A Short Course In
Computational Learning T heory:
ICML '97 and AAAI '97 Tutorials

Michael Kearns
AT& T Laboratories



Outline

Sample Complexity/Learning Curves: finite classes, Occam’s
Razor, VC dimension

Best Experts/Multiplicative Update Algorithms
Statistical Query Learning and Noisy Data
Boosting

Computational Intractability Results

Fourier Methods and Membership Queries



The Basic Model
Target function f: X - Y (Y = {0,1} or {+1,—1}), may
come from class F

Input distribution/density P over X, may be known or arbi-
trary

Class of hypothesis functions H from X to Y
Random sample S of m pairs (x;, f(x;))

Generalization Error ¢(h) = Prp[h(z) £ f(x)]



Measures of Efficiency

Parameters ¢,6 € [0,1]: ask for e(h) < e with probability at
least 1 — ¢

Input dimension n
Target function “complexity” s(f)

Sample and computational complexity: scale nicely with

1/€,1/6,m,s(f)



Variations Ad Infinitum

Target f from known class F, distribution P arbitrary:
PAC/Valiant model

Fixed, known P: Distribution-specific PAC model
Target f arbitrary: Agnostic model

Target f from known class F', add black-box access to f:
PAC model with membership queries



Sample Complexity/Learning Curves

e Algorithm-specific vs. general

e Assume fe H

e How many examples does an arbitrary consistent algorithm
require to achieve e(h) < €?



The Case of Finite H

Fix unknown f € H, distribution P
Fix “bad” hg € H (e(hg) > ¢€)

Probability hg survives m examples < (1 —¢)™
(Independence)

Probability some bad hypothesis survives < |[H|(1 — ¢)™
(Union Bound)

Solve |H|(1 —e)™ < 4§, m = Q2((1/e)log(|H|/d)) suffices
Example: |H| =2"", m = Q((n%/€)log(1/8)) suffices

Independent of distribution P



Occam’s Razor

Assume f € Hp, but given m examples h is chosen from H,,,
HoCH;1 C---C Hm

Same argument establishes that failure probability is bounded
by [Hm[(1 — €)™
Example: |Hp| = M:Q,Sm. m = Q((n®*mP/e) log(1/6)) suffices;
or m = Q(((n%/e) log(1/6))1/(1=A))

Compression (8 < 1) implies Learning



An Example: Covering Methods

Target f is a conjunction of boolean attributes chosen from

a”_.v o« o e va\;
Eliminate any z; such that x; = 0 in a positive example

Any surviving z; ‘“covers” or explains all negative examples
with z; =0

Greedy approach: always is an z; covering (1 — 1/kopt) Of
remainder, so cover all negatives in O(kyptlog(m))



Infinite H and the VC Dimension

e Still true that probability that bad h € H survivesis < (1—¢)™,
but now |H| is infinite

e H shatters zq,...,z4 if all 2¢ labelings are realized by H

e VC dimension dz: size of the largest shattered set



Examples of the VC Dimension

Finite class H: need 2¢ functions to shatter d points, SO
di < log(|H|)

AXxis-parallel rectangles in the plane: dg = 4
Convex d-gons in the plane: dg = 2d + 1
Hyperplanes in n dimensions: dg =n+ 1

dg usually “nicely” related to number of parameters, number
of operations



The Dichotomy Counting Function

For any set of points S, define Ngx(S) ={hNS:h € H} and
P p(m) = maX <, {{Ma(S)|}

® y(m) counts maximum number of labelings realized by H
on m points, so ®gx(m) < 2™ always

Important Lemma: for m > dy, ®gy(m) < moH

Proof is by double induction on m and dg



Two Clever Tricks

Idea: in expression |H|(1 —¢€)™, try to replace |H| by ®g(2m)

Two-Sample Trick: probability some bad h € H survives m
examples ~ probability some h € H makes NO mistakes on
first m examples and > em/2 mistakes on second m examples

