Contagion in Networks

Networked Life
NETS 112
Fall 2019
Prof. Michael Kearns

Two Models of Network Formation

- Start with a grid, remove random fraction of vertices
- "local" or "geographic" connectivity
- Start with N isolated vertices, add random edges
- "long distance" connectivity
- Examine a deterministic contagion model
- Widespread infection occurs at "tipping point" of connectivity

"Mathematizing" the Forest Fire

(see Coursera "Contagion" video)

- Start with a regular 2-dimensional grid network
- this represents a complete forest
- Delete each vertex (and all 4 of its edges) with probability 1-p
- p is fraction of forest, 1-p is fraction of parking lots or clear-cut
- Choose a random remaining vertex v
- this is my campsite
- Q: What is the expected size of v's connected component?
- i.e. the number of vertices reachable from v
- this is how much of the forest is going to burn
- Observe a "tipping point" around $p=0.6$

"Mathematizing" the Average Degree Demo (see Coursera "Contagion" video)

- Let d be the desired average degree in a network of N vertices
- Then the total number of edges should be

$$
e=d \times N / 2
$$

- Just start connecting random pairs of vertices until you have e edges
- Pick a random vertex v to infect
- What is the size of v's connected component?
- Observe a "tipping point" around d=3

Some Remarks on the Demos

- Connectivity patterns were either local or random
- will eventually formalize such models
- what about other/more realistic structure?
- Tipping was inherently a statistical phenomenon
- probabilistic nature of connectivity patterns
- probabilistic nature of disease spread
- model likely properties of a large set of possible outcomes
- can model either inherent randomness or variability
- Formalizing tipping in the forest fire demo:
- might let grid size $N \rightarrow$ infinity, look at fixed values of p
- is there a threshold value q :
- $p<q \rightarrow$ expected fraction burned $<1 / 10$
- $p>q \rightarrow$ expected fraction burned $>9 / 10$

Structure and Dynamics Case Study: A "Contagion" Model of Economic Exchange

- Imagine an undirected, connected network of individuals
- no model of network formation
- Start each individual off with some amount of currency
- At each time step:
- each vertex divides their current cash equally among their neighbors
- (or chooses a random neighbor to give it all to)
- each vertex thus also receives some cash from its neighbors
- repeat
- A transmission model of economic exchange --- no "rationality"
- Q: How does network structure influence outcome?
- A: As time goes to infinity:
- vertex i will have fraction deg(i)/D of the wealth; $D=\operatorname{sum}$ of deg(i)
- degree distribution entirely determines outcome!
- "connectors" are the wealthiest

- not obvious: consider two degree $=2$ vertices...
- How does this outcome change when we consider more "realistic" dynamics?
- e.g. we each have goods available for trade/sale, preferred goods, etc.
- What other processes have similar dynamics?
- looking ahead: models for web surfing behavior

"Structural Virality"
 Goel, Anderson, Hofman, Watts

- Every video, news story, image, or petition posted to Twitter over' 12 months (1.4 B observations)
- Restrict to "popular" cascades (> 100 RTs; $\sim 350 \mathrm{~K}$ events)
- For each event, can quantity its "structural virality"
- Average Pairwise Shortest Path Length

"Broadcast"

"Viral"

Diversity of Structural Virality

Popular $=$ Viral

Popularity driven mostly by the size of the largest broadcast

