is k-edge connected,
then it need not be k-element connected, and similarly, if
a pair (s, t) is k-element connected, then it need not be k-
vertex connected. Thus the notion of element-connectivity
resides in between edge-connectivty and vertex-connectivity.
The goal in the element-connectivity SNDP is to select a
minimum-cost subset E∗ of edges, such that in the graph
induced by E∗, each pair (u, v) of vertices is r(u, v)-element
connected. The element-connectivity SNDP was introduced
in [17] as a problem of intermediate difficulty between
edge-connectivity and vertex-connectivity, and the authors
gave a primal-dual O(log k)-approximation for this problem.
Subsequently, Fleischer et al. [12] gave a 2-approximation
algorithm for element-connectivity SNDP via the iterative
rounding technique, matching the 2-approximation guaran-
tee of Jain [16] for EC-SNDP. We use this result as a
building block for our algorithm.

Our Results: Our main result is as follows.
Theorem 1: There is a polynomial-time randomized

O(k3 log |T |)-approximation algorithm for VC-SNDP,
where k is the largest pairwise connectivity requirement.

The proof of this result is based on a randomized reduc-

tion that maps a given instance of VC-SNDP to a family
of instances of element-connectivity SNDP. The reduction
creates O(k3 log |T |) instances, and has the property that
any collection of edges that is feasible for each one of the
element-connectivity SNDP instances generated above, is a
feasible solution for the given VC-SNDP instance. We can
thus use the known 2-approximation algorithm for element-
connectivity SNDP to obtain the desired result.

We use these ideas to also give an alternative simple proof
of the O(k2 log |T |)-approximation algorithm for the single-
source VC-SNDP problem.

As noted earlier, the notion of element-connectivity is
trivially subsumed by vertex-connectivity. Our result shows
that in a weak sense, the converse also holds in that any set
of pairwise vertex-connectivity requirements can be captured
by a collection of element-connectivity instances.
Remark 1: We note that very recently, subsequent to
our work, Nutov [24] has shown an O(k2)-approximation
algorithm for single-source VC-SNDP. He also studied the
more general version of VC-SNDP, where the costs are on
vertices (instead of edges), and has given an O(k4 log2 |T |)-
approximation algorithm for the general problem, and an
O(k2 log |T |)-approximation for the single-source version.
The latter result improves upon the recent O(k8 log2 n)-
approximation [8].
Organization: We present the proof of Theorem 1 in
Section 2. Section 3 presents an alternative proof of the
O(k2 log |T |)-approximation result for single-source VC-
SNDP. In Section 4 we show a connection between our
techniques and a well-studied notion of cover-free families.
Using this connection we show that our algorithms are
essentially tight, and that similar techniques cannot give
significantly better approximation guarantees.

2. THE ALGORITHM FOR VC-SNDP

Recall that in VC-SNDP we are given an undirected graph
G(V,E) with costs on edges, and a connectivity requirement
r(u, v) ≤ k for all u, v ∈ V . Additionally, we have a subset
T ⊆ V of terminals, and r(u, v) > 0 only if u, v ∈ T . The
pairs of terminals with non-zero connectivity requirements
are called source-sink pairs. We will use OPT to denote the
cost of an optimal solution to the given VC-SNDP instance.

Our algorithm is as follows. We create p identical copies
of our input graph G, say G1, G2, . . . , Gp, where p is a
parameter to be determined later. For each copy Gi we
define a subset Ti ⊆ T of terminals. We then view Gi

as an instance of element-connectivity SNDP, where the
connectivity requirements are induced by the set Ti of
terminals as follows. For each s, t ∈ Ti the new connectivity
requirement is the same as the original one. For all other
pairs the connectivity requirements are 0. Observe that for
each Gi the cost of an optimal solution for the induced
element-connectivity SNDP instance is at most OPT. We
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then apply the 2-approximation algorithm of [12] to each one
of the p instances of the k-element connectivity problem. Let
Ei denote the set of edges output by the 2-approximation
algorithm on the instance defined on the Gi. Our final
solution is E∗ = E1 ∪ E2 ∪ ... ∪ Ep. Since any solution
to the original VC-SNDP instance is also a feasible solution
for each one of the p element-connectivity instances created
above, the cost of the solution above is bounded by 2p·OPT.

