
On the Boosting Ability of Top-Down

Decision Tree Learning Algorithms �

Michael Kearns

AT&T Research

Yishay Mansour

Tel-Aviv University

May 1996

Abstract

We analyze the performance of top-down algorithms for decision tree learning, such as those employed
by the widely used C4.5 and CART software packages. Our main result is a proof that such algorithms
are boosting algorithms. By this we mean that if the functions that label the internal nodes of the
decision tree can weakly approximate the unknown target function, then the top-down algorithms we
study will amplify this weak advantage to build a tree achieving any desired level of accuracy. The bounds
we obtain for this ampli�cation show an interesting dependence on the splitting criterion used by the
top-down algorithm. More precisely, if the functions used to label the internal nodes have error 1=2�

as approximations to the target function, then for the splitting criteria used by CART and C4.5, trees

of size (1=�)O(1=
2�2) and (1=�)O(log(1=�)=
2) (respectively) su�ce to drive the error below �. Thus (for
example), a small constant advantage over random guessing is ampli�ed to any larger constant advantage
with trees of constant size. For a new splitting criterion suggested by our analysis, the much stronger

bound of (1=�)O(1=
2) (which is polynomial in 1=�) is obtained, which is provably optimal for decision
tree algorithms. The di�ering bounds have a natural explanation in terms of concavity properties of the
splitting criterion.

The primary contribution of this work is in proving that some popular and empirically successful
heuristics that are based on �rst principles meet the criteria of an independently motivated theoretical
model.

�A preliminary version of this paper appears in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of

Computing, pages 459{468, ACM Press, 1996. Authors' addresses: M. Kearns, AT&T Research, 600 Mountain Avenue, Room
2A-423, Murray Hill, New Jersey 07974; electronic mail mkearns@research.att.com. Y. Mansour, Department of Computer
Science, Tel Aviv University, Tel Aviv, Israel; electronic mail mansour@math.tau.ac.il. Y. Mansour was supported in part by
the Israel Science Foundation, administered by the Israel Academy of Science and Humanities, and by a grant of the Israeli
Ministry of Science and Technology.

1 Introduction

In experimental and applied machine learning work, it is hard to exaggerate the in
uence of top-down
heuristics for building a decision tree from labeled sample data. These algorithms grow a tree from the
root to the leaves by repeatedly replacing an existing leaf with an internal node, thus \splitting" the data
reaching this leaf into two new leaves, and reducing the empirical error on the given sample. The tremendous
popularity of such programs (which include the C4.5 and CART software packages [16, 3]) is due to their
e�ciency and simplicity, the advantages of using decision trees (such as potential interpretability to humans),
and of course, to their success in generating trees with good generalization ability (that is, performance on
new data). Dozens of papers describing experiments and applications involving top-down decision tree
learning algorithms appear in the machine learning literature each year [1].

There has been di�culty in �nding natural theoretical models that provide a precise yet useful language
in which to discuss the performance of top-down decision tree learning heuristics, to compare variants of
these heuristics, and to compare them to learning algorithms that use entirely di�erent representations and
approaches. For example, even if we make the rather favorable assumption that there is a small decision tree
labeling the data, and that the inputs are distributed uniformly (thus, we are in the well-known Probably
Approximately Correct or PAC model [18], with the additional restriction to the uniform distribution),
the problem of �nding any e�cient algorithm with provably nontrivial performance remains an elusive open
problem in computational learning theory. Furthermore, superpolynomial lower bounds for this same problem
have been proven for a wide class of algorithms that includes the top-down decision tree approach (and also
all variants of this approach that have been proposed to date) [2]. The positive results for e�cient decision
tree learning in computational learning theory all make extensive use of membership queries [14, 5, 4, 11],
which provide the learning algorithm with black-box access to the target function (experimentation), rather
than only an oracle for random examples. Clearly, the need for membership queries severely limits the
potential application of such algorithms, and they seem unlikely to encroach on the popularity of the top-
down decision tree algorithms without signi�cant new ideas. In summary, it seem fair to say that despite
their other successes, the models of computational learning theory have not yet provided signi�cant insight
into the apparent empirical success of programs like C4.5 and CART.

In this paper, we attempt to remedy this state of a�airs by analyzing top-down decision tree learning
algorithms in the model of weak learning [17, 10, 9]. In the language of weak learning, we prove here that the
standard top-down decision tree algorithms are in fact boosting algorithms. By this we mean that if we make
a favorable (and apparently necessary) assumption about the relationship between the class of functions
labeling the decision tree nodes and the unknown target function | namely, that these node functions
perform slightly better than random guessing as approximations to the target function | then the top-down
algorithms will eventually drive the error below any desired value. In other words, the top-down algorithms
will amplify slight advantages over random guessing into arbitrarily accurate hypotheses. Our results imply,
for instance, that if there is always a node function whose error with respect to the target function (on an
appropriate distribution) is a non-zero constant less than 1=2 constant (say, 49% error), then the top-down
algorithms will drive the error below any desired constant (for instance, 1% error) using only constant tree
size. For certain top-down algorithms, the error can be driven below � using a tree whose size is polynomial
in 1=�. (See Theorem 1 for a precise statement.) Thus, even though the top-down heuristics and the notion
of weak learning were developed independently, we prove that these heuristics do in fact achieve nontrivial
performance in the weak learning model. This is perhaps the most signi�cant aspect of our results: the proof
that some popular and empirically successful algorithms that are based on �rst principles meet the criteria
of an independently motivated theoretical model.

An added bene�t of our ability to analyze the top-down algorithms in a standard theoretical model is that
it allows comparisons between variants. In particular, the choice of the splitting criterion function G used by
the top-down algorithm has a profound e�ect on the resulting bound. We will de�ne the splitting criterion
shortly, but intuitively its role is to assign values to potential splits, and thus it implicitly determines which
leaf will be split, and which function will be used to label the split. Our analysis yields radically di�erent
bounds for the choices made for G by C4.5 and CART, and indicates that both may be inferior to a new
choice for G suggested by our analysis. (Preliminary experiments supporting this view are reported in our
recent follow-up paper [7].) In addition to providing a nontrivial analysis of the performance of top-down

1

decision tree learning, the proof of our results gives a number of speci�c technical insights into the success and
limitations of these heuristics. The weak learning framework also allows comparison between the top-down
heuristics and the previous boosting algorithms designed especially for the weak learning model. Perhaps
not surprisingly, the bounds we obtain for the top-down algorithms are in some sense signi�cantly inferior
to those obtained for other boosting algorithms 1 However, as we discuss in Section 3, this is unavoidable
consequence of the fact that we are using decision trees, and is not due to any algorithmic properties of the
top-down approach.

2 Top-Down Decision Tree Learning Algorithms

We study a class of learning algorithms that is parameterized by two quantities: the node function class F and
the splitting criterion G. Here F is a class of boolean functions with input domain X, and G : [0; 1]! [0; 1]
is a function having three properties:

� G is symmetric about 1=2. Thus, G(x) = G(1� x) for any x 2 [0; 1].
� G(1=2) = 1 and G(0) = G(1) = 0.

� G is concave.

We will call such a function G a permissible splitting criterion. The binary entropy

G(q) = H(q) = �q log(q)� (1� q) log(1� q) (1)

is a typical example of a permissible splitting criterion. We will soon describe the roles of F and G precisely,
but intuitively the learning algorithms will build decision trees in which the internal nodes are labeled by
functions in F , and the splitting criterion G will be used by the learning algorithm to determine which leaf
should be split next, and which function h 2 F to use for the split.

Throughout the paper, we assume a �xed target function f with domainX, and a �xed target distribution
P over X. Together f and P induce a distribution on labeled examples hx; f(x)i. We will assume that the
algorithms we study can exactly compute some rather simple probabilities with respect to this distribution
on labeled examples. If this distribution can instead only be sampled, then our algorithms will approximate
the probabilities accurately using only a polynomial amount of sampling, and via standard arguments the
analysis will still hold.

