An $O\left(k^{3} \log n\right)$-Approximation Algorithm for Vertex-Connectivity Survivable Network Design

Julia Chuzhoy*
Toyota Technological Institute
Chicago, IL 60637
cjulia@tti-c.org

Sanjeev Khanna ${ }^{\dagger}$
University of Pennsylvania
Philadelphia PA 19104
sanjeev@cis.upenn.edu

Abstract

In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V, E)$ with costs on edges, along with a connectivity requirement $r(u, v)$ for each pair u, v of vertices. The goal is to find a minimum-cost subset E^{*} of edges, that satisfies the given set of pairwise connectivity requirements. In the edge-connectivity version we need to ensure that there are $r(u, v)$ edge-disjoint paths for every pair u, v of vertices, while in the vertex-connectivity version the paths are required to be vertexdisjoint. The edge-connectivity version of SNDP is known to have a 2-approximation. However, no non-trivial approximation algorithm has been known so far for the vertex version of SNDP, except for special cases of the problem.

We present an extremely simple algorithm to achieve an $O\left(k^{3} \log |T|\right)$-approximation for this problem, where k denotes the maximum connectivity requirement, and T is the set of vertices that participate in one or more pairs with non-zero connectivity requirements. We also give a simple proof of the recently discovered $O\left(k^{2} \log |T|\right)$-approximation algorithm for the single-source version of vertex-connectivity SNDP. Our results establish a natural connection between vertex-connectivity and a well-understood generalization of edge-connectivity, namely, element-connectivity, in that, any instance of vertex-connectivity can be expressed by a small number of instances of the element-connectivity problem.

Keywords-survivable network design; vertex-connectivity.

1. Introduction

In the Survivable Network Design problem (SNDP), we are given an undirected graph $G(V, E)$ with costs on edges, and a connectivity requirement $r(u, v)$ for each pair u, v of vertices. The goal is to find a minimum cost subset E^{*} of edges, such that each pair (u, v) of vertices is connected by $r(u, v)$ paths. In the edge-connectivity version (EC-SNDP), these paths are required to be edge-disjoint, while in the vertex-connectivity version (VC-SNDP), they need to be vertex-disjoint. It is not hard to show that ECSNDP can be cast as a special case of VC-SNDP. We denote by n the number of vertices in the graph and by k the maximum pairwise connectivity requirement, that is, $k=\max _{u, v \in V}\{r(u, v)\}$. We also define a subset $T \subseteq V$ of vertices called terminals: a vertex $u \in T$ iff $r(u, v)>0$ for some vertex $v \in V$.

[^0]General VC-SNDP: While a celebrated result of Jain [16] gives a 2-approximation algorithm for EC-SNDP, no nontrivial approximation algorithms are known for VC-SNDP, except for restricted special cases. Agrawal et. al. [1] showed a 2-approximation algorithm for the special case when maximum connectivity requirement $k=1$. For $k=2$, a 2 approximation algorithm was given by Fleischer [11]. The k-vertex connected spanning subgraph problem, a special case of VC-SNDP where for all $u, v \in V r_{u, v}=k$, has been studied extensively. Cheriyan et al. [2], [3] gave an $O(\log k)$-approximation algorithm for this case when $k \leq \sqrt{n / 6}$, and an $O(\sqrt{n / \epsilon})$-approximation algorithm for $k \leq(1-\epsilon) n$. For large k, Kortsarz and Nutov [20] improved the preceding bound to an $O\left(\ln k \cdot \min \left\{\sqrt{k}, \frac{n}{n-k} \ln k\right\}\right)$ approximation. Fakcharoenphol and Laekhanukit [10] improved it to an $O(\log n \log k)$-approximation, and further obtained an $O\left(\log ^{2} k\right)$-approximation for $k<n / 2$. Very recently, Nutov [25] improved this to $O\left(\log k \cdot \log \frac{n}{n-k}\right)$ approximation.

