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Problem 1 (10 points) Clearly answer “True” or “False” for each of the following assertions. 
(Rohan) 
a. In one of the course readings, we saw evidence that the diameter of the Facebook graph has 
increased dramatically with the number of users. 
 

False: The diameter of the Facebook graph has actually decreased slightly over time as each 
new user tends to create a large number of friendships that increase the connectivity of the graph. 
 
b. In the mathematical collaboration network, there are vertices that do not lie in the giant component. 
 

True: Consider, for example, two authors who write a paper together and then never write a 
paper again - they will not lie in the giant component.   
 
c. In most real-world, large-scale social networks, the number of edges actually present grows more 
rapidly than the number of vertices. 
 

True: The number of possible edges grows as a function of n^2. Furthermore, if actual edges 
represent relationships, each new person added to a graph will almost certainly create more than one 
new edge. More likely is that each new vertex will create many relationships, which means that the 
number of actual edges will naturally grow faster than the number of vertices.  
 
d. If a network has a clustering coefficient much higher than the overall edge density, there must be 
distinct communities present. 
 

True: The clustering coefficient captures the connectivity of different communities - if it is 
significantly higher than the background edge density (as it is in all real social networks), then there 
must be communities present.  
 
e. In the giant component demo studied in class, the giant component emerges suddenly when the 
average degree is about the square root of the population size. 
 

False: The giant component emerges at average degree = 1 (p = 1/n). If you didn’t remember 
this, consider a real world example: the Facebook network has about 10^9 users - if this was true, the 
giant component would not emerge until the average person had 10^4.5 (about 32,000) friends. 
 
f. The diameter of the giant component must always be finite. 
 

True: Nodes in the same connected component must by definition have a path between them. 
This means that every pairwise shortest path is finite, because path lengths are only defined as infinite 
when no path exists.  
 
g. In “Six Degrees”, it is argued that clustering of connectivity appears in large social networks, but not 
in biological or physical networks. 
 

False: Clustering naturally occurs in most large scale networks. 
 
h. The property of a network not containing any cycles is a monotone property. 



 
False: Consider a tree with exactly n-1 edges and no cycles. If we add one edge to this network, 

we will immediately form a cycle. In fact, any connected component with n vertices and >= n edges 
must contain a cycle. If we can add edges and ‘break’ some property of the network, the property is not 
monotone. 
 
i. The only properties known to have a tipping point or threshold behavior in the Erdos-Renyi model 
are giant component and small diameter. 
 

False: Any monotone property has a tipping point in the Erdos-Renyi model for network 
formation. We can think up as many monotone properties as we would like, but consider for example 
the property of a network containing a cycle of length 5.  
 
j. The smaller components in the squash network were geographically diverse. 
 

This question was sufficiently ambiguous that I accepted both answers. Within the smaller 
components, the vertices were not geographically diverse. Across the smaller components, the vertices 
were geographically diverse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 2 (15 points) The diagram below is taken from one of the assigned readings. Precisely 
describe the experiment in the article. Clearly explain what the x and y axes are showing or measuring, 
and discuss the result that the diagram is summarizing and why it is interesting. 
(Chris) 

 

 
 

This diagram is taken from the article “Structural Diversity in Social Contagion.” The goal of 
the experiment is to analyze the growth of Facebook.  Facebook recruits new users by emailing them 
and showing that some of their real world friends are already using Facebook. The authors find that 
recruitment success is tightly controlled by the number of connected components in an individual’s 
contact neighborhood (his friends in the email), rather than by the actual size of the neighborhood.  
 The x-axis shows the connectivity of the contact neighborhood of the recruited individual. The 
far left side represents a fully-connected contact neighborhood and the far right side represents a 
completely disconnected contact neighborhood. The y-axis represents the probability that the recruit 
joins Facebook. 
 The diagram shows that lower connectivity (greater number of connected components) among 
the friends in the email leads to higher recruitment rate, indicating that potential users are swayed by 
structural diversity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 3 (10 points) Let S be some set of vertices in a graph or network. Then the subgraph induced 
by S is the graph obtained by paying attention only to the vertices in S and the edges between them, and 
ignoring all other vertices and edges. For example, in the graph shown below, the subgraph induced by 
S = {a,b,c} is the triangle between those three vertices, and the subgraph induced by S = {c,d,e} 
consists of three isolated vertices. 
(Chris) 
 