Let T be any decision tree whose internal nodes are labeled by functions in F , and whose leaves are
labeled by values in f0; 1g. We will use leaves(T) to denote the leaves of T . For each ` 2 leaves(T), we
de�ne w(`) (the weight of `) to be the probability that a random x (drawn according to P) reaches leaf ` in
T , and we de�ne q(`) to be the probability that f(x) = 1 given that x reaches `. Let us assume that each
leaf ` in T is labeled 0 if q(`) � 1=2, and is labeled 1 otherwise (we refer to this labeling as the majority
labeling). We de�ne

�(T) =
X

`2leaves(T)

w(`)min(q(`); 1� q(`)): (2)

Note that �(T) = PrP [T (x) 6= f(x)], so �(T) is just the usual measure of the error of T with respect to f
and P . Now if G is the splitting criterion, we de�ne

G(T) =
X

`2leaves(T)

w(`)G(q(`)): (3)

It will be helpful to think of G(q(`)) as an approximation to min(q(`); 1 � q(`)), and thus of G(T) as
an approximation to �(T). In particular, if G is a permissible splitting criterion, then we have G(q) �
min(q; 1� q) for all q 2 [0; 1], and thus G(T) � �(T) for all T . The top-down algorithms we examine make
local modi�cations to the current tree T in an e�ort to reduce G(T), and therefore hopefully reduce �(T) as

1The recent paper of Dietterich et al. [7] gives detailed experimental comparisons of top-down decision tree algorithms and
the best of the standard boosting methods; see also the recent paper of Freund and Schapire [8].

2

TopDownF;G(t):
1 Initialize T to be the single-leaf tree, with binary label equal to the majority label of the sample.

2 while T has fewer than t internal nodes:

3 �best 0.

4 for each pair (`; h) 2 leaves(T)� F :

5 � G(T) �G(T (`; h)).

6 if � � �best then :

7 �best �; `best `; hbest h.

8 T T (`best ; hbest).

9 Output T .

Figure 1: Algorithm TopDownF;G(t).

well. We will need notation to describe these local changes. Thus, if ` 2 leaves(T) and h 2 F , we use T (`; h)
to denote the tree that is the same as T , except that we now make a new internal node at ` and label this
node by the function h. The newly created child leaves `0 and `1 (corresponding to the outcomes h(x) = 0
and h(x) = 1 at the new internal node) are labeled by their majority labels with respect to f and P .

For node function class F and splitting criterionG, we give pseudo-code for the algorithmTopDownF;G(t)
in Figure 1. This algorithm takes as input an integer t � 0, and outputs a decision tree T with t internal
nodes. Note that line 5 is the only place in the code where we make use of the assumption that we can
compute probabilities with respect to P exactly, and as mentioned above, these probabilities are su�ciently
simple that they can be replaced by a polynomial amount of sampling from an oracle for labeled examples
via standard arguments (see Theorem 1). Two other aspects of the algorithm deserve mention here. First,
although we have written the search for (`best ; hbest) explicitly as an exhaustive search in the for loop of
line 4, clearly for certain F a more direct minimization might be possible, and in fact necessary in the case
that F is uncountably in�nite (for example, if F were the class of all thresholded linear combinations of two
input variables). Second, all of our results still hold (with appropriate quanti�cation) if we can only �nd a
pair (`; h) that approximates �best . For example, if we have a heuristic method for always �nding (`; h) such
that � = G(T)� G(T (`; h)) � �best=2, then our main results hold without modi�cation.

Our primary interest will be in the error of the tree T output by TopDownF;G(t) as a function of t. To
emphasize the dependence on t, for �xed F and G we use �t to denote �(T) and Gt to denote G(T). We
think of Gt as a \potential function" that (hopefully) decreases with each new split.

Algorithms similar to TopDownF;G(t) are in widespread use in both applications and the experimental
machine learning community [1, 16, 3]. There are of course many important issues of implementation that we
have omitted that must be addressed in practice. Foremost among these is the fact that in applications, one
does not usually have an oracle for the exact probabilities, or even an oracle for random examples, but only
a random sample S of �xed (often small) size. To address this, it is common practice to use the empirical
distribution on S to �rst grow the tree in the top-down fashion of Figure 1 until �t is actually zero (which
may require t to be on the order of jSj), and then use the splitting criterion G again to prune the tree. This
is done in order to avoid the phenomenon known as over�tting , in which the error on the sample and the
error on the distribution diverge [16, 3]. Despite such issues, our idealization TopDownF;G(t) captures the
basic algorithmic ideas behind many widely used decision tree algorithms. For example, it is fair to think
of the popular C4.5 software package as a variant of TopDownF;G(t) in which G(q) is the binary entropy
function, and F is the class of single variables (projection functions) [16]. Similarly, the CART program uses
the splitting criterion G(q) = 4q(1� q), known as the Gini criterion [3]. We feel that the analysis given here
provides some insight into why such top-down decision tree algorithms succeed, and what their limitations
are.

Let us now discuss the choice of the node function class F in more detail. Intuitively, the more powerful
the class of node functions, the more rapidly we might expect Gt and �t to decay with t. This is simply because
more powerful node functions may allow us to represent the same function more succinctly as a decision
tree. Of course, the more powerful F is, the more computationally expensive TopDownF;G(t) becomes:

3

even if the choice of F is such that we can replace the naive for loop of line 4 by a direct computation of
(`best ; hbest), we still expect this minimization to require more time as F becomes more powerful. Thus there
is a trade-o� between the expressive power of F , and the running time of TopDownF;G(t).

In the software packages C4.5 and CART, the default is to err on the side of simplicity: typically just the
projections of the input variables and their negations (or slightly more powerful classes) are used as the node
functions. The implicit attitude taken is that in practical applications, expensive searches over powerful
classes F are simply not feasible, so we ensure the computational e�ciency of computing (`best ; hbest) (or
at least a good approximation), and hope that a simple F is su�ciently powerful to signi�cantly reduce
Gt with each new internal node added. In our analysis, the class F is a parameter. Our approach may
be paraphrased as follows: assuming that we have made a \favorable" choice of F , what can we say about
the rate of decay of Gt and �t as a function of t? Of course, for this approach to be interesting, we need
a reasonable de�nition of what it means to have made a \favorable" choice of F , and it is clear that this
de�nition must say something about the relationship between F and the target function f . In the next
section, we adopt the Weak Hypothesis Assumption (motivated by and closely related to the model of Weak
Learning [13, 17, 10]) to quantify this relationship.

We defer detailed discussion of the choice of the permissible splitting criterion G, since one of the main
results of our analysis is a rather precise reason why some choices may be vastly preferable to others. Here
it su�ces to simply emphasize that di�erent choices of G can in fact result in di�erent trees being built:
thus, both `best and hbest may depend strongly on G. The best choice of G in practice is far being from
a settled issue, as evidenced by the fact that the two most popular decision tree learning packages (C4.5
and CART) use di�erent choices for G. There have also been a number of experimental papers examining
various choices [15, 6]. Perhaps the insights in this paper most relevant to the practice of machine learning
are those regarding the behavior of TopDownF;G as a function of G [7].

3 The Weak Hypothesis Assumption

We now quantify what we mean by a \favorable" choice of the node splitting class F . The de�nition we
adopt is essentially the one used by a number of previous papers on the topic of weak learning [17, 9, 10].

De�nition 1 Let f be any boolean function over an input space X. Let F be any class of boolean
functions over X. Let
 2 (0; 1=2]. We say that f
-satis�es the Weak Hypothesis Assumption with respect
to F if for any distribution P over X, there exists a function h 2 F such that PrP [h(x) 6= f(x)] � 1=2�
.
If P is a class of distributions, we say that f
-satis�es the Weak Hypothesis Assumption with respect to F
over P if the statement holds for any P 2 P. We call the parameter
 the advantage.

It is worth mentioning that this de�nition can be extended to the case where F is a class of probabilistic
boolean functions [12]. All of our results hold for this more general setting.

Note that if F actually contains the function f , then f trivially 1=2-satis�es the Weak Hypothesis
Assumption with respect to F . If F does not contain f , then the Weak Hypothesis Assumption amounts
to an assumption on f . More precisely, it is known that Weak Hypothesis Assumption is equivalent to the
assumption that on any distribution, f can be approximated by thresholded linear combinations of functions
in F [9].

Compared to the PAC model and its variants, in the Weak Hypothesis Assumption we take a more
incremental view of learning: rather than assuming that the target function lies in some large, �xed class,
and trying to design an e�cient algorithm for searching this class, we instead hope that \simple" functions
(in our case, the decision tree node functions) are already slightly correlated with the target function, and
analyze an algorithm's ability to amplify these slight correlations to achieve arbitrary accuracy. Based on
our results here and our remarks in the introduction regarding the known results for decision tree learning
in the PAC model, it seems that the weak learning approach is perhaps more enlightening for the decision
tree heuristics we analyze.

