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Background and Motivation

e HFT media/furor/controversy/witch hunt/investigations
* Many activities we might regard as fundamentally distinct are being conflated:
- co-location, low-latency access
- algorithmic trading (optimized execution)
- dark pools and flash trading
- market-making, liquidity provision
- front-running
* Lots of “guesstimates” and back-of-the envelope calculations of HFT profits
* Almost no careful, data-centric empirical studies (Brogaard 2010)
* This talk: a large-scale, systematic, data-centric and “model-free” (almost)
calculation of the maximum profitability (overestimate) of certain types of HFT
* An extensive accounting exercise



Premise and Assumptions

e To conduct precise experiments, must commit to some definition of HFT
* Equate HFT with short holding periods
 Rationale: if your alpha is consistently realized over minutes or hours, you don’t
need picosecond latency
* Divide HFT strategies into two (very) broad categories:
* aggressive: cross the spread to enter every trade
* passive: exclusively employ (non-marketable) limit orders every trade
* Here: focus exclusively on aggressive HFT
 Rationale: passive HFT is liquidity provision and therefore “benign” (Brogaard 2010)
* This work: empirically (over)estimate total market size (profitability) of aggressive
HFT in 2008 for all ~6K U.S. equities
* Note: Sharpe ratios generally a misleading/inappropriate measure for HFT
* returns vs. capacity
* Fundamental tension: trading costs (spreads) vs. short-term price changes



Methodology: Overview

e Using internal QAT (ITCH) message data from NASDAQ, perform full
reconstruction of order books throughout all of 2008 (9:45AM — 3:45PM).

* Divide time into discrete “instances” at 10ms intervals, conditioned on there
being any change to the top of the books since the last instance.

* Permit trading at every instance. Use the order books only to compute the
prices of entering and exiting trades crossing the spread and walking the
books. Books are reset to their historical states at every new instance; thus
there is no long-term market impact in our simulations.

 Simulate the Omniscient Trader at every instance, and compute its total
profitability for a given name in 2008.

* Apply the above methodology to 19 higher-liquidity NASDAQ names; use
TAQ data and regression methodology to scale to larger universe and
composite exchange (details later).



The Omniscient Trader (OT)

e Has a single parameter: holding period h (seconds)

* At each time t, the OT may either buy or sell v shares, for any integer v >=0.
The purchase or sale of the v shares occurs at market prices; thus the OT
must cross the spread and (potentially) walk the book for the v shares.

e If at time t the OT bought/sold v shares, at time t+h it must liquidate this
position and sell/buy the shares back, again by crossing the spread and
paying market prices on the opposing book.

e At each time t, the OT makes only that trade (buying or selling, and the
choice of v) that optimizes (absolute) profitability. This may often mean doing
nothing.

* Holding periods examined: 10ms, 100ms, 500ms, 1s, 2s, 3s, 4s, 5s, 10s

* Also permitted variable holding period



Sources of Optimism/Overestimation

e Omniscience! In reality must predict profitable direction and size
* No fees or commissions paid by OT

Zero latency for OT

No market impact for OT

Overcounting of instances



What We’'re Not Accounting For

e Passive HFT: market-making/liquidity provision (Are these “benign”?)
Conditional holding periods (What does “high frequency” mean?)
Positive market impact: e.g. inducing momentum

Cross-exchange plays: dark pools, flash trading

Non-equity instruments: futures, FX, ETFs, etc.

Non-U.S. markets



Results on the 19 Names
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Per-Name Breakdown, h = 10s
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2008 Aggregate Monthly Profits
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Scaling to the Full Universe



Scaling Methodology: Overview

e Computation (can’t even uncompress statically) and data (only have
NASDAQ OBs) preclude running methodology on all names and exchanges

* TAQ data includes bid/ask prices and volumes for primary and secondary
* Can thus run modified OT on TAQ data: can only consume bid/ask volumes

* On original 19 names, check correspondence between OT profits on full
NASDAQ OBs and TAQ primary data (sanity check)

* On original 19 names and TAQ composite data, estimate OT profitability
* Now have 19 <name, composite profitability> pairs

* Fit two-parameter, non-linear regression model mapping number of TAQ
qguotes to profitability

* Use TAQ quotes to (over)estimate profitability on full universe of 6,279 US
stocks
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Histogram of 2008 Composite Profit Overestimates (10s)
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Profit Bound vs. Holding Period, Full Universe
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Closing Remarks

e S21B vs ~ S52 trillion (TAQ) trading volume in same universe annually (<0.05%)
* 10% omniscience & no losses = $2.1B (consistent with Brogaard 2010)

* Allow optimal exit point within a bounded window = ~50% increase

 Already simulating zero latency; no market impact or fees for taking liquidity

* Figures for 2009/10 likely much lower due to 2008 volatility

* Some parties are getting rich from HFT. Should society be concerned?
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Closing Remarks

$21B vs ~ $52 trillion trading volume (TAQ) annually in same universe (<%0.05)