Kortsarz et. al. [18] showed that VC-SNDP is hard to approximate to within a factor of $2^{\log ^{1-\epsilon} n}$ for any $\epsilon>0$, when k is polynomially large in n. This result was subsequently strengthened by Chakraborty et. al. [4] to a k^{ϵ}-hardness for all $k>k_{0}$, where k_{0} and ϵ are fixed positive constants. However, the existence of good approximation algorithms for small values of k has remained an open problem, even for $k \geq 3$. In particular, when each connectivity requirement $r_{u, v} \in\{0,3\}$, the best known approximation factor is polynomially large ($\tilde{O}(n)$ to best of our knowledge) while only an APX-hardness is known. The main result of our paper is an $O\left(k^{3} \log |T|\right)$-approximation algorithm for VCSNDP.

Single-Source VC-SNDP: A special case of VC-SNDP that has received much attention recently is the single-source version. In this problem there is a special vertex s called the source, and all non-zero connectivity requirements involve s, that is, if $u \neq s$ and $v \neq s$, then $r(u, v)=0$. Kortsarz et. al [18] showed that even this restricted special case of VC-SNDP is hard to approximate up to factor $\Omega(\log n)$, and recently Lando and Nutov [22] improved this to $(\log n)^{2-\epsilon_{-}}$
hardness of approximation for any constant $\epsilon>0$. We note that both results only hold when k is polynomially large in n. On the algorithmic side, Chakraborty et. al. [4] gave an $2^{O\left(k^{2}\right)} \log ^{4} n$-approximation for the problem. This result was later independently improved to an $O\left(k^{O(k)} \log n\right)$ approximation by Chekuri and Korula [5], and to an $O\left(k^{2} \log n\right)$-approximation by Chuzhoy and Khanna [8], and by Nutov [23]. Recently, Chekuri and Korula [6] simplified the analysis of the algorithm of [8]. We note that for the uniform case, where all non-zero connectivity requirements are k, Chuzhoy and Khanna [8] show a slightly better $O(k \log n)$-approximation algorithm, and the results of [6] extend to this special case. In this paper we give a simple $O\left(k^{2} \log |T|\right)$-approximation algorithm for single-source VC-SNDP.

Element-Connectivity SNDP: A closely related problem to EC-SNDP and VC-SNDP is the element-connectivity SNDP. The input to the element-connectivity SNDP is the same as for EC-SNDP and VC-SNDP. As before, we define the set $T \subseteq V$ of terminals to be vertices that participate in one or more pairs with a positive connectivity requirement. Given a problem instance, an element is any edge or any nonterminal vertex in the graph. We say that a pair (s, t) of vertices is k-element connected iff for every subset X of at most $(k-1)$ elements, s and t remain connected by a path when X is removed from the graph. In other words, there are k element-disjoint paths connecting s to t; these paths are allowed to share terminals. Observe that if a pair (s, t) is k-vertex connected, then it is also k-element connected, and similarly, if a pair (s, t) is k-element connected, then it is also k-edge connected. But the converse relationships do not hold, that is, if a pair (s, t) is k-edge connected, then it need not be k-element connected, and similarly, if a pair (s, t) is k-element connected, then it need not be k vertex connected. Thus the notion of element-connectivity resides in between edge-connectivty and vertex-connectivity. The goal in the element-connectivity SNDP is to select a minimum-cost subset E^{*} of edges, such that in the graph induced by E^{*}, each pair (u, v) of vertices is $r(u, v)$-element connected. The element-connectivity SNDP was introduced in [17] as a problem of intermediate difficulty between edge-connectivity and vertex-connectivity, and the authors gave a primal-dual $O(\log k)$-approximation for this problem. Subsequently, Fleischer et al. [12] gave a 2-approximation algorithm for element-connectivity SNDP via the iterative rounding technique, matching the 2 -approximation guarantee of Jain [16] for EC-SNDP. We use this result as a building block for our algorithm.
Our Results: Our main result is as follows.
Theorem 1: There is a polynomial-time randomized $O\left(k^{3} \log |T|\right)$-approximation algorithm for VC-SNDP, where k is the largest pairwise connectivity requirement.