Under the Weak Hypothesis Assumption, several previous papers have proposed boosting algorithms that
combine many di�erent functions from F , each with a small predictive advantage over random guessing on
a di�erent �ltered distribution, to obtain a single hybrid function whose generalization error on the target

4

distribution P is less than any desired value � [17, 9, 10]. The central question examined for such algorithms
is: As a function of the advantage
 and the desired error �, how many functions must be combined, and
how many random examples drawn? Several boosting algorithms enjoy very strong upper bounds on these
quantities [17, 9, 10]: the number of functions that must be combined is polynomial in 1=
 and log(1=�),
and the number of examples required is polynomial in 1=
 and 1=�. These boosting methods represent their
hypothesis as a thresholded linear combination of functions from F , a choice that is obviously well-suited to
the Weak Hypothesis Assumption in light of the remarks above.

The goal of this paper is to give a similar analysis for top-down decision tree algorithms: as a function of

 and �, how many nodes must the constructed tree have (that is, how large must t be) before the error �t is
driven below �? However, we can immediately dismiss the idea that any decision tree learning algorithm (top-
down or otherwise) can achieve performance comparable to that achieved by algorithms speci�cally designed
for the weak learning model. To see this, suppose the input space X is f0; 1gn, and that f is the majority
function. Then if F is the class of single-variable projection functions, it is known that f 1=n-satis�es the
Weak Hypothesis Assumption with respect to F . However, the smallest decision tree with generalization
error less than 1=4 with respect to f on the uniform input distribution has size exponential in n. >From this
example we can immediately infer that t must be exponential in 1=
 in order for TopDownF;G(t) to achieve
any nontrivial performance. Note, however, that this limitation is entirely representational | it arises solely
from the fact that we have chosen to learn using a decision tree over F , not from any properties of the
algorithm we use to construct the tree. A more sophisticated construction (due to Freund [9] and discussed

following Theorem 1) implies that this representational lower bound can be improved to
((1=�)c=

2

) for
some constant c > 0.

We will show that for appropriately chosen G, algorithm TopDownF;G(t) in fact achieves this optimal

bound of O((1=�)c=

2

).
It is reasonable to ask whether some assumption other than the Weak Hypothesis Assumption might

permit even more favorable analyses of top-down decision tree algorithms. In this regard, we brie
y note
that, like other boosting analyses, for our analysis a signi�cant weakening of the Weak Hypothesis Assumption
in fact su�ces. Namely, our results hold if f satis�es the Weak Hypothesis Assumption over P, where P
contains the target distribution P and all those �lterings of P that are constructed by the algorithm (this
notion will be made more precise in the analysis). Furthermore, it can be shown that this weaker assumption
is in fact implied by the rapid decay of �t. In other words, this weakened assumption holds if and only if
TopDownF;G(t) performs well. Thus the Weak Hypothesis Assumption seems to be the correct framework
in which to analyze algorithm TopDownF;G(t).

4 Statement of the Main Result

Our main result gives upper bounds on the error �t of TopDownF;G(t) for three di�erent choices of the split-
ting criterion G, under the assumption that the target function
-satis�es the Weak Hypothesis Assumption
for F . Equivalently, we give upper bounds on the value of t required to satisfy �t � � for any given �.

Two of our choices for G are motivated by the popular implementations of TopDownF;G(t) previously
discussed. The Gini criterion used by the CART program is G(q) = 4q(1�q), and the entropy criterion used
by the C4.5 software package is G(q) = H(q) = �q log(q) � (1 � q) log(1� q). It is easily veri�ed that both
are permissible. The third criterion we examine is G(q) = 2

p
q(1� q). This new choice is motivated by our

analysis: it is the splitting criterion for which we obtain the best bounds. A plot of these three functions is
given in Figure 2.

Theorem 1 Let F be any class of boolean functions, let
 2 (0; 1=2], and let f be any target boolean
function that
-satis�es the Weak Hypothesis Assumption with respect to F . Let P be any target distribution,
and let T be the tree output by TopDownF;G(t). Then for any �, the error �(T) is less than � provided that

t �
�
1

�

�c=(
2�2 log(1=�))
if G(q) = 4q(1� q); (4)

5

for some constant c > 0; or provided that

t �
�
1

�

�c log(1=�)=
2
if G(q) = H(q); (5)

for some constant c > 0; or provided that

t �
�
1

�

�c=
2
if G(q) = 2

p
q(1� q); (6)

for some constant c > 0. Furthermore, suppose that instead of the ability to compute probabilities exactly
with respect to P , we are only given an oracle for random examples hx; f(x)i. Consider taking a random
sample S of m examples, and running algorithm TopDownF;G(t) using the empirical distribution on S.
There exists a polynomial p(log(1=�); 1=�; t), such that if m is larger than p(log(1=�); 1=�; t) and t satis�es
the above conditions, then with probability greater than 1 � �, the error �(T) of T with respect to f and P
will be smaller than �.

In terms of the dependence on the advantage parameter
, all three bounds are exponential in 1=
.
As we have discussed, the majority example shows that this dependence is an unavoidable consequence of
using decision trees. In terms of dependence on �, however, there are vast di�erences between the bounds for
di�erent choices of G. For the Gini criterion, the bound is exponential in 1=�, and for the entropy criterion of
C4.5 it is superpolynomial but subexponential. Only for the new criterion G(q) = 2

p
q(1 � q) do we obtain

a bound polynomial in 1=�. The following argument, based on ideas of Freund [9], demonstrates that this
bound is in fact optimal for decision tree algorithms (top-down or otherwise). Let f be the target function,
and suppose that the class F of splitting functions contains just a single probabilistic function h such that for
any input x, Pr[h(x) 6= f(x)] = 1=2�
. Here the probability is taken only over the internal randomization
of h. Intuitively, to approximate f , one would take many copies of h (each with independent random bits)
and take the majority vote. For any �xed tree size t, the optimal decision tree over F will simply be the
complete binary tree of depth log(t) in which each internal node is labeled by h (that is, by a copy of h with
its own independent random bits). However, it is not di�cult to prove that in order for the tree to have
error less than �, the depth of the tree must be
((1=
2) log(1=�)), resulting in a lower bound on the size t

of
((1=�)c=

2

) for some constant c > 0. Thus, the bound given for the choice G(q) = 2
p
q(1� q) given in

Theorem 1 is optimal for decision tree learning algorithms. We do not have matching lower bounds for the
upper bounds given in Theorem 1 for the Gini and entropy splitting criteria. The proof of Theorem 1 will
show that there are good technical reasons for believing that the claimed di�erences between the criteria are
qualitatively real, and this seems to be borne out by preliminary experimental results [7].

The remainder of the paper is devoted to the proof of Theorem 1. We emphasize and discuss the parts
of the analysis that shed light on important issues such as the reason the Weak Hypothesis Assumption is
helpful for TopDownF;G(t), and the di�erences between the various choices for G.

5 Proof of the Main Result

Our approach is to bound Gt as a function of t and
, and therefore bound �t as well. The main idea is to
show that Gt decreases by at least a certain amount with each new split.

Let us �x a leaf ` of T , and use the shorthand w = w(`) and q = q(`) (recall that w(`) is the probability
of reaching `, and q(`) is the probability that the target function is 1 given that we have reached `). Now
suppose we split the leaf ` by replacing it by a new internal node labeled by the test function h 2 F (that
is, T becomes T (`; h)). Then we have two new child leaves of the now-internal node `, one corresponding
to the test outcome h(x) = 0 and the other corresponding to the test outcome h(x) = 1. Let us refer to
these leaves as `0 and `1 respectively, and let � denote the probability that x reaches `1 given that x reaches
the internal node ` (thus, w(`0) = (1 � �)w and w(`1) = �w). Let p = q(`0) and r = q(`1); then we have
q = (1� �)p+ �r. This simply says that the total probability that f(x) = 1 must be preserved after splitting
at `. See Figure 4 for a diagram summarizing the split parameters.

