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Game Theory for Fun and Profit
• The “Beauty Contest” Game
• Write your name and an integer between 0 and 100
• Let X denote the average of all the numbers
• Whoever’s number is closest to (2/3)X wins $10
• Split in case of ties



Game Theory for Fun and Profit
• class average = 23.66, avg x 2/3 = 15.77
• Winner: Sonia Pearson guessed 16, wins $10



Game Theory for Fun and Profit
• class average = 25.11, avg x 2/3 = 16.75
• Jenny Lee and Elli`s Asadi-Wright guessed 17, win $5 each



Game Theory
• A mathematical theory designed to model:

– how rational individuals should behave
– when individual outcomes are determined by collective behavior
– strategic behavior

• Rational usually means selfish --- but not always
• Rich history, flourished during the Cold War
• Traditionally viewed as a subject of economics
• Subsequently applied by many fields

– evolutionary biology, social psychology… now computer science
• Perhaps the branch of pure math most widely examined outside 

of the “hard” sciences



Games for Two
• Prisoner’s Dilemma
• Chicken
• Matching Pennies



Prisoner’s Dilemma

• Cooperate = deny the crime; defect = confess guilt of both
• Claim that (defect, defect) is an equilibrium:

– if I am definitely going to defect, you choose between -10 and -8
– so you will also defect
– same logic applies to me

• Note unilateral nature of equilibrium:
– I fix a behavior or strategy for you, then choose my best response

• Claim: no other pair of strategies is an equilibrium
• But we would have been so much better off cooperating…

cooperate defect

cooperate -1, -1 -10, -0.25

defect -0.25, -10 -8, -8



Penny Matching

• What are the equilibrium strategies now?
• There are none!

– if I play heads then you will of course play tails
– but that makes me want to play tails too
– which in turn makes you want to play heads
– etc. etc. etc.

• But what if we can each (privately) flip coins?
– the strategy pair (1/2, 1/2) is an equilibrium 

• Such randomized strategies are called mixed strategies

heads tails

heads 1, 0 0, 1

tails 0, 1 1, 0



The World According to Nash
• A mixed strategy for a player is a distribution on their available actions

– e.g. 1/3 rock, 1/3 paper, 1/3 scissors
• Joint mixed strategy for N players: 

– a probability distribution for each player (possibly different)
– assume everyone knows all the distributions
– but the “coin flips” used to select from player P’s distribution known only to P

• “private randomness”
• so only player P knows their actual choice of action
• can people randomize? (more later)

• Joint mixed strategy is an equilibrium if:
– for every player P, their distribution is a best response to all the others

• i.e. cannot get higher (average or expected) payoff by changing distribution 
• only consider unilateral deviations by each player!

– Nash 1950: every game has a mixed strategy equilibrium!
– no matter how many rows and columns there are
– in fact, no matter how many players there are

• Thus known as a Nash equilibrium
• A major reason for Nash’s Nobel Prize in economics



Facts about Nash Equilibria
• While there is always at least one, there might be many

– zero-sum games: all equilibria give the same payoffs to each player
– non zero-sum: different equilibria may give different payoffs!

• Equilibrium is a static notion
– does not suggest how players might learn to play equilibrium
– does not suggest how we might choose among multiple equilibria

• Nash equilibrium is a strictly competitive notion
– players cannot have “pre-play communication”
– bargains, side payments, threats, collusions, etc. not allowed

• Computing Nash equilibria for large games is difficult



Behavioral Game Theory:
What do People Really Do?

(Slides adapted from Colin Camerer, CalTech)



Behavioral Game Theory
and Game Practice

• Game theory: how rational individuals should behave
• Who are these rational individuals?
• BGT: looks at how people actually behave

– experiment by setting up real economic situations
– account for people’s economic decisions
– don’t break game theory when it works

• Fit a model to observations, not “rationality”



Beauty Contest Analysis
Some number of players try to guess a number that is 2/3 of 

the average guess.
The answer can’t be between 68 and 100 - no use guessing in 

that interval. It is dominated.
But if no one guesses in that interval, the answer won’t be 

greater than 44.
But if no one guesses more than 44, the answer won’t be 

greater than 29…
Everyone should guess 0! And good game theorists might…

But they’d lose…



Beauty contest results (Expansion, 
Financial Times, Spektrum) 
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Ultimatum Game

• Proposer has $10
• Offers x to Responder (keeps $10-x)
• What should the Responder do? 