The proof of this result is based on a randomized reduc-
tion that maps a given instance of VC-SNDP to a family of instances of element-connectivity SNDP. The reduction creates $O\left(k^{3} \log |T|\right)$ instances, and has the property that any collection of edges that is feasible for each one of the element-connectivity SNDP instances generated above, is a feasible solution for the given VC-SNDP instance. We can thus use the known 2-approximation algorithm for elementconnectivity SNDP to obtain the desired result.

We use these ideas to also give an alternative simple proof of the $O\left(k^{2} \log |T|\right)$-approximation algorithm for the singlesource VC-SNDP problem.

As noted earlier, the notion of element-connectivity is trivially subsumed by vertex-connectivity. Our result shows that in a weak sense, the converse also holds in that any set of pairwise vertex-connectivity requirements can be captured by a collection of element-connectivity instances.
Remark 1: We note that very recently, subsequent to our work, Nutov [24] has shown an $O\left(k^{2}\right)$-approximation algorithm for single-source VC-SNDP. He also studied the more general version of VC-SNDP, where the costs are on vertices (instead of edges), and has given an $O\left(k^{4} \log ^{2}|T|\right)$ approximation algorithm for the general problem, and an $O\left(k^{2} \log |T|\right)$-approximation for the single-source version. The latter result improves upon the recent $O\left(k^{8} \log ^{2} n\right)$ approximation [8].
Organization: We present the proof of Theorem 1 in Section 2. Section 3 presents an alternative proof of the $O\left(k^{2} \log |T|\right)$-approximation result for single-source VCSNDP. In Section 4 we show a connection between our techniques and a well-studied notion of cover-free families. Using this connection we show that our algorithms are essentially tight, and that similar techniques cannot give significantly better approximation guarantees.

2. The Algorithm for VC-SNDP

Recall that in VC-SNDP we are given an undirected graph $G(V, E)$ with costs on edges, and a connectivity requirement $r(u, v) \leq k$ for all $u, v \in V$. Additionally, we have a subset $T \subseteq V$ of terminals, and $r(u, v)>0$ only if $u, v \in T$. The pairs of terminals with non-zero connectivity requirements are called source-sink pairs. We will use OPT to denote the cost of an optimal solution to the given VC-SNDP instance.

Our algorithm is as follows. We create p identical copies of our input graph G, say $G_{1}, G_{2}, \ldots, G_{p}$, where p is a parameter to be determined later. For each copy G_{i} we define a subset $T_{i} \subseteq T$ of terminals. We then view G_{i} as an instance of element-connectivity SNDP, where the connectivity requirements are induced by the set T_{i} of terminals as follows. For each $s, t \in T_{i}$ the new connectivity requirement is the same as the original one. For all other pairs the connectivity requirements are 0 . Observe that for each G_{i} the cost of an optimal solution for the induced element-connectivity SNDP instance is at most OPT. We
then apply the 2-approximation algorithm of [12] to each one of the p instances of the k-element connectivity problem. Let E_{i} denote the set of edges output by the 2-approximation algorithm on the instance defined on the G_{i}. Our final solution is $E^{*}=E_{1} \cup E_{2} \cup \ldots \cup E_{p}$. Since any solution to the original VC-SNDP instance is also a feasible solution for each one of the p element-connectivity instances created above, the cost of the solution above is bounded by $2 p$. OPT.

We now show that for $p=O\left(k^{3} \log |T|\right)$, there exist subsets $T_{1}, T_{2}, \ldots, T_{p}$ such that the solution E^{*} produced above is a feasible solution for VC-SNDP. Moreover, we show a simple randomized algorithm to create the sets $T_{1}, T_{2}, \ldots, T_{p}$.