6

We are now in position to make some simple but central insights regarding how the split at ` reduces
the quantity Gt. Note that since q = (1 � �)p + �r and � 2 [0; 1], one of p and r is less than or equal to
q and the other is greater than or equal to q. Without loss of generality, let p � q � r. Now before the
split, the contribution of the leaf ` to Gt was w �G(q). After the split, the contribution of the now-internal
node ` to Gt+1 is w � ((1 � �)G(p) + �G(r)). Thus the decrease to Gt is caused by the split is exactly
w � (G(q) � (1� �)G(p)� �G(r)). It will be convenient to analyze the local decrease to Gt, thus assuming
w = 1, and reintroduce the w factor later. Hence, we are interested in lower bounding the quantity

G(q)� (1� �)G(p)� �G(r): (7)

This quantity is simply the di�erence between the value of the concave function G at point q, which is a
linear combination of p and r, and the value of the same linear combination of G(p) and G(r); see Figure 5.
De�ne � = r � p. It is easy to see that if � is small, or if � is near 0 or 1, then G(q)� (1 � �)G(p) � �G(r)
will be small. Thus to lower bound the decrease to Gt, we will �rst need to argue that under the Weak
Hypothesis Assumption these conditions cannot occur. Towards this goal, let P` denote the distribution of
inputs reaching `, and let the \balanced" distribution P 0

` be de�ned by P 0

`(x) = P`(x)=(2q) if f(x) = 1 and
P 0

`(x) = P`(x)=(2(1� q)) if f(x) = 0. Thus P 0

` is simply P` modi�ed to give equal weight to the positive
and negative examples of f (see Figure 6). Lemma 2 below shows that if the function h used to split at `
witnesses the Weak Hypothesis Assumption for the balanced distribution at `, then � cannot be too small,
and � cannot be too near 0 or 1.

5.1 Constraints on � and � from the Weak Hypothesis Assumption

Lemma 2 Let q, � and � be as de�ned above for the split at leaf `. Let P` be the distribution induced
by P on those inputs reaching `, and let P 0

` be the balanced distribution at `. If the function h placed at
` obeys PrP 0

`
[h(x) 6= f(x)] � 1=2 �
 (thus, h witnesses the Weak Hypothesis Assumption for P 0

`), then
� (1� �)� �
q(1 � q).

Proof:Recall that � = PrP`
[h(x) = 1] and r = PrP`

[f(x) = 1jh(x) = 1]. It follows that PrP`
[f(x) =

1; h(x) = 1] = �r and therefore PrP`
[f(x) = 0; h(x) = 1] = � � �r = � (1 � r). In going from P` to

the balanced distribution P 0

`, inputs x such that f(x) = 0 are scaled by the factor 1=(2(1 � q)) and thus
PrP 0

`

[f(x) = 0; h(x) = 1] = (1=2(1� q))� (1 � r). Similarly, since q = PrP`
[f(x) = 1], we have PrP`

[f(x) =
1; h(x) = 0] = q��r, and this is scaled by the factor 1=2q to obtain PrP 0

`
[f(x) = 1; h(x) = 0] = (1=2q)(q�r�).

See Figure 6. Thus, we may write an exact expression for PrP 0

`
[h(x) 6= f(x)]:

Pr
P 0

`

[h(x) 6= f(x)] =
1

2(1� q)
� (1� r) +

1

2q
(q � �r) =

1

2
+

�

2

�
1� r

1� q
� r

q

�
: (8)

By the assumption on h, PrP 0

`
[h(x) 6= f(x)] � 1=2�
. Thus,

�

2

�
r

q
� 1� r

1� q

�
�
: (9)

Substituting r = q + (1� �)� yields

� (1� �)�

2

�
1

q
+

1

1� q

�
�
: (10)

Since 1=q + 1=(1� q) = 1
q(1�q) � 2

q(1�q) , the lemma follows. 2(Lemma 2)

It is important to note that Lemma 2 does not hold in general if we let the function h placed at ` be the
Weak Hypothesis Assumption witness for the unbalanced distribution P`. The reason is that if q and 1� q
are unbalanced (say, 0.7 and 0.3) then the Weak Hypothesis Assumption witness for P` may be the constant
function h � 1, in which case we will have � = 1, and there is no decrease to Gt. Lemma 2 is also the only
place in the proof in which the Weak Hypothesis Assumption will be used. Thus, the \weaker" assumption
mentioned above that su�ces for our main result to hold is simply that the Weak Hypothesis Assumption

7

holds over all balanced distributions P 0

`, where ` is any node in any decision tree over F . Note that this class
of distributions is always a subclass of those distributions that can be obtained by taking a subset of the
support of P , setting the probability of this subset to zero, and renormalizing. Thus, the resulting class of
�ltered distributions is in some sense simpler than those generated by other boosting algorithms [17, 9, 10].
See the recent paper of Dietterich et al. [7] for further discussion of this issue.

Our goal now is to obtain for each G a lower bound on the local drop G(q)� (1� �)G(p)� �G(r) to Gt

under the condition � (1� �)� �
q(1 � q) given by Lemma 2. We emphasize at the outset that it is of the
utmost importance to obtain the best (largest) lower bounds possible, since eventually these lower bounds
directly in
uence the exponent of the resulting bounds on t. Obtaining these lower bounds will be the most
involved step of our analysis. Before taking it, however, let us look ahead slightly and observe that we expect
the lower bound we obtain to depend critically on properties of the splitting criterion G(q). In particular,
it seems that a good choice of G(q) should have large curvature for all values of q, for such a function will
maximize the di�erence between G(q) and the linear combination (1��)G(p)+�G(r) (see Figure 5). In this
light, we see that the choice G(q) = 2min(q; 1 � q) may be an especially poor choice, because even under
the condition � (1 � �)� �
q(1 � q) (or other similar conditions), G(q) = (1 � �)G(p) + �G(r) may hold.
In fact, the only situation in which the decrease to Gt will be non-zero for this choice of G(q) will be when
p < 1=2 and r > 1=2, a situation which is certainly not implied by the Weak Hypothesis Assumption. The
reason that 2min(q; 1� q) is a bad choice is that it exhibits concavity only around the point q = 1=2, rather
than for all values of q. In Figures 2 and 3, we plot the three choices for G that we will examine, so that
their relative concavity properties can be compared. These concavity properties play a crucial role in the
�nal bounds we obtain for each of the choices for G. In this regard, the important point to keep in mind
during the coming minimization is: for each G, how does Gt�Gt+1 | the amount by which we reduce our
\potential" with each split | compare to Gt itself, which is the potential remaining?

5.2 A Constrained Multivariate Minimization Problem

In order to analyze the e�ects of the condition � (1� �)� �
q(1� q) on the quantity G(q)� (1� �)G(p)�
�G(r) = Gt � Gt+1, it will be helpful to rewrite this quantity in terms of q, � and �. Thus we substitute
p = q � �� and r = q + (1 � �)� and de�ne

�G(q; �; �) = G(q)� (1� �)G(q � ��)� �G(q + (1� �)�): (11)

To obtain the desired lower bound, we must solve a constrained multivariate minimization problem: namely,
we must minimize �G(q; �; �) subject to the constraint � (1� �)� �
q(1 � q). As mentioned previously, we
would like to express the resulting constrained minimumof �G(q; �; �) as a function of
 and q only. Towards
this goal, we �rst �x � and � and lower bound �G(q; �; �) by an algebraic expression of its parameters.

