(In)Stability Properties of Limit Order Dynamics

Collaborators: Eyal Even-Dar (Final Israel) Sham Kakade (Penn/Wharton Stats) Yishay Mansour (Tel Aviv University)

[EC 2006]

<u>refresh</u> <u>island home</u>	<u>disclaimer</u>	<u>help</u>
	GET STOCK	
🗔 MSFT	MSFT	go
	Symbol Search	

LAS	T MATCH	TODAY'S	ACTIVITY
Price	23.7790	Orders	1,630
Time	9:01:55.614	Volume	44,839

BUY (ORDERS	SELL	ORDERS
SHARES	PRICE	SHARES	PRICE
<u>1,000</u>	23.7600	<u> 100 </u>	23.7800
3,087	23,7500	800	23.7990
200	23,7500	<u> 500</u>	23.8000
<u> 100 </u>	23,7400	1,720	23.8070
1,720	23.7280	<u> </u>	23.8190
2,000	23.7200	<u>200</u>	23.8500
1,000	23.7000	<u>1,000</u>	23.8500
<u> 100 </u>	23,7000	1,000	23.8500
<u> 100 </u>	23.7000	<u>1,000</u>	23.8600
800	23.6970	<u>200</u>	24.0000
<u>500</u>	23.6500	<u> 500 </u>	24.0000
3,000	23.6500	1,000	24.0300
4,300	23.6500	<u>200</u>	24.0300
2,000	23.6500	1,100	24.0400
200	23.6200	<u> 500 </u>	24.0500
(195 more)		(219 more)	

"Backtesting" of Trading Strategies

- Common microstructure backtesting process:
 - assume access to historical limit order data
 - reconstruct complete order books at each point in time
 - insert hypothetical limit orders into the stream
 - simulate forward the execution of the hypothetical orders
- Faithfully simulates the mechanical aspects of market impact
- What about the reactive or "psychological" aspects?
- Formalize as a question about dynamical stability:
 - Make various assumptions about how future orders do or do not react to the past
 - Can tiny perturbations of the limit order sequence cause dramatic future change?
 - Butterfly Effects and Chaos

Two Models of Market Impact

- Both models deal with arbitrary, fixed sequences
- Absolute model:
 - market given by a sequence of "absolute" limit order prices (one share each)
 - e.g. M = (p_1,buy),(p_2,buy),(p_3,sell),...
 - order books constructed from sequence M
 - "mechanical" impact only
 - motivation:
 - traders with "inherent" valuations
 - traders with slow time scales, long investment horizons, poor microstructure access
- Relative model:
 - market given by a sequence of limit order prices relative to current bid & ask
 - e.g. M' = (d_1,buy),(d_2,buy),(d_3,sell),...
 - construct order books & actual prices in concert with each other
 - e.g. limit price p_2 = current bid + d_2; limit price p_3 = current ask + d_3; etc.
 - crude form of "psychological" or "reactive" impact
 - motivation:
 - traders "looking for a bargain"; trading off time for price
 - "penny-jumping", optimized execution
 - high-frequency traders with low latency and full microstructure access
- How do these models differ?

Stability

- Consider sequences in the two models:
 - absolute: $M = (p_1,type_1),(p_2,type_2),...$
 - relative: M' = (d_1,type_1),(d_2,type_2),...
- Now consider a small, arbitrary modification to each
 - e.g. deleting or adding a single order
 - (p_i,type_i) from M, (d_i,type_i) from M'
 - think of this as "our" action
- How much can such a change alter basic properties of the sequence?
 - stability = small change not amplified with time
 - instability = small change greatly amplified
- Absolute model: Every "reasonable" property stable!
 - volume executed, VWAP, closing price,...
 - note: must still be careful; some bounds depend on spread of M
 - generalizes to larger modifications, other types
- Relative model: Most properties highly unstable!
 - can find sequences (with bounded spread) such that single deletion causes arbitrarily large changes in volume executed, VWAP, closing price,...