Definition 2.1: Let \mathcal{M} be the input collection of sourcesink pairs, and let T be the corresponding set of terminals. We say that a family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets of T is k resilient iff for each source-sink pair $(s, t) \in \mathcal{M}$, for each subset $X \subseteq T \backslash\{s, t\}$ of size at most $(k-1)$, there is a subset $T_{i}, 1 \leq i \leq p$, such that $s, t \in T_{i}$ and $X \cap T_{i}=\emptyset$.

We show below that a k-resilient family of subsets exists for $p=O\left(k^{3} \log |T|\right)$, and give a poly-time randomized algorithm to find such a family with high probability. We start by proving that such a family guarantees that the algorithm produces a feasible solution.

Lemma 2: Let $\left\{T_{1}, \ldots, T_{p}\right\}$ be a k-resilient family of subsets. Then the output E^{*} of the above algorithm is a feasible solution to the VC-SNDP instance.

Proof: Let $(s, t) \in \mathcal{M}$ be any source-sink pair, and let $X \subseteq V \backslash\{s, t\}$ be any collection of at most $(r(s, t)-1) \leq$ $(k-1)$ vertices. It is enough to show that the removal of X from the graph induced by E^{*} does not separate s from t. Let $X^{\prime}=X \cap T$. Since $\left\{T_{1}, \ldots, T_{p}\right\}$ is a k-resilient family of subsets, there is some T_{i} such that $s, t \in T_{i}$ while $T_{i} \cap X^{\prime}=$ \emptyset. Recall that set E_{i} of edges defines a feasible solution to the element-connectivity SNDP instance corresponding to T_{i}. Then X is a set of non-terminal vertices with respect to T_{i}. Since s is $r(s, t)$-element connected to t in the graph induced by E_{i}, the removal of X from the graph does not disconnect s from t.

We now show how to construct a k-resilient family of subsets $\left\{T_{1}, \ldots, T_{p}\right\}$. Let $p=128 k^{3} \log |T|$, and set $q=p /(2 k)=64 k^{2} \log |T|$. Each terminal $t \in T$ selects q random indices uniformly and independently from the set $\{1,2, \ldots, p\}$ (repetitions are allowed). Let $\phi(t)$ denote the set of indices chosen by the terminal t. For each $1 \leq i \leq p$, we then define $T_{i}=\{t \mid i \in \phi(t)\}$.

Lemma 3: With high probability, the resulting family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets is k-resilient.

Proof: We extend the definition of $\phi()$ to an arbitrary subset Z of vertices by defining $\phi(Z)=\bigcup_{t \in Z \cap T} \phi(t)$. Fix any source-sink pair (s, t). Let X be an arbitrary set of at most $(k-1)$ vertices that does not include s, t. Note that $|\phi(X)| \leq(k-1) q<p / 2$. We say that the bad event
$\mathcal{E}_{1}(s, t, X)$ occurs if $|\phi(s) \cap \phi(X)| \geq \frac{3 q}{4}$. The expected value of $|\phi(s) \cap \phi(X)|$ is at most $q / 2$, so by Chernoff bounds,

$$
\operatorname{Pr}\left[\mathcal{E}_{1}(s, t, X)\right] \leq e^{-\frac{q}{32}}
$$

We say that the bad event $\mathcal{E}_{2}(s, t, X)$ occurs if $\phi(s) \cap$ $\phi(t) \subseteq \phi(X)$. We say that the set X is a bad set for a pair (s, t) if the event $\mathcal{E}_{2}(s, t, X)$ occurs. Note that if there is no bad set X of size at most $(k-1)$ for every pair $(s, t) \in \mathcal{M}$, then $\left\{T_{1}, \ldots, T_{p}\right\}$ is a k-resilient family.

