Introduction to (Networked) Game Theory

Networked Life NETS 112 Fall 2019 Prof. Michael Kearns

Game Theory for Fun and Profit

- The "Beauty Contest" Game
- Write your name and an integer between 0 and 100
- Let X denote the average of all the numbers
- Whoever's number is closest to (2/3)X wins \$10
- Split in case of ties

Game Theory for Fun and Profit

- class average = 23.66, avg x 2/3 = 15.77
- Winner: Sonia Pearson guessed 16, wins \$10

Game Theory for Fun and Profit

- class average = 25.11, avg x 2/3 = 16.75
- Jenny Lee and Elli's Asadi-Wright guessed 17, win \$5 each

Game Theory

- A mathematical theory designed to model:
 - how rational individuals should behave
 - when individual outcomes are determined by *collective* behavior
 - strategic behavior
- *Rational* usually means selfish ---- but not always
- Rich history, flourished during the Cold War
- Traditionally viewed as a subject of economics
- Subsequently applied by many fields
 - evolutionary biology, social psychology... now computer science
- Perhaps the branch of pure math most widely examined outside of the "hard" sciences

Games for Two

- Prisoner's Dilemma
- Chicken
- Matching Pennies

Prisoner's Dilemma

	cooperate	defect
cooperate	-1, -1	-10 , -0.25
defect	-0.25, -10	-8, -8

- Cooperate = deny the crime; defect = confess guilt of both
- Claim that (defect, defect) is an equilibrium:
 - if I am definitely going to defect, you choose between -10 and -8
 - so you will also defect
 - same logic applies to me
- Note *unilateral* nature of equilibrium:
 - I fix a behavior or strategy for you, then choose my best response
- Claim: no other pair of strategies is an equilibrium
- But we would have been so much better off cooperating...

Penny Matching

	heads	tails
heads	1, 0	<mark>0</mark> , 1
tails	<mark>0</mark> , 1	1 , 0

- What are the equilibrium strategies now?
- There are none!
 - if I play heads then you will of course play tails
 - but that makes me want to play tails too
 - which in turn makes you want to play heads
 - etc. etc. etc.
- But what if we can each (privately) *flip coins*?
 - the strategy pair (1/2, 1/2) is an equilibrium
- Such randomized strategies are called *mixed strategies*

The World According to Nash

- A mixed strategy for a player is a *distribution* on their available actions
 e.g. 1/3 rock, 1/3 paper, 1/3 scissors
- *Joint* mixed strategy for N players:
 - a probability distribution for each player (possibly different)
 - assume everyone knows all the distributions
 - but the "coin flips" used to *select* from player P's distribution known *only* to P
 - "private randomness"
 - so only player P knows their actual choice of action
 - can people randomize? (more later)
- Joint mixed strategy is an *equilibrium* if:
 - for every player P, their distribution is a *best response* to all the others
 - i.e. cannot get higher (average or expected) payoff by changing distribution
 - only consider *unilateral* deviations by each player!
 - Nash 1950: every game has a mixed strategy equilibrium!
 - no matter how many rows and columns there are
 - in fact, no matter how many players there are
- Thus known as a *Nash equilibrium*
- A major reason for Nash's Nobel Prize in economics

Facts about Nash Equilibria

- While there is always at least *one*, there might be *many*
 - zero-sum games: all equilibria give the same payoffs to each player
 - non zero-sum: different equilibria may give different payoffs!
- Equilibrium is a *static* notion
 - does not suggest how players might *learn* to play equilibrium
 - does not suggest how we might *choose* among multiple equilibria
- Nash equilibrium is a strictly competitive notion
 - players cannot have "pre-play communication"
 - bargains, side payments, threats, collusions, etc. not allowed
- Computing Nash equilibria for large games is difficult

Behavioral Game Theory: What do People *Really* Do?

(Slides adapted from Colin Camerer, CalTech)

Behavioral Game Theory and Game Practice

- Game theory: how rational individuals should behave
- Who are these rational individuals?
- BGT: looks at how people actually behave
 - experiment by setting up real economic situations
 - account for people's economic decisions
 - don't break game theory when it works
- Fit a model to observations, not "rationality"

Beauty Contest Analysis

- Some number of players try to guess a number that is 2/3 of the average guess.
- The answer can't be between 68 and 100 no use guessing in that interval. It is *dominated*.
- But if no one guesses in that interval, the answer won't be greater than 44.
- But if no one guesses more than 44, the answer won't be greater than 29...
- Everyone should guess 0! And good game theorists might...

