
The Computational Complexity
of Machine Learning

The Computational Complexity
of Machine Learning

Michael J. Kearns

The MIT Press

Cambridge, Massachusetts
London, England

Dedicated to my parents

Alice Chen Kearns and David Richard Kearns

For their love and courage

Contents

1 Introduction 1

2 De�nitions and Motivation for Distribution-free Learning 6

2.1 Representing subsets of a domain : : : : : : : : : : : : : : : : 6

2.2 Distribution-free learning : 9

2.3 An example of e�cient learning : : : : : : : : : : : : : : : : : 14

2.4 Other de�nitions and notation : : : : : : : : : : : : : : : : : : 17

2.5 Some representation classes : : : : : : : : : : : : : : : : : : : 19

3 Recent Research in Computational Learning Theory 22

3.1 E�cient learning algorithms and hardness results : : : : : : : 22

3.2 Characterizations of learnable classes : : : : : : : : : : : : : : 27

3.3 Results in related models : 29

4 Tools for Distribution-free Learning 33

4.1 Introduction : 33

4.2 Composing learning algorithms to obtain new algorithms : : : 34

4.3 Reductions between learning problems : : : : : : : : : : : : : 39

5 Learning in the Presence of Errors 45

5.1 Introduction : 45

5.2 De�nitions and notation for learning with errors : : : : : : : : 48

5.3 Absolute limits on learning with errors : : : : : : : : : : : : : 52

5.4 E�cient error-tolerant learning : : : : : : : : : : : : : : : : : 60

5.5 Limits on e�cient learning with errors : : : : : : : : : : : : : 77

6 Lower Bounds on Sample Complexity 85

6.1 Introduction : 85

6.2 Lower bounds on the number of examples needed for positive-
only and negative-only learning : : : : : : : : : : : : : : : : : 86

6.3 A general lower bound on the number of examples needed for
learning : 90

6.3.1 Applications of the general lower bound : : : : : : : : 96

6.4 Expected sample complexity : : : : : : : : : : : : : : : : : : : 99

7 Cryptographic Limitations on Polynomial-time Learning 101

7.1 Introduction : 101

7.2 Background from cryptography : : : : : : : : : : : : : : : : : 105

7.3 Hard learning problems based on cryptographic functions : : : 108

7.3.1 A learning problem based on RSA : : : : : : : : : : : : 109

7.3.2 A learning problem based on quadratic residues : : : : 111

7.3.3 A learning problem based on factoring Blum integers : 114

7.4 Learning small Boolean formulae, �nite automata and threshold
circuits is hard : 116

7.5 A generalized construction based on any trapdoor function : : 118

7.6 Application: hardness results for approximation algorithms : : 121

8 Distribution-speci�c Learning in Polynomial Time 129

8.1 Introduction : 129

8.2 A polynomial-time weak learning algorithm for all monotone
Boolean functions under uniform distributions : : : : : : : : : 130

8.3 A polynomial-time learning algorithm for �DNF under uniform
distributions : 132

9 Equivalence of Weak Learning and Group Learning 140

9.1 Introduction : 140

9.2 The equivalence : 141

10 Conclusions and Open Problems 145

Preface and Acknowledgements

This book is a revision of my doctoral dissertation, which was completed in
May 1989 at Harvard University. While the changes to the theorems and
proofs are primarily clari�cations of or corrections to my original thesis, I
have added a signi�cant amount of expository and explanatory material, in an
e�ort to make the work at least partially accessible to an audience wider than
the \mainstream" theoretical computer science community. Thus, there are
more examples and more informal intuition behind the formal mathematical
results. My hope is that those lacking the background for the formal proofs will
nevertheless be able to read selectively, and gain some useful understanding of
the goals, successes and shortcomings of computational learning theory.

Computational learning theory can be broadly and imprecisely de�ned as
the mathematical study of e�cient learning by machines or computational
systems. The demand for e�ciency is one of the primary characteristics distin-
guishing computational learning theory from the older but still active areas of
inductive inference and statistical pattern recognition. Thus, computational
learning theory encompasses a wide variety of interesting learning environ-
ments and formal models, too numerous to detail in any single volume. Our
goal here is to simply convey the
avor of the recent research by �rst sum-
marizing work in various learning models and then carefully scrutinizing a
single model that is reasonably natural and realistic, and has enjoyed great
popularity in its infancy.

This book is a detailed investigation of the computational complexity of
machine learning from examples in the distribution-free model introduced by
L.G. Valiant [93] (also known as the probably approximately correct model of
learning). In the distribution-free model, a learning algorithm receives positive

and negative examples of an unknown target set (or concept) that is chosen
from some known class of sets (or concept class). These examples are gen-
erated randomly according to a �xed but unknown probability distribution
representing Nature, and the goal of the learning algorithm is to infer an hy-
pothesis concept that closely approximates the target concept with respect
to the unknown distribution. This book is concerned with proving theorems
about learning in this formal mathematical model.

As we have mentioned, we are primarily interested in the phenomenon of ef-
�cient learning in the distribution-free model, in the standard polynomial-time
sense. Our results include general tools for determining the polynomial-time
learnability of a concept class, an extensive study of e�cient learning when
errors are present in the examples, and lower bounds on the number of exam-
ples required for learning in our model. A centerpiece of the book is a series
of results demonstrating the computational di�culty of learning a number
of well-studied concept classes. These results are obtained by reducing some
apparently hard number-theoretic problems from public-key cryptography to
the learning problems. The hard-to-learn concept classes include the sets rep-
resented by Boolean formulae, deterministic �nite automata and a simpli�ed
form of neural networks. We also give algorithms for learning powerful concept
classes under the uniform distribution, and give equivalences between natural
models of e�cient learnability.

The book also includes detailed de�nitions and motivation for our model, a
chapter discussing past research in this model and related models, and a short
list of important open problems and areas for further research.

Acknowledgements. I am deeply grateful for the guidance and support of
my advisor, Prof. L.G. Valiant of Harvard University. Throughout my stay
at Harvard, Les' insightful comments and timely advice made my graduate
career a fascinating and enriching experience. I thank Les for his support, for
sharing his endless supply of ideas, and for his friendship. I could not have
had a better advisor.

Many thanks to my family | my father David, my mother Alice and my
sister Jennifer | for all of the love and support you have given. I am proud
of you as my family, and proud to be friends with each of you as individuals.
I especially thank you for your continued courage during these di�cult times.

Many of the results presented here were joint research between myself and
coauthors. Here I wish to thank each of these colleagues, and cite the papers
in which this research appeared in preliminary form. The example of learning
provided in Chapter 2 is adapted from \Recent results on Boolean concept
learning", by M. Kearns, M. Li, L. Pitt and L.G. Valiant, appearing in the
Proceedings of the Fourth International Workshop on Machine Learning [61].
Results from Chapters 4, 6 and 8 appeared in \On the learnability of Boolean
formulae", by M. Kearns, M. Li, L. Pitt and L.G. Valiant, in the Proceedings
of the 19th A.C.M. Symposium on the Theory of Computing [60]. The results
of Chapter 5 initially appeared in the paper \Learning in the presence of mali-
cious errors", by M. Kearns and M. Li, in the Proceedings of the 20th A.C.M.
Symposium on the Theory of Computing [59]. Parts of Chapter 6 appeared
in \A general lower bound on the number of examples needed for learning",
by A. Ehrenfeucht, D. Haussler, M. Kearns and L.G. Valiant, in Information
and Computation [36]. Results of Chapters 7, 8 and 9 appeared in \Crypto-
graphic limitations on learning Boolean formulae and �nite automata", by M.
Kearns and L.G. Valiant, in the Proceedings of the 21st A.C.M. Symposium on
the Theory of Computing [64]. Working with these �ve colleagues | Andrzej
Ehrenfeucht, David Haussler, Ming Li, Lenny Pitt and Les Valiant | made
doing research both fun and exciting. I also had the pleasure of collaborating
with Nick Littlestone and Manfred Warmuth [51]; thanks again to you all.

Thanks to the many people who were �rst colleagues and then good friends.
Your presence was one of the most rewarding aspects of graduate school. Spe-
cial thanks to David Haussler and Manfred Warmuth for their friendship and
for their hospitality during my stay at the University of California at Santa
Cruz during the 1987-88 academic year. Many thanks to Dana Angluin, Sally
Floyd, Ming Li, Nick Littlestone, Lenny Pitt, Ron Rivest, Thanasis Tsanti-
las and Umesh Vazirani. I also had very enjoyable conversations with Avrim
Blum, David Johnson, Prabhakar Raghavan, Jim Ruppert, Rob Schapire and
Bob Sloan. I'd also like to thank three particularly inspiring teachers I have
had, J.W. Addison, Manuel Blum and Silvio Micali.

Thanks to the members of the Middle Common Room at Merton College,
Oxford University for their hospitality during my time there in the spring of
1988.

Thanks to A.T. & T. Bell Laboratories for their generous �nancial sup-
port during my graduate career. I am also grateful for the �nancial support

provided by the following grants: N00014-85-K-0445 and N00014-86-K-0454
from the O�ce of Naval Research, and DCR-8600379 from the National Sci-
ence Foundation. Thanks also for the support of a grant from the Siemens
Corporation to M.I.T., where I have been while making the revisions to my
thesis.

Thanks to the Theory of Computation Group at M.I.T.'s Laboratory for
Computer Science for a great year!

Finally, thanks to the close friends who shared many great times with me
during graduate school and helped during the hard parts.

Michael J. Kearns
Cambridge, Massachusetts
May 1990

The Computational Complexity
of Machine Learning

1

Introduction

Recently in computer science there has been a great deal of interest in the
area of machine learning. In its experimental incarnation, this �eld is con-
tained within the broader con�nes of arti�cial intelligence, and its attraction
for researchers stems from many sources. Foremost among these is the hope
that an understanding of a computer's capabilities for learning will shed light
on similar phenomena in human beings. Additionally, there are obvious so-
cial and scienti�c bene�ts to having reliable programs that are able to infer
general and accurate rules from some combination of sample data, intelligent
questioning, and background knowledge.

From the viewpoint of empirical research, one of the main di�culties in
comparing various algorithms which learn from examples is the lack of a for-
mally speci�ed model by which the algorithms may be evaluated. Typically,
di�erent learning algorithms and theories are given together with examples
of their performance, but without a precise de�nition of \learnability" it is
di�cult to characterize the scope of applicability of an algorithm or analyze
the success of di�erent approaches and techniques.

Partly in light of these empirical di�culties, and partly out of interest in
the phenomenon of learning in its own right, the goal of the research presented
here is to provide some mathematical foundations for a science of e�cient ma-
chine learning. More precisely, we wish to de�ne a formal mathematical model
of machine learning that is realistic in some (but inevitably not all) important
ways, and to analyze rigorously the consequences of our de�nitions. We expect
these consequences to take the form of learning algorithms along with proofs of

2 Introduction

their correctness and performance, lower bounds and hardness results that de-
lineate the fundamental computational and information-theoretic limitations
on learning, and general principles and phenomena that underly the chosen
model.

The notion of a mathematical study of machine learning is by no means
new to computer science. For instance, research in the areas known as induc-
tive inference and statistical pattern recognition often addresses problems of
inferring a good rule from given data. Surveys and highlights of these rich
and varied �elds are given by Angluin and Smith [13], Duda and Hart [33],
Devroye [31], Vapnik [96] and many others. While a number of ideas from
these older areas have proven relevant to the present study, there is a funda-
mental and signi�cant di�erence between previous models and the model we
consider: the explicit emphasis here on the computational e�ciency of learning
algorithms.

The model we use, sometimes known as the distribution-free model or
the model of probably approximately correct learning, was introduced by L.G.
Valiant [93] in 1984 and has been the catalyst for a renaissance of research in
formal models of machine learning known as computational learning theory.
Brie
y, Valiant's framework departs from models used in inductive inference
and statistical pattern recognition in one or more of three basic directions:

The demand that a learning algorithm identify the hidden target rule exactly
is relaxed to allow approximations. Most inductive inference models
require that the learning algorithm eventually converge on a rule that is
functionally equivalent to the target rule.

The demand for computational e�ciency is now an explicit and central con-
cern. Inductive inference models typically seek learning algorithms that
perform exact identi�cation \in the limit"; the classes of functions con-
sidered are usually so large (e.g., the class of all recursive functions) that
improved computational complexity results are not possible. While one
occasionally �nds complexity results in the pattern recognition litera-
ture (particularly in the area of required sample size), computational
e�ciency is in general a secondary concern.

The demand is made for general learning algorithms that perform well against
any probability distribution on the data. This gives rise to the expres-

Introduction 3

sion distribution-free. Statistical pattern recognition models often deal
with special distributions; the notable instances in which general classes
of distributions are addressed (for example, the work of Vapnik and
Chervonekis [97], Vapnik [96], Pollard [81], Dudley [34] and others) have
found widespread application in our model and related models.

The simultaneous consideration of all three of these departures can be regarded
as a step towards a more realistic model, since the most remarkable examples
of learning, those which occur in humans and elsewhere in Nature, appear to
be imperfect but rapid and general.

Research in computational learning theory clearly has some relationship
with empirical machine learning research conducted in the �eld of arti�cial
intelligence. As might be expected, this relationship varies in strength and
relevance from problem to problem. Ideally, the two �elds would complement
each other in a signi�cant way, with experimental research suggesting new the-
orems to be proven, and vice-versa. Many of the problems tackled by arti�cial
intelligence, however, appear extremely complex and are poorly understood
in their biological incarnations, to the point that they are currently beyond
mathematical formalization. The research presented here does not pretend to
address such problems. However, the fundamental hypothesis of this research
is that there are important practical and philosophically interesting problems
in learning that can be formalized and that therefore must obey the same
\computational laws" that appear elsewhere in computer science.

This book, along with other research in computational learning theory,
can be regarded as a �rst step towards discovering how such laws apply to our
model of machine learning. Here we restrict our attention to programs that
attempt to learn an unknown target rule (or concept) chosen from a known
concept class on the basis of examples of the target concept. This is known
as learning from examples. Valiant's model considers learning from examples
as a starting point, with an emphasis on computational complexity. Learning
algorithms are required to be e�cient, in the standard polynomial-time sense.
The question we therefore address and partially answer in these pages is: What
does complexity theory have to say about machine learning from examples?

As we shall see, the answer to this question has many parts. We begin in
Chapter 2 by giving the precise de�nition of the distribution-free model, along
with the motivations for this model. We also provide a detailed example of an

4 Introduction

e�cient algorithm for a natural learning problem in this model, and give some
needed facts and notation. Chapter 3 provides an overview of some recent
research in computational learning theory, in both the distribution-free model
and other models. Here we also state formally a theorem due to Blumer,
Ehrenfeucht, Haussler and Warmuth known as Occam's Razor that we will
appeal to frequently.

Our �rst results are presented in Chapter 4. Here we describe several
useful tools for determining whether a concept class is e�ciently learnable.
These include methods for composing existing learning algorithms to obtain
new learning algorithms for more powerful concept classes, and a notion of
reducibility that allows us to show that one concept class is \just as hard"
to learn as another. This latter notion, which has subsequently been devel-
oped by Pitt and Warmuth, plays a role analogous to that of polynomial-time
reductions in complexity theory.

Chapter 5 is an extensive study of a variant of the distribution-free model
which allows errors to be present in the examples given to a learning algorithm.
Such considerations are obviously crucial in any model that aspires to reality.
Here we study the largest rate of error that can be tolerated by e�cient learning
algorithms, emphasizing worst-case or malicious errors but also considering
classi�cation noise. We give general upper bounds on the error rate that can
be tolerated that are based on various combinatorial properties of concept
classes, as well as e�cient learning algorithms that approach these optimal
rates.

Chapter 6 presents information-theoretic lower bounds (that is, bounds
that hold regardless of the amount of computation time) on the number of
examples required for learning in our sense, including a general lower bound
that can be applied to any concept class.

In Chapter 7 we prove that several natural and simple concept classes are
not e�ciently learnable in the distribution-free setting. These classes include
concepts represented by Boolean formulae, deterministic �nite automata, and
a simple class of neural networks. In contrast to previous hardness results for
learning, these results hold regardless of the form in which a learning algorithm
represents it hypothesis. The results rely on some standard assumptions on
the intractability of several well-studied number theoretic problems (such as
the di�culty of factoring), and they suggest and formalize an interesting du-

Introduction 5

ality between learning, where one desires an e�cient algorithm for classifying
future examples solely on the basis of given examples, and public-key cryp-
tography, where one desires easily computed encoding and decoding functions
whose behavior on future messages cannot be e�ciently inferred from previ-
ous messages. As a non-learning application of these results, we are able to
obtain rather strong hardness results for approximating the optimal solution
for various combinatorial optimization problems, including a generalization of
the well-known graph coloring problem.

In Chapter 8 we give e�cient algorithms for learning powerful concept
classes when the distribution on examples is uniform. Here we are motivated
either by evidence that learning in a distribution-free manner is intractable
or the fact that the learnability of the class has remained unresolved despite
repeated attacks. Such partial positive results are analogous to results giving
e�cient average-case algorithms for problems whose worst-case complexity is
NP -complete.

Finally, Chapter 9 demonstrates the equivalence of two natural models of
learning with examples, and relates this to other recently shown equivalences.
In addition to allowing us to transform existing learning algorithms to new
algorithms meeting di�erent performance criteria, such results give evidence
for the robustness of the original model, since it is invariant to reasonable but
apparently signi�cant modi�cations. We give conclusions and mention some
important open problems and areas for further research in Chapter 10.

We feel that the results presented here and elsewhere in computational
learning theory demonstrate that a wide variety of topics in theoretical com-
puter science and other branches of mathematics have a direct and signi�cant
bearing on natural problems in machine learning. We hope that this line
of research will continue to illuminate the phenomenon of e�cient machine
learning, both in the model studied here and in other natural models.

A word on the background assumed of the reader: it is assumed that the
reader is familiar with the material that might be found in a good �rst-year
graduate course in theoretical computer science, and thus is comfortable with
the analysis of algorithms and notions such as NP -completeness. We refer the
reader to Aho, Hopcroft and Ullman [3], Cormen, Leiserson and Rivest [30],
and Garey and Johnson [39]. Familiarity with basic results from probability
theory and public-key cryptography is also helpful, but not necessary.

2

De�nitions and Motivation for

Distribution-free Learning

In this chapter we give de�nitions and motivation for the model of machine
learning we study. This model was �rst de�ned by Valiant [93] in 1984. In
addition to the basic de�nitions and notation, we provide a detailed example
of an e�cient algorithm in this model, give the form of Cherno� bounds we
use, de�ne the Vapnik-Chervonenkis dimension, and de�ne a number of classes
of representations whose learnability we will study.

2.1 Representing subsets of a domain

Concept classes and their representation. Let X be a set called a do-
main (also sometimes referred to as the instance space). We think of
X as containing encodings of all objects of interest to us in our learn-
ing problem. For example, each instance in X may represent a di�erent
object in a particular room, with discrete attributes representing proper-
ties such as color, and continuous values representing properties such as
height. The goal of a learning algorithm is then to infer some unknown
subset of X, called a concept, chosen from a known concept class. (The
reader familiar with the pattern recognition literature may regard the
assumption of a known concept class as representing the prior knowl-
edge of the learning algorithm.) In this setting, we might imagine a child
attempting to learn to distinguish chairs from non-chairs among all the

De�nitions and Motivation for Distribution-free Learning 7

physical objects in its environment. This particular concept is but one
of many concepts in the class, each of which the child might be expected
to learn and each of which is a set of objects that are related in some
natural and interesting manner. For example, another concept might
consist of all metal objects in the environment. On the other hand, we
would not expect a randomly chosen subset of objects to be an inter-
esting concept, since as humans we do not expect these objects to bear
any natural and useful relation to one another. Thus we are primarily
interested in the learnability of concept classes that are expressible as
relatively simple rules over the domain instances.

For computational purposes we always need a way of naming or repre-
senting concepts. Thus, we formally de�ne a representation class over X
to be a pair (�;C), where C � f0; 1g� and � is a mapping � : C ! 2X

(here 2X denotes the power set of X). In the case that the domain X
has real-valued components, we sometimes assume C � (f0; 1g [R)�,
where R is the set of real numbers. For c 2 C, �(c) is called a concept
over X; the image space �(C) is the concept class that is represented
by (�;C). For c 2 C, we de�ne pos(c) = �(c) (the positive examples of
c) and neg(c) = X � �(c) (the negative examples of c). The domain X
and the mapping � will usually be clear from the context, and we will
simply refer to the representation class C. We will sometimes use the
notation c(x) to denote the value of the characteristic function of �(c)
on the domain point x; thus x 2 pos(c) (x 2 neg(c), respectively) and
c(x) = 1 (c(x) = 0, respectively) are used interchangeably. We assume
that domain points x 2 X and representations c 2 C are e�ciently en-
coded using any of the standard schemes (see Garey and Johnson [39]),
and denote by jxj and jcj the length of these encodings measured in bits
(or in the case of real-valued domains, some other reasonable measure of
length that may depend on the model of arithmetic computation used;
see Aho, Hopcroft and Ullman [3]).

Parameterized representation classes. We will often study parame-
terized classes of representations. Here we have a strati�ed domain
X = [n�1Xn and representation class C = [n�1Cn. The parame-
ter n can be regarded as an appropriate measure of the complexity of
concepts in �(C) (such as the number of domain attributes), and we
assume that for a representation c 2 Cn we have pos(c) � Xn and
neg(c) = Xn � pos(c). For example, Xn may be the set f0; 1gn, and Cn

8 De�nitions and Motivation for Distribution-free Learning

the class of all Boolean formulae over n variables whose length is at most
n2. Then for c 2 Cn, �(c) would contain all satisfying assignments of
the formula c.

E�cient evaluation of representations. In general, we will be primarily
concerned with learning algorithms that are computationally e�cient.
In order to prevent this demand from being vacuous, we need to insure
that the hypotheses output by a learning algorithm can be e�ciently
evaluated as well. For example, it would be of little use from a compu-
tational standpoint to have a learning algorithm that terminates rapidly
but then outputs as its hypothesis a complicated system of di�erential
equations that can only be evaluated using a lengthy stepwise approx-
imation method (although such an hypothesis may be of considerable
theoretical value for the model it provides of the concept being learned).
Thus if C is a representation class over X, we say that C is polynomi-
ally evaluatable if there is a (probabilistic) polynomial-time evaluation
algorithm A that on input a representation c 2 C and a domain point
x 2 X outputs c(x). For parameterized C, an alternate and possibly
more general de�nition is that of nonuniformly polynomially evaluatable.
Here for each c 2 Cn, there is a (probabilistic) evaluation circuit Ac

that on input x 2 Xn outputs c(x), and the size of Ac is polynomial
in jcj and n. Note that a class being nonuniformly polynomially evalu-
atable simply means that it contains only \small" representations, that
is, representations that can be written down in polynomial time. All
representation classes considered here are polynomially evaluatable. It
is worth mentioning at this point that Schapire [90] has shown that if a
representation class is not nonuniformly polynomially evaluatable, then
it is not e�ciently learnable in our model. Thus, perhaps not surpris-
ingly we see that classes that are not polynomially evaluatable constitute
\unfair" learning problems.

Samples. A labeled example from a domainX is a pair < x; b >, where x 2 X
and b 2 f0; 1g. A labeled sample S = < x1; b1 >; : : : ; < xm; bm > from X
is a �nite sequence of labeled examples from X. If C is a representation
class, a labeled example of c 2 C is a labeled example < x; c(x) >, where
x 2 X. A labeled sample of c is a labeled sample S where each example
of S is a labeled example of c. In the case where all labels bi or c(xi)
are 1 (0, respectively), we may omit the labels and simply write S as

De�nitions and Motivation for Distribution-free Learning 9

a list of points x1; : : : ; xm, and we call the sample a positive (negative,
respectively) sample.