We observe that if event $\mathcal{E}_{1}(s, t, X)$ does not happen, then $|\phi(s) \backslash \phi(X)| \geq q / 4$, so
$\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \overline{\mathcal{E}_{1}(s, t, X)}\right] \leq\left(1-\frac{q / 4}{p}\right)^{q} \leq e^{-\frac{q^{2}}{4 p}} \leq e^{-\frac{q}{8 k}}$
Thus we can bound the probability of the event $\mathcal{E}_{2}(s, t, X)$ as follows:

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X)\right] & =\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \mathcal{E}_{1}(s, t, X)\right] \operatorname{Pr}\left[\mathcal{E}_{1}(s, t, X)\right] \\
& +\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \overline{\mathcal{E}_{1}(s, t, X)}\right] \operatorname{Pr}\left[\overline{\mathcal{E}_{1}(s, t, X)}\right] \\
& \leq \operatorname{Pr}\left[\mathcal{E}_{1}(s, t, X)\right]+\operatorname{Pr}\left[\mathcal{E}_{2}(s, t, X) \mid \overline{\mathcal{E}_{1}(s, t, X)}\right] \\
& \leq e^{-\frac{q}{32}}+e^{-\frac{q}{8 k}} \\
& <|T|^{-4 k} .
\end{aligned}
$$

Hence, using the union bound, the probability that some bad set X of size at most $(k-1)$ exists for any pair (s, t) can be bounded by $|T|^{-2 k}$.

Combining Lemmas 2 and 3, we obtain the following corollary.

Corollary 1: There is a randomized $O\left(k^{3} \log |T|\right)$ approximation algorithm for VC-SNDP.

Remark 2: We note that this result implies that the standard set-pair relaxation for VC-SNDP [14] has an integrality gap of $O\left(k^{3} \log |T|\right)$. This follows from the fact that the 2-approximation result of [12] also establishes an upper bound of 2 on the integrality gap of the set-pair relaxation for element-connectivity. We also note that a lower bound of $\tilde{\Omega}\left(k^{1 / 3}\right)$ is known on the integrality gap of the set-pair relaxation for VC-SNDP [4].
Remark 3: We also note that our reduction carries over to the node-weighted version of VC-SNDP, and in particular an α-approximation algorithm for the node-weighted element-connectivity SNDP would imply an $O\left(\alpha k^{3} \log |T|\right)$ approximation for the node-weighted VC-SNDP.

3. The Algorithm for Single-Source VC-SNDP

In this section we show that an $O\left(k^{2} \log |T|\right)$ approximation algorithm can be easily achieved using the above ideas for the single-source version of VC-SNDP. Several algorithms achieving similar approximation factors have been proposed recently [8], [6], [23]. While the algorithm
and the analysis proposed here are elementary, we make use of the (relatively involved) 2-approximation algorithm of [12] as a black box. The algorithms of [8], [6] have the advantage that they are presented "from scratch", using only elementary tools, and when viewed as such they are rather simple.

Recall that the input to the single-source VC-SNDP is a graph $G(V, E)$ with a special vertex s called the source, and a subset T of terminals, where for each $t \in T$, we are given a connectivity requirement $r(s, t) \leq k$. The goal is to select a minimum-cost subset $E^{\prime} \subseteq E$ of edges, such that in the graph induced by E^{\prime} every terminal $t \in T$ is $r(s, t)$-vertex connected to s. This is clearly a special case of VC-SNDP, where all source-sink pairs are of the form $\{(s, t)\}_{t \in T}$. As before, we create a family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets of terminals, $T_{i} \subseteq T$ for all $1 \leq i \leq p$. We also create p identical copies of our input graph G, say G_{1}, \ldots, G_{p}. For each G_{i} we solve the single-source element-connectivity SNDP instance with connectivity requirements induced by terminals in T_{i}. Let E_{i} be the 2-approximate solution to instance G_{i}. Our final solution is $E^{*}=\bigcup_{i=1}^{p} E_{i}$. Clearly, the cost of the solution is at most $2 p \cdot$ OPT.