Absolute Model Stability

- <B,S> = original buy and sell books (at some point in simulation)
- <B',S'> = modified buy and sell books (at the same point)
- Introduce "meta-states" with small "edit distance" between simulations
- E.g. meta-state where B = B' and S U {s'} = S' U {s} for some s != s'
- Main technical lemma establishes:

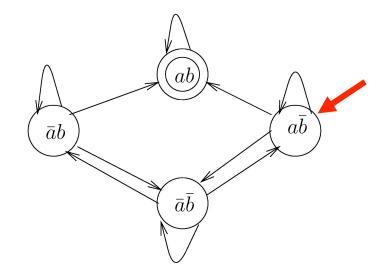
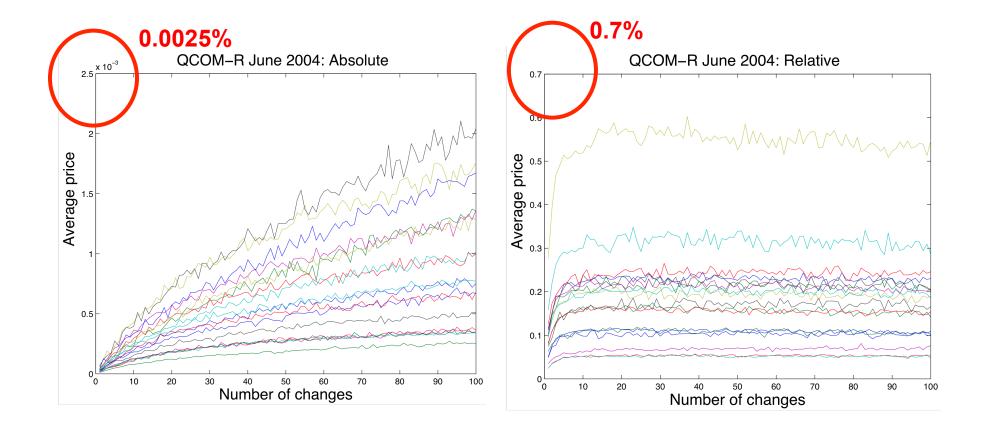
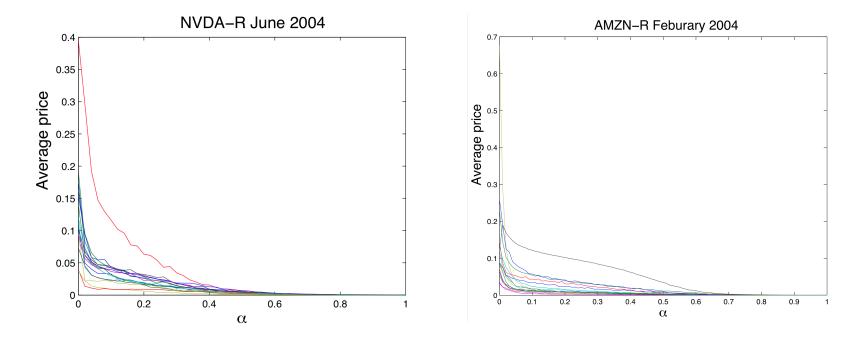



Figure 1: Diagram representing the set S of stable states and the possible movements transitions in it after the change.

Some Sobering Philosophy


- The "usual" backtesting concern:
 - Past strategy performance may not be indicative of hypothetical future performance
 - changes in underlying market conditions
 - overfitting the historical data
- An even worse concern:
 - Past strategy performance may not be indicative of hypothetical past performance!
 - well beyond measurable trading costs, mechanical market impact, etc.
- Standard backtesting methodologies implicitly assume an absolute model
 - May be fine on longer timescales, but potentially dangerous at microstructure level
 - Alternatives: only use actual past trades or live trading

Simulations

A Mixture Model

fraction α of absolute traders, 1- α of relative traders, single order deletion