We say that a representation h and an example< x; b > agree if h(x) = b;
otherwise they disagree. We say that a representation h and a sample
S are consistent if h agrees with each example in S; otherwise they are
inconsistent.

2.2 Distribution-free learning

Distributions on examples. On any given execution, a learning algo-
rithm for a representation class C will be receiving examples of a single
distinguished representation c 2 C. We call this distinguished c the tar-
get representation. Examples of the target representation are generated
probabilistically as follows: let D+

c be a �xed but arbitrary probability
distribution over pos(c), and let D�

c be a �xed but arbitrary probability
distribution over neg(c). We call these distributions the target distri-
butions. When learning c, learning algorithms will be given access to
two oracles, POS and NEG , that behave as follows: oracle POS (NEG,
respectively) returns in unit time a positive (negative, respectively) ex-
ample of the target representation, drawn randomly according to the
target distribution D+

c (D�
c , respectively).

The distribution-free model is sometimes de�ned in the literature with a
single target distribution over the entire domain; the learning algorithm
is then given labeled examples of the target concept drawn from this
distribution. We choose to explicitly separate the distributions over the
positive and negative examples to facilitate the study of algorithms that
learn using only positive examples or only negative examples. These
models, however, are equivalent with respect to polynomial-time com-
putation, as is shown by Haussler et al. [51].

We think of the target distributions as representing the \real world" dis-
tribution of objects in the environment in which the learning algorithm
must perform; these distributions are separate from, and in the infor-
mal sense, independent from the underlying target representation. For
instance, suppose that the target concept were that of \life-threatening
situations". Certainly the situations \oncoming tiger" and \oncoming

10 De�nitions and Motivation for Distribution-free Learning

truck" are both positive examples of this concept. However, a child
growing up in a jungle is much more likely to witness the former event
than the latter, and the situation is reversed for a child growing up in
an urban environment. These di�erences in probability are re
ected
in di�erent target distributions for the same underlying target concept.
Furthermore, since we rarely expect to have precise knowledge of the
target distributions at the time we design a learning algorithm (and in
particular, since the usually studied distributions such as the uniform
and normal distributions are typically quite unrealistic to assume), ide-
ally we seek algorithms that perform well under any target distributions.
This apparently di�cult goal will be moderated by the fact that the hy-
pothesis of a learning algorithm will be required to perform well only
against the distributions on which the algorithm was trained.

Given a �xed target representation c 2 C, and given �xed target distri-
butions D+

c and D�
c , there is a natural measure of the error (with respect

to c, D+
c and D�

c) of a representation h from a representation class H.
We de�ne e+c (h) = D+

c (neg(h)) (i.e., the weight of the set neg(h) under
the probability distribution D+

c) and e
�
c (h) = D�

c (pos(h)) (the weight of
the set pos(h) under the probability distribution D�

c). Note that e
+
c (h)

(respectively, e�c (h)) is simply the probability that a random positive (re-
spectively, negative) example of c is identi�ed as negative (respectively,
positive) by h. If both e+c (h) < � and e�c (h) < �, then we say that h is an
�-good hypothesis (with respect to c, D+

c and D�
c); otherwise, h is �-bad.

We de�ne the accuracy of h to be the value min(1� e+c (h); 1� e�c (h)).
It is worth noting that our de�nitions so far assume that the hypothesis
h is deterministic. However, this need not be the case; for example,
we can instead it de�ne e+c (h) to be the probability that h classi�es a
random positive example of c as negative, where the probability is now
over both the random example and the coin
ips of h. All of the results
presented here hold under these generalized de�nitions.

When the target representation c is clear from the context, we will drop
the subscript c and simply write D+;D�; e+ and e�.

In the de�nitions that follow, we will demand that a learning algorithm
produce with high proability an �-good hypothesis regardless of the tar-
get representation and target distributions. While at �rst this may seem
like a strong criterion, note that the error of the hypothesis output is
always measured with respect to the same target distributions on which

De�nitions and Motivation for Distribution-free Learning 11

the algorithm was trained. Thus, while it is true that certain examples of
the target representation may be extremely unlikely to be generated in
the training process, these same examples intuitively may be \ignored"
by the hypothesis of the learning algorithm, since they contribute a negli-
gible amount of error. Continuing our informal example, the child living
in the jungle may never be shown an oncoming truck as an example of
a life-threatening situation, but provided he remains in the environment
in which he was trained, it is unlikely that his inability to recognize this
danger will ever become apparent. Regarding this child as the learning
algorithm, the distribution-free model would demand that if the child
were to move to the city, he quickly would \re-learn" the concept of
life-threatening situations in this new environment (represented by new
target distributions), and thus recognize oncoming trucks as a potential
danger. This versatility and generality in learning seem to agree with
human experience.

Learnability. Let C and H be representation classes over X. Then C is
learnable from examples by H if there is a (probabilistic) algorithm A
with access to POS and NEG, taking inputs �; �, with the property that
for any target representation c 2 C, for any target distributions D+ over
pos(c) and D� over neg(c), and for any inputs 0 < �; � < 1, algorithm A
halts and outputs a representation hA 2 H that with probability greater
than 1� � satis�es e+(hA) < � and e�(hA) < �.

We call C the target class and H the hypothesis class; the output hA 2 H
is called the hypothesis of A. A will be called a learning algorithm for C.
If C and H are polynomially evaluatable, and A runs in time polynomial
in 1=�; 1=� and jcj then we say that C is polynomially learnable from
examples by H; if C is parameterized we also allow the running time of
A to have polynomial dependence on the parameter n.

Allowing the learning algorithm to have a time dependence on the rep-
resentation size jcj can potentially serve two purposes: �rst, it lets us
discuss the polynomial-time learnability of parameterized classes con-
taining representations whose length is super-polynomial in the param-
eter n (such as the class of all DNF formulae) in a meaningful way. In
general, however, when studying parameterized Boolean representation
classes, we will instead place an explicit polynomial length bound on
the representations in Cn for clarity; thus, we will study classes such
as all DNF formulae in which the formula length is bounded by some

12 De�nitions and Motivation for Distribution-free Learning

polynomial in the total number of variables. Such a restriction makes
polynomial dependence on both jcj and n redundant, and thus we may
simply consider polynomial dependence on the complexity parameter n.
The second use of the dependence on jcj is to allow more re�ned com-
plexity statements for those representation classes which already have a
polynomial length bound. Thus, for example, every conjunction over n
Boolean variables has length at most n, but we may wish to consider the
time or number of examples required when only s << n variables are
present in the target conjunction. This second use is one that we will
occasionally take advantage of.

We will drop the phrase \from examples" and simply say that C is
learnable by H, and C is polynomially learnable by H. We say C is
polynomially learnable to mean that C is polynomially learnable byH for
some polynomially evaluatable H. We will sometimes call � the accuracy
parameter and � the con�dence parameter.

Thus, we ask that for any target representation and any target distribu-
tions, a learning algorithm �nds an �-good hypothesis with probability
at least 1 � �. A primary goal of research in this model is to discover
which representation classes C are polynomially learnable.

Note that in the above de�nitions, we allow the learning algorithm to
output hypotheses from some class H that is possibly di�erent from C,
as opposed to the natural choice C = H. While in general we assume
that H is at least as powerful as C (that is, C � H), we will see that
in some cases for computational reasons we may not wish to restrict H
beyond it being polynomially evaluatable. If the algorithm produces an
accurate and easily evaluated hypothesis, then our learning problem is
essentially solved, and the actual form of the hypothesis is of secondary
concern. A major theme of this book is the importance of allowing a
wide choice of representations for a learning algorithm.

We refer to Valiant's model as the distribution-free model, to emphasize
that we seek algorithms that work for any target distributions. It is
also known in the literature as the probably approximately correct model.
We also occasionally refer to the model as that of strong learnability, in
contrast with the notion of weak learnability de�ned below.

Weak learnability. We will also consider a distribution-free model in which
the hypothesis of the learning algorithm is required to perform only

De�nitions and Motivation for Distribution-free Learning 13

slightly better than random guessing.

Let C and H be representation classes over X. Then C is weakly learn-
able from examples by H if there is a polynomial p and a (probabilistic)
algorithm A with access to POS and NEG, taking input �, with the
property that for any target representation c 2 C, for any target dis-
tributions D+ over pos(c) and D� over neg(c), and for any input value
0 < � < 1, algorithm A halts and outputs a representation hA 2 H that
with probability greater than 1� � satis�es e+(hA) < 1=2� 1=p(jcj) and
e�(hA) < 1=2 � 1=p(jcj).
Thus, the accuracy of hA must be at least 1=2 + 1=p(jcj). A will be
called a weak learning algorithm for C. If C and H are polynomially
evaluatable, and A runs in time polynomial in 1=� and jcj we say that
C is polynomially weakly learnable by H and C is polynomially weakly
learnable if it is weakly learnable byH for some polynomially evaluatable
H. In the case that the target class C is parameterized, we allow the
polynomial p and the running time to depend on the parameter n. Again,
we will usually explicitly restrict jcj to be polynomial in n, and thus may
assume p depends on n alone.

We may intuitively think of weak learning as the ability to detect some
slight bias separating positive and negative examples, where the advan-
tage gained over random guessing diminishes as the complexity of the
problem grows. Our main use of the weak learning model is in proving
the strongest possible hardness results in Chapter 7. We also give a weak
learning algorithm for uniform target distributions in Chapter 8, and in
Chapter 9 we discuss models equivalent to weak learning. Recently Gold-
man et al. have investigated the sample size required for weak learning,
independent of computation time [43].

Positive-only and negative-only learning algorithms. We will some-
times study learning algorithms that need only positive examples or only
negative examples. If A is a learning algorithm for a representation class
C, and A makes no calls to the oracle NEG (respectively, POS), then
we say that A is a positive-only (respectively, negative-only) learning al-
gorithm, and C is learnable from positive examples (learnable from neg-
ative examples). Analogous de�nitions are made for positive-only and
negative-only weak learnability. Note that although the learning algo-
rithm receives only one type of examples, the hypothesis output must

14 De�nitions and Motivation for Distribution-free Learning

still be accurate with respect to both the positive and negative distribu-
tions.

Several learning algorithms in the distribution-free model are positive-
only or negative-only. The study of positive-only and negative-only
learning is important for at least two reasons. First, it helps to quantify
more precisely what kind of information is required for learning various
representation classes. Second, it is crucial for applications where, for
instance, negative examples are rare but must be classi�ed accurately
when they do occur.

Distribution-speci�c learnability. The models for learnability described
above demand that a learning algorithm work regardless of the distri-
butions on the examples. We will sometimes relax this condition, and
consider these models under restricted target distributions, for instance
the uniform distribution. Here the de�nitions are the same as before,
except that we ask that the performance criteria for learnability be met
only under these restricted target distributions.

2.3 An example of e�cient learning

We now illustrate how the distribution-free model works in the very basic
case of monomials, which are conjunctions of literals over Boolean variables.
Suppose we are interested in a set of Boolean variables describing the ani-
mal kingdom. For concreteness, we will give the variables descriptive names,
rather than referring to them with abstract symbols such as xi. The vari-
able set for animals might include variables describing the physical appear-
ance of the animals (such as is large, has claws, has mane, has four legs
and has wings); variables describing various motor skills (such as can
y,
walks on two legs and can speak); variables describing the animal's habi-
tat (is wild, lives in circus); as well as variables describing more scienti�c
classi�cations (is mammal), and many others.

We wish to construct a monomial to distinguish lions from non-lions. For
the variables mentioned above, an appropriate conjunction might be

c = is mammal and is large and has claws and has four legs:

De�nitions and Motivation for Distribution-free Learning 15

In this example, the probability distribution D+ is interpreted as re
ecting
the natural world regarding lions. For instance, each of the four variables
appearing in c must be true (i.e., assigned the value 1) with probability 1 in
D+; this simply re
ects the fact that, for example, all lions are mammals. Since
we are assuming here that lions can be represented exactly by monomials, it
follows that some variables must be true in D+ with probability 1.

Other variables are true in D+ with smaller probabilities. We might expect
the variable has mane to be true with probability approximately 1=2, if there
are roughly equal numbers of male and female lions. Similarly, we expect the
variable walks on two legs to be true with relatively low probability, and
has wings to be true with probability 0.

Notice that there may be dependencies of arbitrary complexity between
variables in the distributions. The variable is wild may be true with very high
probability in D+ if most lions live in the wild, but the probability that both
is wild and lives in circus are true is 0. A slightly more subtle dependency
might be that even though few lions can walk on two legs, almost all of those
that live in the circus can walk on two legs.

In an analogous manner, the negative distribution D� is intended to re
ect
the examples of non-lions in the animal world, and again there are many
dependencies. Animals with wings may comprise only a small fraction of those
animals that are not lions, but the probability that an animal with wings can

y is very high (but not 1, due to
ightless birds such as penguins). Note that
for simplicity, we have chosen an example that is monotone | no variable
appears negated in the monomial c. A natural example of nonmonotonicity
might be a monomial for female lions, where we would need to include the
negation of the variable has mane.

Thus, in this domain, a learning algorithm must infer a monomial over
the animal variables that performs well as a classi�er of lions and non-lions.
Note that the meaning of \performs well" is intimately related to the distri-
butions D+ and D�. In the distributions described above, it may be that the
monomial c is the only good approximation of the concept, depending on the
exact probabilities in the distributions, and the value of the error parameter �.
However, if the distributions D+ and D� give non-zero weight only to animals
for which the variable lives in circus is true, the monomial consisting of the
sole variable has claws might su�ce to accurately distinguish lions from the

16 De�nitions and Motivation for Distribution-free Learning

other animals, if there are very few clawed animals in the circus besides the
lions. Note that these conjunctive formulae are not intended as Platonic de-
scriptions of categories. The only requirement on the monomials is that they
distinguish with su�cient accuracy categories in the real world as speci�ed by
D+ and D�.

We now describe an algorithm A for learning monomials over n variables
with arbitrary distributions D+ and D�. The analysis of this algorithm in the
distribution-free model is due to Valiant [93]. Although the monomial output
by A has error less than � on both distributions, A needs only examples drawn
from D+ in order to learn; thus A is a positive-only algorithm.

The idea behind the algorithm is the following: suppose that the variable xi
appears in the monomial c being learned. Then in a randomly drawn positive
example, xi is always assigned the value 1. Thus, if some variable xj is assigned
the value 0 in a positive example, we are certain that xj does not appear in c,
and thus may delete xj from the current hypothesis. The algorithm A is:

hA x1x1x2x2 � � � xnxn;
for i := 1 to m do
begin

~v POS ;
for j := 1 to n do

if vj = 0 then
delete xj from hA;

else
delete xj from hA;

end
output hA.

Here vj denotes the jth bit of ~v.

How can algorithm A err? Only by failing to delete some variable xj that
does not appear in c. An exact bound on the value of the outer loop counterm
such that the error incurred by such failures is larger than � with probability
less than � can be deduced to be (2n=�)(ln 2n + ln 1=�) by a rough analysis.
Intuitively, if the variable xj is false in D+ with probability �=2n or smaller,
then we incur error at most �=2n on D+ and zero error on D� by failing to

De�nitions and Motivation for Distribution-free Learning 17

delete xj. The total error incurred on D+ by all such failures is then at most
(�=2n)2n = �, since there are at most 2n literals in all. On the other hand,
if xj is false with probability at least �=2n in D+ then we expect to delete xj
within about 2n=� positive examples.

In the case of our lions example, the variables can speak; can
y; and
has wings will be deleted from the hypothesis immediately, since no lion
can speak or has wings (i.e., every positive example assigns the value 0 to
these variables). With high probability, we would also expect the attributes
walks on two legs; lives in circus; and has mane to be deleted, because
each of these variables is false with some signi�cant probability in the positive
examples. Depending on the exact value of � and the precise probabilities in
D+, the variable is wild may also be deleted. However, the four variables
appearing in c will certainly not be deleted.

In this example, the two sources of error that a learning algorithm is prone
to can be exempli�ed as follows. First, it is possible that rare midget lions ex-
ist but have not occurred in the training set of examples. In other words, the
attribute is large should have been deleted from the hypothesis monomial,
but has not been. This is not serious, since the learned monomial will only
misclassify future examples that are infrequent in D+. Second, it is possible
that the randomly drawn training set contained a very unrepresentative set
of lions, all of which can walk on two legs. In this case the learned mono-
mial will include this variable, and hence misclassify many future examples.
While there is no ultimate defense against either of these two kinds of error,
the distribution-free model allows the probabilities of their occurrence to be
controlled by the parameters � and � respectively.

2.4 Other de�nitions and notation

Sample complexity. Let A be a learning algorithm for a representation
class C. Then we denote by SA(�; �) the number of calls to the oracles
POS and NEG made by A on inputs �; �; this is a worst-case measure
over all possible target representations in C and all target distributions
D+ and D�. In the case that C is a parameterized representation class,
we also allow SA to depend on the parameter n. We call the function

18 De�nitions and Motivation for Distribution-free Learning

SA the sample complexity or sample size of A. We denote by S+
A and S�A

the number of calls of A to POS and NEG, respectively.

Cherno� bounds. We shall make extensive use of the following bounds on
the area under the tails of the binomial distribution. For 0 � p � 1
and m a positive integer, let LE(p;m; r) denote the probability of at
most r successes in m independent trials of a Bernoulli variable with
probability of success p, and let GE (p;m; r) denote the probability of at
least r successes. Then for 0 � � � 1,

Fact CB1. LE (p;m; (1� �)mp) � e��2mp=2

and

Fact CB2. GE (p;m; (1 + �)mp) � e��
2mp=3

These bounds in the form they are stated are from the paper of Angluin
and Valiant [14]; see also Cherno� [28]. Although we will make frequent
use of Fact CB1 and Fact CB2, we will do so in varying levels of detail,
depending on the complexity of the calculation involved. However, we
are primarily interested in Cherno� bounds for the following consequence
of Fact CB1 and Fact CB2: given an event E of probability p, we can
obtain an estimate p̂ of p by drawing m points from the distribution and
letting p̂ be the frequency with which E occurs in this sample. Then for
m polynomial in 1=p and 1=�, p̂ satis�es p=2 < p̂ < 2p with probability
at least 1 � �. If we also allow m to depend polynomially on 1=�, we
can obtain an estimate p̂ such that p � � < p̂ < p + � with probability
at least 1� �.

The Vapnik-Chervonenkis dimension. Let C be a representation class
over X. Let Y � X, and de�ne

�C(Y) = fZ � Y : Z = Y \ pos(c) for some c 2 Cg:
If we have �C(Y) = 2Y , then we say that Y is shattered by C. Then we
de�ne

vcd(C) = maxfjY j : Y is shattered by Cg:
If this maximum does not exist, then vcd(C) is in�nite. The Vapnik-
Chervonenkis was originally introduced in the paper of Vapnik and Cher-
vonenkis [97] and was �rst studied in the context of the distribution-free
model by Blumer et al. [25]. Our main use of the Vapnik-Chervonenkis
dimension will be in Chapter 6.

De�nitions and Motivation for Distribution-free Learning 19

Notational conventions. Let E(x) be an event and (x) a random variable
that depend on a parameter x that takes on values in a set X. Then for
X 0 � X, we denote by Prx2X 0[E(x)] the probability that E occurs when
x is drawn uniformly at random from X 0. Similarly, Ex2X 0[(x)] is the
expected value of when x is drawn uniformly at random from X 0. We
also need to work with distributions other than the uniform distribution;
thus if P is a distribution over X we use Prx2P [E(x)] and Ex2P [(x)]
to denote the probability of E and the expected value of , respectively,
when x is drawn according to the distribution P . When E or depend
on several parameters that are drawn from di�erent distributions we
use multiple subscripts. For example, Prx12P1;x22P2;x32P3[E(x1; x2; x3)]
denotes the probability of event E when x1 is drawn from distribution
P1, x2 from P2, and x3 from P3.

2.5 Some representation classes

We now de�ne some of the representation classes whose learnability we will
study. For the Boolean circuit or formulae representation classes, the domain
Xn is always f0; 1gn and the mapping � simply maps each circuit to its set
of satisfying assignments. The classes de�ned below are all parameterized;
for each class we will de�ne the subclasses Cn, and then C is de�ned by
C = [n�1Cn.

Monomials: The representation class Mn consists of all conjunctions of
literals over the Boolean variables x1; : : : ; xn.

kCNF: For any constant k, the representation class kCNFn consists of all
Boolean formulae of the form C1 ^ � � � ^ Cl, where each clause Ci is a
disjunction of at most k literals over the Boolean variables x1; : : : ; xn.
Note that Mn = 1CNFn.

kDNF: For any constant k, the representation class kDNFn consists of all
Boolean formulae of the form T1 _ � � � _ Tl, where each term Ti is a
conjunction of at most k literals over the Boolean variables x1; : : : ; xn.

20 De�nitions and Motivation for Distribution-free Learning

k-clause CNF: For any constant k, the representation class k-clause-CNFn

consists of all conjunctions of the form C1 ^ � � � ^Ck, where each Ci is a
disjunction of literals over the Boolean variables x1; : : : ; xn.

k-term DNF: For any constant k, the representation class k-term-DNFn

consists of all disjunctions of the form T1 _ � � � _ Tk, where each Ti is a
monomial over the Boolean variables x1; : : : ; xn.

CNF: The representation class CNFn consists of all formulae of the form
C1 ^ � � � ^ Cl, where each Ci is a disjunction of literals over the Boolean
variables x1; : : : ; xn.

DNF: The representation class DNFn consists of all formulae of the form
T1 _ � � � _ Tl, where each Ti is a disjunction of literals over the Boolean
variables x1; : : : ; xn.

Boolean Formulae: The representation class BFn consists of all Boolean
formulae over the Boolean variables x1; : : : ; xn.

Boolean Threshold Functions: A Boolean threshold function over the
Boolean variables x1; : : : ; xn is de�ned by a pair (Y; l), where Y �
fx1; : : : ; xng and 0 � l � n. A point ~v 2 f0; 1gn is a positive exam-
ple if and only if at least l of the bits in Y are set to 1 in ~v. We let
BTFn denote the class of all such representations.

Symmetric Functions: A symmetric function over the Boolean variables
x1; : : : ; xn is a Boolean function whose output is invariant under all per-
mutations of the input bits. Such a function can be represented by a
Boolean array of size n + 1, where the ith entry indicates whether the
function is 0 or 1 on all inputs with exactly i bits set to 1. We denote
by SFn the class of all such representations.

Decision Lists: A decision list [84] is a list L = < (T1; b1); : : : ; (Tl; bl) >,
where each Ti is a monomial over the Boolean variables x1; : : : ; xn and
each bi 2 f0; 1g. For ~v 2 f0; 1gn, we de�ne L(~v) as follows: L(~v) = bj
where 1 � j � l is the least value such that ~v satis�es the monomial
Tj; if there is no such j then L(~v) = 0. We denote the class of all such
representations by DLn. For any constant k, if each monomial Ti has at
most k literals, then we have a k-decision list, and we denote the class
of all such representations by kDLn.

De�nitions and Motivation for Distribution-free Learning 21

Decision Trees: A decision tree over Boolean variables x1; : : : ; xn is a binary
tree with labels chosen from fx1; : : : ; xng on the internal nodes, and
labels from f0; 1g on the leaves. Each internal node's left branch is
viewed as the 0-branch; the right branch is the 1-branch. Then a value
~v 2 f0; 1gn de�nes a path in a decision tree T as follows: if an internal
node is labeled with xi, then we follow the 0-branch of that node if vi = 0,
otherwise we follow the 1-branch. T (~v) is then de�ned to be the label
of the leaf that is reached on this path. We denote the class of all such
representations by DTn.