Lemma 3 Let G(q) be one of 4q(1� q);H(q) and 2
p
q(1� q). Then for any �xed values for �; � 2 [0; 1],

�G(q; �; �) � �� (1� �)�2

2
G00(q) � � (1� �)(1� 2�)�3

6
G000(q): (12)

Proof:With � and � �xed, we perform a Taylor expansion of G(q) at q, and replace the occurrences of
G(q), G(q � ��) and G(q + (1� �)�) in �G(q; �; �) by their Taylor expansions around q. It is easily veri�ed
that the terms involving zero-order and �rst-order derivatives of G cancel in the resulting expression for
�G(q; �; �). The contribution to �G(q; �; �) involving second-order derivatives is

� 1� �

2
G00(q)(���)2 � �

2
G00(q)((1� �)�)2 = �G

00(q)

2
� (1� �)�2: (13)

The contribution involving third-order derivatives is

� 1� �

6
G000(q)(���)3 � �

6
G000(q)((1� �)�)3 = �G

000(q)

6
� (1� �)(1 � 2�)�3: (14)

The lower bound claimed in the lemma is simply the sum of the second-order and third-order contributions.
The fact that it is actually a lower bound on �G(q; �; �) follows from the fact that for the three G under

8

consideration, the derivatives are either all negative (and thus all make positive contributions to the bound,
allowing us to take any pre�x of the Taylor expansion to obtain a lower bound), or have alternating signs
with negative even-order derivatives (and thus even-order derivatives make a positive contribution to the
bound and odd-order derivatives make a negative contribution). In the latter case, the terms of the Taylor
expansion can be grouped in adjacent pairs, with each pair giving positive contribution. Thus by summing
through an odd-order derivative we obtain a lower bound. 2(Lemma 3)

Lemma 3 provides us with an algebraic expression lower bounding �G(q; �; �). We now wish to show
that at the constrained minimum of �G(q; �; �), this expression can be further simpli�ed to obtain a lower
bound involving only q and
. Thus, we wish to use the constraint of Lemma 2 to eliminate the parameters
� and � .

We begin by substituting for � under the given constraint � (1 � �)� �
q(1 � q). It is clear from
Equation 11 and Figure 5 that for any �xed values q; � 2 [0; 1], �G(q; �; �) is minimized by choosing � as
small as possible. Thus let us set � =
q(1 � q)=(� (1� �)) and de�ne

�G(q; �) = �G

�
q; �;

q(1 � q)

� (1� �)

�
= G(q)� (1� �)G

�
q �
q(1 � q)

1� �

�
� �G

�
q +

q(1 � q)

�

�
: (15)

Our next lemma shows that for the three choices ofG(q) under consideration, for all values of q the minimizing
value of � can be bounded away from 0 and 1. This will allow us to replace occurrences of � with constant
values.

Lemma 4 Let G(q) be one of 4q(1� q);H(q) and 2
p
q(1� q). Let
 2 [0; 1] be any �xed value, and let

�G(q; �) be as de�ned in Equation 15. Then for any �xed q 2 [0; 1], �G(q; �) is minimized by a value of �
falling in the interval [0:4; 0:6].

Proof:We di�erentiate �G(q; �) with respect to � :

@�G(q; �)

@�
= G

�
q �
q(1 � q)

1� �

�
� (1� �)G0

�
q �
q(1 � q)

1� �

�
� �
q(1 � q)

(1� �)2

�G
�
q +

q(1 � q)

�

�
� �G0

�
q +

q(1 � q)

�

�
� �
q(1 � q)

�2
(16)

= G

�
q �
q(1 � q)

1� �

�
+

q(1 � q)

1� �
�G0

�
q �
q(1 � q)

1� �

�

�
�
G

�
q +

q(1 � q)

�

�
�
q(1 � q)

�
�G0

�
q +

q(1 � q)

�

��
(17)

= G(q � ��) + �� �G0(q � ��) � [G(q + (1� �)�)� (1� �)� �G0(q + (1 � �)�)] (18)

where we recall � =
q(1 � q)=(� (1 � �)). This last expression for @�G(q; �)=@� has a natural and helpful
geometric interpretation: it is the di�erence between two tangent lines to the function G, both evaluated at
the point q. (See Figure 7.) The term G(q� ��)+ �� �G0(q� ��) computes the line tangent to G at the point
q���, and evaluates this line at the point q, while the term G(q+(1��)�)�(1��)� �G0(q+(1��)�) computes
the line tangent to G at the point q+(1��)�, and again evaluates this line at q. Thus, for the G that we are
considering, for any �xed values of q and
 the minimizing values of � satisfy G(q� ��) + �� �G0(q � ��) =
G(q + (1 � �)�) � (1 � �)� � G0(q + (1 � �)�) (and therefore @�G(q; �)=@� = 0). We would like to show
that for some particular choices for G, any minimizing value of � is always (for all q;2 [0; 1],
 2 (0; 1=2],
and � =
q(1 � q)=(� (1 � �)) bounded away from 0 and 1. It can be seen for
 = 0:1 in Figures 8
through 13 (and formal proofs for all
 are given in Lemma 12, Lemma 13 and Lemma 11 in the Appendix)
that if G(q) = 4q(1 � q); G(q) = H(q) or G(q) = 2

p
q(1� q), then for all q;2 [0; 1], if � � 0:4 then

G(q � ��) + �� � G0(q � ��) � G(q + (1 � �)�) � (1 � �)� � G0(q + (1 � �)�) (and thus @�G(q; �)=@� � 0),
and if � � 0:6 then G(q � ��) + �� � G0(q � ��) � G(q + (1 � �)�) � (1 � �)� � G0(q + (1 � �)�) (and thus
@�G(q; �)=@� � 0). This means that for these three choices for G, all the minimizing values of � lie in the
interval [0.4,0.6] for all values of q and
, as desired. 2(Lemma 4)

9

5.3 E�ects of the Choice of G on the Drop to Gt

Let us review where we are: in Lemma 3 we have given a lower bound on �G(q; �; �) that involves all
three parameters and derivatives of G(�), and in Lemma 4 we have shown that under the constraint � =

q(1 � q)=(� (1� �)), to lower bound �G(q; �) for the G(�) we examine, we may assume that � 2 [0:4; 0:6].
We now apply these general results to obtain lower bounds for speci�c choices of G(�).

Lemma 5 Under the constraint � (1� �)� �
q(1 � q) given by Lemma 2, if G(q) = 4q(1� q) then for
any q 2 [0; 1]

�G(q; �; �) � 16
2(q(1� q))2: (19)

Proof:Here we have derivatives G00(q) = �8 and G000(q) = 0. Application of Lemma 3 gives

�G(q; �; �) � 4� (1� �)�2 (20)

and the substitution � =
q(1 � q)=(� (1� �)) yields

�G(q; �) � 16
2(q(1� q))2: (21)

Here we have used the fact that � (1� �) � 1=4. 2(Lemma 5)

Lemma 6 Under the constraint � (1� �)� �
q(1 � q) given by Lemma 2, if G(q) = H(q) then for any
q 2 [0; 1]

�G(q; �; �) �
2q(1� q): (22)

Proof:Using the fact that for G(q) = H(q) we have derivatives G00(q) = �(1=(1� q)+1=q) and G000(q) =
�(1=(1� q)2 � 1=q2), application of Lemma 3 yields

�G(q; �; �) � � (1� �)�2

2

�
1

1� q
+

1

q

�
+

� (1� �)(1� 2�)�3

6

�
1

(1� q)2
� 1

q2

�
(23)

=
� (1� �)�2

2q(1� q)
� � (1� �)(1� 2�)�3(1� 2q)

6(q(1� q))2
: (24)

Substituting � =
q(1 � q)=(� (1� �)) yields

�G(q; �) �
2q(1� q)

2� (1� �)
�
3q(1� q)(1� 2q)(1� 2�)

6(� (1� �))2
(25)

� 2
2q(1� q)�
2q(1� q)(1� 2 � 0:4)
12(0:4)2(0:4)2

(26)

�
2q(1� q) (27)

as desired. Here to lower bound the �rst term we have used the fact that � (1� �) � 1=4 always, and for the
second term we have used 1� 2q � 1,
 � 1=2, and Lemma 4, which states that the minimizing value of �
lies in the interval [0:4; 0:6] for all q. 2(Lemma 6)

Lemma 7 Under the constraint � (1� �)� �
q(1� q) given by Lemma 2, if G(q) = 2
p
q(1� q) then for

any q 2 [0; 1]
�G(q; �; �) �
2(1 � 2q)2(q(1� q))1=2

2
+ 2
2(q(1� q))3=2: (28)

Proof:Here we have derivatives

G00(q) =
�(1� 2q)2

2(q(1� q))3=2
� 2

(q(1 � q))1=2
(29)

and

G000(q) =
3(1� 2q)3

4(q(1� q))5=2
+

3(1� 2q)

(q(1� q))3=2
: (30)

10

Plugging these derivatives into Lemma 3 yields

�G(q; �; �) � � (1� �)�2

2

�
(1� 2q)2

2(q(1� q))3=2
+

2

(q(1 � q))1=2

�

�� (1� �)(1� 2�)�3

6

�
3(1� 2q)3

4(q(1� q))5=2
+

3(1� 2q)