Definition 3.1: A family $\left\{T_{1}, \ldots, T_{p}\right\}$ of subsets of terminals is weakly k-resilient iff for each terminal $t \in T$, for each subset $X \subseteq T \backslash\{t\}$ of at most $(k-1)$ terminals, there is $i: 1 \leq i \leq p$, such that $t \in T_{i}$ and $X \cap T_{i}=\emptyset$.

Lemma 4: If $\left\{T_{1}, \ldots, T_{p}\right\}$ is a weakly k-resilient family of subsets then the above algorithm produces a feasible solution.

Proof: Let $t \in T$ and let $X \subseteq V \backslash\{s, t\}$ be any subset of at most $r(s, t)-1 \leq(k-1)$ vertices excluding s and t. It is enough to prove that the removal of X from the graph induced by E^{*} does not disconnect s from t. Let $X^{\prime}=$ $X \cap T$. Since $\left\{T_{1}, \ldots, T_{p}\right\}$ is a weakly k-resilient family, there is some $i: 1 \leq i \leq p$ such that $t \in T_{i}$ and $T_{i} \cap X^{\prime}=\emptyset$. Consider the solution E_{i} to the corresponding k-element connectivity instance. Since vertices of X are non-terminal vertices for the instance G_{i}, their removal from the graph induced by E_{i} does not disconnect s from t.

Let $p=4 k^{2} \log |T|$ and $q=p /(2 k)=2 k \log |T|$. Each terminal $t \in T$ selects q indices from the set $\{1,2, \ldots, p\}$ uniformly at random with repetitions. Let $\phi(t)$ denote the set of indices chosen by the terminal t. For each $1 \leq i \leq p$, we then define $T_{i}=\{t \mid i \in \phi(t)\}$.

Lemma 5: With high probability, the resulting family of subsets $\left\{T_{1}, \ldots, T_{p}\right\}$ is weakly k-resilient.

Proof: Let $t \in T$ be any terminal and let X be any subset of at most $r(s, t)-1 \leq(k-1)$ terminals. As before, we extend the function ϕ to an arbitrary subset Z of vertices by defining $\phi(Z)=\bigcup_{t \in Z \cap T} \phi(t)$. We say that bad event $\mathcal{E}(t, X)$ occurs iff $\phi(t) \subseteq \phi(X)$.

The probability of $\mathcal{E}(t, X)$ is at most

$$
\left(1-\frac{k q}{p}\right)^{q}=\left(\frac{1}{2}\right)^{q} \leq|T|^{-2 k}
$$

Therefore, with high probability the event $\mathcal{E}(t, X)$ does not happen for any t, X and then $\left\{T_{1}, \ldots, T_{p}\right\}$ is weakly k-resilient.

Combining Lemmas 4 and 5, we obtain the following corollary.

Corollary 2: There is a randomized $O\left(k^{2} \log |T|\right)$ approximation algorithm for single-source VC-SNDP.

4. Resilient vs. Cover-Free Families

The notion of a k-resilient and weakly k-resilient families is closely related to a well-studied notion in coding theory and combinatorics, namely, cover-free families of sets. A family \mathcal{F} of sets over a universe $U=\{1,2, \ldots, p\}$ is said to be r-cover-free if for all distinct $A, S_{1}, \ldots, S_{r} \in \mathcal{F}$, it satisfies the property that $A \nsubseteq \bigcup_{j=1}^{r} S_{j}$. This is precisely the property underlying our construction of a weakly k-resilient family. In particular, $\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$ is weakly k-resilient iff $\mathcal{F}=\{\phi(t) \mid t \in T\}$ is a $(k-1)$-cover-free family.

Let $N(r, \lambda)$ denote the smallest integer p such that there exists an r-cover-free family with λ sets over a universe of p elements. It is easy to see that the smaller the value $N(r, \lambda)$, the better the approximation guarantee achieved by the algorithm of Section 3. A classical result of Dyachkov and Rykov [9] (see the note by Füredi [15] for a simple proof of this lower bound result) shows that

$$
N(r, \lambda)=\Omega\left(\frac{r^{2} \log \lambda}{\log r}\right)
$$

An immediate corollary of this result is that for any weakly k-resilient family for a set T of terminals, the parameter p must be $\Omega\left(\frac{k^{2} \log |T|}{\log k}\right)$. Thus the bound achieved by the simple randomized construction given in Lemma 5 is tight to within a $O(\log k)$ factor.