Incremental Randomization Trick: draw 2m sample S =
S1 US> first, randomly split into S; and S> later

Fix one of the ®y(2m) labelings of S which makes at least
em /2 mistakes; probability (wrt split) all mistakes end up in
S5 is exponentially small in m

Failure probability & gz(2m)2-¢™/2, sufficient sample size is
m = Q((dg/e)log(l/e) + (1/e)log(1/6))



Extensions and Refinements

e Not all h € H with ¢(h) > € have e(h) = ¢ compute
distribution-specific error shells (Energy vs. Entropy, Sta-
tistical Mechanics)

e Replace ®x(m) with distribution-specific expected number
of dichotomies

e “Uniform Convergence Happens”: unrealizable f, squared
error, log-loss, .



Best Experts, Multiplicative Updates,
Weighted Majority.

Assume nothing about the data

Input sequence z1q, ...,z arbitrary
Label sequence y1,...,ym arbitrary
Given z,,41, want to predict y,,+1

What could we hope to say?



A Modest Proposal

Only compare performance to a fixed collection of “expert
advisors” hi,...,hy

Expert h; predicts .&.. on z;

Goal: for any data sequence, match the number of mistakes
made by the best advisor on that sequence

Idea: to punish us, force adversary to punish all the advisors

As in sample complexity analysis for probabilistic assump-
tions, expect performance to degrade for large N



A Simple Algorithm

e Maintain weight w; for advisor h;, w; = 1/N initially
e Predict using weighted majority at each trial

e If we err, and h; erred, w; + w;/2



A Simple Analysis
If W = YN w; then when we err W' < (W/2) +
(1/2)(W/2) = (3/4)W
After k errors, W < 1. (3/4)k
If expert i makes ¢ errors, then w; > (1/N)(1/2)*
Total weight > w; gives (3/4)% > (1/N)(1/2)*
k< (1/1og(4/3))(£+10og(N)) <2.41(£+ log(N))

Sparse vs. distributed representations



Statistical Query Learning

Model algorithms that use a random sample only to compute
statistics

Replace source of random examples of target f drawn from
distribution P by an oracle for estimating probabilities

Learning algorithm submits a query x : X xY — {0,1}
Example: x(z,y) = 1 if and only if z5 = vy
Response is an estimate of P, = Prp[x(z, f(z)) = 1]

Demand that complexity of queries and accuracy of esti-
mates permit efficient simulation from examples

Captures almost all natural algorithms



Noise Tolerance of SQ Algorithms

Let source of examples return (z,y), where y = f(x) with
probability 1 —n and y = —=f(x) with probability n

Define X; = {z : x(z,0) # x(«,1)}, Xo = X — X4, and
p1 = Prplz € X{]

Py = (p1/(1 — 2n))Prpylx(z,y)
Prp,[(x(z,y) = 1) A (z € X2)]

llz € Xq] +

Can efficiently estimate P, from source of noisy examples

Only known method for noise tolerance; other P, decompo-
sitions give tolerance to other forms of corruption



Limitations of SQ Algorithms

How many queries x are required to learn?

SQ dimension dg p: largest number of pairwise (almost)
uncorrelated functions in F' with respect to P

Y Agw\wv queries required for nontrivial generalization (Easy

case: queries are functions in F')

Also lower bounded by VC dimension of F

Application: no SQ algorithm for small decision trees, uni-
form distribution (including C4.5/CART)



Boosting

Replace source of random examples with an oracle accepting
distributions

On input PB;, oracle returns a function h; € H such that
Prplh;(z) # h(x)] <1/2—~, v€ (0,1/2] (weak learning)

Each successive P; is a filtering of true input distribution P,
SO can simulate from random examples

Oracle models a mediocre but nontrivial heuristic

Goal: combine the h; into h such that Prp[h(x) # f(z)] <e€



How is it Possible?