(q(1� q))3=2

�
: (31)

Substituting � =
q(1 � q)=(� (1� �)) yields

�G(q; �) �
2

2� (1� �)

�
(1 � 2q)2

2
(q(1� q))1=2 + 2(q(1� q))3=2

�

� (1 � 2�)
3

6(� (1� �))2

�
3(1� 2q)3

4
(q(1� q))1=2 + 3(1� 2q)(q(1� q))3=2

�
(32)

=

2(1� 2q)2(q(1� q))1=2

4� (1� �)

�
1�
(1 � 2�)(1� 2q)

2� (1� �)

�

+

2

� (1� �)
(q(1� q))3=2

�
1�
(1 � 2�)(1� 2q)

2� (1� �)

�
(33)

�
2(1� 2q)2(q(1� q))1=2

4� (1� �)

�
1� 0:2

4(0:4)(0:4)

�

+

2

� (1� �)
(q(1� q))3=2

�
1� 0:2

4(0:4)(0:4)

�
(34)

�
2(1� 2q)2(q(1� q))1=2

2
+ 2
2(q(1� q))3=2: (35)

Here we have used the facts that
 � 1=2, � (1� �) � 1=4 and (1� 2q) � 1, and Lemma 4. 2(Lemma 7)

5.4 Finishing Up: Solution of Recurrences

Let us take stock of the lower bounds on Gt � Gt+1 that we have proven, and assume that q is small for
simplicity. Recall that we have analyzed the local drop to Gt, so to compute the global drop we must
reintroduce w = w(`). For G(q) = 4q(1 � q), Lemma 5 shows that Gt � Gt+1 is on the order of w �
2q2.
For G(q) = H(q), Lemma 6 shows that Gt � Gt+1 is on the order of w �
2q. Ignoring the dependence on w
and
, neither of these drops is on the order of G(q) itself | both drops are considerably smaller than the
amount of remaining potential. For G(q) = 2

p
q(1� q), Lemma 7 shows that Gt � Gt+1 is on the order of

w �
pq. This is the only case in which the drop is on the order of G(q). We will now see the strong e�ect
that these drops have on our �nal bounds. We begin with the Gini criterion G(q) = 4q(1� q).

Theorem 8 Let G(q) = 4q(1 � q), and let �t and Gt be as de�ned in Equations 2 and 3. Then under
the Weak Hypothesis Assumption, for any � 2 [0; 1], to obtain �t � � it su�ces to make

t � 2c=

2�2 (36)

splits, for some constant c.

Proof:At round t, there must be a leaf ` such that (1) w(`) � �t=(2t) and (2) minfq(`); 1� q(`)g � �t=2,
because the total weight of the leaves violating the condition (1) is at most �t=2, and the remaining leaves
must violate the condition (2) and therefore have error at most �t=2. By Lemma 5, splitting at ` using the
witness for the Weak Hypothesis Assumption on the balanced distribution at ` will result in a reduction to
Gt of at least

w(`) � 16
2(q(`)(1 � q(`))2 � 4
2w(`)min(q(`); 1� q(`))2 (37)

�
2�3t=(2t) (38)

�
2G3
t=(128t): (39)

11

Here we have used the fact that for G(q) = 4q(1 � q), �t � Gt=4. In other words, we have the recurrence
inequality

Gt+1 � Gt �
2G3
t

128t
: (40)

>From this it is not di�cult to verify that t � 2c=(

2�2), for some constant c, su�ces to obtain �t � Gt � �.

2(Lemma 8)

Theorem 9 Let G(q) = H(q), and let �t and Gt be as de�ned in Equations 2 and 3. Then under the
Weak Hypothesis Assumption, for any � 2 [0; 1], to obtain �t � � it su�ces to make

t �
�
1

�

�c log(1=�)=
2
(41)

splits, for some constant c.

Proof:By Equation 2, after t splits there must be a leaf ` such that w(`)min(q(`); 1 � q(`)) � �t=t. If
we now split at ` using the witness for the Weak Hypothesis Assumption on the balanced distribution at
`, then by Lemma 6, we know that the resulting reduction to Gt will be at least w(`) �
2q(`)(1 � q(`)) �
w(`) �
2min(q(`); 1� q(`))=2 �
2�t=(2t). In other words, we may write

Gt+1 � Gt �
2�t
2t

: (42)

Now for the choice G(q) = H(q), �t � Gt � H(�t) by Jensen's Inequality and thus H�1(Gt) � �t, where
H�1(y) is de�ned to be the unique x 2 [0; 1=2] such that H(x) = y. It can be shown that H�1(y) �
y=(2 log(2=y)) for all y 2 [0; 1]. Thus we have

Gt+1 � Gt �
2H�1(Gt)

2t
(43)

� Gt �
2Gt

4t log(2=Gt)
: (44)

It can be veri�ed that Gt � e�

p

log(t)=c is a solution to this recurrence inequality, as desired. Thus to obtain

�t � Gt � �, it su�ces to have e�

p

log(t) � �, which requires t � (1=�)c log(1=�)=

2

. 2(Lemma 9)

Theorem 10 Let G(q) = 2
p
q(1� q), and let �t and Gt be as de�ned in Equations 2 and 3. Then under

the Weak Hypothesis Assumption, for any � 2 [0; 1], to obtain �t � � it su�ces to make

t �
�
1

�

�32=
2
(45)

splits.

Proof:By the de�nition of Gt, there must exist a leaf ` such that 2w(`)(q(`)(1 � q(`)))1=2 � Gt=t. By
Lemma7, if we split at ` using the witness h to the Weak Hypothesis Assumption on the balanced distribution
at `, then the resulting drop to Gt will be at least

2(1� 2q(`))2Gt

4t
+

2q(`)(1 � q(`))Gt

t
: (46)

Now if q(`) 2 [1=4; 3=4] then the second term above is at least 3
2Gt=16, and if q(`) =2 [1=4; 3=4] then the
�rst term above is at least
2Gt=16. Thus we obtain the recurrence inequality

Gt+1 � Gt �
2Gt

16t
=

�
1�
2

16t

�
Gt: (47)

12

Thus we may write

Gt �
�
1�
2

16

��
1�
2

2 � 16
��

1�
2

3 � 16
�
� � �
�
1�
2

t � 16
�

(48)

�
2Y

t0=1

�
1�
2

16t0

� 4Y
t0=3

�
1�
2

16t0

�
� � �

2kY
t0=(2k=2)+1

�
1�
2

16t0

�
� � �

2tY
t0=(2t=2)+1

�
1�
2

16t0

�
: (49)

Now for any k,

2kY
t0=(2k=2)+1

�
1�
2

16t0

�
�

2kY
t0=(2k=2)+1

�
1�
2

16 � 2k
�
=

�
1�
2

16 � 2k
�2k=2

� e�

2=32: (50)

Thus we have
Gt � e�

2 log(t)=32 (51)

as desired. 2(Lemma 10)

Acknowledgements

Thanks to Tom Dietterich, Yoav Freund and Rob Schapire for discussions of the material presented here.

References

[1] In Machine Learning: Proceedings of the International Conference. Morgan Kaufmann, 1982{1995.

[2] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich. Weakly learning DNF and char-
acterizing statistical query learning using Fourier analysis. In Proceedings of the 26th ACM Symposium
on the Theory of Computing. ACM Press, New York, NY, 1994.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation and Regression Trees.
Wadsworth International Group, 1984.

[4] N. Bshouty and Y. Mansour. Simple learning algorithms for decision trees and multivariate polynomials.
In Proceedings of the 36th IEEE Symposium on the Foundations of Computer Science, pages 304{311.
IEEE Computer Society Press, Los Alamitos, CA, 1995.

[5] N. H. Bshouty. Exact learning via the monotone theory. In Proceedings of the 34th IEEE Symposium
on the Foundations of Computer Science, pages 302{311. IEEE Computer Society Press, Los Alamitos,
CA, 1993.

[6] W. Buntine and T. Niblett. A further comparison of splitting rules for decision-tree induction. Machine
Learning, 8:75{86, 1992.

[7] T. Dietterich, M. Kearns, and Y. Mansour. Applying the weak learning framework to understand and
improve C4.5. In Machine Learning: Proceedings of the International Conference. Morgan Kaufmann,
1996.