Boolean Circuits: The representation class CKTn consists of all Boolean
circuits over input variables x1; : : : ; xn.

Threshold Circuits: A threshold gate over input variables x1; : : : ; xn is
de�ned by a value 1 � t � n such that the gate outputs 1 if and only
if at least t of the input bits are set to 1. We let TCn denote the class
of all circuits of threshold gates over x1; : : : ; xn. For constant d, dTCn

denotes the class of all threshold circuits in TCn with depth at most d.

Acyclic Finite Automata: The representation class ADFAn consists of all
deterministic �nite automata that accept only strings of length n, that
is, all deterministic �nite automata M such that the language L(M)
accepted by M satis�es L(M) � f0; 1gn.

We will also consider the following representation classes over Euclidean
space Rn.

Linear Separators (Half-spaces): Consider the class consisting of all half-
spaces (either open or closed) in Rn, represented by the n+1 coe�cients
of the separating hyperplane. We denote by LSn the class of all such
representations.

Axis-parallel Rectangles: An axis-parallel rectangle in Rn is the cross
product of n open or closed intervals, one on each coordinate axis. Such
a rectangle could be represented by a list of the interval endpoints. We
denote by APRn the class of all such representations.

3

Recent Research in Computational

Learning Theory

In this chapter we give an overview of some recent results in the distribution-
free learning model, and in related models. We begin by discussing some of the
basic learning algorithms and hardness results that have been discovered. We
then summarize results that give su�cient conditions for learnability via the
Vapnik-Chervonenkis dimension and Occam's Razor. We conclude the chapter
with a discussion of extensions and restrictions of the distribution-free model
that have been considered in the literature. Where it is relevant to results
presented here, we will also discuss other previous research in greater detail
throughout the text.

The summary provided here is far from exhaustive; for a more detailed
sampling of recent research in computational learning theory, we refer the
reader to the Proceedings of the Workshop on Computational Learning The-
ory [53, 85, 38].

3.1 E�cient learning algorithms and hard-

ness results

In his initial paper de�ning the distribution-free model [93], Valiant also gives
the �rst polynomial-time learning algorithms in this model. Analyzing the
algorithm discussed in the example of Section 2.3, he shows that the class of

Recent Research in Computational Learning Theory 23

monomials is polynomially learnable, and extends this algorithm to prove that
for any �xed k, the classes kCNF and kDNF are polynomially learnable (with
time complexity O(nk)). For each of these algorithms, the hypothesis class is
the same as the target class; that is, in each case C is polynomially learnable
by C.

Pitt and Valiant [78] subsequently observe that the representation classes
represented by k-term-DNF and k-clause-CNF are properly contained
within the classes kCNF and kDNF, respectively. Combined with the results
of Valiant [93], this shows that for �xed k, the class k-term-DNF is poly-
nomially learnable by kCNF, and the class k-clause-CNF is polynomially
learnable by kDNF. More surprising, Pitt and Valiant prove that for any �xed
k � 2, learning k-term-DNF by k-term-DNF and learning k-clause-CNF
by k-clause-CNF are NP -hard problems.

The results of Pitt and Valiant are important in that they demonstrate
the tremendous computational advantage that may be gained by a judicious
change of hypothesis representation. This can be viewed as a limited but
provable con�rmation of the rule of thumb in arti�cial intelligence that rep-
resentation is important. By moving to a more powerful hypothesis class H
instead of insisting on the more \natural" choice H = C, we move from an
NP -hard problem to a polynomial-time solution. This may be explained intu-
itively by the observation that while the constraint H = C may be signi�cant
enough to render the learning task intractable, a richer hypothesis represen-
tation allows a greater latitude for expressing the learned formula. Later we
shall see that using a larger hypothesis class inevitably requires a larger sample
complexity; thus the designer of a learning algorithm may sometimes be faced
with a trade-o� between computation time and required sample size. We will
return to the subject of hardness results for learning momentarily.

Other positive results for polynomial-time learning include the algorithm
of Haussler [48] for learning the class of internal disjunctive Boolean formulae.
His algorithm is notable for the fact that the time complexity depends linearly
on the size of the target formula, but only logarithmically on the total number
of variables n; thus if there are many \irrelevant" attributes, the time required
will be quite modest. This demonstrates that there need not be explicit focus-
ing mechanisms in the de�nitions of the distribution-free model for identifying
those variables which are relevant for a learning algorithm, but rather this
task can be incorporated into the algorithms themselves. Similar results are

24 Recent Research in Computational Learning Theory

given for linearly separable classes by Littlestone [73], and recently a model of
learning in the presence of in�nitely many irrelevant attributes was proposed
by Blum [20].

Rivest [84] considers k-decision lists, and gives a polynomial-time algorithm
learning kDL by kDL for any constant k. He also proves that kDL properly
includes both kCNF and kDNF. Ehrenfeucht and Haussler [35] study decision
trees. They de�ne a measure of how balanced a decision tree is called the rank.
For decision trees of a �xed rank r, they give a polynomial-time recursive
learning algorithm that always outputs a rank r decision tree. They also note
that k-decision lists are decision trees of rank 1, if we allow conjunctions of
length k in the nodes of the decision tree. Ehrenfeucht and Haussler apply
their results to show that for any �xed polynomial p(n), decision trees with
at most p(n) nodes can be learned in time linear in nO(logn), 1=� and log 1=�,
thus giving a super-polynomial but sub-exponential time solution.

Abe [1] gives a polynomial-time algorithm for learning a class of formal
languages known as semi-linear sets. Helmbold, Sloan and Warmuth [55] give
techniques for learning nested di�erences of classes already known to be poly-
nomially learnable. These include classes such as the class of all subsets of Zk

closed under addition and subtraction and the class of nested di�erences of
rectangles in the plane. Some of their results extend the composition methods
given in Chapter 4.

There are many e�cient algorithms that learn representation classes de-
�ned over Euclidean (real-valued) domains. Most of these are based on the
pioneering work of Blumer, Ehrenfeucht, Haussler and Warmuth [25] on learn-
ing and the Vapnik-Chervonenkis dimension, which will be discussed in greater
detail later. These algorithms show the polynomial learnability of, among oth-
ers, the class of all rectangles in n-dimensional space, and the intersection of
n half-planes in 2-dimensional space.

We now return to our discussion of hardness results. In discussing hardness
results, we distinguish between two types: representation-based hardness re-
sults and representation-independent hardness results. Brie
y, representation-
based hardness results state that for some �xed representation classes C andH,
learning C by H is hard in some computational sense (such as NP -hardness).
Thus, the aforementioned result of Pitt and Valiant [78] on the di�culty of
learning k-term-DNF by k-term-DNF is representation-based. In contrast,

Recent Research in Computational Learning Theory 25

a representation-independent hardness result says that for �xed C and any
polynomially evaluatable H, learning C by H is hard.

Representation-based hardness results are interesting for a number of rea-
sons, two of which we have already mentioned: they can be used to give formal
veri�cation to the importance of hypothesis representation, and for practical
reasons it is important to study the least expressive class H that can be used
to learn C, since the choice of hypothesis representation can greatly a�ect re-
source complexity (such as the number of examples required) even for those
classes already known to be polynomially learnable.

However, since a representation-based hardness result dismisses the poly-
nomial learnability of C only with respect to the �xed hypothesis class H, such
results leave something to be desired in the quest to classify learning problems
as \easy" or \hard". For example, we may be perfectly willing to settle for an
e�cient algorithm learning C by H for some more expressive H if we know
that learning C by C is NP -hard. Thus for practical purposes we must regard
the polynomial learnability of C as being unresolved until we either �nd an
e�cient learning algorithm or we prove that learning C by H is hard for any
reasonable H, that is, until we prove a representation-independent hardness
result for C.

Gold [41] gave the �rst representation-based hardness results that apply to
the distribution-free model of learning. He proves that the problem of �nding
the smallest deterministic �nite automaton consistent with a given sample
is NP -complete; the results of Haussler et al. [51] can be easily applied to
Gold's result to prove that learning deterministic �nite automata of size n by
deterministic �nite automata of size n cannot be accomplished in polynomial
time unless RP = NP . There are some technical issues involved in properly
de�ning the problem of learning �nite automata in the distribution-free model;
see Pitt and Warmuth [79] for details. Gold's results were improved by Li and
Vazirani [69], who show that �nding an automaton 9=8 larger than the smallest
consistent automaton is still NP -complete.

As we have already discussed, Pitt and Valiant [78] prove that for k � 2,
learning k-term-DNF by k-term-DNF is NP -hard by giving a randomized
reduction from a generalization of the graph coloring problem. Even stronger,
for k � 6, they prove that even if the hypothesis DNF formulae is allowed to
have 2k�3 terms, k-term-DNF cannot be learned in polynomial time unless

26 Recent Research in Computational Learning Theory

RP = NP . These results hold even when the target formulae are restricted
to be monotone and the hypothesis formulae is allowed to be nonmonotone.
Dual results hold for the problem of learning k-clause-CNF. Pitt and Valiant
also prove that �-formulae (Boolean formulae in which each variable occurs
at most once, sometimes called read-once) cannot be learned by �-formulae in
polynomial time, and that Boolean threshold functions cannot be learned by
Boolean threshold functions in polynomial time, unless RP = NP .

Pitt and Valiant [78] also give representation-based hardness results for a
model called heuristic learnability. Here the hypothesis class may actually be
less expressive than the target class; the conditions imposed on the hypothesis
are weakened accordingly. In this model they prove that the problem of �nding
a monomial that has error at most � with respect to the negative target distri-
bution of a target DNF formulae and error at most 1� c with respect to the
positive target distribution (provided such a monomial exists) is NP -hard with
respect to randomized reductions, for any constant 0 < c < 1. They prove a
similar result regarding the problem of �nding an hypothesis �-formulae that
has negative error 0 and positive error at most 1 � e�n3 on the distributions
for a target �-formulae.

Pitt and Warmuth [80] dramatically improved the results of Gold by prov-
ing that deterministic �nite automata of size n cannot be learned in polynomial
time by deterministic �nite automata of size n� for any �xed value � � 1 unless
RP = NP . Their results leave open the possibility of an e�cient learning al-
gorithm using deterministic �nite automata whose size depends on � and �, or
an algorithm using some entirely di�erent representation of the sets accepted
by automata. This possibility is addressed by the results in Chapter 7.

Hancock [46] has shown that learning decision trees of size n by deci-
sion trees of size n cannot be done in polynomial time unless RP = NP .
Representation-based hardness results for learning various classes of neural
networks can also be derived from the results of Judd [57] and Blum and
Rivest [22].

The �rst representation-independent hardness results for the distribution-
free model follow from the work of Goldreich, Goldwasser and Micali [45],
whose true motivation was to �nd easy-to-compute functions whose output on
random inputs appears random to all polynomial-time algorithms. A simpli-
�ed and weakened statement of their result is that the class of polynomial-size

Recent Research in Computational Learning Theory 27

Boolean circuits is not polynomially learnable by any polynomially evaluat-
able H, provided that there exists a one-way function (see Yao [102]). Pitt and
Warmuth [79] de�ned a general notion of reducibility for learning (discussed
further in Section 3.2) and gave a number of other representation classes that
are not polynomially learnable under the same assumption by giving reductions
from the learning problem for polynomial-size circuits. One of the main contri-
butions of the research presented here is representation-independent hardness
results for much simpler classes than those addressed by Goldreich et al. [45] or
Pitt and Warmuth [79], among them the classes of Boolean formulae, acyclic
deterministic �nite automata and constant-depth threshold circuits.

3.2 Characterizations of learnable classes

Determining whether a representation class is polynomially learnable is in some
sense a two-step process. We �rst must determine if a polynomial number
of examples will even su�ce (in an information-theoretic sense) to specify a
good hypothesis with high probability. Once we determine that a polynomial-
size sample is su�cient, we can then turn to the computational problem of
e�ciently inferring a good hypothesis from the small sample. This division of
the learning problem into a sample complexity component and a computational
complexity component will in
uence our thinking throughout the book.

For representation classes over �nite discrete domains (such as f0; 1gn), an
important step towards characterizing the polynomially learnable classes was
taken by Blumer et al. [24, 25] in their study of Occam's Razor. Their result
essentially gives an upper bound on the sample size required for learning C by
H, and shows that the general technique of �nding an hypothesis that is both
consistent with the sample drawn and signi�cantly shorter than this sample
is su�cient for distribution-free learning. Thus, if one can e�ciently perform
data compression on a random sample, then one can learn e�ciently. Since we
will appeal to this result frequently in the text, we shall state it here formally
as a theorem.

Theorem 3.1 (Blumer et al. [24, 25]) Let C and H be polynomially evaluat-
able parameterized Boolean representation classes. Fix � � 1 and 0 � � < 1,
and let A be an algorithm that on input a labeled sample S of some c 2 Cn,

28 Recent Research in Computational Learning Theory

consisting of m positive examples of c drawn from D+ and m negative exam-
ples of c drawn from D�, outputs an hypothesis hA 2 Hn that is consistent
with S and satis�es jhAj � n�m�. Then A is a learning algorithm for C by
H; the sample size required is

m = O

0
@1
�
log

1

�
+
�
n�

�
log

n�

�

� 1
1��

1
A :

Let jSj = mn denote the number of bits in the sample S. Note that if
A instead outputs hA satisfying jhAj � n�

0jSj� for some �xed �0 � 1 and
0 � � < 1 then jhAj � n�

0
(mn)� = n�

0+�m�, so A satis�es the conditon of
Theorem 3.1 for � = �0 + �. This formulation of Occam's Razor will be of
particular use to us in Section 7.6.

In a paper of Haussler et al. [51], a partial converse of Theorem 3.1 is given:
conditions are stated under which the polynomial learnability of a represen-
tation class implies a polynomial-time algorithm for the problem of �nding
an hypothesis representation consistent with an input sample of an unknown
target representation. These conditions are obtained by a straightforward gen-
eralization of techniques developed by Pitt and Valiant [78]. In almost all the
natural cases in �nite domains, these conditions as well as those of Theorem 3.1
are met, establishing an important if and only if relation: C is polynomially
learnable byH if and only if there is an algorithm �nding with high probability
hypotheses in H consistent with an input sample generated by a representation
in C. Subsequent papers by Board and Pitt [26] and Schapire [90] consider
the stronger and philosophically interesting converse of Theorem 3.1 in which
one actually uses a polynomial-time learning algorithm not just for �nding
a consistent hypothesis, but for performing data compression on a sample.
Recently generalizations of Occam's Razor to models more complicated than
concept learning have been given by Kearns and Schapire [63].

One drawback of Theorem 3.1 is that the hypothesis output by the learn-
ing algorithm must have a polynomial-size representation as a string of bits
for the result to apply. Thus, it is most appropriate for discrete domains,
where instances are speci�ed as �nite strings of bits, and does not apply well
to representation classes over real-valued domains, where the speci�cation of a
single instance may not have any �nite representation as a bit string. This led
Blumer et al. to seek a general characterization of the sample complexity of

Recent Research in Computational Learning Theory 29

learning any representation class. They show that the Vapnik-Chervonenkis di-
mension essentially provides this characterization: namely, at least
(vcd(C))
examples are required for the distribution-free learning of C, and O(vcd(C))
are su�cient for learning (ignoring for the moment the dependence on � and
�), with any algorithm �nding a consistent hypothesis in C being a learn-
ing algorithm. Thus, the classes that are learnable in any amount of time
in the distribution-free model are exactly those classes with �nite Vapnik-
Chervonenkis dimension. These results will be discussed in greater detail in
Chapter 6, where we improve the lower bound on sample complexity given
by Blumer et al. [25]. Recently many of the ideas contained in the work of
Blumer et al. have been greatly generalized by Haussler [50], who applies uni-
form convergence techniques developed by many authors to determine sample
size bounds for relatively unrestricted models of learning.

As we have mentioned, the results of Blumer et al. apply primarily to the
sample complexity of learning. A step towards characterizing what is polyno-
mially learnable was taken by Pitt and Warmuth [79]. They de�ne a natural
notion of polynomial-time reducibility between learning problems, analogous
to the notion of reducibility in complexity theory and generalizing simple re-
ductions given here in Section 4.3 and by Littlestone [73]. Pitt and Warmuth
are able to give partial characterizations of the complexity of learning vari-
ous representation classes by �nding \learning-complete" problems for these
representations classes. For example, they prove that if deterministic �nite
automata are polynomially learnable, then the class of all languages accepted
by log-space Turing machines is polynomially learnable.

3.3 Results in related models

A number of restrictions and extensions of the basic model of Valiant have been
considered. These modi�cations are usually proposed either in an attempt to
make the model more realistic (e.g., adding noise to the sample data) or to
make the learning task easier in cases where distribution-free learning appears
di�cult. One may also modify the model in order to more closely examine the
resources required for learning, such as space complexity.

For instance, for classes for which learning is known to be intractable

30 Recent Research in Computational Learning Theory

in some precise sense or whose polynomial learnability is unresolved, there
are a number of learning algorithms whose performance is guaranteed under
restricted target distributions. In addition to the results presented here in
Chapter 8, the papers of Benedek and Itai [16], Natarajan [76], Kearns and
Pitt [62] and Li and Vitanyi [70] also consider distribution-speci�c learnability.
Recently Linial, Mansour and Nisan [71] applied Fourier transform methods
to obtain the �rst sub-exponential time algorithm for learning DNF under
uniform distributions.

Instead of restricting the target distributions to make learning easier, we
can also add additional information about the target representation in the
form of queries. For example, it is natural to allow a learning algorithm to
make membership queries, that is, to ask for the value of c(x) of the target
representation c 2 C on points x 2 X of the algorithm's choosing. There
are a number of interesting query results in Valiant's original paper [93], as
well as a series of excellent articles giving algorithms and hardness results by
Angluin [7, 8, 9]. Results of Angluin have recently been improved by Rivest
and Schapire [86, 87], who consider the problem of inferring a �nite automaton
with active but non-reversible experimentation. Berman and Roos [18] give an
algorithm for learning \one-counter" languages with membership queries. Re-
cently Angluin, Hellerstein and Karpinski [11] gave an algorithm for e�ciently
learning \read-once" Boolean formulae (i.e., �BF) using membership queries;
a large subclass of these can be learned using non-adaptive membership queries
(where all queries are chosen before any are answered) by the results of Gold-
man, Kearns and Schapire [42]. If in addition to membership queries we allow
equivalence queries (where the algorithm is provided with counterexamples to
conjectured hypotheses), then there are e�cient learning algorithms for Horn
sentences due to Angluin, Frazier and Pitt [10] and restricted types of decision
trees due to Hancock [47].

Towards the goal of making the distribution-free model more realistic, there
are many results now on learning with noise that will be discussed in Chap-
ter 5. Haussler [50] generalizes the model to the problem of learning a function
that performs well even in the absence of any assumptions on how the exam-
ples are generated; in particular, the examples (x; y) (where y may now be
more complicated than a simple f0; 1g classi�cation) may be such that y has
no prescribed functional dependence on x. Kearns and Schapire [63] apply
Haussler's very general but non-computational results to the speci�c prob-

Recent Research in Computational Learning Theory 31

lem of e�ciently learning probabilistic concepts, in which examples have some
probability of being positive and some probability of being negative, but this
uncertainty has some structure that may be exploited by a learning algorithm.
Such a framework is intended to model situations such as weather prediction,
in which \hidden variables" may result in apparently probabilistic behavior,
yet meaningful predictions can often be made. Blum [20] de�nes a model in
which there may be in�nitely many attributes in the domain, but short lists
of attributes su�ce to describe most common objects.

There have also been a number of di�erent models of learnability pro-
posed recently that share the common emphasis on computational complexity.
Among these are the mistake counting or on-line models. Here each exam-
ple (chosen either randomly, as in Valiant's model, or perhaps by some other
method) is presented unlabeled (that is, with no indication as to whether it is
positive or negative) to the learning algorithm. The algorithm must then make
a guess or prediction of the label of the example, only after which is it told the
correct label. Two measures of performance in these models are the expected
number of mistakes of prediction (in the case where examples are generated
probabilistically) and the absolute number of mistakes (in the case where the
examples are generated by deterministic means or by an adversary). These
models were de�ned by Haussler, Littlestone and Warmuth [73, 52]. Particu-
larly notable is the algorithm of Littlestone [73] which learns the class of lin-
early separable Boolean functions with a small absolute mistake bound. Other
recent papers [52, 51] also include results relating the mistake-counting models
to the distribution-free model. Littlestone's paper relates the mistake-counting
models to a model of equivalence queries. Other on-line learning algorithms
are given by Littlestone and Warmuth [74], who consider a weighted majority
method of learning, and Goldman, Rivest and Schapire [44], who investigate
the varying e�ects of letting the learner, a teacher, and an adversary choose
the sequence of examples.

Other interesting extensions to Valiant's basic model include the work of
Linial, Mansour and Rivest [72], who consider a model of \dynamic sam-
pling" (see also Haussler et al. [51]), and Rivest and Sloan [89], who consider
a model of \reliable and useful" learning that allows a learning algorithm to
draw upon a library of previously learned representations. Interesting resource
complexity studies of distribution-free learning include research on learning in
parallel models of computation due to Vitter and Lin [99] and Berger, Shor

32 Recent Research in Computational Learning Theory

and Rompel [17], and investigations of the space complexity of learning due
to Floyd [37] and Schapire [90].

The curious reader should be warned that there are several variants of
the basic distribution-free model in the literature, each with its own technical
advantages. In response to the growing confusion resulting from this prolifer-
ation of models, Haussler et al. [51] show that almost all of these variants are
in fact equivalent with respect to polynomial-time computation. This allows
researchers to work within the de�nitions that are most convenient for the
problems at hand, and frees the reader from undue concern that the results
are sensitive to the small details of the model. Related equivalences are given
here in Chapter 9 and by Schapire [90].

4

Tools for Distribution-free Learning

4.1 Introduction

In this chapter we describe some general tools for constructing e�cient learning
algorithms and for relating the di�culty of learning one representation class
to that of learning other representation classes. In Section 4.2, we show that
under certain conditions it is possible to construct new learning algorithms for
representation classes that can be appropriately decomposed into classes for
which e�cient learning algorithms already exist. These new algorithms use
the existing algorithms as black box subroutines, and thus are a demonstration
of how systems that learn may successfully build upon knowledge already
acquired. Similar issues have been investigated from a di�erent angle by Rivest
and Sloan [89].

In the Section 4.3, we introduce a simple notion of reducibility for Boolean
circuit learning problems. These e�cient reductions work by creating new
variables whose addition allows the target representation to be expressed more
simply than with the original variables. Thus we see that the presence of \rel-
evant subconcepts" may make the learning problem simpler from a computa-
tional standpoint or from our standpoint as researchers. Reducibility allows
us to show that learning representation class C1 is just as hard as learning C2,
and thus plays a role analogous to polynomial-time reductions in complexity
theory. A general notion of reducibility and a complexity-theoretic framework
for learning have subsequently been developed by Pitt and Warmuth [79].

34 Tools for Distribution-free Learning

Although we are primarily interested here in polynomial-time learnabil-
ity, the results presented in this chapter are easily generalized to higher time
complexities.

4.2 Composing learning algorithms to obtain

new algorithms

Suppose that C1 is polynomially learnable by H1, and C2 is polynomially
learnable by H2. Then it is easy to see that the class C1 [C2 is polynomially
learnable by H1[H2: we �rst assume that the target representation c is in the
class C1 and run algorithm A1 for learning C1. We then test the hypothesis h1
output by A1 on a polynomial-size random sample of c to determine with high
probability if it is �-good (this can be done e�ciently using Fact CB1 and Fact
CB2). If h1 is �-good, we halt; otherwise, we run algorithm A2 for learning C2

and use the hypothesis h2 output by A2. This algorithm demonstrates one way
in which existing learning algorithms can be composed to learn more powerful
representation classes, and it generalizes to any polynomial number of unions
of polynomially learnable classes. Are there more interesting ways to compose
learning algorithms, possibly learning classes more complicated than simple
unions?