Kumar, Rajagopalan, and Sahai [21] gave an elegant deterministic construction for cover-free families based on Reed-Solomon codes. The construction gives slightly weaker guarantees than the randomized construction. For sake of completeness, we briefly describe their construction. Let $\mathbb{F}_{q}=\left\{u_{1}, u_{2}, \ldots, u_{q}\right\}$ be a finite field for some prime q. Moreover, let $F_{q, d}$ be the set of all polynomials over \mathbb{F}_{q} of degree at at most d where $d=q / k$. Consider the family of sets $\mathcal{F}=\left\{S_{f} \mid f \in F_{q, d+1}\right\}$ defined over the universe $U=\mathbb{F}_{q} \times \mathbb{F}_{q}$ where $S_{f}=\left\{\left\langle u_{1}, f\left(u_{1}\right)\right\rangle, \ldots,\left\langle u_{q}, f\left(u_{q}\right)\right\rangle\right\}$. Then \mathcal{F} is a $(k-1)$-cover-free family since any two distinct polynomials in $F_{q, d}$ can agree on at most d points. Since the size of the underlying universe U is $p=q^{2}$ and $|\mathcal{F}|=\Omega\left(q^{d}\right)$, we get a deterministic construction for a weakly k-resilient family with $p=O\left(\frac{k^{2} \log ^{2}|T|}{\log ^{2}(k \log |T|)}\right)$.

A natural generalization of r-cover-free family is a (w, r) -cover-free family that is defined as follows. A family \mathcal{F} of sets over a universe $U=\{1,2, \ldots, p\}$ is said to be (w, r) -cover-free if for all any $A_{1}, A_{2}, \ldots, A_{w} \in \mathcal{F}$ and any other $S_{1}, \ldots, S_{r} \in \mathcal{F}$, it satisfies the property that $\bigcap_{i=1}^{w} A_{i} \nsubseteq$ $\bigcup_{j=1}^{r} S_{j}$. It is easy to see that $\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$ is k-resilient iff $\mathcal{F}=\{\phi(t) \mid t \in T\}$ is a $(2, k-1)$-cover-free family. Let $N(w, r, \lambda)$ denote the smallest integer p such that there exists a (w, r)-cover-free family with λ sets over a universe of p elements. Stinson, Wei, and Zhu [27] showed that for any $r \geq 1$, there exists a λ_{0} that depends only on r, such that for all $\lambda \geq \lambda_{0}$

$$
N(2, r, \lambda)=\Omega\left(\frac{r^{3} \log \lambda}{\log r}\right) .
$$

An immediate corollary of this result is that for any k resilient family for a set T of terminals, the parameter p must be $\Omega\left(\frac{k^{3} \log |T|}{\log k}\right)$. Thus the bound achieved by the simple randomized construction given in Lemma 3 is tight to within a $O(\log k)$ factor.

Acknowledgements

We thank Chandra Chekuri for his helpful comments on an earlier version of this paper.