[8] Y. Freund and R. Schapire. Some experiments with a new boosting algorithm. In Machine Learning:
Proceedings of the International Conference. Morgan Kaufmann, 1996.

[9] Yoav Freund. Boosting a weak learning algorithm by majority. Information and Computation,
121(2):256{285, September 1995.

[10] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. In Second European Conference on Computational Learning Theory, pages
23{37. Springer-Verlag, 1995.

13

[11] J. Jackson. An e�cient membership query algorithm for learning DNF with respect to the uniform
distribution. In Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science.
IEEE Computer Society Press, Los Alamitos, CA, 1994.

[12] M. Kearns and R. Schapire. E�cient distribution-free learning of probabilistic concepts. Journal of
Computer and System Sciences, 48(3):464{497, 1994.

[13] M. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae and �nite au-
tomata. Journal of the ACM, 41(1):67{95, 1994.

[14] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. In Proc. of the
23rd Symposium on Theory of Computing, pages 455{464. ACM Press, New York, NY, 1991.

[15] J. Mingers. An empirical comparison of selection measures for decision-tree induction.Machine Learning,
3:319{342, 1989.

[16] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[17] R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197{227, 1990.

[18] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{1142, 1984.

Appendix

Lemmas 11, 12 and 13 are needed for the proof of Lemma 4, which shows that the minimizing value of � for
the function �G(q; �) lies in the range [0:4; 0:6].

Lemma 11 Let G(q) = 4q(1� q), and let � =
q(1 � q)=(� (1� �)). Then for � = 1=2,

G(q � ��) + �� �G0(q � ��) = G(q + (1� �)�) � (1� �)� �G0(q + (1� �)�): (52)

Proof:For this choice of G(q), we have G0(q) = 4� 8q. Thus we may write

G(q � ��) + ��G0(q � ��) = 4(q � ��)(1 � q + ��) + 4��(1� 2(q � ��)) (53)

= 4(q � q2 + ��q � �� + ��q � (��)2) + 4(�� � 2��q + 2(��)2) (54)

= 4q(1� q) + 4(��)2: (55)

Similarly, we obtain

G(q + (1 � �)�)� (1� �)� �G0(q + (1� �)�) = 4q(1� q) + 4((1� �)�)2: (56)

Setting
4q(1� q) + 4(��)2 = 4q(1� q) + 4((1� �)�)2 (57)

yields �2 = (1� �)2, or � = 1=2 as desired. 2(Lemma 11)

Lemma 12 Let G(q) = H(q), and let � =
q(1 � q)=(� (1� �)). If
 < 9=35, then for � � 0:4,

G(q � ��) + �� �G0(q � ��) � G(q + (1� �)�) � (1� �)� �G0(q + (1� �)�) (58)

and for � � 0:6,

G(q � ��) + �� �G0(q � ��) � G(q + (1� �)�) � (1� �)� �G0(q + (1� �)�): (59)

14

Proof:For the choice G(q) = H(q) = �q log q � (1 � q) log(1 � q), we have G0(q) = log(1 � q) � log q.
Note that

q � �� = q �
q(1 � q)

1� �
(60)

= q

�
1�
(1 � q)

1� �

�
(61)

and

1� q + �� = 1� q +

q(1 � q)

1� �
(62)

= (1� q)

�
1 +

q

1� �

�
: (63)

Thus, setting
F (q;�) = G(q ��) + �G0(q ��) (64)

we obtain:

F (q; ��) = H(q � ��) + ��H0(q � ��) (65)

= �q
�
1�
(1 � q)

1� �

�
log q

�
1�
(1 � q)

1� �

�

�(1� q)

�
1 +

q

1� �

�
log(1 � q)

�
1 +

q

1� �

�

+

q(1 � q)

1� �

�
log(1� q)

�
1 +

q

1� �

�
� log q

�
1�
(1 � q)

1� �

��
(66)

= �q log q
�
1�
(1 � q)

1� �

�
� (1� q) log(1� q)

�
1 +

q

1� �

�
(67)

= H(q)� q log

�
1�
(1 � q)

1� �

�
� (1� q) log

�
1 +

q

1� �

�
(68)

Similarly,

F (q;�(1� �)�) = H(q + (1� �)�) + ��H0(q + (1 � �)�) (69)

= H(q)� q log

�
1 +

(1 � q)

�

�
� (1� q) log

�
1�
q

�

�
: (70)

Using the Taylor expansion approximation x�x2=2+x3=3 > ln(1+x) > x�x2=2 for the logarithmic terms
in Equation 70 gives (up to second order terms):

F (q;�(1� �)�) � H(q)� q

�

(1 � q)

�

�
+

1

2
q

�

(1 � q)

�

�2

�(1� q)

��
q
�

�
+

1

2
(1� q)

��
q
�

�2
(71)

= H(q) +

2q(1� q)

2�2
: (72)

Similarly,

F (q; ��) � H(q) +

2q(1� q)

2(1� �)2
: (73)

Using the approximations given by Equations 72 and 73, we �nd that setting F (q; ��) = F (q;�(1 � �)�)
yields �2 = (1� �)2, or � = 1=2. However, this is not the exact value for � since we ignored the third-order
error term in the Taylor expansions above.

15

We would like to show that if � = 0:4, then F (q; ��) < F (q;�(1� �)�). Note that

F (q; ��) < H(q) +

2q(1� q)

2(1� �)2
+
1

3
q

�

(1 � q)

1� �

�3
(74)

and

F (q;�(1� �)�) > H(q) +

2q(1� q)

2�2
� 1

3
q

�

(1 � q)

�

�3

(75)

Therefore, it su�ces to show that

2q(1� q)

2(1� �)2
+
1

3
q

�

(1 � q)

1� �

�3
<

2q(1� q)

2�2
� 1

3
q

�

(1 � q)

�

�3

: (76)

Simplifying, we have
1

2(1� �)2
+

(1 � q)2

3(1� �)3
<

1

2�2
�
(1 � q)2

3�3
(77)

For � = 0:4, since 1� q < 1, a su�cient condition is that
 < 9=35. For the case � = 0:6, we write

F (q;�(1� �)�) < H(q) +

2q(1 � q)

2�2
+

1

3
(1� q)

�
q
�

�3
(78)

and

F (q; ��) > H(q) +

2q(1� q)

2(1� �)2
� 1

3
(1 � q)

�

q

1� �

�3

: (79)

Again, a su�cient condition for F (q; ��) > F (q;�(1� �)�) is then

2q(1� q)

2�2
+

1

3
(1� q)

�
q
�

�3
<

2q(1� q)

2(1� �)2
� 1

3
(1� q)

�

q

1� �

�3
: (80)

This simpli�es to
1

2�2
+

q2

3�3
<

1

2(1� �)2
�
q2

3(1� �)3
: (81)

For � = 0:6, this inequality holds for
 < 9=35. 2(Lemma 12)

Lemma 13 Let G(q) = 2
p
q(1� q), and let � =
q(1 � q)=(� (1 � �)). If
 < 0:2 and q is su�ciently

small, then for � � 0:4,

G(q � ��) + �� �G0(q � ��) � G(q + (1� �)�) � (1� �)� �G0(q + (1� �)�) (82)

and for � � 0:6,

G(q � ��) + �� �G0(q � ��) � G(q + (1� �)�) � (1� �)� �G0(q + (1� �)�): (83)

Proof:For this choice of G(q), we have G0(q) = (1� 2q)
p
q(1� q). To simplify notation a bit, let us

de�ne
F (q;�) = G(q ��) +�G0(q ��): (84)

We will be interested in the choices � = �� and � = �(1� �)�. First, however, we may write

F (q;�) = 2
p
(q ��)(1� q +�) +�

1� 2(q ��)p
(q ��)(1� q +�)

(85)

=
2(q ��)(1� q +�) +�(1� 2(q ��))p

(q ��)(1� q +�)
(86)

=
2q � 2q2 + 2q���p
(q ��)(1� q +�)

(87)

=
2q(1� q +�)��p
(q ��)(1� q +�)

: (88)

16

Now for � = �� =
q(1 � q)=(1� �), we may write for the denominator of F (q; ��):

p
(q � ��)(1� q + ��) =

s�
q �
q(1 � q)

(1� �)

��
1� q +

q(1 � q)

(1� �)

�
(89)

=

s
q(1� q) +

q2(1 � q)

(1� �)
�
q(1 � q)2

(1� �)
�
2q(1� q)

(1 � �)2
(90)

=
p
q(1� q)

s�
1�
(1 � q)

(1� �)

��
1 +

q

(1� �)

�
: (91)

For the numerator of F (q; ��), we have:

2q(1� q + ��) � �� = 2q

�
1� q +

q(1 � q)

(1� �)

�
�
q(1 � q)

(1� �)
(92)

= 2q(1� q) + 2

q2(1� q)

(1� �)
�
q(1 � q)

(1� �)
(93)

= 2q(1� q)

�
1 +

q

(1� �)

�
�
q(1 � q)

(1� �)
: (94)

By Equations 91 and 94, we have

F (q; ��) =
2
p
q(1� q)

�
1 +
q

1�� �

2(1��)

�
r�

1�
(1�q)
1��

��
1 +
q

1��

� (95)

or
F (q; ��)

G(q)
=

1 +
q
1��
�

2(1��)r�
1�
(1�q)

1��

��
1 +
q

1��

� : (96)

Thus, we �nd that as q! 0,

F (q; ��)

G(q)
!