We now show that for p = O(k3 log |T |), there exist
subsets T1, T2, ..., Tp such that the solution E∗ produced
above is a feasible solution for VC-SNDP. Moreover, we
show a simple randomized algorithm to create the sets
T1, T2, ..., Tp.

Definition 2.1: Let M be the input collection of source-
sink pairs, and let T be the corresponding set of terminals.
We say that a family {T1, . . . , Tp} of subsets of T is k-
resilient iff for each source-sink pair (s, t) ∈ M, for each
subset X ⊆ T \ {s, t} of size at most (k − 1), there is a
subset Ti, 1 ≤ i ≤ p, such that s, t ∈ Ti and X ∩ Ti = ∅.

We show below that a k-resilient family of subsets exists
for p = O(k3 log |T |), and give a poly-time randomized
algorithm to find such a family with high probability. We
start by proving that such a family guarantees that the
algorithm produces a feasible solution.

Lemma 2: Let {T1, . . . , Tp} be a k-resilient family of
subsets. Then the output E∗ of the above algorithm is a
feasible solution to the VC-SNDP instance.

Proof: Let (s, t) ∈M be any source-sink pair, and let
X ⊆ V \ {s, t} be any collection of at most (r(s, t)− 1) ≤
(k−1) vertices. It is enough to show that the removal of X
from the graph induced by E∗ does not separate s from t. Let
X ′ = X ∩ T . Since {T1, . . . , Tp} is a k-resilient family of
subsets, there is some Ti such that s, t ∈ Ti while Ti∩X ′ =
∅. Recall that set Ei of edges defines a feasible solution to
the element-connectivity SNDP instance corresponding to
Ti. Then X is a set of non-terminal vertices with respect
to Ti. Since s is r(s, t)-element connected to t in the graph
induced by Ei, the removal of X from the graph does not
disconnect s from t.

We now show how to construct a k-resilient family
of subsets {T1, . . . , Tp}. Let p = 128k3 log |T |, and set
q = p/(2k) = 64k2 log |T |. Each terminal t ∈ T selects
q random indices uniformly and independently from the set
{1, 2, ..., p} (repetitions are allowed). Let φ(t) denote the set
of indices chosen by the terminal t. For each 1 ≤ i ≤ p, we
then define Ti = {t | i ∈ φ(t)}.

Lemma 3: With high probability, the resulting family
{T1, . . . , Tp} of subsets is k-resilient.

Proof: We extend the definition of φ() to an arbitrary
subset Z of vertices by defining φ(Z) =

⋃
t∈Z∩T φ(t). Fix

any source-sink pair (s, t). Let X be an arbitrary set of
at most (k − 1) vertices that does not include s, t. Note
that |φ(X)| ≤ (k − 1)q < p/2. We say that the bad event

E1(s, t,X) occurs if |φ(s)∩φ(X)| ≥ 3q
4 . The expected value

of |φ(s) ∩ φ(X)| is at most q/2, so by Chernoff bounds,

Pr[E1(s, t,X)] ≤ e−
q
32 .

We say that the bad event E2(s, t,X) occurs if φ(s) ∩
φ(t) ⊆ φ(X). We say that the set X is a bad set for a pair
(s, t) if the event E2(s, t,X) occurs. Note that if there is no
bad set X of size at most (k−1) for every pair (s, t) ∈M,
then {T1, . . . , Tp} is a k-resilient family.

We observe that if event E1(s, t,X) does not happen, then
|φ(s) \ φ(X)| ≥ q/4, so

Pr[E2(s, t,X) | E1(s, t,X)] ≤
(

1− q/4
p

)q

≤ e−
q2
4p ≤ e−

q
8k

Thus we can bound the probability of the event E2(s, t,X)
as follows:

Pr[E2(s, t,X)] = Pr[E2(s, t,X)|E1(s, t,X)]Pr[E1(s, t,X)]

+ Pr[E2(s, t,X)|E1(s, t,X)]Pr[E1(s, t,X)]

≤ Pr[E1(s, t,X)] + Pr[E2(s, t,X)|E1(s, t,X)]

≤ e−
q
32 + e−

q
8k

< |T |−4k.