In this section we describe techniques for composing existing learning al-
gorithms to obtain new learning algorithms for representation classes that are
formed by combining members of the (already) learnable classes with logical
operations. In contrast to the case of simple unions, the members of the re-
sulting composite class are not members of any of the original classes. Thus,
rather than simply increasing the size of the learnable class, we are actually
\bootstrapping" (using the terminology of Helmbold, Sloan and Warmuth [55])
the existing algorithms in order to learn a new type of representation.

We apply the results to obtain polynomial-time learning algorithms for two
classes of Boolean formulae not previously known to be polynomially learnable.
Recently in Helmbold et al. [55] a general composition technique has been
proposed and carefully analyzed in several models of learnability.

If c1 2 C1 and c2 2 C2 are representations, the concept de�ned by the

Tools for Distribution-free Learning 35

representation c1 _ c2 is given by pos(c1 _ c2) = pos(c1) [pos(c2). Note that
c1 _ c2 may not be an element of either C1 or C2. Similarly, pos(c1 ^ c2) =
pos(c1) \ pos(c2). We then de�ne C1 _ C2 = fc1 _ c2 : c1 2 C1; c2 2 C2g and
C1 ^ C2 = fc1 ^ c2 : c1 2 C1; c2 2 C2g.

Theorem 4.1 Let C1 be polynomially learnable by H1, and let C2 be polyno-
mially learnable by H2 from negative examples. Then C1 _ C2 is polynomially
learnable by H1 _H2.

Proof: Let A1 be a polynomial-time algorithm for learning C1 byH1, and A2

a polynomial-time negative-only algorithm for learning C2 by H2. We describe
a polynomial-time algorithm A for learning C1 _ C2 by H1 _H2 that uses A1

and A2 as subroutines.

Let c = c1 _ c2 be the target representation in C1 _ C2, where c1 2 C1 and
c2 2 C2, and let D+ and D� be the target distributions on pos(c) and neg (c),
respectively. Let SA1

be the number of examples needed by algorithm A1.

Since neg(c) � neg (c2), the distribution D� may be regarded as a distri-
bution on neg(c2), with D�(x) = 0 for x 2 neg(c2) � neg(c). Thus A �rst
runs the negative-only algorithm A2 to obtain a representation h2 2 H2 for
c2, using the examples generated from D� by NEG. This simulation is done
with accuracy parameter �=kSA1

and con�dence parameter �=5, where k is a
constant that can be determined by applying Fact CB1 and Fact CB2 in the
analysis below. A2 then outputs an h2 2 H2 satisfying with high probability
e�(h2) < �=kSA1

. Note that although we are unable to bound e+(h2) directly
(because D+ is not a distribution over pos(c2)), the fact that the simulation
of the negative-only algorithm A2 must work for any target distribution on
pos(c2) implies that h2 must satisfy with high probability

Prx2D+[x 2 neg(h2) and x 2 pos(c2)]

� Prx2D+[x 2 neg(h2)jx 2 pos(c2)]

<
�

kSA1

: (4.1)

A next attempts to determine if e+(h2) < �. A takesO(1=� ln 1=�) examples
from POS and uses these examples to compute an estimate p̂ for the value of

36 Tools for Distribution-free Learning

e+(h2). Using Fact CB1 it can be shown that if e+(h2) � �, then with high
probability p̂ > �=2. Using Fact CB2 it can be shown that if e+(h2) � �=4,
then with high probability p̂ � �=2. Thus, if p̂ � �=2 then A guesses that
e+(h2) � �. In this case A halts with hA = h2 as the hypothesis.

On the other hand, if p̂ > �=2 thenA guesses that e+(h2) � �=4. In this case
A runs A1 in order to obtain an h1 that is �-good with respect to D� and also
with respect to that portion of D+ on which h2 is wrong. More speci�cally, A
runs A1 with accuracy parameter �=k and con�dence parameter �=5 according
to the following distributions: each time A1 calls NEG , A supplies A1 with
a negative example of c drawn according to the target distribution D�; each
such example is also a negative example of c1 since neg(c) � neg(c1). Each
time A1 calls POS , A draws from the target distribution D+ until a point
x 2 neg(h2) is obtained. Since the probability of drawing such an x is exactly
e+(h2), if e+(h2) � �=4 then the time needed to obtain with high probability
SA1

points in neg(h2) is polynomial in 1=�, 1=� and SA1
by Fact CB1. Now

Prx2D+[x 2 neg(h2) and x 2 neg(c1)]

� Prx2D+[x 2 neg(h2) and x 2 pos(c2)]

<
�

kSA1

(4.2)

by Inequality 4.1 and the fact that for x 2 pos(c), x 2 neg(c1) implies
x 2 pos(c2). Since A1 needs at most SA1

positive examples and h2 satis�es
Inequality 4.2, with high probability all of the positive examples x given to A1

in this simulation satisfy x 2 pos(c1) for k a large enough constant. Following
this simulation, A1 with high probability outputs h1 satisfying e

�(h1) < �=k
and also

Prx2D+[x 2 neg(h1) and x 2 neg(h2)]

< Prx2D+[x 2 neg(h1)jx 2 neg(h2)]

<
�

k
: (4.3)

Setting hA = h1_h2, we have e+(hA) < � by Inequality 4.3 and e�(hA) < �, as
desired. Note that the time required by this simulation is polynomial in the
time required by A1 and the time required by A2.

The following dual to Theorem 4.1 has a similar proof:

Tools for Distribution-free Learning 37

Theorem 4.2 Let C1 be polynomially learnable by H1, and let C2 be polyno-
mially learnable by H2 from positive examples. Then C1 ^ C2 is polynomially
learnable by H1 ^H2.

As corollaries we have that the following classes of Boolean formulae are
polynomially learnable:

Corollary 4.3 For any �xed k, let kCNF_kDNF = [n�1(kCNFn_kDNFn).
Then kCNF _ kDNF is polynomially learnable by kCNF _ kDNF.

Corollary 4.4 For any �xed k, let kCNF^kDNF = [n�1(kCNFn^kDNFn).
Then kCNF ^ kDNF is polynomially learnable by kCNF ^ kDNF.

Proofs of Corollaries 4.3 and 4.4 follow from Theorems 4.1 and 4.2 and
the algorithms of Valiant [93] for learning kCNF from positive examples and
kDNF from negative examples. Note that algorithms obtained in Corollar-
ies 4.3 and 4.4 use both positive and negative examples. Following Theorem 6.1
of Section 6.2 we show that the representation classes kCNF _ kDNF and
kCNF ^ kDNF require both positive and negative examples for polynomial
learnability, regardless of the hypothesis class.

Under the stronger assumption that both C1 and C2 are learnable from pos-
itive examples, we can prove the following result, which shows that the classes
that are polynomially learnable from positive examples are closed under con-
junction of representations. A partial converse to this theorem is investigated
by Natarajan [76].

Theorem 4.5 Let C1 be polynomially learnable by H1 from positive examples,
and let C2 be polynomially learnable by H2 from positive examples. Then the
class C1 ^ C2 is polynomially learnable by H1 ^H2 from positive examples.

Proof: Let A1 be a polynomial-time positive-only algorithm for learning C1

by H1, and let A2 be a polynomial-time positive-only algorithm for learning C2

by H2. We describe a polynomial-time positive-only algorithm A for learning
C1 ^ C2 by H1 ^H2 that uses A1 and A2 as subroutines.

38 Tools for Distribution-free Learning

Let c = c1 ^ c2 be the target representation in C1 ^ C2, where c1 2 C1

and c2 2 C2, and let D+ and D� be the target distributions on pos(c) and
neg(c). Since pos(c) � pos(c1), A can use A1 to learn a representation h1 2 H1

for c1 using the positive examples from D+ generated by POS . A simulates
algorithm A1 with accuracy parameter �=2 and con�dence parameter �=2, and
obtains h1 2 H1 that with high probability satis�es e+(h1) � �=2. Note that
although we are unable to directly bound e�(h1) by �=2, we must have

Prx2D�[x 2 pos(h1)� pos(c1)]

= Prx2D�[x 2 pos(h1) and x 2 neg(c1)]
� Prx2D�[x 2 pos(h1))jx 2 neg(c1)]

<
�

2

since A1 must work for any �xed distribution on neg(c1). Similarly, A simulates
algorithm A2 with accuracy parameter �=2 and con�dence parameter �=2 to
obtain an hypothesis h2 2 H2 that with high probability satis�es e+(h2) � �=2
and Prx2D�[x 2 pos(h2)� pos(c2)] � �=2. Then we have

e+(h1 ^ h2) � e+(h1) + e+(h2) � �:

We now bound e�(h1 ^ h2) as follows:

e�(h1 ^ h2)
= Prx2D�[x 2 pos(h1 ^ h2)� pos(c1 ^ c2)]
= Prx2D�[x 2 pos(h1) \ pos(h2) \ neg (c1 ^ c2)]
= Prx2D�[x 2 pos(h1) \ pos(h2) \ (neg(c1) [neg (c2))]
= Prx2D�[x 2 (pos(h1) \ pos(h2) \ neg(c1)) [(pos(h1) \ pos(h2) \ neg(c2))]
� Prx2D�[x 2 pos(h1) \ pos(h2) \ neg (c1)]

+Prx2D�[x 2 pos(h1) \ pos(h2) \ neg(c2)]
� Prx2D�[x 2 pos(h1) \ neg(c1)] +Prx2D�[x 2 pos(h2) \ neg(c2)]
= Prx2D�[x 2 pos(h1)� pos(c1)] +Prx2D�[x 2 pos(h2)� pos(c2)]

� �

2
+
�

2
= �:

The time required by this simulation is polynomial in the time taken by A1

and A2.

Tools for Distribution-free Learning 39

The proof of Theorem 4.5 generalizes to allow any �xed number k of con-
juncts of representations in the target class. Thus, if C1; : : : ; Ck are polyno-
mially learnable from positive examples by H1; : : : ;Hk respectively, then the
class C1 ^ � � � ^ Ck is polynomially learnable by H1 ^ � � � ^ Hk from positive
examples. In the case that the component classes are parameterized, we can
actually allow k to be any �xed polynomial function of n.

We can also prove the following dual to Theorem 4.5:

Theorem 4.6 Let C1 be polynomially learnable by H1 from negative examples,
and let C2 be polynomially learnable by H2 from negative examples. Then
C1 _ C2 is polynomially learnable by H1 _H2 from negative examples.

Again, if C1; : : : ; Ck are polynomially learnable from negative examples by
H1; : : : ;Hk respectively, then the class C1 _ � � � _Ck is polynomially learnable
by H1 _ � � � _Hk from negative examples, for any �xed value k (where k may
be polynomial in the complexity parameter n).

We can also use Theorems 4.1, 4.2, 4.5 and 4.6 to characterize the con-
ditions under which the class C1 _ C2 (respectively, C1 ^ C2) is polynomially
learnable by C1_C2 (respectively, C1^C2). Figures 4.1 and 4.2 summarize this
information, where a \YES" entry indicates that for C1 and C2 polynomially
learnable as indicated, C1 _ C2 (respectively, C1 ^ C2) is always polynomially
learnable by C1 _ C2 (respectively, C1 ^ C2), and an entry \NP -hard" indi-
cates that the learning problem is NP -hard for some choice of C1 and C2. All
NP -hardness results follow from the results of Pitt and Valiant [78].

4.3 Reductions between learning problems

In traditional complexity theory, the notion of polynomial-time reducibility has
proven extremely useful for comparing the computational di�culty of problems
whose exact complexity or tractability is unresolved. Similarly, in computa-
tional learning theory, we might expect that given two representation classes
C1 and C2 whose polynomial learnability is unresolved, we may still be able to
prove conditional statements to the e�ect that if C1 is polynomially learnable,

40 Tools for Distribution-free Learning

C1 _C2 C1 polynomially C1 polynomially C1 polynomially

polynomially learnable by learnable by C1 learnable by C1 learnable by C1

C1 _C2 ? from POS from NEG from POS and NEG

C2 polynomially NP-hard YES NP-hard

learnable by in some from in some

C2 from POS cases POS and NEG cases

C2 polynomially YES YES YES

learnable by from from from

C2 from NEG POS and NEG NEG POS and NEG

C2 polynomially NP-hard YES NP-hard

learnable by in some from in some

C2 from POS and NEG cases POS and NEG cases

Figure 4.1: Polynomial learnability of C1 _ C2 by C1 _ C2.

C1 ^C2 C1 polynomially C1 polynomially C1 polynomially

polynomially learnable by learnable by C1 learnable by C1 learnable by C1

C1 ^C2 ? from POS from NEG from POS and NEG

C2 polynomially YES YES YES

learnable by from from from

C2 from POS POS POS and NEG POS and NEG

C2 polynomially YES NP-hard NP-hard

learnable by from in some in some

C2 from NEG POS and NEG cases cases

C2 polynomially YES NP-hard NP-hard

learnable by from in some in some

C2 from POS and NEG POS and NEG cases cases

Figure 4.2: Polynomial learnability of C1 ^ C2 by C1 ^ C2.

Tools for Distribution-free Learning 41

then C2 is polynomially learnable. This suggests a notion of reducibility be-
tween learning problems. Such a notion may also provide learning algorithms
for representation classes that reduce to classes already known to be learnable.

In this section we describe polynomial-time reductions between learning
problems for classes of Boolean circuits. These reductions are general and
involve simple variable substitutions. Similar transformations have been given
for the mistake-bounded model of learning by Littlestone [73]. Recently the
notion of reducibility among learning problems has been elegantly generalized
and developed into a complexity theory for polynomial learnability by Pitt
and Warmuth [79].

The basic idea behind the reductions can be illustrated by the following
simple example: suppose we have an e�cient learning algorithm A for mono-
mials, and we wish to devise an algorithm for the class 2CNF. Note that
any 2CNF formula can be written as a monomial over the O(n2) variables of
the form zi;j = (xi _ xj). Thus we can use algorithm A to e�ciently learn
2CNF simply by giving A examples of length n2 in which each bit simulates
the value of one of the created variables zi;j on an example of length n of
the target 2CNF formula. In the remainder of the section we formalize and
generalize these ideas.

If C = [n�1Cn is a parameterized class of Boolean circuits, we say that C
is naming invariant if for any circuit c(x1; : : : ; xn) 2 Cn, and any permutation
� of f1; : : : ; ng, we have c(x�(1); : : : ; x�(n)) 2 Cn. We say that C is upward
closed if for n � 1, Cn � Cn+1. Note that all of the classes of Boolean circuits
studied here are both naming invariant and upward closed.

Theorem 4.7 Let C = [n�1Cn be a parameterized class of Boolean circuits
that is naming invariant and upward closed. Let G be a set of Boolean circuits,
each over k inputs (where k is a constant). Let C 0

n be the class of circuits
obtained by choosing any c(x1; : : : ; xn) 2 Cn, and replacing one or more of the
inputs xi to c with any circuit gi(xi1; : : : ; xik), where gi 2 G, and each xij 2
fx1; : : : ; xng (thus, the circuit obtained is still over the variables x1; : : : ; xn).
Let C 0 = [n�1C 0

n. Then if C is polynomially learnable, C 0 is polynomially
learnable.

Proof: Let A be a polynomial-time learning algorithm for C. We describe

42 Tools for Distribution-free Learning

a polynomial-time learning algorithm A0 for C 0 that uses algorithm A as a
subroutine. For each circuit gi 2 G, A0 creates nk new variables zi1; : : : ; z

i
nk .

Let X1; : : : ;Xnk denote all ordered lists of k variables chosen from x1; : : : ; xn,
with repetition allowed. The intention is that zij will simulate the value of the
circuit gi when gi is given the variable list Xj as inputs.

Whenever algorithm A requests a positive (or negative) example, A0 takes
a positive (or negative) example (v1; : : : ; vn) 2 f0; 1gn of the target circuit
c0(x1; : : : ; xn) 2 C 0

n. Let c
i
j 2 f0; 1g be the value assigned to zij by the simula-

tion described above. Then A0 gives the example

(v1; : : : ; vn; c
1
1; : : : ; c

1
nk ; : : : ; c

jGj
1 ; : : : ; c

jGj
nk
)

to algorithm A. Since c0(x1; : : : ; xn) was obtained by substitutions on some
c 2 Cn, and since C is naming invariant and upward closed, there is a circuit in
Cn+jGjnk that is consistent with all the examples we generate by this procedure
(it is just c0 with each occurrence of the circuit gi replaced by the variable zij
that simulates the correct inputs to the occurrence of gi). Thus A must output
an �-good hypothesis

hA(x1; : : : ; xn; z
1
1; : : : ; z

1
nk ; : : : ; z

jGj
1 ; : : : ; z

jGj
nk):

We then obtain an �-good hypothesis over n variables by de�ning

hA0(v1; : : : ; vn) = hA(v1; : : : ; vn; c
1
1; : : : ; c

1
nk ; : : : ; c

jGj
1 ; : : : ; c

jGj
nk
)

for any (v1; : : : ; vn) 2 f0; 1gn, where each cij is computed as described above.
This completes the proof.

Note that if the learning algorithm A for C uses only positive examples or
only negative examples, this property is preserved by the reduction of Theo-
rem 4.7. As a corollary of Theorem 4.7 we have that for most natural Boolean
circuit classes, the monotone learning problem is no harder than the general
learning problem:

Corollary 4.8 Let C = [n�1Cn be a parameterized class of Boolean circuits
that is naming invariant and upward closed. Let monotone C be the class
containing all monotone circuits in C. Then if monotone C is polynomially
learnable, C is polynomially learnable.

Tools for Distribution-free Learning 43

Proof: In the statement of Theorem 4.7, let G = fyg. Then all of the literals
x1; : : : ; xn can be obtained as instances of the single circuit in G.

Theorem 4.7 says that the learning problem for a class of Boolean circuits
does not become harder if an unknown subset of the variables is replaced by a
constant-sized set of circuits whose inputs are unknown. The following result
says this is also true if the number of substitution circuits is larger, but the
order and inputs are known.

Theorem 4.9 Let C = [n�1Cn be a parameterized class of Boolean circuits
that is naming invariant and upward closed. Let p(n) be a �xed polynomial,
and let the description of the p(n)-tuple (gn1 ; : : : ; g

n
p(n)) be computable in time

polynomial in n, where each gni is a Boolean circuit over n variables. Let C 0
n

consist of circuits of the form

c(gn1 (x1; : : : ; xn); : : : ; g
n
p(n)(x1; : : : ; xn))

where c 2 Cp(n). Let C
0 = [n�1C 0

n. Then if C is polynomially learnable, C 0 is
polynomially learnable.

Proof: Let A be a polynomial-time learning algorithm for C. We describe
a polynomial-time learning algorithm A0 for C 0 that uses algorithm A as a
subroutine. Similar to the proof of Theorem 4.7, A0 creates new variables
z1; : : : ; zp(n). The intention is that zi will simulate gni (x1; : : : ; xn).

When algorithm A requests a positive or a negative example, A0 takes
a positive or negative example (v1; : : : ; vn) 2 f0; 1gn of the target circuit
c0(x1; : : : ; xn) 2 C 0

n and sets ci = gni (v1; : : : ; vn). A0 then gives the vector
(c1; : : : ; cp(n)) to A. As in the proof of Theorem 4.7, A must output an �-
good hypothesis hA over p(n) variables. We then de�ne hA0(v1; : : : ; vn) =
hA(c1; : : : ; cp(n)), for any v1; : : : ; vn 2 f0; 1gn, where each ci is computed as
described above.

If the learning algorithm A for C uses only positive examples or only neg-
ative examples, this property is preserved by the reduction of Theorem 4.9.
We can apply this result to demonstrate that � circuits, or read-once circuits,
are no easier to learn than general circuits.

44 Tools for Distribution-free Learning

Corollary 4.10 Let C = [n�1Cn be a parameterized class of Boolean circuits
that is naming invariant and upward closed. Let �C consist of all circuits in
C in which each variable occurs at most once (i.e., the fan-out of each input
variable is at most 1). Then if �C is polynomially learnable, C is polynomially
learnable.

Proof: Let c 2 C, and let l be the maximum number of times any variable
occurs (i.e., the largest fan-out) in c. Then in the statement of Theorem 4.9,
let p(n) = ln and gnin+j = xj for 0 � i � l� 1 and 1 � j � n (thus, gnin+j = xj
is essentially a copy of xj). Note that if we do not know the value of l, we can
try successively larger values, testing the hypothesis each time until an �-good
hypothesis is obtained.

Corollaries 4.8 and 4.10 are particularly useful for simplifying the learning
problem for classes whose polynomial-time learnability is in question. For
example, if we letDNFp(n) be the class of all DNF formulae in which the length
is bounded by some polynomial p(n) (where n is the number of variables), and
monotone �DNF is the class of DNF formulae in which no variable occurs
more than once and no variable occurs negated, then we have:

Corollary 4.11 If monotone �DNFp(n) (respectively, monotone �CNFp(n))
is polynomially learnable, then DNFp(n) (respectively, CNFp(n)) is polynomi-
ally learnable.

It is important to note that the substitutions suggested by Theorems 4.7
and 4.9 and their corollaries do not preserve the underlying target distri-
butions. For example, it does not follow from Corollary 4.11 that if mono-
tone �DNF is polynomially learnable under uniform target distributions (as
is shown in Chapter 8) then DNF is polynomially learnable under uniform
distributions.

5

Learning in the Presence of Errors

5.1 Introduction

In this chapter we study a practical extension to the distribution-free model
of learning: the presence of errors (possibly maliciously generated by an ad-
versary) in the sample data. Thus far we have made the idealized assumption
that the oracles POS and NEG always faithfully return untainted examples
of the target representation drawn according to the target distributions. In
many environments, however, there is always some chance that an erroneous
example is given to the learning algorithm. In a training session for an expert
system, this might be due to an occasionally faulty teacher; in settings where
the examples are being transmitted electronically, it might be due to unreliable
communication equipment.

Since one of the strengths of Valiant's model is the lack of assumptions
on the probability distributions from which examples are drawn, we seek to
preserve this generality by making no assumptions on the nature of the errors
that occur. That is, we wish to avoid demanding algorithms that work under
any target distributions while at the same time assuming that the errors in
the examples have some \nice" form. Such well-behaved sources of error seem
di�cult to justify in a real computing environment, where the rate of error
may be small, but data may become badly mangled by highly unpredictable
forces whenever errors do occur, for example in the case of hardware errors.
Thus, we study a worst-case or malicious model of errors, in which the errors
are generated by an adversary whose goal is to foil the learning algorithm.

46 Learning in the Presence of Errors

The study of learning from examples with malicious errors was initiated
by Valiant [94], where it is assumed that there is a �xed probability � of an
error occurring independently on each request for an example. This error may
be of an arbitrary nature | in particular, it may be chosen by an adversary
with unbounded computational resources, and exact knowledge of the target
representation, the target distributions, and the current internal state of the
learning algorithm.

In this chapter we study the optimal malicious error rate EMAL(C) for a
representation class C | that is, the largest value of � that can be tolerated
by any learning algorithm (not necessarily polynomial time) for C. Note that
we expect the optimal error rate to depend on � and � (and n in the case of a
parameterized target class C). An upper bound on EMAL(C) corresponds to a
hardness result placing limitations on the rate of error that can be tolerated;
lower bounds on EMAL(C) are obtained by giving algorithms that tolerate a
certain rate of error.