REFERENCES

[1] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized steiner problem on networks. SIAM J. of Computing, 24(3):440-456, 1995.
[2] J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the minimum-cost k-vertex connected subgraph. SIAM J. of Computing, 32(4):1050-1055, 2003.
[3] J. Cheriyan, S. Vempala, and A. Vetta. Network design via iterative rounding of setpair relaxations. Combinatorica, 26(3):255-275, 2006.
[4] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network Design for Vertex Connectivity. In Proceedings of ACM Symp. on Theory of Computing (STOC), 2008.
[5] C. Chekuri and N. Korula. Single-Sink Network Design with Vertex Connectivity Requirements. FSTTCS, 2008.
[6] C. Chekuri and N. Korula. A Graph Reduction Step Preserving Element -Connectivity and Applications. ICALP, 2009.
[7] J. Chuzhoy and S. Khanna. An $O\left(k^{3} \log n\right)$-Approximation Algorithm for Vertex-Connectivity Survivable Network Design. arXiv:0812.4442v1, 2008.
[8] J. Chuzhoy and S. Khanna. Algorithms for single-source vertex connectivity. In Proceedings of the IEEE Symp. on Foundations of Computer Science (FOCS), 2008.
[9] A. G. Dyachkov and V. V. Rykov. Bounds on the length of disjunctive codes. Problemy Peredachi Informatsii, 18(3): 7-13, 1982 (in Russian).
[10] J. Fakcharoenphol and B. Laekhanukit. An $O\left(\log ^{2} k\right)$-appro-
ximation algorithm for the k-vertex connected subgraph problem. In Proceedings of ACM Symposium on Theory of Computing (STOC), 2008.
[11] L. Fleischer. A 2-Approximation for Minimum Cost $\{0,1$, 2\} Vertex Connectivity. IPCO, pp. 115-129, 2001.
[12] L. Fleischer, K. Jain, and D. P. Williamson. An Iterative Rounding 2-Approximation Algorithm for the Element Connectivity Problem. In Proc. of the IEEE Symp. on Foundations of Computer Science (FOCS), pp. 339-347, 2001.
[13] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms for minimum cost vertex connectivity problems. Journal of Computer and System Sciences, 72(5):838-867, 2006.
[14] A. Frank and T. Jordan. Minimal edge-coverings of pairs of sets. Journal of Combinatorial Theory, Series B, 65(1):73110, 1995.
[15] Z. Füredi. On r-Cover-free Families. J. Comb. Theory, Ser. A 73(1):172-173, 1996.
[16] K. Jain. Factor 2 approximation algorithm for the generalized steiner network problem. In Proceedings of the thirty-ninth annual IEEE Foundations of Computer Science (FOCS), pages 448-457, 1998.
[17] K. Jain, I. Mandoiu, V.V. Vazirani and D.P. Williamson. A primal-dual schema based approximation algorithm for the element connectivity problem. J. Algorithms 45(1), pp. 1-15.
[18] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-connectivity network design problems. SIAM J. of Computing, 33(3):704-720, 2004.
[19] G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers. Algorithmica, 37(2):75-92, 2003.
[20] G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs. SIAM J. of Computing, 35(1):247-257, 2005.
[21] R. Kumar, S. Rajagopalan, and A. Sahai. Coding Constructions for Blacklisting Problems without Computational Assumptions. In CRYPTO, pp. 609-623, 1999.
[22] Y. Lando and Z. Nutov. Inapproximability of Survivable Networks APPROX 2008, Lecture Notes in Computer Science, 5171, pp. 146-152.
[23] Z. Nutov. A note on Rooted Survivable Networks. Manuscript, 2008. http://www.openu.ac.il/home/nutov/RSND.pdf.
[24] Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies and spider-cover decompositions. In Proc. of the IEEE Symposium on Foundations of Computer Science (FOCS), 2009.
[25] Z. Nutov. An almost $O(\log k)$-approximation for k-connected subgraphs. In Proceedings of the Twentieth Annual ACMSIAM Symposium on Discrete Algorithms (SODA), pp. 912921, 2009.
[26] R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertex-connectivity problems. Algorithmica, 18(1):21-43, 1997.
[27] D. R. Stinson, R. Wei, and L. Zhu. Some New Bounds for Cover-Free Families. J. Comb. Theory, Ser. A, 90(1):224-234, 2000.

[^0]: *Research supported in part by NSF CAREER award CCF-0844872.
 \dagger Research supported in part by a Guggenheim Fellowship, an IBM Faculty Award, and by NSF Award CCF-0635084.