Hence, using the union bound, the probability that some
bad set X of size at most (k − 1) exists for any pair (s, t)
can be bounded by |T |−2k.

Combining Lemmas 2 and 3, we obtain the following
corollary.

Corollary 1: There is a randomized O(k3 log |T |)-
approximation algorithm for VC-SNDP.
Remark 2: We note that this result implies that the standard
set-pair relaxation for VC-SNDP [14] has an integrality
gap of O(k3 log |T |). This follows from the fact that the
2-approximation result of [12] also establishes an upper
bound of 2 on the integrality gap of the set-pair relaxation
for element-connectivity. We also note that a lower bound
of Ω̃(k1/3) is known on the integrality gap of the set-pair
relaxation for VC-SNDP [4].
Remark 3: We also note that our reduction carries over
to the node-weighted version of VC-SNDP, and in partic-
ular an α-approximation algorithm for the node-weighted
element-connectivity SNDP would imply an O(αk3 log |T |)-
approximation for the node-weighted VC-SNDP.

3. THE ALGORITHM FOR SINGLE-SOURCE VC-SNDP
In this section we show that an O(k2 log |T |)-

approximation algorithm can be easily achieved using the
above ideas for the single-source version of VC-SNDP. Sev-
eral algorithms achieving similar approximation factors have
been proposed recently [8], [6], [23]. While the algorithm
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and the analysis proposed here are elementary, we make
use of the (relatively involved) 2-approximation algorithm
of [12] as a black box. The algorithms of [8], [6] have the
advantage that they are presented “from scratch”, using only
elementary tools, and when viewed as such they are rather
simple.

Recall that the input to the single-source VC-SNDP is a
graph G(V,E) with a special vertex s called the source, and
a subset T of terminals, where for each t ∈ T , we are given
a connectivity requirement r(s, t) ≤ k. The goal is to select
a minimum-cost subset E′ ⊆ E of edges, such that in the
graph induced by E′ every terminal t ∈ T is r(s, t)-vertex
connected to s. This is clearly a special case of VC-SNDP,
where all source-sink pairs are of the form {(s, t)}t∈T .
As before, we create a family {T1, . . . , Tp} of subsets of
terminals, Ti ⊆ T for all 1 ≤ i ≤ p. We also create
p identical copies of our input graph G, say G1, . . . , Gp.
For each Gi we solve the single-source element-connectivity
SNDP instance with connectivity requirements induced by
terminals in Ti. Let Ei be the 2-approximate solution to
instance Gi. Our final solution is E∗ =

⋃p
i=1 Ei. Clearly,

the cost of the solution is at most 2p ·OPT.
Definition 3.1: A family {T1, . . . , Tp} of subsets of ter-

minals is weakly k-resilient iff for each terminal t ∈ T , for
each subset X ⊆ T \ {t} of at most (k− 1) terminals, there
is i : 1 ≤ i ≤ p, such that t ∈ Ti and X ∩ Ti = ∅.

Lemma 4: If {T1, . . . , Tp} is a weakly k-resilient family
of subsets then the above algorithm produces a feasible
solution.

Proof: Let t ∈ T and let X ⊆ V \ {s, t} be any subset
of at most r(s, t)− 1 ≤ (k − 1) vertices excluding s and t.
It is enough to prove that the removal of X from the graph
induced by E∗ does not disconnect s from t. Let X ′ =
X ∩ T . Since {T1, . . . , Tp} is a weakly k-resilient family,
there is some i : 1 ≤ i ≤ p such that t ∈ Ti and Ti∩X ′ = ∅.
Consider the solution Ei to the corresponding k-element
connectivity instance. Since vertices of X are non-terminal
vertices for the instance Gi, their removal from the graph
induced by Ei does not disconnect s from t.

Let p = 4k2 log |T | and q = p/(2k) = 2k log |T |. Each
terminal t ∈ T selects q indices from the set {1, 2, ..., p}
uniformly at random with repetitions. Let φ(t) denote the
set of indices chosen by the terminal t. For each 1 ≤ i ≤ p,
we then define Ti = {t | i ∈ φ(t)}.

Lemma 5: With high probability, the resulting family of
subsets {T1, . . . , Tp} is weakly k-resilient.