Intuition: each successive P; should force oracle to learn
something “new”

Example: Py = P; P, balances hi1(z) = f(z) and hy # f(x);
P3 restricted to hi1(x) # ho(x)

h(x) is majority vote of hqy, ho, h3

Claim: if each h; satisfies Prplh;(z) # f(z)] < B8, then
Prplh(z) # f(z)] < 362 — 253

Represent error algebraically, solve constrained maximization
problem

Now recurse



Measuring Performance

How many rounds (filtered distributions) required to go from
1/2 —~ to €?

Recursive scheme: polynomial in log(1/e) and 1/, hypothe-
Sis is ternary majority tree of weak hypotheses

Adaboost: (1/42)log(1/e), hypothesis is linear threshold
function of weak hypotheses

Top-down decision tree algorithms: C\mvp\%. hypothesis is
a decision tree over weak hypotheses

Advantage v is actually problem- and algorithm-dependent



Computational Intractability Results for Learning

e Representation-dependent: hard to learn the functions in
F' using hypothesis representation H

e Representation-independent: hard to learn the functions
in ', period



A Standard Reduction

Given examples of f € F according to any P, L outputsh e H
with e(h) < e with probability > 1 — 6§ in time polynomial in

1/€,1/6,m,s(f)

Given sample S of m pairs {(xz;, f(x;)), run algorithm L using
e = 1/(2m) and drawing randomly from S to provide exam-
ples

Then if there exists h € H consistent with S, L will find it
with probability > 1 -6

So: reduce hard combinatorial problem to consistency prob-
lem for (F, H), then learning is hard unless RP = NP

Note: converse from Occam’'s Razor



Examples of Representation-Dependent Intractability

e Consistency for (k-term DNF,k-term DNF) as hard as graph
k-coloring

e Consistency for (k-term DNF,2k-term DNF) as hard as ap-
proximate graph coloring

e Consistency for (k-term DNF,k-CNF) is easy

e Approximate consistency for (conjunctions with errors, con-
junctions) as hard as set covering



Representation-Independent Intractability

Complexity theory: set of examples ~ problem instance, sim-
ple hypothesis ~ solution for instance

“Read off” a k-coloring of original graph G from the sytactic
form of a k-term DNF formula for the associated sample Sg

No restrictions on form of h: everything is learnable

At least ask that hypotheses be polynomially evaluatable:
compute hA(z) in time polynomial in |z|,s(h)

Want learning to be hard for any efficient algorithm



Public-Key Cryptography and Learning

A sends many encrypted messages F(z1),...,F(xm) to B

Efficient eavesdropper E may obtain (or generate) many pairs
(x5, F'(x;))

Want it to be hard for E to decrypt a “new” F(z') (gener-
alization)

Thus, E wants to “learn” inverse of F (decryption) from
examples!

Inverse is “simple” given “trapdoor” (fairness of learning)



Applications

Given by PKC: encryption schemes F with polynomial-time
inverses, E's task as hard as factoring (F(z) = z* mod p- q)

Thus, learning (small) boolean circuits is intractable

Also hard: boolean formulae, finite automata, small-depth
neural networks

DNF and decision trees?



The Fourier Representation

Any function f:{0,1}" — R is a 2™-dimensional real vector
Inner product: (f,h) = (1/2™)> . f(z)h(x)

(f,h) = Eylf(z)h(z)] = Prylf(z) = h(z)] — Prylf(z) # h(z)]

Set of 2™ orthogonal basis functions: g,(x) = +1 if x has
even parity on bits 7 where z; = 1, else g,(x) = —1

Write f(z) =Y., az(f) - g-(z), coefficients a,(f) = {f, g2)



Fun Fourier Facts

Parseval’'s Identity: (f,f) = Y, (ax(f))%? =1

Small DNF f: Mmue@mg_om?vgmgvm ~ 1

Small decision tree f: spectrum is sparse, only a small num-
ber of non-zero coefficients

Tree-based spectrum estimation using membership queries



