Networked Games: Coloring, Consensus and Voting

Prof. Michael Kearns
Networked Life
NETS 112
Fall 2019

Experimental Agenda

- Human-subject experiments at the intersection of CS, economics, sociology, "network science"
- Subjects simultaneously participate in groups of ~ 36 people
- Subjects sit at networked workstations
- Each subject controls some simple property of a single vertex in some underlying network
- Subjects have only local views of the activity: state of their own and neighboring vertices
- Subjects have (real) financial incentive to solve their "piece" of a collective (global) task
- Simple example: graph coloring (social differentiation)
- choose a color for your vertex from fixed set
- paid iff your color differs from all neighbors when time expires
- max welfare solutions = proper colorings
- Across many experiments, have deliberately varied network structure and task/game
- networks: inspired by models from network science (small worlds, preferential attachment, etc.)
- tasks: chosen for diversity (cooperative vs. competitive) and (centralized) computational difficulty
- Goals:
- structure/tasks \rightarrow performance/behavior
- individual \& collective modeling \rightarrow prediction
- computational and equilibrium theories

Experiments to Date

- Graph Coloring
- player controls: color of vertex; number of choices = chromatic number payoffs: $\$ 2$ if different color from all neighbors, else 0 max welfare states: optimal colorings centralized computation: hard even if approximations are allowed
- Consensus
- player controls: color of vertex from 9 choices payoffs: $\$ 2$ if same color as all neighbors, else 0 max welfare states: global consensus of color centralized computation: trivial
- Independent Set
- player controls: decision to be a "King" or a "Pawn"; variant with King side payments allowed payoffs: $\$ 1 /$ minute for Solo King; $\$ 0.50 /$ minute for Pawn; 0 for Conflicted King; continuous accumulation max welfare states: maximum independent sets centralized computation: hard even if approximations are allowed
- Exchange Economy
- player controls: limit orders offering to exchange goods payoffs: proportional to the amount of the other good obtained max welfare states: market clearing equilibrium centralized computation: at the limit of tractability (LP used as a subroutine)
- Biased Voting
- player controls: choice of one of two colors payoffs: only under global agreement; different players prefer different colors max welfare states: all red and all blue centralized computation: trivial
- Networked Bargaining
- player controls: offers on each edge to split a cash amount; may have hidden deal limits and "transaction costs" payoffs: on each edge, a bargaining game --- payoffs only if agreement max welfare states: all deals/edges closed centralized computation: nontrivial, possibly difficult
- Voting with Network Formation
- player controls: edge purchases and choice of one of two colors payoffs: only under global agreement; different players prefer different colors max welfare states: ??? centralized computation: ???

Coloring and Consensus

```
    game progress
    80%
        game status:
        ColoringGame in progress
    elapsed time:
your current payoff:
    $2.00
(payoff is $2.00 if your color is DIFFERENT from all your neighbours, otherwise $0.00)
```

"first neighborhood" view

Art by Consensus

Sample Findings

- Generally strong collective performance
- nearly all problems globally solved in a couple minutes or less
- Systematic effects of structure on performance and behavior:
- rewiring harms coloring performance in "clique chain" family
- rewiring helps consensus performance in clique chain family
- Preferential attachment much harder than small worlds for coloring
- natural heuristics can give reverse order of difficulty
- Providing more global views of activity:
- helps coloring performance in small world family
- harms coloring performance in preferential attachment
- Coloring problems solved more rapidly than consensus
- easier to get people to disagree than agree

Biased Voting in Networks

Biased Voting in Networks

- Cosmetically similar to consensus, with a crucial strategic difference
- Deliberately introduce a tension between:
- individual preferences
- desire for collective unity
- Only two color choices; challenge comes from competing incentives
- If everyone converges to same color, everyone gets some payoff
- But different players have different preferences
- each player has payoffs for their preferred and non-preferred color
- e.g. $\$ 1.50 \mathrm{red} / \$ 0.50$ blue vs. $\$ 0.50 \mathrm{red} / \$ 1.50$ blue
- can have symmetric and asymmetric payoffs
- High-level experimental design:
- choice of network structures
- arrangement of types (red/blue prefs) \& strengths of incentives
- most interesting to coordinate network structure and types

000	Behavioural Network Science Games								
$4>c$	$+0$	ttp://kearnsgroup.cis.upen	n.edu/	BNS/games.php?	layername=	Zak+Xavier			(6) Q- Google
[0 travel	JCR Portal	ABN AMRO - ...al Banking	BofA	Penn.Pay Login	BlueCross	ACHE.org	PPM Members	Gmail	Adventuring Abroad...
Democratic Primary Games									

Zak Xavier

power 27

power 30

Minority Power: Preferential Attachment

Summary of Findings

- 55/81 experiments reached global consensus in 1 minute allowed
- mean of successful ~ 44 s
- Effects of network structure:
- Cohesion harder than Minority Power: 31/54 Cohesion, 24/27 Minority Power
- all 24 successful Minority Powers converge to minority preference!
- Cohesion P.A. (20/27) easier than Cohesion E-R
- overall, P.A. easier than E-R (contrast w/coloring)
- within Cohesion, increased inter-group communication helps
- some notable exceptions...
- Effects of incentives:
- asymmetric beats weak symmetric beats strong symmetric
- the value of "extremists"

Effects of "Personality"

Stubbormess

Behavioral Modeling

model: play color c with probability ~ payoff(c) x fraction in neighborhood playing c

Lessons Learned, 2005-2011

- At least for $n=36$, human subjects remarkably good
- diverse set of collective tasks
- diverse set of network topologies
- efficiency $\sim 90 \%$ across all tasks/topologies
- Network structure matters; interaction with task
- contrast with emphasis on topology alone
- Importance of subject variability and style/personality
- Most recently: endogenized creation of the network
- network formation games
- challenging computationally (best response) and analytically

Edge Purchases: Strategic Tensions

- Buy edges or not?
- For information or influence?
- Early in the game or late?
- To high degree or low degree players?
- Nearby or far away?

Experimental Design

- Session A: 99 experiments
- 63 "unseeded" with varying payoffs, imbalances, asymmetries
- 36 seeded with Minority Power settings
- Session B: 72 experiments
- mixture of unseeded and variety of seeded (cliques, torus)
- A: 47/99 solved (47\%): 25/63 unseeded, MP 22/36
- B: 27/72 solved (38\%)
- Session C: 72 experiments
- final networks from "hard" settings in Session A
- permitted 0 or 1 edge purchases per player
- started with both initial and final incentives from Session A
- C: 25/72 (35\%); All: 99/243 (41\%)
- Subjects seem to build difficult networks!