Proof: Let t ∈ T be any terminal and let X be any
subset of at most r(s, t)−1 ≤ (k−1) terminals. As before,
we extend the function φ to an arbitrary subset Z of vertices
by defining φ(Z) =

⋃
t∈Z∩T φ(t). We say that bad event

E(t, X) occurs iff φ(t) ⊆ φ(X).

The probability of E(t, X) is at most
(

1− kq

p

)q

=
(

1
2

)q

≤ |T |−2k

Therefore, with high probability the event E(t, X) does
not happen for any t, X and then {T1, . . . , Tp} is weakly
k-resilient.

Combining Lemmas 4 and 5, we obtain the following
corollary.

Corollary 2: There is a randomized O(k2 log |T |)-
approximation algorithm for single-source VC-SNDP.

4. RESILIENT VS. COVER-FREE FAMILIES

The notion of a k-resilient and weakly k-resilient families
is closely related to a well-studied notion in coding theory
and combinatorics, namely, cover-free families of sets. A
family F of sets over a universe U = {1, 2, . . . , p} is said
to be r-cover-free if for all distinct A, S1, . . . , Sr ∈ F , it
satisfies the property that A '⊆

⋃r
j=1 Sj . This is precisely the

property underlying our construction of a weakly k-resilient
family. In particular, {T1, T2, . . . , Tp} is weakly k-resilient
iff F = {φ(t) | t ∈ T} is a (k − 1)-cover-free family.

Let N(r, λ) denote the smallest integer p such that there
exists an r-cover-free family with λ sets over a universe
of p elements. It is easy to see that the smaller the value
N(r, λ), the better the approximation guarantee achieved by
the algorithm of Section 3. A classical result of Dyachkov
and Rykov [9] (see the note by Füredi [15] for a simple
proof of this lower bound result) shows that

N(r, λ) = Ω
(

r2 log λ

log r

)
.

An immediate corollary of this result is that for any
weakly k-resilient family for a set T of terminals, the
parameter p must be Ω

(
k2 log |T |

log k

)
. Thus the bound achieved

by the simple randomized construction given in Lemma 5
is tight to within a O(log k) factor.

Kumar, Rajagopalan, and Sahai [21] gave an elegant
deterministic construction for cover-free families based on
Reed-Solomon codes. The construction gives slightly weaker
guarantees than the randomized construction. For sake of
completeness, we briefly describe their construction. Let
Fq = {u1, u2, ..., uq} be a finite field for some prime q.
Moreover, let Fq,d be the set of all polynomials over Fq of
degree at at most d where d = q/k. Consider the family
of sets F = {Sf | f ∈ Fq,d+1} defined over the universe
U = Fq × Fq where Sf = {〈u1, f(u1)〉, . . . , 〈uq, f(uq)〉}.
Then F is a (k−1)-cover-free family since any two distinct
polynomials in Fq,d can agree on at most d points. Since
the size of the underlying universe U is p = q2 and
|F| = Ω(qd), we get a deterministic construction for a
weakly k-resilient family with p = O

(
k2 log2 |T |

log2(k log |T |)

)
.
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A natural generalization of r-cover-free family is a (w, r)-
cover-free family that is defined as follows. A family F of
sets over a universe U = {1, 2, ..., p} is said to be (w, r)-
cover-free if for all any A1, A2, . . . , Aw ∈ F and any other
S1, . . . , Sr ∈ F , it satisfies the property that

⋂w
i=1 Ai '⊆⋃r

j=1 Sj . It is easy to see that {T1, T2, . . . , Tp} is k-resilient
iff F = {φ(t) | t ∈ T} is a (2, k − 1)-cover-free family.
Let N(w, r,λ) denote the smallest integer p such that there
exists a (w, r)-cover-free family with λ sets over a universe
of p elements. Stinson, Wei, and Zhu [27] showed that for
any r ≥ 1, there exists a λ0 that depends only on r, such
that for all λ ≥ λ0

N(2, r,λ) = Ω
(

r3 log λ

log r

)
.

An immediate corollary of this result is that for any k-
resilient family for a set T of terminals, the parameter p must
be Ω

(
k3 log |T |

log k

)
. Thus the bound achieved by the simple

randomized construction given in Lemma 3 is tight to within
a O(log k) factor.
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