Using a proof technique called the method of induced distributions, we
obtain general upper bounds on EMAL(C) and apply these results to many
representation classes. We also obtain lower bounds on Epoly

MAL(C) (the largest
rate of malicious error tolerated by a polynomial-time learning algorithm for
C) by giving e�cient learning algorithms for these same classes and analyzing
their error tolerance. In several cases the upper and lower bounds on Epoly

MAL(C)
meet. A canonical method of transforming standard learning algorithms into
error-tolerant algorithms is given, and we give approximation-preserving re-
ductions between standard combinatorial optimization problems such as set
cover and natural problems of learning with errors. Several of our results also
apply to a more benign model of classi�cation noise de�ned by Angluin and
Laird [12], in which the underlying target distributions are unaltered, but there
is some probability that a positive example is incorrectly classi�ed as being
negative, and vice-versa.

Several themes are brought out. One is that error tolerance need not come
at the expense of e�ciency or simplicity. We show that there are representation
classes for which the optimal malicious error rate can be achieved by algorithms
that run in polynomial time and are easily coded. For example, we show
that a polynomial-time algorithm for learning monomials with errors due to
Valiant [94] tolerates the largest malicious error rate possible for any algorithm
that uses only positive examples, polynomial-time or otherwise. We give an

Learning in the Presence of Errors 47

e�cient learning algorithm for the class of symmetric functions that tolerates
the optimal malicious error rate and uses an optimal number of examples.

Another theme is the importance of using both positive and negative ex-
amples whenever errors (either malicious errors or classi�cation noise errors)
are present. Several existing learning algorithms use only positive examples
or only negative examples (see e.g. Valiant [93] and Blumer et al. [25]). We
demonstrate strong upper bounds on the tolerable error rate when only one
type is used, and show that this rate can be provably increased when both types
are used. In addition to proving this for the class of symmetric functions, we
give an e�cient algorithm that provides a strict increase in the malicious error
rate over the positive-only algorithm of Valiant [94] for the class of monomials.

A third theme is that there are strong ties between learning with errors and
more traditional problems in combinatorial optimization. We give a reduction
from learning monomials with errors to a generalization of the weighted set
cover problem, and give an approximation algorithm for this problem (gener-
alizing the greedy algorithm analyzed by several authors [29, 56, 77]) that is
of independent interest. This approximation algorithm is used as a subroutine
in a learning algorithm that tolerates an improved error rate for monomials.
In the other direction, we prove that for M the class of monomials, approach-
ing the optimal error rate EMAL(M) with a polynomial-time algorithm using
hypothesis space M is at least as hard as �nding an e�cient approximation
algorithm with an improved performance guarantee for the set cover prob-
lem. This suggests that there are classes for which the optimal error rate
that can be tolerated e�ciently may be considerably smaller than the optimal
information-theoretic rate. The best approximation known for the set cover
problem remains the greedy algorithm analyzed by Chvatal [29], Johnson [56],
Lovasz [75], and Nigmatullin [77]. Finally, we give a canonical reduction that
allows many learning with errors problems to be studied as equivalent opti-
mization problems, thus allowing one to sidestep some of the di�culties of
analysis in the distribution-free model. Similar results are given for the error-
free model by Haussler et al. [51].

We now give a brief survey of other studies of error in the distribution-free
model. Valiant [94] modi�ed his initial de�nitions of learnability to include
the presence of errors in the examples. He also gave a generalization of his
algorithm for learning monomials from positive examples, and analyzed the
rate of malicious error tolerated by this algorithm. Valiant's results led him

48 Learning in the Presence of Errors

to suggest the possibility that \the learning phenomenon is only feasible with
very low error rates" (at least in the distribution-free setting with malicious
errors); some of the results presented in this chapter can be viewed as giving
formal veri�cation of this intuition. On the other hand, some of our algorithms
provide hope that if one can somehow reliably control the rate of error to a
small amount, then errors of an arbitrary nature can be compensated for by
the learning process.

Angluin and Laird [12] subsequently modi�ed Valiant's de�nitions to study
a non-malicious model of errors, de�ned in Section 5.2 as the classi�cation
noise model. Their results demonstrate that under stronger assumptions on the
nature of the errors, large rates of error can be tolerated by polynomial-time
algorithms for nontrivial representation classes. Shackelford and Volper [91]
investigated the classi�cation noise model further, and Sloan [92] and Laird [67]
discuss a number of variants of both the malicious error and classi�cation noise
models.

5.2 De�nitions and notation for learning with

errors

Oracles with malicious errors. Let C be a representation class over a
domain X, and let c 2 C be the target representation with target dis-
tributions D+ and D�. For 0 � � < 1=2, we de�ne two oracles with
malicious errors, POS �

MAL and NEG�
MAL, that behave as follows: when

oracle POS �
MAL (respectively, NEG

�
MAL) is called, with probability 1��,

a point x 2 pos(c) (respectively, x 2 neg(c)) randomly chosen according
to D+ (respectively,D�) is returned, as in the error-free model; but with
probability �, a point x 2 X on which absolutely no assumptions can be
made is returned. In particular, this point may be dynamically and ma-
liciously chosen by an adversary who has knowledge of c;D+;D�; � and
the internal state of the learning algorithm. This adversary also has un-
bounded computational resources. For convenience we assume that the
adversary does not have knowledge of the outcome of future coin
ips
of the learning algorithm or the points to be returned in future calls to
POS �

MAL and NEG�
MAL (other than those that the adversary may himself

decide to generate on future errors). These assumptions may in fact be

Learning in the Presence of Errors 49

removed, as our results will show, resulting in a stronger model where
the adversary may choose to modify in any manner a �xed fraction � of
the sample to be given to the learning algorithm. Such a model realisti-
cally captures situations such as \error bursts", which may occur when
transmission equipment malfunctions repeatedly for a short amount of
time.

Learning from oracles with malicious errors. Let C and H be rep-
resentation classes over X. Then for 0 � � < 1=2, we say that C is
learnable by H with malicious error rate � if there is a (probabilistic)
algorithm A with access to POS �

MAL and NEG�
MAL, taking inputs �; �

and �0, with the property that for any target representation c 2 C, for
any target distributions D+ over pos(c) and D� over neg(c), and for any
input values 0 < �; � < 1 and � � �0 < 1=2, algorithm A halts and
outputs a representation hA 2 H that with probability at least 1 � �
satis�es e+(hA) < � and e+(hA) < �.

We will also say that A is a �-tolerant learning algorithm for C. In this
de�nition of learning, polynomial-time means polynomial in 1=�; 1=� and
1=(1=2 � �0), as well as polynomial in n in the case of parameterized
C (where as mentioned in Chapter 2, we assume that the length of
representations in Cn are bounded by a polynomial in n).

The input �0 is intended to provide an upper bound on the error rate
for the learning algorithm, since in practice we do not expect to have
exact knowledge of the \true" error rate � (for instance, it is reasonable
to expect the error rate to vary somewhat with time). The dependence
on 1=(1=2 � �0) for polynomial-time algorithms provides the learning al-
gorithm with more time as the error rate approaches 1=2, since an error
rate of 1=2 renders learning impossible for any algorithm, polynomial-
time or otherwise. However, we will shortly see that the input �0 and
the dependence of the running time on 1=(1=2 � �0) are usually un-
necessary, since for learning under arbitrary target distributions to be
possible we must have � < �=(1 + �) (under very weak restrictions on
C). This is Theorem 5.1. However, we include �0 in our de�nitions since
these dependencies may be meaningful for learning under restricted tar-
get distributions.

It is important to note that in this de�nition, we are not asking learning
algorithms to \�t the noise" in the sense of achieving accuracy in predict-

50 Learning in the Presence of Errors

ing the behavior of the tainted oracles POS �
MAL and NEG�

MAL. Rather,
the conditions e+(hA) < � and e+(hA) < � require that the algorithm
�nd a good predictive model of the true underlying target distributions
D+ and D�, as in the error-free model.

In general, we expect the achievable malicious error rate to depend upon
the desired accuracy � and con�dence �, as well as on the parameter
n in the case of parameterized representation classes. We now make
de�nitions that will allow us to study the largest rate � = �(�; �; n) that
can be tolerated by any learning algorithm, and by learning algorithms
restricted to run in polynomial time.

Optimal malicious error rates. Let A be a learning algorithm for C. We
de�ne EMAL(C;A) to be the largest � such that A is a �-tolerant learning
algorithm for C; note that EMAL(C;A) is actually a function of � and
� (and n in the case of parameterized C). In the case that the largest
such � is not well-de�ned (for example, A could tolerate progressively
larger rates if allowed more time), then EMAL(C;A) is the supremum
over all malicious error rates tolerated by A. Then we de�ne the function
EMAL(C) to be the pointwise (with respect to �; � and n in the parameter-
ized case) supremum of EMAL(C;A), taken over all learning algorithms
A for C. More formally, if we write EMAL(C;A) and EMAL(C) in func-
tional form, then EMAL(C)(�; �; n) = supAfEMAL(C;A)(�; �; n)g. Notice
that this supremum is taken over all learning algorithms, regardless of
computational complexity. We will use the notation Epoly

MAL to denote
these same quantities when the quanti�cation is only over polynomial-
time learning algorithms | thus, for instance, Epoly

MAL(C;A) is the largest
� such that A is a �-tolerant learning polynomial-time learning algo-
rithm for C, and Epoly

MAL(C) is the largest malicious error rate tolerated
by any polynomial-time learning algorithm for C.

EMAL;+(C) will be used to denote EMAL with quanti�cation only over
positive-only learning algorithms for C; Similar de�nitions are made
for the negative-only malicious error rate EMAL;�, and polynomial-time
positive-only and polynomial-time negative-only malicious error rates
Epoly
MAL;+ and Epoly

MAL;�.

Oracles with classi�cation noise. Some of our results will also apply to
a more benign model of errors de�ned by Angluin and Laird [12], which
we will call the classi�cation noise model. Here we have oracles POS �

CN

Learning in the Presence of Errors 51

and NEG�
CN that behave as follows: as before, with probability 1 � �,

POS �
CN returns a point drawn randomly according to the target distri-

bution D+. However, with probability �, POS �
CN returns a point drawn

randomly according to the negative target distribution D�. Similarly,
with probability 1� �, NEG�

CN draws from the correct distribution D�

and with probability � draws from D+. This model is easily seen to
be equivalent (modulo polynomial time) to a model in which a learning
algorithm asks for a labeled example without being allowed to specify
whether this example will be positive or negative; then the noisy oracle
draws from the underlying target distributions (each with equal prob-
ability), but with probability � returns an incorrect classi�cation with
the example drawn.

These oracles are intended to model a situation in which the learning
algorithm's \teacher" occasionally misclassi�es a positive example as
negative, and vice-versa. However, this misclassi�cation is benign in
the sense that the erroneous example is always drawn according to the
\natural" environment as represented by the target distributions; thus,
only the classi�cation label is subject to error. In contrast, errors in the
malicious model may involve not only misclassi�cation, but alteration
of the examples themselves, which may not be generated according to
any probability distribution at all. As an example, the adversary gener-
ating the errors may choose to give signi�cant probability to examples
that have zero probability in the true target distributions. We will see
throughout the chapter that these added capabilities of the adversary
have a crucial e�ect on the error rates that can be tolerated.

Learning from oracles with classi�cation noise. Let C and H be rep-
resentation classes over X. Then for 0 � � < 1=2, we say that C is
learnable by H with classi�cation noise rate � if there is a (probabilistic)
algorithm A with access to POS �

CN and NEG�
CN , taking inputs �; � and

�0, with the property that for any target representation c 2 C, for any
target distributions D+ over pos(c) and D� over neg(c), and for any
input values 0 < �; � < 1 and � � �0 < 1=2, algorithm A halts and
outputs a representation hA 2 H that with probability at least 1 � �
satis�es e+(hA) < � and e+(hA) < �.

Polynomial time here means polynomial in 1=�; 1=� and 1=(1=2 � �0), as
well as the polynomial in n in the case of parameterized C. As opposed
to the malicious case, the input �0 is relevant here, even in the case of

52 Learning in the Presence of Errors

arbitrary target distributions, since classi�cation noise rates approaching
1=2 can be tolerated by polynomial-time algorithms for some nontrivial
representation classes [12].

Optimal classi�cation noise rates. Analogous to the malicious model, we
de�ne classi�cation noise rates ECN ; ECN ;+ and ECN ;� for an algorithm
A and representation class C, as well as polynomial-time classi�cation
noise rates Epoly

CN ; E
poly
CN ;+ and Epoly

CN ;�.

5.3 Absolute limits on learning with errors

In this section we prove theorems bounding the achievable error rate for both
the malicious error and classi�cation noise models. These bounds are absolute
in the sense that they apply to any learning algorithm, regardless of its com-
putational complexity, the number of examples it uses, the hypothesis space
it uses, and so on. Our �rst such result states that the malicious error rate
must be smaller than the desired accuracy �. This is in sharp contrast to the
classi�cation noise model, where Angluin and Laird [12] proved, for example,
Epoly
CN (kDNFn) � c0 for all n and any constant c0 < 1=2.

Let us call a representation class C distinct if there exist representations
c1; c2 2 C and points u; v; w; x 2 X satisfying u 2 pos(c1); u 2 neg(c2), v 2
pos(c1); v 2 pos(c2), w 2 neg(c1); w 2 pos(c2), and x 2 neg(c1); x 2 neg(c2).

Theorem 5.1 Let C be a distinct representation class. Then

EMAL(C) <
�

1 + �
:

Proof: We use a technique that we will call the method of induced distri-
butions: we choose l � 2 representations fcigi2f1;:::;lg � C, along with l pairs
of target distributions fD+

ci
gi2f1;:::;lg and fD�

ci
gi2f1;:::;lg. These representations

and target distributions are such that for any i 6= j, 1 � i; j � l, cj is �-bad
with respect to the distributions D+

ci
;D�

ci
. Then adversaries fADV cigi2f1;:::;lg

are constructed for generating any errors when ci is the target representation
such that the behavior of the oracle POS �

MAL is identical regardless of which

Learning in the Presence of Errors 53

ci is the target representation; the same is true for the oracle NEG�
MAL, thus

making it impossible for any learning algorithm to distinguish the true target
representation, and essentially forcing the algorithm to \guess" one of the ci.

In the case of Theorem 5.1, this technique is easily applied, with l = 2, as
follows: let c1; c2 2 C and u; v; w; x 2 X be as in the de�nition of distinct.
De�ne the following target distributions for c1:

D+
c1
(u) = �

D+
c1
(v) = 1 � �

and

D�
c1
(w) = �

D�
c1
(x) = 1� �:

For c2, the target distributions are:

D+
c2
(v) = 1� �

D+
c2
(w) = �

and

D�
c2
(u) = �

D�
c2
(x) = 1� �:

Note that these distributions are such that any representation that dis-
agrees with the target representation on one of the points u; v; w; x is �-bad
with respect to the target distributions. Now if c1 is the target representation,
then the adversary ADV c1 behaves as follows: on calls to POS �

MAL, ADV c1

always returns the point w whenever an error occurs; on calls to NEG�
MAL,

ADV c1 always returns the point u whenever an error occurs. Under these
de�nitions, the oracle POS �

MAL draws a point from an induced distribution
I+c1 that is determined by the joint behavior of the distribution D+

c1
and the

adversary ADV c1 , and is given by

I+c1(u) = (1 � �)�
I+c1(v) = (1 � �)(1� �)
I+c1(w) = �

54 Learning in the Presence of Errors

where � is the malicious error rate. Similarly, the oracle NEG�
MAL draws from

an induced distribution I�c1:

I�c1(u) = �

I�c1(w) = (1� �)�
I�c1(x) = (1� �)(1� �):

For target representation c2, the adversary ADV c2 always returns the point u
whenever a call to POS �

MAL results in an error, and always returns the point
w whenever a call to NEG�

MAL results in an error. Then the oracle POS �
MAL

draws from the induced distribution

I+c2(u) = �

I+c2(v) = (1 � �)(1� �)
I+c2(w) = (1 � �)�

and the oracle NEG�
MAL from the induced distribution

I�c2(u) = (1� �)�
I�c2(w) = �

I�c2(x) = (1� �)(1� �):

It is easily veri�ed that if � = �=(1 + �), then the distributions I+c1 and I
+
c2

are identical, and that I�c1 and I
�
c2
are identical; if � > �=(1 + �), the adversary

may always choose to
ip a biased coin, and be \honest" (i.e., draw from
the correct target distribution) when the outcome is heads, thus reducing the
e�ective error rate to exactly �=(1 + �). Thus, under these distributions and
adversaries, the behavior of the oracles POS �

MAL and NEG�
MAL is identical

regardless of the target representation. This implies that any algorithm that
produces an �-good hypothesis for target representation c1 with probability at
least 1� � under the distributions D+

c1
and D�

c1
must fail to output an �-good

hypothesis for target representation c2 with probability at least 1 � � under
the distributions D+

c2
and D�

c2
, thus proving the theorem.

Note that Theorem 5.1 actually holds for any �xed �. An intuitive interpre-
tation of the result is that if we desire 90 percent accuracy from the hypothesis,
there must be less than about 10 percent error.

Learning in the Presence of Errors 55

We emphasize that Theorem 5.1 bounds the achievable malicious error rate
for any learning algorithm, regardless of computational complexity, sample
complexity or the hypothesis class. Thus, for distinct C, we always have
EMAL(C) � �=(1 + �) = O(�). All of the representation classes studied here
are distinct. We shall see in Theorem 5.7 of Section 5.4 that any hypothesis
that nearly minimizes the number of disagreements with a large enough sample
from POS �

MAL and NEG�
MAL is �-good with high probability provided � < �=4.

Thus, for the �nite representation classes we study here (such as all the classes
over the Boolean domain f0; 1gn), there is always a (possibly super-polynomial
time) exhaustive search algorithm A achieving EMAL(C;A) =
(�); combined
with Theorem 5.1, this gives EMAL(C) = �(�) for these classes. However, we
will primarily be concerned with achieving the largest possible malicious error
rate in polynomial time.

We now turn our attention to positive-only and negative-only learning in
the presence of errors, where we will see that for many representation classes,
the absolute bounds on the achievable error rate are even stronger than those
given by Theorem 5.1.

Let C be a representation class. We will call C positive t-splittable if there
exist representations c1; : : : ; ct 2 C and points u1; : : : ; ut 2 X and v 2 X
satisfying all of the following conditions:

ui 2 pos(cj); i 6= j; 1 � i; j � t

uj 2 neg(cj); 1 � j � t

v 2 pos(ci); 1 � i � t:

Similarly, C is negative t-splittable if we have

ui 2 neg(cj); i 6= j; 1 � i; j � t
uj 2 pos(cj); 1 � j � t

v 2 neg(ci); 1 � i � t:

Note that if vcd(C) = d, then C is both positive and negative d-splittable.
The converse does not necessarily hold.

Theorem 5.2 Let C be positive t-splittable (respectively, negative t-splittable).
Then for � � 1=t,

EMAL;+(C) <
�

t� 1

56 Learning in the Presence of Errors

(respectively, EMAL;�(C) < �
t�1).

Proof: The proof is by the method of induced distributions. We prove only
the case that C is positive t-splittable; the proof for C negative t-splittable is
similar. Let c1; : : : ; ct 2 C and u1; : : : ; ut; v 2 X be as in the de�nition of pos-
itive t-splittable. For target representation cj, de�ne the target distributions
D+

cj
over pos(cj) and D�

cj
over neg(cj) as follows:

D+
cj
(ui) =

�

t� 1
; 1 � i � t; i 6= j

D+
cj
(v) = 1� �

and

D�
cj
(uj) = 1:

For target representation cj , the errors on calls to POS
�
MAL are generated by an

adversary ADV cj who always returns the point uj whenever an error occurs.

Then under these de�nitions, POS�
MAL draws a point from a distribution I+cj

induced by the distribution D+
cj
and the adversary ADV cj . This distribution

is

I+cj(ui) = (1� �) �

t� 1
; 1 � i � t; i 6= j

I+cj(v) = (1� �)(1� �)
I+cj(uj) = �:

If � = (1 � �)(�=(t� 1)), then the induced distributions I+cj are all identical
for 1 � j � t. Solving, we obtain � = (�=(t� 1))=(1 + �=(t� 1)) < �=(t� 1).
Now let � � �=(t� 1), and assume A is a �-tolerant positive-only learning
algorithm for C. If cj is the target representation, then with probability at
least 1 � �, ui 2 pos(hA) for some i 6= j, otherwise e+(hA) � � under the
induced distribution I+cj . Let k be such that

Pr[uk 2 pos(hA)] = max
1�i�t
fPr[ui 2 pos(hA)]g

where the probability is taken over all sequences of examples given to A by
the oracle POS �

MAL and the coin tosses of A. Then we must have

Pr[uk 2 pos(hA)] � 1 � �
t� 1

:

Learning in the Presence of Errors 57

Choose � < 1=t. Then with probability at least �, e�(hA) = 1 when ck is the
target representation, with distributions D+

ck
and D�

ck
and adversary ADV ck .

This contradicts the assumption that A is a �-tolerant learning algorithm, and
the theorem follows.

Note that the restriction � < 1=t in the proof of Theorem 5.2 is apparently
necessary, since a learning algorithm may always randomly choose a uj to be
a positive example, and make all other ui negative examples; the probability
of failing to learn under the given distributions is then only 1=t. It would be
interesting to �nd a di�erent proof that removed this restriction, or to prove
that it is required.

As in the case of Theorem 5.1, Theorem 5.2 is an upper bound on the
achievable malicious error rate for all learning algorithms, regardless of hy-
pothesis representation, number of examples used or computation time. For
any representation class C, by computing a value t such C is t-splittable, we
can obtain upper bounds on the positive-only and negative-only error rates
for that class. As examples, we state such results as corollaries for a few of
the representation classes studied here. Even in cases where the representation
class is known to be not learnable from only positive or only negative examples
in polynomial time (for example, we show in Section 6.2 that monomials are
not polynomially learnable from negative examples), the bounds on EMAL;+

and EMAL;� are relevant since they also hold for algorithms that do not run in
polynomial time.

Corollary 5.3 Let Mn be the class of monomials over x1; : : : ; xn. Then

EMAL;+(Mn) <
�

n� 1

and
EMAL;�(Mn) <

�

n� 1
:

Corollary 5.4 For �xed k, let kDNFn be the class of kDNF formulae over
x1; : : : ; xn. Then

EMAL;+(kDNFn) = O
�
�

nk

�
and

EMAL;�(kDNFn) = O
�
�

nk

�
:

58 Learning in the Presence of Errors

Corollary 5.5 Let SFn be the class of symmetric functions over x1; : : : ; xn.
Then

EMAL;+(SFn) <
�

n � 1

and
EMAL;�(SFn) <

�

n� 1
:

Proofs of these corollaries follow from the Vapnik-Chervonenkis dimension
of the representation classes and Theorem 5.2. Note that the proof of Theo-
rem 5.2 shows that these corollaries actually hold for any �xed � and n.

We note that Theorem 5.2 and its corollaries also hold for the classi�cation
noise model. To see this it su�ces to notice that the adversaries ADV cj in
the proof of Theorem 5.2 simulated the classi�cation noise model. Thus, for
classi�cation noise we see that the power of using both positive and negative
examples may be dramatic: for kCNF we have Epoly

CN (kCNFn) � c0 for any
c0 < 1=2 due to Angluin and Laird [12] but ECN ;+(kCNFn) = O(�=nk) by
Theorem 5.2. (By Theorem 6.1 of Section 6.2, kCNF is not learnable in
polynomial time from negative examples even in the error-free model.) In fact,
we can give a bound on ECN ;+ and ECN ;� that is weaker but more general,
and applies to almost any representation class. Note that by exhaustive search
techniques, we have that for any small constant �, ECN (C) � 1=2�� for any
�nite representation class C. Thus the following result demonstrates that for
representation classes over �nite domains in the classi�cation noise model,
the advantage of using both positive and negative examples is almost always
signi�cant.