But they'd lose...

Ultimatum Game

- Proposer has \$10
- Offers x to Responder (keeps \$10-x)
- What should the Responder do?
 - Self-interest: Take any x > 0
 - Empirical: Reject x = \$2 half the time

How People Ultimatum-Bargain

Thousands of games have been played in experiments...

- In different cultures around the world
- With different stakes
- With different mixes of men and women
- By students of different majors
- Etc. etc. etc.

Pretty much always, two things prove true:

- 1. Player 1 offers close to, but less than, half (40% or so)
- 2. Player 2 rejects low offers (20% or less)

Ultimatum offers across societies (mean shaded, mode is largest circle...)

Behavioral Game Theory: Some Key Themes

- Bounded Rationality: Humans don't have unlimited computational/reasoning capacity (Beauty Contest)
- Inequality Aversion: Humans often deviate from equilibrium towards "fairness" (Ultimatum)
- Mixed Strategies: Humans can generate "random" values within limits; better if paid.

Game Theory Review

- Specify a game by payoffs to each player under all possible joint actions
 - matrix or "normal form" games
- Nash equilibrium: choice of actions (a1,a2) for the players such that
 - a1 is a best response to a2, a2 is a best response to a1 (e.g. (confess, confess) in PD)
 - neither player can unilaterally improve their payoff
 - More generally, every player is best-responding to the other N-1 players
- Nash equilibria always exist; players may need to randomize
- A static, instantaneous concept
 - no notion of dynamics, repeated or gradual play, learning, etc.
- Examples so far:
 - small number of players (2)
 - small number of actions per player (e.g. deny or confess)
 - no notion of network

Games on Networks

- Large number of players
- Large number of actions
- Network mediates the interactions between players and payoffs
 - player's payoff depends only on local interactions
- Don't need exhaustive table to specify payoffs
 - instead specify payoffs for each configuration of the local neighborhood
- Often consider dynamic, gradual interactions
 - but (Nash) equilibrium still a valuable guide

Example: Schelling's Segregation Model

- Large number of players: 2500 in demo
- Large number of actions: all currently empty cells
- Network mediates the interactions: grid network
 - any player's payoff depends on only their neighboring cells
- Don't need exhaustive table to specify payoffs
 - payoff = 1 if at least X% like neighbors; else payoff = 0
- Often consider dynamic, gradual interactions
 - unhappy (payoff=0) players move to empty cell, may improve payoff
 - simulation converges to a Nash equilibrium (all players payoff=1)

Example: Driving to Work

- "Players" are commuters driving to work (large number)
 - each has their own origin and destination
 - wants to minimize their driving time
- Actions are routes they could take (large number)
 - multiple freeway choices, surface roads, etc.
- Network of roads intermediates payoffs
 - player's driving time depends only on how many other players are driving same roads
 - cost (= -payoff): sum of latencies on series of roads chosen
- Very complex game; still has a Nash equilibrium
- Equivalent to Internet routing
- How inefficient can the equilibrium outcome be?

Consensus and Coordination in Networks

- Players are individuals in a social network
- Actions are simple choices of colors to adopt
- Social network intermediates payoffs and information
 - only see color choices of your neighbors
 - payoff determined by your color choices and neighbors'
- Consensus: want to agree on common color
- Differentiation: want to be a different color than neighbors
- Biased voting: want to agree on a common color, but "care" which color
- How does network structure influence individual and collective behavior?

Trading and Bargaining in Networks

- Players are individuals in a social network
- Actions are financial
 - trading: barter offers (e.g. trade 1 unit of Milk for 2 units of Wheat)
 - bargaining: proposals for splitting \$1 (as in Ultimatum Game)
- Social network intermediates payoffs and information
 - Can only trade/bargain with your neighbors
 - payoff determined by what deals you strike with neighbors
- How does network position influence player wealth?
- What does equilibrium predict, and what do players actually do?

Summary

- Coming lectures examine games and economic interactions on networks
- Will move back and forth between theory and experimental results
- Experiments conducted in offline class at University of Pennsylvania
- Common themes:
 - equilibrium predictions vs. behavior
 - effects of network structure on individual and collective outcome

