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Modern “Lit” Exchanges 
•  Fully automated, transparent, real-time order book 
•  Continuous double auction between buyers/sellers 
•  Replacing manual/floor exchanges, specialists, etc. 
•  Many advantages and applications: 

•  transparency 
•  data-driven algorithmic trading 
•  estimating market impact 

•  Major disadvantage: executing very large orders 
•  distributing over time and venues insufficient 
•  many buy-side parties are “compelled” 

•  Thus the advent of… Dark Pools 
•  specify side and volume only  
•  no price specified, execution by time priority 
•  price generally pegged to light midpoint 
•  not seeking price improvement, just execution 
•  only learn (partial) fill for your order 





The Dark Pool (Allocation) Problem 
•  Given a sequence or distribution of “client” or parent orders, how should 

we distribute the desired volumes over a large number of dark pools? 
•  a.k.a. Smart Order Routing (SOR), dispersion, etc. 

•  May initially know little about relative quality/properties of pools 
•  may be specific to stock, volatility, volume,… 
•  …a learning problem 

•  To simplify things, will generally assume: 
•  client orders all on one side (e.g. selling) 
•  client orders come i.i.d. from a fixed distribution 

•  …even though our “child” submissions to pools will not be i.i.d. 
•  statistical properties of a given pool are static 

•  All can be relaxed in various ways 
•  Main contributions: 

•  a theoretical framework, algorithm and analysis 
•  some empirical validation 



Theoretical Framework 
and Algorithm 
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Modeling Available Volume: Single Venue 

P[s] 

•  v shares submitted 
•  draw s ~ P 
•  execute min(v,s) 
•  censored observations 



Venue 1 

Venue 2 

Venue 3 

Venue 4 

Multiple Venues 

Client volume V 
(V ~ dist. Q) 

v2 shares 

Allocate… 
…How? 



Two Subproblems 

•  Optimal allocation under known distributions: 
•  greedy algorithm for one-step max fill; other objectives 

•  Estimating distributions from censored data: 
•  Kaplan-Meier is MLE; need new convergence analysis/rate 



The Learning Algorithm 
•  Initially know nothing about the venue distributions 

•  must simply start allocating each client order 
•  For each venue, observe (partial) executions 
•  From censored data, estimate each distribution 

•  using an ”optimistic” Kaplan-Meier estimator 
•  From distribution estimates, compute next allocations 

•  using greedy allocation on estimates 
•  Note: our allocations strongly influence observations 

•  exploration-exploitation  trade-off 

•  Main claim: simple allocate/re-estimate loop rapidly converges to near-
optimal allocations 
•  exploration is implicit: always optimizing w.r.t. current estimates 
•  may or may not “fully” learn/explore distributions 



Sketch of Analysis 
•  Algorithm: 

•  initialize estimated distributions P’_1, P’_2,…, P’_k 
•  repeat: 

•  compute greedy optimal allocations to each venue given the P’_i 
•  use censored data to re-estimate P’_i using optimistic K-M 

•  Analysis: 
•  Define “known prefix” c[i] for each P[i] 
•  if allocation to every venue i is < c[i], already near-optimal 

•  know “enough” about the P_i to make this allocation (“exploit”) 
•  if for some venue j, submitted volume > c[j], we “explore” 

•  so eventually c[j] will increase  improve P’_j 
•  optimistic K-M: tail modification ensures always exploit/explore 

•  Main Theorem: algorithm efficiently converges to near-optimal 
•  non-parametric and parametric versions 



Some Empirical Validation 



Experimental Framework 
•  The Data: 

•  submissions and fills for 12 liquid names x 4 dark pools = 48 pairs 
•  proprietary trading flow of large brokerage (internal “clients”) 
•  pools: BIDS, AUTO, DE Shaw, NYFIX 
•  ~1200 orders, ~1.3M shares per name/pool pair (30-day period) 
•  ~16% partial executions, ~9% filled by volume, ~11% censored 
•  data cannot be directly used to evaluate algorithms/policies 
•  instead use data to build a parametric simulation framework 

•  The Players: 
•  our allocate/re-estimate algorithm 
•  a “bandit”-style allocation algorithm 

•  simple weight per venue;  
•  multiplicative updates on partial/no fill bit 

•  uniform allocation (non-adaptive strawman) 
•  ideal allocation with known distributions (unrealizable in practice) 



Our Algorithm vs. Uniform Allocation 



Our Algorithm vs. Ideal Allocation 



Conclusions 
•  Nice no-regret follow-up: Agarwal, Bartlett, Dama 
•  Other censored trading problems 
•  Solution for basic dispersion problem; better to condition: 

•  targeted volume 
•  targeted horizon 
•  lit book pressure, buy/sell imbalance, spread,… 

•  Further info: 
•  www.cis.upenn.edu/~mkearns 
•  mkearns@cis.upenn.edu 