We will call a representation class C positive (respectively, negative) in-
comparable if there are representations c1; c2 2 C and points u; v; w 2 X
satisfying u 2 pos(c1); u 2 neg(c2); v 2 pos(c1); v 2 pos(c2) (respectively,
v 2 neg(c1); v 2 neg(c2)), w 2 neg(c1); w 2 pos(c2).

Theorem 5.6 Let C be positive (respectively, negative) incomparable. Then

ECN ;+(C) <
�

1 + �

(respectively, ECN ;�(C) < �
1+�).

Learning in the Presence of Errors 59

Proof: By the method of induced distributions. We do the proof for the case
that C is positive incomparable; the proof when C is negative incomparable
is similar. Let c1; c2 2 C and u; v; w 2 X be as in the de�nition of positive
incomparable. For target representation c1, we de�ne distributions

D+
c1
(u) = �

D+
c1
(v) = 1 � �

and

D�
c1
(w) = 1:

Then in the classi�cation noise model, the oracle POS �
CN draws from the

induced distribution

I+c1(u) = (1 � �)�
I+c1(v) = (1 � �)(1� �)
I+c1(w) = �:

For target representation c2, de�ne distributions

D+
c2
(v) = 1� �

D+
c2
(w) = �

and

D�
c2
(u) = 1:

Then for target representation c2, oracle POS
�
CN draws from the induced dis-

tribution

I+c2(u) = �

I+c2(v) = (1 � �)(1� �)
I+c2(w) = (1 � �)�:

For � = �=(1 + �), distributions I+c1 and I+c2 are identical. Any positive-only
algorithm learning c1 under D+

c1
and D�

c1
with probability at least 1� � must

fail with probability at least 1� � when learning c2 under D+
c2
and D�

c2
.

60 Learning in the Presence of Errors

Thus, for positive (respectively, negative) incomparable C, ECN ;+(C) =
O(�) (respectively, ECN ;�(C) = O(�)). All of the representation classes stud-
ied here are both positive and negative incomparable. Note that the proof
of Theorem 5.6 depends upon the assumption that a learning algorithm has
only an upper bound on the noise rate, not the exact value; thus, the e�ective
noise rate may be less than the given upper bound. However, this is a rea-
sonable assumption in most natural environments. This issue does not arise
in the malicious model, where the adversary may always choose to draw from
the correct target distribution with some �xed probability, thus reducing the
e�ective error rate to any value less than or equal to the given upper bound.

5.4 E�cient error-tolerant learning

Given the absolute upper bounds on the achievable malicious error rate of Sec-
tion 5.3, we now wish to �nd e�cient algorithms tolerating a rate that comes
as close as possible to these bounds, or give evidence for the computational
di�culty of approaching the optimal error rate. In this section we give e�-
cient algorithms for several representation classes and analyze their tolerance
to malicious errors.

We begin by giving a generalization of Occam's Razor (Theorem 3.1) for
the case when errors are present in the examples.

Let C and H be representation classes over X. Let A be an algorithm
accessing POS �

MAL and NEG�
MAL, and taking inputs 0 < �; � < 1. Suppose

that for target representation c 2 C and 0 � � < �=4, A makes m calls
to POS �

MAL and receives points u1; : : : ; um 2 X, and m calls to NEG�
MAL and

receives points v1; : : : ; vm 2 X, and outputs hA 2 H satisfying with probability
at least 1� �:

jfui : ui 2 neg (hA)gj � �

2
m (5.1)

jfvi : vi 2 pos(hA)gj � �

2
m: (5.2)

Thus, with high probability, hA is consistent with at least a fraction 1� �=2 of
the sample received from the faulty oracles POS �

MAL and NEG�
MAL. We will

call such an A a �-tolerant Occam algorithm for C by H.

Learning in the Presence of Errors 61

Theorem 5.7 Let � < �=4, and let A be a �-tolerant Occam algorithm for
C by H. Then A is a �-tolerant learning algorithm for C by H; the sam-
ple size required is m = O(1=� ln 1=� + 1=� ln jHj). If A is such that only
Condition 5.1 (respectively, Condition 5.2) above holds, then e+(hA) < � (re-
spectively, e�(hA) < �) with probability at least 1 � �.

Proof: We prove the statement where A meets Condition 5.1; the case for
Condition 5.2 is similar. Let h 2 H be such that e+(h) � �. Then the
probability that h agrees with a point received from the oracle POS �

MAL is
bounded above by

(1� �)(1� �) + � � 1� 3�

4

for � < �=4. Thus the probability that h agrees with at least a fraction 1��=2
of m examples received from POS �

MAL is

LE
�
3�

4
;m;

�

2
m
�
� e�m�=24

by Fact CB1. From this it follows that the probability that some h 2 H
with e+(h) � � agrees with a fraction 1 � �=2 of the m examples is at most
jHje�m�=24. Solving jHje�m�=24 � �=2, we obtain m � 24=�(ln jHj + ln 2=�).
This proves that any h meeting Condition 5.1 is with high probability �-good
with respect to D+, completing the proof.

To demonstrate that the suggested approach of �nding a nearly consistent
hypothesis is in fact a feasible one, we note that if c is the target representation,
then the probability that c fails to agree with at least a fraction 1� �=2 of m
examples received from POS �

MAL is

GE
�
�

4
;m;

�

2
m
�
� �

2

for � � �=4 and m as in the statment of Theorem 5.7 by Fact CB2.

Thus, in the presence of errors of any kind, �nding an �=2-good hypothesis
is as good as learning, provided that � < �=4. This fact can be used to prove
the correctness of the learning algorithms of the following two theorems due
to Valiant.

62 Learning in the Presence of Errors

Theorem 5.8 (Valiant [94]) LetMn be the class of monomials over x1; : : : ; xn.
Then

Epoly
MAL;+(Mn) =

�
�

n

�
:

Theorem 5.9 (Valiant [94]) For �xed k, let kDNFn be the class of kDNF
formulae over x1; : : : ; xn. Then

Epoly
MAL;�(kDNFn) =

�
�

nk

�
:

Similar results are obtained by duality for the class of disjunctions (learn-
able from negative examples) and kCNF (learnable from positive examples);
that is, Epoly

MAL;�(1DNFn) =
(�=n) and Epoly
MAL;+(kCNFn) =
(�=nk). Note

that the class of monomials (respectively, kDNF) is not polynomially learn-
able even in the error-free case from negative (respectively, positive) examples
by Theorem 6.1 of Section 6.2.

Combining Theorems 5.8 and 5.9 with Corollaries 5.3 and 5.4 we have
Epoly
MAL;+(Mn) = �(�=n) and Epoly

MAL;�(kDNFn) = �(�=nk), thus proving that
the algorithms of Valiant [94] tolerate the optimal malicious error rate with
respect to positive-only and negative-only learning. The algorithm given in the
following theorem, similar to those of Valiant [94], proves an analogous result
for e�ciently learning symmetric functions from only one type of examples in
the presence of errors.

Theorem 5.10 Let SFn be the class of symmetric functions over x1; : : : ; xn.
Then

Epoly
MAL;+(SFn) =

�
�

n

�
:

Proof: Let � � �=8n. The positive-only algorithm A maintains an integer
array P indexed 0; : : : ; n and initialized to contain 0 at each location. A takes
m (calculated below) examples from POS �

MAL, and for each vector ~v received,
increments P [index (~v)], where index (~v) is the number of bits set to 1 in ~v.
The hypothesis hA is de�ned as follows: all vectors of index i are contained
in pos(hA) if and only if P [i] � (�=4n)m; otherwise all vectors of index i are
negative examples of hA.

Learning in the Presence of Errors 63

Note that hA can disagree with at most a fraction (�=4n)(n + 1) < �=2 of
the m vectors received from POS �

MAL, so e
+(hA) < � with high probability by

Theorem 5.7. To prove that e�(hA) with high probability, suppose that all
vectors of index i are negative examples of the target representation (call such
an i a negative index). Then the probability that a vector of index i is received
on a call to POS �

MAL is at most � � �=8n, since this occurs only when there
is an error on a call to POS �

MAL. Thus the probability of receiving (�=4n)m
vectors of index i in m calls to POS�

MAL is

GE
�
�

8n
;m;

�

4n
m
�
� e�m�=24n

by Fact CB2. The probability that some negative index is classi�ed as a
positive index by hA is thus at most

(n+ 1)e�m�=24n � �

2

for m = O((n=�)(ln n + ln 1=�)). Thus with high probability, e�(hA) = 0,
completing the proof.

Thus, with Corollary 5.5 we have Epoly
MAL;+(SFn) = �(�=n). We can give

a dual of the above algorithm to prove Epoly
MAL;�(SFn) = �(�=n) as well. The

number of examples required by the algorithm of Theorem 5.10 is a factor
of n larger than the lower bound of Corollary 6.13 for the error-free case;
whether this increase is necessary for positive-only algorithms in the presence
of malicious errors is an open problem.

The next theorem demonstrates that using both positive and negative
examples can signi�cantly increase the tolerated error rate in the malicious
model.

Theorem 5.11 Let SFn be the class of symmetric functions over x1; : : : ; xn.
Then

Epoly
MAL(SFn) =
(�):

Proof: Algorithm A maintains two integer arrays P and N , each indexed
0; : : : ; n and initialized to contain 0 at each location. A �rst takesm (calculated
below) examples from POS �

MAL and for each vector ~v received, increments

64 Learning in the Presence of Errors

P [index (~v)], where index (~v) is the number of bits set to 1 in ~v. A then
takes m examples from NEG�

MAL and increments N [index (~v)] for each vector
~v received. The hypothesis hA is computed as follows: all vectors of index i
are contained in pos(hA) if and only if P [i] � N [i]; otherwise, all vectors of
index i are contained in neg(hA).

We now show that for su�ciently large m, A is an �=8-tolerant Occam
algorithm. For 0 � i � n, let di = min(P [i]; N [i]). Then d =

Pn
i=0 di is the

number of vectors in the sample of size 2m with which hA disagrees. Now
for each i, either P [i] or N [i] is a lower bound on the number ei of malicious
errors received that have index i; let e =

Pn
i=0 ei. Note that e � d. Now

the probability that e exceeds (�=4)(2m) in m calls POS �
MAL and m calls to

NEG�
MAL for � � �=8 is

GE (
�

8
; 2m;

�

4
2m) � �

for m = O(1=� ln 1=�) by Fact CB2. Thus, with high probability the number
of disagreements d of hA on the examples received is less than (�=2)m. This
shows that A is an �=8-tolerant Occam algorithm for SF, and thus is a learning
algorithm for SF by Theorem 5.7 for m = O(1=� ln 1=� + n=�).

Thus, by Theorems 5.1 and 5.11 we have Epoly
MAL(SFn) = �(�) in contrast

with Epoly
MAL;+(SFn) = �(�=n) and Epoly

MAL;�(SFn) = �(�=n), a provable increase
by using both types of examples. This is also our �rst example of a nontrivial
class for which the optimal error rate �(�) of Theorem 5.1 can be achieved
by an e�cient algorithm. Furthermore, the sample complexity of algorithm
A above meets the lower bound (within a constant factor) for the error-free
case given in Corollary 6.13; thus we have an algorithm with optimal sample
complexity that tolerates the largest possible malicious error rate. This also
demonstrates that it may be di�cult to prove general theorems providing hard
trade-o�s between sample size and error rate.

We note that the proof of Theorem 5.11 relies only on the fact that there
is a small number of equivalence classes of f0; 1gn (namely, the sets of vectors
with an equal number of bits set to 1) on which each symmetric function is
constant. The same result thus holds for any Boolean representation class
with this property.

Now that we have given some simple and e�cient error-tolerant algorithms,
we turn to the more abstract issue of general-purpose methods of making algo-

Learning in the Presence of Errors 65

rithms more tolerant to errors. It is reasonable to ask whether for an arbitrary
representation class C, polynomial learnability of C implies polynomial learn-
ability of C with malicious error rate �, for some nontrivial value of � that
depends on C, � and �. The next theorem answers this in the a�rmative
by giving an e�cient technique for converting any learning algorithm into an
error-tolerant learning algorithm.

Theorem 5.12 Let A be a polynomial-time learning algorithm for C with
sample complexity SA(�; �), and let s = SA(�=8; 1=2). Then for � � 1=2,

Epoly
MAL(C) =

ln s

s

!
:

Proof: We describe a polynomial-time algorithm A0 that tolerates the de-
sired error rate and uses A as a subroutine. Note that SA (and hence, s) may
also depend upon n in the case of parameterized C.

Algorithm A0 will run algorithm A many times with accuracy parameter
�=8 and con�dence parameter 1=2. The probability that no errors occur during
a single such run is (1� �)s. For � � ln s=s we have

(1� �)s �

1 � ln s

s

!s

� 1

s2
:

(This lower bound can be improved to 1=s� for any constant � > 1 provided
there is a su�ciently small constant upper bound on �.) Thus, on a single
run of A there is probability at least (1� �)1=s2 = 1=2s2 that no errors occur
and A outputs an �=8-good hypothesis hA (call a run of A when this occurs a
successful run). A0 will run A r times. In r runs of A, the probability that no
successful run of A occurs is at most

�
1 � 1

2s2

�r
<
�

3

for r > 2s2 ln 3=�. Let h1A; : : : ; h
r
A be the hypotheses output by A on these r

runs. Suppose hiA is an �-bad hypothesis with respect to the target distribu-
tions; without loss of generality, suppose e+(hiA) � �. Then the probability
that hiA agrees with an example returned by the oracle POS �

MAL is then at

66 Learning in the Presence of Errors

most (1��)(1� �)+ � � 1� 3�=4 for � � �=8. Thus, the probability that hiA
agrees with at least a fraction 1 � �=2 of m examples returned by POS�

MAL is

LE (
3�

4
;m;

�

2
m) � e�m�=24

by Fact CB1. Then it follows that the probability that some hiA with e+(hiA) �
� agrees with a fraction 1� �=2 of the m examples returned by POS �

MAL is at
most

re�m�=24 <
�

3

for m = O(1=� ln r=�). Using Fact CB2, it can be shown that for � � �=8 the
probability of an �=8-good hiA failing to agree with at least a fraction 1� �=2
of the m examples is smaller than �=3.

Thus, if A is run r times and the resulting hypotheses are tested against m
examples from both POS �

MAL and NEG
�
MAL, then with probability at least 1��

the hypothesis with the fewest disagreements is in fact an �-good hypothesis.
Note that if A runs in polynomial time, A0 also runs in polynomial time.

Note that the trick used in the proof of Theorem 5.12 to eliminate the de-
pendence of the tolerated error rate on � is general: we may always set � = 1=2
and run A repeatedly to get a good hypothesis with high probability (provided
we are willing to sacri�ce a possible increase in the number of examples used).
This technique has also been noted in the error-free setting by Haussler et
al. [51].

It is shown in Theorem 6.10 that any learning algorithm A for a represen-
tation class C must have sample complexity

SA(�; �) =

�
1

�

�
ln
1

�
+ vcd(C)

��
:

Suppose that a learning algorithm A achieves this optimal sample complexity
(we will see in Section 6.3.1 that this holds for many existing learning algo-
rithms). Then applying Theorem 5.12, we immediately obtain an algorithm
for C that tolerates a malicious error rate of

vcd(C)

�
ln
vcd(C)

�

!
:

Learning in the Presence of Errors 67

This rate is also the best that can be obtained by applying Theorem 5.12.
By applying this technique to the algorithm of Valiant [93] for the class of
monomials in the error-free model, we obtain the following corollary:

Corollary 5.13 Let Mn be the class of monomials over x1; : : : ; xn. Then

Epoly
MAL(Mn) =

�
�

n
ln
n

�

�
:

This improves the malicious error rate tolerated by the polynomial-time
algorithm of Valiant [94] in Theorem 5.8 by a logarithmic factor. Furthermore,
since Epoly

MAL;+(M) = �(�=n) this proves that, as in the case of symmetric
functions, using both oracles improves the tolerable error rate. Similarly, a
slight improvement over the malicious error rate given in Theorem 5.9 for
kDNF can also be shown. For decision lists, we can apply the algorithm of
Rivest [84] and the sample size bounds given following Corollary 6.16 to obtain
the following:

Corollary 5.14 Let kDLn be the class of k-decision lists over x1; : : : ; xn.
Then

Epoly
MAL(kDLn) =

�
�

nk

�
:

Despite the small improvement in the tolerable error rate for monomials
of Corollary 5.13, there is still a signi�cant gap between the absolute up-
per bound of �=(1 + �) on the achievable malicious error rate for monomials
implied by Theorem 5.1 and the
(�=n ln n=�) polynomial-time error rate of
Corollary 5.13. We now describe further improvements that allow the error
rate to primarily depend only on the number of relevant variables. We describe
an algorithm tolerating a larger error rate for the class M s

n of monomials with
at most s literals, where s may depend on n, the total number of variables.
Our algorithm will tolerate a larger rate of error when the number s of relevant
attributes is considerably smaller than the total number of variables n. Other
improvements in the performance of learning algorithms in the presence of
many irrelevant attributes are investigated by Littlestone [73] and Blum [20].

We note that by applying Theorem 5.2 we can show that even for M1
n, the

class of monomials of length 1, the positive-only and negative-only malicious

68 Learning in the Presence of Errors

error rates are bounded by �=(n� 1). This is again an absolute bound, holding
regardless of the computational complexity of the learning algorithm. Thus,
the positive-only algorithm of Valiant [94] in Theorem 5.8 cannot exhibit an
improved error rate when restricted to the subclass M s

n for any value of s.

Our error-tolerant learning algorithm for monomials is based on an ap-
proximation algorithm for a generalization of the set cover problem that we
call the partial cover problem, which is de�ned below. This approximation
algorithm is of independent interest and has found application in other learn-
ing algorithms [62, 98]. Our analysis and notation rely heavily on the work of
Chvatal [29]; the reader may �nd it helpful to read his paper �rst.

The Partial Cover Problem:

Input: Finite sets S1; : : : ; Sn with positive real costs c1; : : : ; cn, and a positive
fraction 0 < p � 1. We assume without loss of generality that [ni=1Si =
f1; : : : ;mg = T and we de�ne J = f1; : : : ; ng.

Output: J� � J such that
j [
j2J�

Sj j � pm

(we call such a J� a p-cover of the Si) and such that costPC (J�) =P
j2J� cj is minimized.

Following Chvatal [29], for notational convenience we identify a partial
cover fSj1 ; : : : ; Sjsg with the index set fj1; : : : ; jsg.

The partial cover problem is NP-hard, since it contains the set cover prob-
lem as a special case (p = 1) [39]. We now give a greedy approximation
algorithm G for the partial cover problem.

Algorithm G:

Step 1. Initialize J� = ;.
Step 2. Set q = pm � jSj2J� Sjj (thus q is the number of still-uncovered

elements that we must cover in order to have a p-cover). For each j 62 J�,
if jSjj > q, delete any jSjj � q elements from Sj (delete excess elements
from any remaining set that covers more than q elements).

Learning in the Presence of Errors 69

Step 3. If jSj2J� Sjj � pm then halt and output J�, since J� is a p-cover.

Step 4. Find a k minimizing the ratio ck=jSkj. Add k to J�, and replace
each Sj by Sj � Sk. Return to Step 2.

Chvatal [29] shows that the greedy algorithm for the set cover problem
cannot do better than H(m) times the cost of an optimal cover, where H(m) =Pm

i=1 1=i = �(logm). By a padding argument, this can also be shown to hold
for algorithm G above, for any �xed p. We now prove that G can always
achieve this approximation bound within a constant factor.

Theorem 5.15 Let I be an instance of partial cover and let optPC (I) denote
the cost of an optimal p-cover for I. Then the cost of the p-cover J� produced
by algorithm G satis�es

costPC (J
�) � (2H(m) + 3)optPC (I):

Proof: Let Jopt be an optimal p-cover (i.e., costPC (Jopt) = optPC (I)). Let

Topt =
[

j2Jopt
Sj

(these are the elements covered by Jopt) and

T � =
[
j2J�

Sj

(these are the elements covered by J�) where J� is the p-cover output by
algorithm G. Notice that jTopt j � pm since Jopt is a p-cover.

Let Sr
j be set of elements remaining in the set Sj immediately before Step 2

in algorithm G is executed for the rth time (i.e., at the start of the rth iteration
of Steps 2-4). By appropriate renaming of the Sj, we may assume without loss
of generality that J� = f1; : : : ; rg (recall that J� is the set of indices of sets
chosen by algorithm G) immediately after Step 4 is executed for the rth time
(i.e., at the end of the rth iteration of Steps 2-4). Let J� = f1; : : : ; tg when G
halts, so there are a total of t iterations.

De�ne T �� = T ��S0t, where S0t is the union of all elements deleted from the
set St on all executions of Step 2. Intuitively, T �� consists of those elements

70 Learning in the Presence of Errors

that algorithm G \credits" itself with having covered during its execution (as
opposed to those elements regarded as \excess" that were covered because G
may cover more than the required minimum fraction p). We say that a set Sj
is at capacity when in Step 2, jSjj � q. Note that once Sj reaches capacity, it
remains at capacity until it is chosen in Step 4 or until G halts. This is because
if l elements are removed from Sj on an execution of Step 4, the value of q in
Step 2 will decrease by at least l on the next iteration. Furthermore, since G
halts the �rst time a set at capacity is chosen, and by the above de�nitions
St is the last set chosen by G, we have that T �� = [tr=1Sr

r . Thus we have
jS0tj = jT �j � pm and jT ��j = pm.

The set Sr
r can be regarded as the set of previously uncovered elements

that are added to T �� on the rth iteration. We wish to amortize the cost cr
over the elements covered. For each i 2 T �, we de�ne a number yi, which is
intuitively the cost we paid to put i in T �:

yi =

(
cr=jSr

r j if for some r, i 2 Sr
r

0 i is not in T ��

Since for i 2 T � � T ��, yi = 0, we have

X
i2T ��

yi =
X
i2T �

yi

=
tX

r=1

X
i2Srr

yi

=
tX

r=1

cr

=
X
j2J�

cj

= costPC (J
�):

Thus to bound costPC (J�), we now bound
P

i2T �� yi in two parts, �rst boundingP
i2T ���Topt yi and then bounding

P
i2T ��\Topt yi.