 
 
Now consider the specific 5-vertex graph shown above; let’s call it H. Consider the following property 
of a graph G: “G contains H as an induced subgraph”. This means that there exist 5 vertices in G whose 
induced subgraph looks exactly like H above. 
 
a. Is the property of containing H as an induced subgraph a monotone property? Why or why not? 
 

The property of containing H is NOT monotone. Suppose we have the property (H is an 
induced subgraph) and we add one more edge. If the new edge is between any two of the vertices in H, 
then H will change into a different graph, and we will no longer have H as an induced subgraph. 

 
 

 
 
 
b. Consider a graph G over N vertices that is generated according to the Erdos-Renyi model. If N is 
very large and we add enough edges, do you expect that at some point G will contain H as an induced 
subgraph? Why or why not? 
 
 If N is very large and we add enough edges, G will have a VERY large number of induced 
subgraphs. Specifically, any combination of 5 vertices in G form a subgraph, so the number of 
subgraphs is on the order of N^5. Because we have so many possible subgraphs to choose from, there 
is a high probability that at least one of them will look like H. 
 
 
 
 
 
 
 
 
 
 



Problem 4 (10 points) Consider the 12 by 12 grid graph shown below, where there is a vertex at every 
corner or intersection point. Consider the process, discussed in class, of routing a message from vertex 
A to vertex B by always forwarding to the neighbor whose grid address is nearest to the destination 
(ties are broken arbitrarily). 
(Rohan) 
 

 
 
 
a. Exactly how many hops or steps will it take to route the message from A to B? Are there many 
possible paths the message might take or only one? 
 

It will take exactly 11 hops to get from point A to point B. At each step, the message will be 
forwarded to a neighbor that is closer (by grid distance) to the target. If two of a node’s neighbors are 
the same distance from the target it will be indifferent to where it forwards the message. Here the tie 
will be broken randomly (for example, A is initially indifferent as to whether it forwards the message 
up or to the right) so there are many possible paths.  

 
 
 
 
b. Draw in new a “long-distance” edge added to the grid such that the shortest-path distance from A to 
B becomes as small as possible, but that the answers to part a. above are unchanged. 
 

If we add an edge from the node directly below A or directly to the left of A that connects 
directly to B, we will reduce the shortest path between A and B from 11 to 2. However, a navigation 
algorithm that only has local information would never forward the message away from the target, and 
the nodes below and to the left of A are 12 hops away from B by grid distance. Thus, the message will 
still be forwarded along one of the 11 hop paths, and the answer to part a will remain unchanged. 

 
 

 
 
 
 
 
 



Problem 5 (20 points) This problem refers to the assigned reading “Can Cascades be Predicted?”, by 
Cheng et al.. which describes an attempt to predict whether a given piece of content posted on 
Facebook will “go viral”. 
 
a. (10 points) The article begins by discussing a technical difficulty with simply predicting whether a 
piece of content will reach a given number of reshares. What is this technical difficulty, and how do the 
authors propose getting around it? 
(Rohan) 
 

Virtually all posts on Facebook do not go viral, so a predictive model that simply guesses that 
every post will reach a very low number of reshares will be right 99.99%+ of the time. To get around 
this difficulty, the authors restrict their study to posts that reach some threshold of k reshares, and try to 
predict if each of these posts will eventually reach the median number of reshares f(k) for all posts that 
also reached k reshares. This controls for the fact that most posts don’t go viral, allows the authors to 
study the life of a viral post and helps normalize the heavy tail distribution of reshares across posts. 