1�

2(1��)q

1�

1��

: (97)

Similar calculations yield that as q! 0,

F (q;�(1� �)�)

G(q)
! 1 +

2�p
1 +

�

: (98)

Now to complete the proof of the statement of the lemma for � � 0:4 we need to show:

1� (5=6)
p
1� (5=3)

<
1 + (5=4)
p
1 + (5=2)

(99)

Squaring both sides we obtain

1� (5=3)
 + (25=36)
2

1� (5=3)

<

1 + (5=2)
 + (25=16)
2

1 + (5=2)

(100)

or
(25=36)
2

1� (5=3)

<

(25=16)
2

1 + (5=2)

: (101)

This last inequality holds for
 < 0:2, as does the reverse inequality obtained for the value � � 0:6.
2(Lemma 13)

17

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
q

Figure 2: Plots of the three splitting criterion G that we examine, from top to bottom: G(q) = 2
p
q(1� q);G(q) =

H(q) and G(q) = 4q(1 � q). The bottom plot is 2min(q; 1 � q), the splitting criterion corresponding to direct
minimization of the local error.

0

0.05

0.1

0.15

0.2

0 0.002 0.004 0.006 0.008 0.01
q

Figure 3: Same as Figure 2, but for small q. Notice that the choice G(q) = 2
p
q(1� q) (top plot) enjoys strong

concavity in this regime of q, while G(q) = H(q) and G(q) = 4q(1 � q) (second and third from top) are nearly linear
in this regime.

18

h

h = 1
(prob = 1 - tau) (prob = tau)

Pr[f = 1] = p Pr[f = 1] = r

weight = w

Pr[f = 1] = q

h = 0

Figure 4: A typical split labeled by the function h, showing the split parameters used in the analysis.

G(r)

G(q)

G(p)

(tau = 1)
p q r

delta

L

(tau = 0)

Figure 5: E�ects of the concavity of G on the local drop to Gt. Here q = (1� �)p+ �r, 0 � � � 1. The local drop to
Gt is equal to the length of the vertical line segment L. Intuitively, for �xed p; q and r, the greater the concavity of
G, the greater the drop. To show that this drop is signi�cant, we must bound the three points away from each other
| that is, lower bound � = r � p and bound � away from 0 and 1.

19

f(x) = 1

(expansion)

f(x) = 0
Original
Distribution

Balanced
Distribution

Scaling = 1/2q
(contraction)

h(x) = 1

error
region

error
region

Scaling = 1/2(1-q)

Figure 6: Illustration of the proof of Lemma 2. In going from the original distribution P` to the balanced distribution
P 0

`, since in this �gure q = PrP` [f(x) = 1] > 1=2, inputs x such that f(x) = 1 have their probabilities \contracted"
and x such that f(x) = 0 are \expanded". We compute the error of the Weak Hypothesis Assumption witness h for
the balanced distribution P 0

` by computing the weight of the error regions under P` and applying the contraction and
expansion operations.

C

tangent to G at p

p

tangent to G at r

B

A

q r

Figure 7: Illustration of the proof of Lemma 4. Here q = (1��)p+�r, and the minimizing value of � for the function
�G(q; �) occurs when the intersection of tangent line at G(p) with the vertical line at q (point A) coincides with
the intersection of the tangent line at G(r) with the vertical line at q (point B). In the �gure, these points do not
coincide: point A still lies below point B, and thus q must be moved away from p, to lie directly below the desired
tangent intersection point C. Thus, we must increase � to reach the minimizing value.

20

-0.008

-0.006

-0.004

-0.002

0
0 0.2 0.4 0.6 0.8 1

q

G(q) = 4q(1-q), gamma = 0.1, tau = 0.4

Figure 8: For the proof of Theorem 4. Plot of G(q� ��)+ �� �G0(q� ��)�G(q+(1� �)�)� (1� �)� �G0(q+(1� �)�)
for G(q) = 4q(1� q), with
 = 0:1 and � = 0:4. For this value of � , we see that the function is negative for all values
of q, indicating that the minimizing value of � for the function �G(q; �) is larger than 0:4. Formal proof of this is
given by Lemma 11.

0

0.002

0.004

0.006

0.008

0 0.2 0.4 0.6 0.8 1
q

G(q) = 4q(1-q), gamma = 0.1, tau = 0.6

Figure 9: For the proof of Theorem 4. Plot of G(q� ��)+ �� �G0(q� ��)�G(q+(1� �)�)� (1� �)� �G0(q+(1� �)�)
for G(q) = 4q(1� q), with
 = 0:1 and � = 0:6. For this value of � , we see that the function is positive for all values
of q, indicating that the minimizing value of � for the function �G(q; �) is smaller than 0:6. Formal proof of this is
given by Lemma 11.

21

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0
0 0.2 0.4 0.6 0.8 1

q

G(q) = H(q), gamma = 0.1, tau = 0.4

Figure 10: For the proof of Theorem 4. Plot of G(q���)+�� �G0(q���)�G(q+(1��)�)� (1��)� �G0(q+(1��)�)
for G(q) = H(q), with
 = 0:1 and � = 0:4. For this value of � , we see that the function is negative for all values of
q, indicating that the minimizing value of � for the function �G(q; �) is larger than 0:4. Formal proof of this is given
by Lemma 12.

0

0.001

0.002

0.003

0.004

0.005

0.006

0 0.2 0.4 0.6 0.8 1
q

G(q) = H(q), gamma = 0.1, tau = 0.6

Figure 11: For the proof of Theorem 4. Plot of G(q���)+�� �G0(q���)�G(q+(1��)�)� (1��)� �G0(q+(1��)�)
for G(q) = H(q), with
 = 0:1 and � = 0:6. For this value of � , we see that the function is positive for all values of q,
indicating that the minimizing value of � for the function �G(q; �) is smaller than 0:6. Formal proof of this is given
by Lemma 12.

22

-0.005

-0.004

-0.003

-0.002

-0.001

0 0.2 0.4 0.6 0.8 1
q

G(q) = 2*sqrt(q(1-q)), gamma = 0.1, tau = 0.4

Figure 12: For the proof of Theorem 4. Plot of G(q���)+�� �G0(q���)�G(q+(1��)�)� (1��)� �G0(q+(1��)�)

for G(q) = 2
p
q(1� q), with
 = 0:1 and � = 0:4. For this value of � , we see that the function is negative for all

values of q, indicating that the minimizing value of � for the function �G(q; �) is larger than 0:4. Formal proof of
this is given by Lemma 13.

0.001

0.002

0.003

0.004

0.005

0 0.2 0.4 0.6 0.8 1
q

G(q) = 2*sqrt(q(1-q)), gamma = 0.1, tau = 0.6

Figure 13: For the proof of Theorem 4. Plot of G(q���)+�� �G0(q���)�G(q+(1��)�)� (1��)� �G0(q+(1��)�)

for G(q) = 2
p
q(1 � q), with
 = 0:1 and � = 0:6. For this value of � , we see that the function is positive for all

values of q, indicating that the minimizing value of � for the function �G(q; �) is smaller than 0:6. Formal proof of
this is given by Lemma 13.

23