Lemma 5.16 X
i2T ���Topt

yi � (H(m) + 2)optPC (I):

Learning in the Presence of Errors 71

Proof: If T �� � Topt then the lemma follows trivially. We therefore assume
T �� 6� Topt . Since jTopt j � pm and jT ��j = pm, this implies Topt � T �� 6= ;.
Pick j 2 Jopt such that

cj
jSj � T ��j

is minimized. Now

optPC (I)

jTopt � T ��j =
P

i2Jopt ci
j [i2Jopt (Si � T ��)j

�
P

i2Jopt ciP
i2Jopt jSi � T ��j

� cj
jSj � T ��j :

Thus
optPC (I) � jTopt � T ��j cj

jSj � T ��j :

Let r0 be the �rst execution of Step 2 in which jSjj > q (i.e., Sj reaches
capacity on the r0th iteration). We will analyze the behavior of G before and
after the r0th iteration separately. Let T ��

0 denote the set of elements that
were added to T �� prior to the r0 iteration. For each i 2 T ��

0 � Topt , the cost
yi must satisfy

yi � cj
jSj � T ��j

because otherwise G would have already added Sj to J
�. Since jTopt � T ��j �

jT �� � Topt j we have
X

i2T ��
0 �Topt

yi �
X

i2T ��
0 �Topt

cj
jSj � T ��j

� jTopt � T ��j cj
jSj � T ��j

� optPC (I):

For iterations r � r0, whenever an element i is added to T ��
1 = T �� � T ��

0 , an
element is deleted from Sj in Step 2, since Sj is at capacity. We charge yi to
this element as follows:

X
i2T ��

1 �Topt
yi �

X
i2T ��

1

yi

72 Learning in the Presence of Errors

=
tX

r=r0

X
i2Srr

yi

�
t�1X
r=r0

X
i2Srr

yi + cj

(because on iteration t, both Sj and St are at capacity, so ct � cj)

�
t�1X
r=r0

cr
jSr

r j
jSr

j � Sr+1
j j+ cj

(because since Sj is at capacity, jSr
j � Sr+1

j j = jSr
r j)

�
t�1X
r=r0

cj
jSr

j j
jSr

j � Sr+1
j j+ cj

(because otherwise G would have chosen Sj at time r)

= cj
t�1X
r=r0

1

jSr
j j
jSr

j � Sr+1
j j+ cj

� cjH(jSj j) + cj

= cj(H(jSj j) + 1):

Combining the two parts, we have

X
i2T ���Topt

yi =
X

i2T ��
0
�Topt

yi +
X

i2T ��
1
�Topt

yi

� optPC (I) + cj(H(m) + 1)

� (H(m) + 2)optPC (I):

(Lemma 5.16)

Lemma 5.17 X
i2T ��\Topt

yi � (H(m) + 1)optPC (I):

Learning in the Presence of Errors 73

Proof: We generalize the idea used by Chvatal [29]. For j 2 Jopt and
Sj
T
T �� 6= ;,

X
i2Sj\T ��

yi =
tX

r=1

X
i2Sj\Srr

yi

�
t�1X
r=1

cr
jSr

r j
jSr

j � Sr+1
j j+ cj

(because the average cost of elements in St is lower than in Sj, and we are
summing over at most jSjj elements)

�
sX

r=1

cj
jSr

j j
jSr

j � Sr+1
j j+ cj

(where s = minfmaxfk : Sk
j 6= ;g; tg)

= cj
sX

r=1

1

jSr
j j
jSr

j � Sr+1
j j+ cj

� cjH(jSjj) + cj

= cj(H(jSjj) + 1):

Now by the above, X
i2T ��\Topt

yi �
X

j2Jopt

X
i2Sj\T ��

yi

� X
j2Jopt

(H(m) + 1)cj

� (H(m) + 1)optPC (I):

(Lemma 5.17)

Combining Lemmas 5.16 and 5.17, we haveX
j2J�

cj =
X
i2T �

yi

=
X
i2T ��

yi

=
X

i2T ���Topt
yi +

X
i2T ��\Topt

yi

� (H(m) + 2)optPC (I) + (H(m) + 1)optPC (I)

= (2H(m) + 3)optPC (I):

74 Learning in the Presence of Errors

This completes the proof of Theorem 5.15.

We now use algorithm G as a subroutine in constructing our error-tolerant
learning algorithm for M s

n.

Theorem 5.18 Let M s
n be the class of monomials over x1; : : : ; xn containing

at most s literals. Then

Epoly
MAL(M

s
n) =

�

s log s logn
�

!
:

Proof: We construct an Occam algorithm A forM s
n that tolerates the desired

malicious error rate, and uses the algorithm G for the partial cover problem
as a subroutine.

Let 0 � � < �=8, and let c 2M s
n be the target monomial. A �rst takes mN

points from the oracle NEG�
MAL, where mN = O(1=� ln 1=� + 1=� ln jM s

nj) as
in the statement of Theorem 5.7. Let S denote the multiset of points received
by A from NEG�

MAL. For 1 � i � n, de�ne the multisets

S0
i = f~v 2 S : vi = 0g

and

S1
i = f~v 2 S : vi = 1g:

We now de�ne a pairing between monomials and partial covers as follows: the
literal xi is paired with the partial cover consisting of the single set S0

i and the
literal xi is paired with the partial cover consisting of the single set S1

i . Then
any monomial c is paired with the partial cover obtained by including exactly
those S0

i and S1
i that are paired with the literals appearing in c. Note that

the multiset neg(c) \ S contains exactly those vectors that are covered by the
corresponding partial cover.

Now with high probability, there must be some collection of the S0
i and S

1
i

that together form a 1� �=2 cover of S: namely, if (without loss of generality)
the target monomial c 2M s

n is

c = x1 � � � xrxr+1 � � �xs

Learning in the Presence of Errors 75

then with high probability the sets

S0
1; : : : ; S

0
r ; S

1
r+1; : : : ; S

1
s

form a 1 � �=2 cover of S, since for � � �=8, the probability that the target
monomial c disagrees with a fraction larger than �=2 of a sample of size mN

from NEG�
MAL can be shown to be smaller than �=2 by Fact CB2.

Thus, A will input the sets S0
1 ; : : : ; S

0
n; S

1
1; : : : ; S

1
n and the value p = 1��=2

to algorithm G. The costs for these sets input toG are de�ned below. However,
note that regardless of these costs, if hG is the monomial paired with the p-
cover output by G, then since jneg(hG)\Sj � (1��=2)mN (where neg(hG)\S
is interpreted as a multiset), e�(hG) < � with high probability by Theorem 5.7.
We now show that for � as in the statement of the theorem, we can choose
the costs input to G so as to force e+(hG) < � as well.

For any monomial c, let p(c) denote the probability that c disagrees with a
vector returned by POS �

MAL, and let costPC (c) denote the cost of the partial
cover that is paired with c. To determine the costs of the sets input to G,
A next samples POS�

MAL enough times (determined by application of Facts
CB1 and CB2) to obtain an estimate for p(xi) and p(xi) for 1 � i � n that is
accurate within a multiplicative factor of 2 | that is, if p̂(xi) is the estimate
computed by A, then p(xi)=2 � p̂(xi) � 2p(xi) with high probability for each
i. The same bounds hold for the estimate p̂(xi). Then the cost for set S

0
i input

to G by A is p̂(xi) and the cost for set S1
i is p̂(xi).

Note that for any monomial c = x1 � � � xrxr+1 � � �xs, we have with high
probability

p(c) � p(x1) + � � �+ p(xr) + p(xr+1) + � � �+ p(xs)

� 2p̂(x1) + � � �+ 2p̂(xr) + 2p̂(xr+1) + � � �+ 2p̂(xs)

= 2costPC (c):

By Theorem 5.18, the output hG of G must satisfy

costPC (hG) � (H(mN) + 2)costPC (copt) (5:3)

where copt is the monomial paired with a p-cover of minimum cost. But for
the target monomial c we have

p(c) � � (5:4)

76 Learning in the Presence of Errors

2sp(c) � costPC (c) (5:5)

where Equation 5.4 holds absolutely and Equation 5.5 holds with high proba-
bility, since c contains at most s literals.

From Equations 5.3, 5.4 and 5.5 we obtain with high probability

p(hG) � 2costPC (hG)

� 2(H(mN) + 2)costPC (copt)

� 2(H(mN) + 2)costPC (c)

� 4sp(c)(H(mN) + 2)

� 4s�(H(mN) + 2):

Thus, if we set

� =
�

4s(H(mN) + 2)
=
(

�

s logmN
)

then e+(hG) < � with high probability by Theorem 5.7. We can remove the
dependence of � on � by method used in the proof of Theorem 5.12, thus
obtaining an error rate of

�

s log s logn
�

!

completing the proof.

As an example, if s =
p
n then Theorem 5.18 gives

Epoly
MAL(M

p
n

n) =
(
�p

n log n
�

)

as opposed to the the bound of
(�=n ln �=n) of Theorem 5.13.

Littlestone [73] shows that the Vapnik-Chervonenkis dimension of M s
n is

�(s ln(1 + n=s)). Since the algorithm of Valiant [93] can be modi�ed to have
optimal sample complexity forM s

n, by applying Theorem 5.12 to this modi�ed
algorithm we obtain

Epoly
MAL(M

s
n) =

� ln(s

�
ln(1 + n

s
))

s ln(1 + n
s
)

!
:

Learning in the Presence of Errors 77

This lower bound on Epoly
MAL(M

s
n) is incomparable to that of Theorem 5.18. We

may decide at run time which algorithm will tolerate the larger error rate, thus
giving

Epoly
MAL(M

s
n) =

min

� ln(s

�
ln(1 + n

s
))

s ln(1 + n
s
)

;
�

s log s logn
�

!!
:

By using transformation techniques similar to those described in Section 4.3
it can be shown that the algorithm of Theorem 5.18 (as well as that obtained
from Theorem 5.12) can be used to obtain an improvement in the error rate
over the negative-only algorithm of Valiant [94] for the class kDNFn;s of kDNF
formulae with at most s terms. Brie
y, the appropriate transformation regards
a kDNF formulae as a 1DNF formulae in a space of �(nk) variables, one
variable for each of the possible terms (monomials) of length at most k.

5.5 Limits on e�cient learning with errors

In Section 5.3, we saw that there was an absolute bound of �=(1 + �) on the
achievable malicious error rate for most interesting representation classes. It
was also argued there that, at least for our �nite representation classes over
f0; 1gn, this bound could always be achieved by a super-polynomial time ex-
haustive search learning algorithm. Then in Section 5.4 we gave polynomial-
time learning algorithms that in some cases achieved the optimal error rate
O(�), but in other cases fell short. These observations raise the natural ques-
tion of whether for some classes it is possible to prove bounds stronger than
�=(1 + �) on the malicious error rate for learning algorithms constrained to run
in polynomial time. In particular, for parameterized representation classes, un-
der what conditions must the error rate tolerated by a polynomial-time learn-
ing algorithm decrease as the number of variables n increases? If we informally
regard the problem of learning with malicious errors as an optimization prob-
lem where the objective is to maximize the achievable error rate in polynomial
time, and �=(1 + �) is the optimal value, then we might expect such hardness
results to take the form of hardness results for the approximation of NP -hard
optimization problems. This is the approach we pursue in this section.

By reducing standard combinatorial optimization problems to learning
problems, we state theorems indicating that e�ciently learning with an error

78 Learning in the Presence of Errors

rate approaching �(�) is eventually as hard as approximations for NP -hard
problems.

In Section 5.4 we gave an error-tolerant algorithm for learning monomials
by monomials that was based on an approximation algorithm for a generaliza-
tion of set cover. Our next theorem gives a reduction in the opposite direction:
an algorithm learning monomials by monomials and tolerating a malicious er-
ror rate approaching �(�) can be used to obtain an improved approximation
algorithm for set cover.

Theorem 5.19 Let Mn be the class of monomials over x1; : : : ; xn. Suppose
there is a polynomial-time learning algorithm A for Mn using hypothesis space
Mn such that

Epoly
MAL(Mn; A) =

�

r(n)
:

Then there is a polynomial-time algorithm for the weighted set cover problem
that outputs (with high probability) a cover whose cost is at most 2r(n) times
the optimal cost, where n is the number of sets.

Proof: We describe an approximation algorithm A0 for set cover that uses
the learning algorithm A as a subroutine. Given an instance I of set cover with
sets S1; : : : ; Sn and costs c1; : : : ; cn, let Jopt � f1; : : : ; ng be an optimal cover
of T = [nj=1Sj = f1; : : : ;mg, where we identify a cover fSj1; : : : ; Sjsg with its
index set fj1; : : : ; jsg. Let costSC (J) denote the set cover cost of any cover J
of T , and let optSC (I) = costSC (Jopt). As in the proof of Theorem 5.18, we
pair a cover fj1; : : : ; jsg of T with the monomial xj1 � � �xjs over the variables
x1; : : : ; xn. Let copt be the monomial paired with the optimal cover Jopt .

The goal of A0 is to simulate algorithm A with the intention that copt is
the target monomial, and use the monomial hA output by A to obtain the
desired cover of T . The examples given to A on calls to NEG�

MAL during this
simulation will be constructed so as to guarantee that the collection of sets
paired with hA is actually a cover of T , while the examples given to A on calls
to POS �

MAL guarantee that this cover has a cost within a multiplicative factor
of 2r(n) of the optimal cost.

We �rst describe the examples A0 generates for A on calls to NEG�
MAL.

For each i 2 T , let ~ui 2 f0; 1gn be the vector whose jth bit is 0 if and only

Learning in the Presence of Errors 79

if i 2 Sj, and let the multiset U be U = [i2Tf~uig. Then fj1; : : : ; jsg is a
cover of T if and only if U � neg(xj1 � � � xjs). In particular, we must have
U � neg(copt). Thus, de�ne the target distribution D� for copt to be uniform
over U . Note that this distribution can be generated in polynomial time by
A0. On calls of A to NEG�

MAL, A
0 will simply draw from D�; thus if we regard

copt as the target monomial, there are no errors in the negative examples. A0

will simulate A with accuracy parameter � � 1=jU j, thus forcing A to output
an hypothesis monomial hA such that U � neg(hA); by the above argument,
this implies that the collection of sets paired with the monomial hA is a cover
of T . Note that jU j (and therefore 1=�) may be super-polynomial in n, but it
is polynomial in the size of the instance I.

We now describe the examples A0 generates for A on calls to POS�
MAL. In-

stead of de�ning the target distribution D+ for copt , we de�ne an induced dis-

tribution I+ from which the oracle POS �
MAL will draw. Thus, I+ will describe

the joint behavior of the underlying distribution D+ on copt and an adversary
generating the malicious errors. For each 1 � j � n, let ~vj 2 f0; 1gn be the
vector whose jth bit is 0, and all other bits are 1. Let I+(~vj) = cj for each
j, where cj is the cost of the set Sj , and we assume without loss of generality
that

Pn
j=1 cj � �=r(n) (if not, we can normalize the weights without chang-

ing the relative costs of covers). We complete the de�nition of I+ by letting
I+((1; : : : ; 1)) = 1�Pn

j=1 cj. Then the probability that a monomial xi1 � � � xis
disagrees with a point drawn from POS �

MAL is exactly ci1+ � � �+cis, the cost of
the corresponding cover. Thus since optSC (I) �

Pn
j=1 cj � �=r(n) = �, I+ is

an induced distribution for copt with malicious error rate �. Note that I+ can
be generated by A0 in polynomial time. When A requests an example from
POS �

MAL, A
0 will simply draw from I+.

A0 will run algorithm Amany times with the oracles POS �
MAL and NEG

�
MAL

for copt described above, each time with a progressively smaller value for the
accuracy parameter, starting with � = 1=jU j.

Now if optSC (I) << �=r(n), then algorithm A may output a monomial
hA whose corresponding cover has a cost much larger than 4r(n) � optSC (I),
since hA is only guaranteed to satisfy e+(hA) < �. We solve this problem
by repeated scaling: A0 �rst runs algorithm A with the oracles POS �

MAL and
NEG�

MAL as they have been described. After each run, A
0 divides the accuracy

parameter � by 2, so that on some run �=2r(n) � optSC (I) � �=r(n). On this

80 Learning in the Presence of Errors

run, we may regard I+ as an induced distribution on the positive examples
of copt , with malicious error rate at most � = �=r(n) � 2optSC (I). Then
the error e+(hA) on the underlying distribution D+ over pos(copt) is at most
� � 2r(n)optSC (I). The desired cover is thus the one paired with the monomial
hA. Note that without knowing copt , we have no way of knowing what the
underlying target distribution D+ is, but it is enough to know that I+ is a
\close" distribution. The only problem with the simulation described occurs
when optSC (I) <<

Pn
j=1 cj, in which case it may take a super-polynomial

number of runs of A to guarantee �=2r(n) � optSC (I) � �=r(n). We solve
this by preprocessing: before running the described simulation, A0 runs the
greedy approximation algorithm analyzed by Chvatal [29] on the set cover
instance I, and removes any set whose cost is larger than the entire cost of
the greedy cover. Then for the new (smaller) instance I 0, every cost is within
a multiplicative factor of logm of every other cost.

Thus, if r(n) << log n, then Theorem 5.19 says that a polynomial time
algorithm A for Mn (using hypothesis space Mn) tolerating E

poly
MAL(Mn; A) �

�=r(n) would imply a signi�cant breakthrough in approximation algorithms
for set cover, since the best algorithm for this problem remains the greedy
method analyzed by Chvatal and others [29, 56, 75, 77]. Note that the proof
of Theorem 5.19 in fact shows the result holds for the class of monotone mono-
mials.

Theorem 5.18 took an approximation algorithm for an optimization prob-
lem (the partial cover problem), and used it as a subroutine in obtaining an
error-tolerant learning algorithm for M s

n. Theorem 5.19 proved that when
learning algorithms are restricted to hypothesis class M , any learning algo-
rithm for M yields an algorithm for set cover with only a constant factor
blowup in the approximation. Thus, we see that there are strong ties between
learning with errors and approximating combinatorial optimization problems.
Our goal now is to generalize and strengthen these ideas. We show that for
any representation class C, the problem of learning C with errors is equivalent
to a combinatorial optimization problem with only a constant factor blowup
in the approximation in each direction of the reduction.

For domain X, de�ne a balanced sample of X to be a sample

S =< x1; 1 >; : : : ; < xm; 1 >;< y1; 0 >; : : : ; < ym; 0 >

where xi; yi 2 X; 1 � i � m. If C is a representation class over X and c 2 C,

Learning in the Presence of Errors 81

de�ne

costMD(c; S) = jf< xi; 1 >2 S : xi 2 neg(c)gj
+jf< yi; 0 >2 S : yi 2 pos(c)gj+ 1:

Thus, costMD(c; S) is simply one more than the number of disagreements be-
tween the balanced sample S and the representation c. We now de�ne the
following optimization problem for C:

The Minimize Disagreements Problem for C (denoted MD(C)):

Input: Balanced sample S of X.

Output: Representation c 2 C such that costMD(c; S) is minimized.

Theorem 5.20 Let C be a representation class over X. If there exists a
polynomial-time algorithm A0 for MD(C) that outputs hA0 2 C such that
costMD(hA0; S) is at most r times the optimal cost, then C is learnable by
C by an algorithm A that runs in time polynomial in 1=�; 1=� and ln jCj, and
satis�es

Epoly
MAL(C;A) �

�

8r
:

Conversely, if algorithm A learns C by C in polynomial time with error rate
Epoly
MAL(C;A) � �=r, then there exists a polynomial-time algorithm A0 for MD(C)

that outputs (with high probability) hA0 2 C such that costMD(hA0; S) is at most
2r times the optimal cost.

Proof: Let S be a balanced sample of X, and let A0 be an approximation
algorithm for MD(C) such that the output hA0 satis�es costMD(hA0 ; S) �
r � optMD(S), where

optMD = min
h2C

(costMD(h; S)):

Let � = �=8r. To learn C by C in polynomial time with error rate �, we
take m random examples x1; : : : ; xm from the oracle POS �

MAL and m random
examples y1; : : : ; ym from the oracle NEG�

MAL, where m is as in the statement
of Theorem 5.7. Let S be the balanced sample consisting of the xi and yj.
Now with probability at least 1� �, the target representation c 2 C disagrees
with fewer than 4�m elements of S by Fact CB2, so optMD(S) � 4�m with

82 Learning in the Presence of Errors

high probability. Thus, algorithm A0, when given S as input, will satisfy
costMD(hA0; S) � r(4�m) = (�=2)m. This implies that hA0 can disagree with
at most a fraction �=2 of the xi and at most a fraction �=2 of the yi. By
Theorem 5.7, hA0 is an �-good hypothesis with high probability.

For the other direction, we use an algorithm A for learning C by C with
� = �=r to obtain an approximation algorithm for MD(C) as follows: given
the balanced sample S, let hopt 2 C be such that costMD(hopt ; S) = optMD(S)
and assume without loss of generality that m=r � optMD(S) (otherwise any
hypothesis has cost at most 2r times the optimal). De�ne

c0 = maxfjfxi 2 S : xi 2 neg(hopt)gj; jfyi 2 S : yi 2 pos(hopt)gjg:
Note that optMD(S) � c0 � optMD(S)=2. Now let I+ be the uniform distri-
bution over the xi, and let I� be the uniform distribution over the yi. Then
I+ and I� can be regarded as induced distributions for hopt with error rate
�0 = c0=m. I+ is induced by the joint behavior of the uniform distribution D+

over fxi 2 S : xi 2 pos(hopt)g, and an adversary that draws a point uniformly
from fxi 2 S : xi 2 neg (hopt)g; I� can be decomposed over the yi in a similar
fashion.

Algorithm A0 runs algorithm A many times, starting with accuracy param-
eter � = 1, and drawing from I+ on each call to POS �

MAL and from I� on each
call to NEG�

MAL. Note that if hA is an �-good hypothesis with respect to D+

and D�, then we have costMD(hA; S) � 2�m + optMD(S). After each run, A0

divides � by 2. On some run of A, �=r � c0=2m, and for this run we have
costMD(hA; S) � (r + 1)optMD(S) � 2roptMD(S), as desired.

Note that this equivalence as it is stated is representation-based (see Chap-
ters 3 and 7). With more technical de�nitions for the problem MD(C ;H), we
can in fact give a straightforward generalization of Theorem 5.20 for the prob-
lem of learning C byH in the presence of malicious errors, giving an equivalent
optimization problem. In addition to simplifying the analysis of learning with
errors in the distribution-free model | we only need to look at the equivalent
optimization problem | these results allow us to weaken our restrictions on
the adversary generating the errors. In particular, since there is no guarantee
in the Minimize Disagreements problem on how the errors in the input sample
are generated, it can be shown that the adversary gains no power by being
allowed to see all coin
ips of the learning algorithm, and all examples to be
received by the learning algorithm before he generates the errors. This allows

Learning in the Presence of Errors 83

our model to incorporate faults such as error bursts, where all examples are in
error for a short amount of time.

Figures 5.1 and 5.2 summarize some of the results in this chapter.

84 Learning in the Presence of Errors

EMAL;+(C) ECN ;+(C)
and EMAL(C) and ECN (C)

EMAL;�(C) ECN ;�(C)
Upper bound
on the optimal �=(t(C)� 1) �=(1 + �) �=(1 + �); �=(t(C)� 1) 1=2

error rate [12]

Figure 5.1: Summary of general upper bounds on the optimal error rates for
the malicious and noise models. We denote by t(C) the largest value of t such
that C is (positive or negative) t-splittable.

Epoly
MAL;+(C)

Epoly
MAL;�(C)
and Epoly

MAL(C) Epoly
CN (C)

E
poly
CN ;+(C)

Class C Epoly
CN ;�(C)

Upper bound O(�)
Mn �(�=n) �(1)

Lower bound [94]
(ln(n=�)�=n) [12]
Upper bound O(�)

M s
n �(�=n)
((�=s) ln((s=�) ln(1 + n=s))=ln(1 + n=s)) �(1)

Lower bound [94]
((�=s)(1=log((s lnn)=�))) [12]
Upper bound

SFn �(�=n) �(�) �(1)
Lower bound

Figure 5.2: Summary of upper and lower bounds on the optimal polynomial
time error rate (malicious and noise models) for the classes of monomials Mn,
monomials of length s M s

n, and symmetric functions SFn.

6

Lower Bounds on Sample Complexity

6.1 Introduction

In this chapter we consider sample complexity as a resource in its own right.
We are interested in the following question: regardless of the amount of compu-
tation time required, what is the least number of examples required to achieve
learning in the distribution-free model? Thus, we consider sample complexity
from an information-theoretic viewpoint.