 
 

 
 
 
 
 
b.  (10 points) Briefly but clearly describe the approach the authors take to their problem, and 
summarize their main findings. Topics for discussion might include the performance the authors 
achieve and how it compares to the baseline, the various categories of “features” they introduce and 
what they measure, and the relative values these features seem to have and how it changes as the 
cascade grows. 
(Chris) 
 
 The authors analyze one month’s worth of Facebook photo reshare data by considering the 
predictive value of many different features (content, origins, network structure (structural) , time 
between reshares (temporal), etc.). They find that the temporal and structural features are key 
predictors of cascade size, while the origins of the content become less important as the cascade 
progresses. They also find that initial breadth (through a broadcast) rather than depth in a cascade is a 
better indicator of larger cascades. 
 The authors achieve strong performance (nearly 80% accuracy) in predicting whether a cascade 
will continue to grow in the future. Furthermore, the authors find that the growth of a cascade becomes 
more predictable as more of its reshares are observed.  
 
 
 
 
 
 
 
 
 
 
 



Problem 6 (20 points) 
 
In class and the readings, we examined three different network formation models that will all yield a 
clustering coefficient higher than the overall edge density. Briefly but as precisely as you can, describe 
each model, and for each, say whether you think the model generates networks with clear “community” 
structure or not, and why. 
(Rohan) 
 

The first model that we studied was the alpha model. In the alpha model we examine each pair 
of vertices, and if they don’t share any common neighbors we connect them with some background 
probability p. However, if they do share some fraction of common neighbors x, we connect them with 
the probability p + (x/N)^a, where a is a parameter that we can adjust. For any fixed a and N, the 
probability of connecting two arbitrary vertices increases as a function of x, the number of common 
neighbors they share. This introduces a bias towards connecting friends of friends, and thus creates a 
clustering coefficient higher than the background edge density. For smaller values of a (< 1) this bias is 
amplified, whereas larger values of a will do the opposite. For a = 1, the bias toward connecting friends 
of friends increases as a linear function of the number of neighbors two vertices share.  

The second model that we studied was the (rewired) ring model. Here we have a ring where 
each vertex is connected to its immediate clockwise and counterclockwise neighbors, and also two its 
neighbors two hops away. Here each node has four neighbors, and those neighbors are themselves 
connected by 3 edges. There are four choose 2 = 6 possible edges, so each node has a clustering 
coefficient of .5. Because the network is perfectly symmetrical, the network clustering coefficient is 
also .5 (the average of each node’s individual clustering coefficient). Because each node has a degree 
of 4, there are (4/2)*n = 2n total edges in this network. As always, there are n choose 2 = n(n-1)/2 
possible edges, so the background edge density is 2n / (n(n-1)/2) = ~ 4/n. Clearly as n goes to infinity, 
4/n goes to 0, but the clustering coefficient will remain constant at .5.  

The third model that we studied (in lecture) is the community or coloring model. Here we 
partition the network into k distinct categories (thought of as colors or communities) and then run a 
modified Erdos-Renyi on the graph. When we examine two nodes of the same ‘color’, we connect them 
with probability p. When we examine two nodes of different ‘colors’, we connect them with probability 
q. Assuming p is significantly larger than q, this model will create highly clustered graphs where each 
of the k communities is densely intraconnected but sparsely interconnected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 7 (15 points) The image below is reproduced from one of the assigned articles, and was also 
discussed in lecture. Briefly but precisely describe exactly what the x and y axes are measuring, and 
what point the diagram is making.  
(Chris) 
 

 
 
 This diagram is from Dr. Kearns’s paper about the network of registered squash players in the 
US. The vertices in the network are squash players and two players are connected by an edge if they 
have played in a registered match against one another. This is reminiscent of the network of 
coauthorships among mathematicians. 

The x-axis represents the shortest path from a squash player to Ramy Ashour, and the y-axis 
represents the average ranking of the squash players. The rankings are determined by the governing 
body, with a higher ranking indicating a better player. 

The diagram is making the point that “Ashour number” is negatively correlated with the quality 
of the player. That is, on average, players that are closer to Ashour in the squash network tend to have 
higher rankings. This is not surprising, but it is still interesting to see because it confirms something 
that we might expect to be true about the network. 
 
 
 
 
 
 
 
 
 
 