– Self-interest:  Take any x > 0
– Empirical: Reject x = $2 half the time



How People Ultimatum-Bargain

Thousands of games have been played in experiments…

• In different cultures around the world
• With different stakes
• With different mixes of men and women
• By students of different majors
• Etc. etc. etc.

Pretty much always, two things prove true:
1. Player 1 offers close to, but less than, half (40% or so)
2. Player 2 rejects low offers (20% or less)



Ultimatum offers across societies 
(mean shaded, mode is largest circle…)



Behavioral Game Theory:
Some Key Themes

• Bounded Rationality: Humans don’t have unlimited 
computational/reasoning capacity (Beauty Contest)

• Inequality Aversion: Humans often deviate from 
equilibrium towards “fairness” (Ultimatum)

• Mixed Strategies: Humans can generate “random” 
values within limits; better if paid.



Game Theory Review
• Specify a game by payoffs to each player under all possible joint actions

– matrix or “normal form” games
• Nash equilibrium: choice of actions (a1,a2) for the players such that

– a1 is a best response to a2, a2 is a best response to a1 (e.g. (confess, confess) in PD)
– neither player can unilaterally improve their payoff
– More generally, every player is best-responding to the other N-1 players

• Nash equilibria always exist; players may need to randomize
• A static, instantaneous concept

– no notion of dynamics, repeated or gradual play, learning, etc.
• Examples so far:

– small number of players (2)
– small number of actions per player (e.g. deny or confess)
– no notion of network



Games on Networks
• Large number of players
• Large number of actions
• Network mediates the interactions between players and payoffs

– player’s payoff depends only on local interactions
• Don’t need exhaustive table to specify payoffs

– instead specify payoffs for each configuration of the local neighborhood
• Often consider dynamic, gradual interactions

– but (Nash) equilibrium still a valuable guide



Example: Schelling’s Segregation Model
• Large number of players: 2500 in demo
• Large number of actions: all currently empty cells
• Network mediates the interactions: grid network

– any player’s payoff depends on only their neighboring cells
• Don’t need exhaustive table to specify payoffs

– payoff = 1 if at least X% like neighbors; else payoff = 0
• Often consider dynamic, gradual interactions

– unhappy (payoff=0) players move to empty cell, may improve payoff
– simulation converges to a Nash equilibrium (all players payoff=1)



Example: Driving to Work
• “Players” are commuters driving to work (large number)

– each has their own origin and destination
– wants to minimize their driving time

• Actions are routes they could take (large number)
– multiple freeway choices, surface roads, etc.

• Network of roads intermediates payoffs
– player’s driving time depends only on how many other players are driving same roads
– cost (= -payoff): sum of latencies on series of roads chosen

• Very complex game; still has a Nash equilibrium
• Equivalent to Internet routing
• How inefficient can the equilibrium outcome be?



Consensus and Coordination in 
Networks

• Players are individuals in a social network
• Actions are simple choices of colors to adopt
• Social network intermediates payoffs and information

– only see color choices of your neighbors
– payoff determined by your color choices and neighbors’

• Consensus: want to agree on common color
• Differentiation: want to be a different color than neighbors
• Biased voting: want to agree on a common color, but “care” which color
• How does network structure influence individual and collective behavior?



Trading and Bargaining in Networks
• Players are individuals in a social network
• Actions are financial

– trading: barter offers (e.g. trade 1 unit of Milk for 2 units of Wheat)
– bargaining: proposals for splitting $1 (as in Ultimatum Game)

• Social network intermediates payoffs and information
– Can only trade/bargain with your neighbors
– payoff determined by what deals you strike with neighbors

• How does network position influence player wealth?
• What does equilibrium predict, and what do players actually do?



Summary
• Coming lectures examine games and economic interactions on networks
• Will move back and forth between theory and experimental results
• Experiments conducted in offline class at University of Pennsylvania
• Common themes:

– equilibrium predictions vs. behavior
– effects of network structure on individual and collective outcome