The study of sample complexity is important for several reasons. Even
though our emphasis throughout this book is on the computational expense of
learning, lower bounds on the required sample size immediately translate to
lower bounds on computation time. Thus determining the sample complexity
of learning a representation class is the �rst step towards determining if the
class can be learned e�ciently. This issue is particularly pressing for classes
over in�nite domains such as the reals, where it is known that any class with
in�nite Vapnik-Chervonenkis dimension cannot be learned in any amount of
time for reasons of required sample size [25].

A second and equally important motivation is the fact that in many real
applications, examples are either in limited supply or expensive to obtain, and
thus we must seek algorithms that are as example-e�cient as possible (perhaps
even at the expense of added computation time). A typical application where
examples are available but expensive to obtain is DNA sequencing; an even
more constrained setting is that of archeological evidence, where the number

86 Lower Bounds on Sample Complexity

of examples is essentially �xed. While at �rst glance it may seem that under
such circumstances an asymptotic lower bound on distribution-free learning
involving the parameters � and � is vacuous, it becomes meaningful if we
instead use the lower bound to determine what accuracy and con�dence we
can expect to achieve with the given sample size. Recently Goldman et al. have
been similarly motivated to study the sample complexity of weak learning [43].

We begin by presenting a lower bound on the number of examples required
by any algorithm that learns the class of monomials from negative examples
only. This lower bound proves that the number of negative examples required
to learn monomials is super-polynomial in the number of attributes, regardless
of the amount of time taken by the learning algorithm. This is in contrast to
the e�cient positive-only learning algorithm due to Valiant [93] which was
discussed in detail in Section 2.3, and which requires a number of positive
examples that is only linear in the number of attributes. We are able to apply
this result to show that certain representation classes require both positive
and negative examples for polynomial-time learnability.

We then present a general lower bound for learning any representation class
C. This general lower bound is based on vcd(C) and improves the previous
best general lower bound of Blumer et al. [25]. A number of applications to
speci�c representation classes are presented. These applications prove that
almost all of the existing learning algorithms in the distribution-free model
have optimal or near-optimal sample complexity.

6.2 Lower bounds on the number of examples

needed for positive-only and negative-only

learning

So far we have discussed a number of polynomial-time learning algorithms
that require only positive examples or only negative examples. Among other
issues, this raises the question of whether every polynomially learnable class
is polynomially learnable either from positive examples only or from negative
examples only.

In this section we prove a super-polynomial lower bound on the number of

Lower Bounds on Sample Complexity 87

negative examples required for learning monomials. The proof can actually be
tightened to give a strictly exponential lower bound, and the proof technique
has been generalized by Gereb-Graus [40]. Our bound is information-theoretic
in the sense that it holds regardless of the computational complexity and hy-
pothesis class of the negative-only learning algorithm. By duality, we obtain
lower bounds on the number of positive examples needed for learning disjunc-
tions, and it follows from our proof that the same bound holds for learning from
negative examples any class properly containing monomials (e.g., kCNF) or
for learning from positive examples any class properly containing disjunctions
(e.g., kDNF). In fact, these results hold even for the monotone restrictions of
these classes.

We apply our lower bound to answer negatively the question raised above,
showing that for polynomial-time learning, the class kCNF _ kDNF (shown
to be polynomially learnable using both positive and negative examples in
Chapter 4) requires both positive and negative examples. This is another
demonstration of the power of using both types of examples, along the lines
of the results on learning with errors in Chapter 5.

Theorem 6.1 Let A be a negative-only learning algorithm for the class of
monotone monomials over the variables x1; : : : ; xn, and �x �; � � 1=n. Let S�A
denote the number of negative examples required by A. Then for any constant
k > 0, S�A (n) =
(nk). This holds even when the target distribution D� is
uniform over the negative examples.

Proof: Fix � = � � 1=n. Assume for contradiction that A is a negative-
only learning algorithm for monotone monomials such that for � and � �xed,
S�A (n) = nk for some constant k. We call a monomial monotone dense if it is
monotone and contains at least n=2 of the variables x1; : : : ; xn. Let T be an
ordered sequence of (not necessarily distinct) vectors from f0; 1gn such that
jT j = nk, and let 	 be the set of all such sequences. If c is a monotone
dense monomial, then de�ne ~uc 2 f0; 1gn to be the unique vector such that
~uc 2 pos(c) and ~uc has the fewest bits set to 1. We say that T 2 	 is a legal
negative sample for c if T contains no vector ~v such that ~v 2 pos(c).

We �rst de�ne the hard target distributions for a monotone dense target
monomial c. Let D+(~uc) = 1 and let D� be uniform over neg (c). Note that
~uc 62 pos(h) implies e+(h) = 1, so any �-good h must satisfy ~uc 2 pos(h). For

88 Lower Bounds on Sample Complexity

T 2 	 and c a monotone dense monomial, de�ne the predicate P (T; c) to be
1 if and only if T is a legal negative sample for c and when T is received by A
as a sequence of negative examples for c from NEG, A outputs an hypothesis
hA such that ~uc 2 pos(hA). Note that this de�nition assumes that A is deter-
ministic. To allow probabilistic algorithms, we simply change the de�nition
to P (T; c) = 1 if and only if T is a legal negative sample for c, and when
T is given to A, A outputs an hypothesis hA such that ~uc 2 pos(hA) with
probability at least 1=2, where the probability is taken over the coin tosses of
A.

Now suppose we draw ~v uniformly at random from f0; 1gn. Then for any
monotone dense monomial c we have

Pr~v2f0;1gn[~v 2 pos(c)] � 2n=2
1

2n
=

1

2n=2

since at most 2n=2 vectors can satisfy a monotone dense monomial. Thus, if
we draw nk points uniformly at random from f0; 1gn, the probability that we
draw some point satisfying c is at most nk=2n=2 � 1=2 (for n large enough). By
this analysis, we conclude that the number of T 2 	 that are legal negative for
c must be at least j	j=2. Since D� is uniform and A is a learning algorithm,
at least (j	j=2)(1 � �) = (j	j=2)(1 � �) of these must satisfy P (T; c) = 1.
Let M(n) be the number of montone dense monomials over n variables. Then
summing over all monotone dense monomials, we obtain

j	j
2
(1� �)M(n) � X

T2	
N(T)

where N(T) is de�ned to be the number of monotone dense monomials sat-
isfying P (T; c) = 1. From this inequality, and the fact that N(T) is always
at most M(n), we conclude that at least 1=8 of the T 2 	 must satisfy
N(T) � 1=8(1 � �)M(n). Since D� is uniform, and since at least a fraction
1 � nk=2n=2 of the T 2 	 are legal negative for the target monomial c, A has
probability at least 1=16 of receiving a T with such a large N(T) for n large
enough. But then the hypothesis hA output by A has at least 1=8(1� �)M(n)
positive examples by de�nition of the predicate P . Since the target monomial
c has at most 2n=2 positive examples,

e�(hA) �
1
8(1 � �)M(n) � 2n=2

2n

Lower Bounds on Sample Complexity 89

and this error must be less than �. But this cannot be true for � a small enough
constant and n large enough. Thus, A cannot achieve arbitrarily small error
on monotone dense monomials, and the theorem follows.

An immediate consequence of Theorem 6.1 is that monomials are not poly-
nomially learnable from negative examples (regardless of the hypothesis class).
This is in contrast to the fact that monomials are polynomially learnable (by
monomials) from positive examples [93]. It also follows that any class that
contains the class of monotone monomials (e.g., kCNF) is not polynomially
learnable from negative examples.

By duality we have the following lower bound on the number of positive
examples needed for learning monotone disjunctions:

Corollary 6.2 Let A be a positive-only learning algorithm for the class of
monotone disjunctions (that is, monotone 1DNF) over the variables x1; : : : ; xn,
and �x �; � � 1=n. Let S+

A denote the number of positive examples required by
A. Then for any constant k > 0, S+

A (n) =
(nk). This holds even when the
target distribution D+ is uniform over the positive examples.

Further, Theorem 6.1 implies that the polynomially learnable representa-
tion classes kCNF _ kDNF and kCNF ^ kDNF of Corollaries 4.3 and 4.4
require both positive and negative examples for polynomial learnability:

Corollary 6.3 For any �xed k, any polynomial-time learning algorithm for
the representation class kCNF _ kDNF requires both positive and negative
examples.

Corollary 6.4 For any �xed k, any polynomial-time learning algorithm for
the representation class kCNF ^ kDNF requires both positive and negative
examples.

By similar reasoning we obtain the same result for decision lists, for which
there is a polynomial-time learning algorithm due to Rivest [84]:

Corollary 6.5 For any �xed k, any polynomial-time learning algorithm for
the representation class kDL requires both positive and negative examples.

90 Lower Bounds on Sample Complexity

We also note that it is possible to obtain results showing that monomials
are not polynomially learnable from negative examples that are weaker than
Theorem 6.1 but have simpler proofs. For instance, since 2-term DNF is
not learnable by 2-term DNF unless NP = RP , it follows from Theorem 4.1
that monomials are not polynomially learnable by monomials from negative
examples unless NP = RP (these results do not provide any lower bound on
sample complexity). However, Theorem 6.1 gives a lower bound on the sample
size for negative-only algorithms that holds regardless of the hypothesis class,
and is independent of any complexity-theoretic assumption.

6.3 A general lower bound on the number of

examples needed for learning

In this section we give a general theorem providing a lower bound on the
number of examples needed for learning any representation class. This lower
bound is based on the Vapnik-Chervonkis dimension of the representation
class, and improves the lower bound �rst given by Blumer et al. [25]. It is
again information-theoretic (i.e., independent of computational complexity or
hypothesis class), and is the best general lower bound possible, since in many
important cases it is tight.

We begin by proving the main result of this section, a lower bound of

(vcd(C)=�) on the number of examples needed; this bound essentially im-
proves separate bounds of 1=� and vcd(C) given by Blumer et al. [25] to a
single bound proportional to the product vcd(C)=�. We then combine this
result with the lower bound of Blumer et al. to obtain our �nal lower bound
in Theorem 6.10.

Theorem 6.6 Let C be a representation class over X such that vcd(C) � 2.
Fix 0 < � � 1=32, 0 < � � 1=1000. Then any learning algorithm A for C must
use sample size

SA(�; �) � vcd(C)� 2

128�
=

vcd(C)

�

!
:

Lower Bounds on Sample Complexity 91

Proof: Let the set X0 = fx+; x�; x1; : : : ; xdg � X be shattered by C, where
d = vcd(C) � 2. In the target distributions we construct, the points in
X0 will be the only points with nonzero probability; therefore we assume
without loss of generality that X = X0 and �(C) = 2X0 (recall that � maps
each representation to the concept it represents). We will further restrict our
attention to representations c 2 C such that x+ 2 pos(c) and x� 2 neg(c); we
let C0 denote the set of all such representations in C. Note that fx1; : : : ; xdg
is shattered by C0. For a target representation c 2 C0, suppose pos(c) =
fx+; xi1; : : : ; xilg and neg(c) = fx�; xil+1

; : : : ; xidg, where xij 2 fx1; : : : ; xdg
for 1 � j � d. We then de�ne the following target distributions for c:

D+
c (x+) = 1 � 32�

D+
c (xij) =

32�

l
; 1 � j � l

and

D�
c (x�) = 1� 32�

D�
c (xij) =

32�

d� l ; l+ 1 � j � d:

If pos(c) = fx+g (respectively, if neg(c) = fx�g), then we de�ne D+
c (x+) = 1

(respectively, D�
c (x�) = 1).

We assume without loss of generality that randomized learning algorithms
have a separate input tape for receiving a random bit string r. Let A be
a learning algorithm for C0 using sample size SA(�; �) and requiring RA(�; �)
random bits. We set m = SA(�; �) and k = RA(�; �).

For a sample S, let C0(S) denote the set of representations in C0 that are
consistent with S. Fix � � 1=32 and � � 1=1000. Then once the sample
S received by A and the random string r are �xed, the hypothesis hA is
determined. Let A(S; r) denote the hypothesis hA output byA on inputs S and
r. For c 2 C0, we de�ne the variable eA(S; r; c) by eA(S; r; c) = e+c (A(S; r)) +
e�c (A(S; r)) if c 2 C0(S), and eA(S; r; c) = 8� if c 62 C0(S). Similarly, we de�ne
wA(S; r; c) to be the number of points in fx1; : : : ; xdg on which A(S; r) and c
disagree if c 2 C0(S), and wA(S; r; c) = d=4 if c 62 C0(S).

Let S be a sample consisting of m examples of some c 2 C0. If S contains
fewer than d=2 distinct points from fx1; : : : ; xdg, we call S a bad sample. Let

92 Lower Bounds on Sample Complexity

Bm denote the set of all bad samples of size m, and let Bm(c) denote the set
of all samples S such that S 2 Bm and c 2 C0(S). We will now show that
there is some target representation c0 2 C0 such that if A receives a sample
S 2 Bm(c0), then with probability at least 1=11, the hypothesis hA = A(S; r)
is �-bad with respect to the target distributions D+

c0
and D�

c0
.

Lemma 6.7 For some c0 2 C0,

PrS2Bm(c0);r2f0;1gk[e
+
c (A(S; r)) + e�c (A(S; r)) � 2�] >

1

11
:

Proof: Let r be a �xed random input string of length k for A, and �x
S 2 Bm. Let l be the number of distinct elements of fx1; : : : ; xdg appearing in
S. Note that l � d=2 since S 2 Bm. Thus there are exactly 2d�l representations
in C0(S), since fx1; : : : ; xdg is shattered by C0. Let x 2 fx1; : : : ; xdg be one of
the d � l points that does not appear in S. Then half of the representations
in C0(S) will agree with c0 on x, and half will disagree with c0 on x, since S
is shattered by c0. Thus, for �xed r and �xed S 2 Bm, we have shown

Ec2C0(S)[wA(S; r; c)] � d� l
2
� d

4
:

The �rst inequality comes from the fact that the hypothesis hA = A(S; r) may
also be incorrect on points that did appear in S, and the second inequality
from the fact that l � d=2. Since wA(S; r; c) = d=4 for c 62 C0(S) by de�nition
of wA(S; r; c), we have in fact shown, again for �xed r and �xed S 2 Bm,

Ec2C0
[wA(S; r; c)] � d

4
: (6:1)

Since we have restricted our attention to the class C0, we may without loss
of generality assume that A is always correct on the points x+ and x�, so for
c 2 C0(S) we have

eA(S; r; c) � 32�

d
wA(S; r; c) (6:2)

since each point in fx1; : : : ; xdg has probability at least 32�=d in either D+
c or

D�
c . Also, for c 62 C0(S) we have

eA(S; r; c) = 8�

Lower Bounds on Sample Complexity 93

=
32�

d

d

4

=
32�

d
wA(S; r; c)

since wA(S; r; c) = d=4 for c 62 C0(S). Thus Equation 6.2 in fact holds for any
c 2 C0. Together with Equation 6.1 this implies

Ec2C0
[eA(S; r; c)] = Ec2C0

�
32�

d
wA(S; r; c)

�

=
32�

d
Ec2C0

[wA(S; r; c)]

� 32�

d

d

4
= 8�: (6.3)

Thus, the experiment we are considering can be summarized as follows: �x
a bad sample S 2 Bm, and �x the random string r. This determines hA =
A(S; r). Then Equation 6.3 says that if we now draw c from C0 at random,
then the expected value of eA(S; r; c) is at least 8�. Since Equation 6.3 holds for
any �xed bad sample S and random string r, it must still hold if we choose S
at random from among all bad samples, and choose r at random from f0; 1gk,
giving

ES2Bm;r2f0;1gk;c2C0
[eA(S; r; c)] � 8�:

We now wish to change the order of this experiment. We �rst choose c 2 C0

at random, then choose a sample S at random from among all bad samples.
We then choose the random string r, giving

Ec2C0;S2Bm;r2f0;1gk[eA(S; r; c)] � 8�:

This is justi�ed by the fact that the random choices of c; S and r are indepen-
dent. Thus, there must be some �xed c0 2 C0 satisfying

ES2Bm;r2f0;1gk[eA(S; r; c0)] � 8�: (6:4)

From Equation 6.4 and the fact that

ES2Bm�Bm(c0);r2f0;1gk[eA(S; r; c0)] = 8�

by de�nition of eA(S; r; c0) for S 2 Bm �Bm(c0), it follows that

ES2Bm(c0);r2f0;1gk[eA(S; r; c0)] � 8�: (6:5)

94 Lower Bounds on Sample Complexity

On the other hand, we have that for S 2 Bm(c0)

eA(S; r; c0) � 64�: (6:6)

From Equations 6.5 and 6.6 we can show

PrS2Bm(c0);r2f0;1gk[eA(S; r; c0) � 2�] >
1

11
: (6:7)

To see this, let be a random variable whose expectation E[] according to
some distribution is at least 8�, but whose absolute value is bounded above
by 64� (as is the case with the random variable eA(S; r; c0)). Then if p is the
probability that is larger than 2�, we have

8� � E[] < p64� + (1� p)2�:
Solving for p, we obtain p > 3=31 > 1=11 as claimed.

From Equation 6.7 and the de�nition of eA(S; r; c0) for some c0 2 C0(S),
we obtain

PrS2Bm(c0);r2f0;1gk[e
+
c (A(S; r)) + e�c (A(S; r)) � 2�] >

1

11
:

(Lemma 6.7)

Lemma 6.8 For c 2 C0, let S be a sample of size m = SA(�; �) drawn accord-
ing to D+

c and D�
c . If m � d=128�, then the probability that S 2 Bm(c) is at

least 11�.

Proof: On each draw from either D+
c or D�

c , the probability that a point
in fx1; : : : ; xdg is received is at most 32�. Thus the probability that d=2 such
points are drawn in m trails is bounded above by GE (32�;m; d=2). Setting
m = d=128�, we have by Fact CB2

GE

32�;

d

128�
;
d

2

!

= GE

32�;

d

128�
; 2

d

128�
32�

!

� e�d=12

� e�1=12:

Lower Bounds on Sample Complexity 95

But e�1=12 < 1 � 11� for � < 1=1000. Thus the probability that S 2 Bm(c)
must be at least 11�, as claimed. (Lemma 6.8)

Thus, by Lemma 6.7 we know that there exists some hard representation c0
such that if the sample S received by A is a bad sample, then with probability
at least 1=11, either e+c (hA) � � or e�c (hA) � �. But by Lemma 6.8, the
probability that S is a bad sample is at least 11�, so the probability that A
fails to learn c0 is at least (1=11)11� = �, completing the proof.

No attempt has been made to optimize the constants in Theorem 6.6. A
slightly modi�ed version of the proof of Theorem 6.6 can be used to show that
when vcd(C) � 2 and the sample size is O(vcd(C)=�), then for any learning
algorithm there is a target representation and target distributions such that
the expected error of the hypothesis produced by the learning algorithm is at
least � [52]. Theorem 6.6 holds for any �xed � � 1=32 and � � 1=1000.

We emphasize that the lower bound of Theorem 6.6 holds regardless of
the computational complexity of the learning algorithm | that is, even algo-
rithms allowed in�nite computational resources must use
(vcd(C)=�) exam-
ples. Theorem 6.6 also makes no assumptions on the hypothesis class of the
learning algorithm.

We now state the previous best lower bound on the sample size, and com-
bine it with Theorem 6.6 to obtain the general lower bound. We say that the
representation class C is trivial if C consists of one representation, or two dis-
joint representations whose union (of positive examples) is the entire domain
X; otherwise C is nontrivial.

Theorem 6.9 (Blumer et al. [25]) Let C be a nontrivial representation class.
Then any learning algorithm A for C must use sample size

SA(�; �) =

�
1

�
ln
1

�
+ vcd(C)

�
:

Thus our Theorem 6.6 improves separate lower bounds proportional to
vcd(C) and 1=� to a single lower bound that is proportional to their product.
Using Theorems 6.6 and 6.9, we obtain our �nal lower bound:

96 Lower Bounds on Sample Complexity

Theorem 6.10 Let C be a nontrivial representation class. Then any learning
algorithm A for C must use sample size

SA(�; �) =

1

�
ln
1

�
+
vcd(C)

�

!
:

6.3.1 Applications of the general lower bound

In this section, we apply Theorem 6.10 to obtain lower bounds on the num-
ber of examples needed for learning for many speci�c representation classes.
Note that from a non-computational viewpoint, these bounds are tight for any
�nite representation class. This is because there is always a (possibly super-
polynomial time) algorithm that �nds an hypothesis consistent with a given
input sample that is thus a learning algorithm with optimal sample size by
Theorem 3.1. However, we will also see that these bounds prove that many of
the existing polynomial-time learning algorithms have optimal or near-optimal
sample size.

Before discussing lower bounds for speci�c representation classes, we point
out the following general principle: if ln jCj = O(vcd(C)) and there is a
polynomial-time algorithm outputting a consistent hypothesis in C, then C
is polynomially learnable (by the results of Blumer et al. [25]) with provably
optimal sample complexity to within a constant factor (by Theorem 6.10).

Corollary 6.11 Let Mn be the class of monomials over x1; : : : ; xn, and let A
be a learning algorithm for Mn. Then

SA(�; �) =

�
1

�
ln
1

�
+
n

�

�
:

Proof of this corollary follows from the Vapnik-Chervonenkis dimension of
monomials and Theorem 6.10. Corollary 6.11 proves that the polynomial-time
algorithm of Valiant [93] has optimal sample complexity.

Corollary 6.12 For �xed k, let kDNFn be the class of kDNF formulae over
x1; : : : ; xn, and let A be a learning algorithm for kDNFn. Then

SA(�; �) =

1

�
ln
1

�
+
nk

�

!
:

Lower Bounds on Sample Complexity 97

By duality we obtain the same bound for kCNF. Proof of Corollary 6.12
follows from Theorem 6.10 and the Vapnik-Chervonenkis dimension. This
also shows that the polynomial-time algorithms for kDNF and kCNF of
Valiant [93] have optimal sample complexity.

Corollary 6.13 Let SFn be the class of symmetric functions over x1; : : : ; xn,
and let A be a learning algorithm for SFn. Then

SA(�; �) =

�
1

�
ln
1

�
+
n

�

�
:

Proof follows from Theorem 6.10 and the Vapnik-Chervonenkis dimension.
This also shows that the error-tolerant algorithm of Theorem 5.11 in Sec-
tion 5.4 has optimal sample complexity.

Corollary 6.14 For �xed k, let k-term-DNFn be the class of k-term DNF
formulae over x1; : : : ; xn, and let A be a learning algorithm for k-term-DNFn.
Then

SA(�; �) =

�
1

�
ln
1

�
+
n

�

�
:

By duality the same bound holds for k-clause-CNF. Proof of Corol-
laries 6.14 follows from Theorem 6.10 and the Vapnik-Chervonenkis dimen-
sion. The best known polynomial-time learning algorithm for k-term-DNF
(k-term-DNF, respectively) is the algorithm for kCNF (kDNF, respectively)
of Valiant [93]. This algorithm uses O(1=� ln 1=� + nk=�) examples. Thus, for
this class there is a signi�cant gap (�(nk�1)) between the information-theoretic
lower bound and the smallest sample size used by a known polynomial-time
learning algorithm.

Corollary 6.15 For �xed k, let kDNFs
n be the class of kDNF formulae over

x1; : : : ; xn with at most s terms, and let A be a learning algorithm for kDNFs
n.

Then

SA(�; �) =

1

�
ln
1

�
+
s ln n

s

�

!
:

98 Lower Bounds on Sample Complexity

By duality we obtain the same bound for kCNFs. Proof of Corollary 6.15
follows from Theorem 6.10 and the calculation of the Vapnik-Chervonenkis
dimension given by Littlestone [73]. Results by Littlestone [73] and Haussler
et al. [52] can be combined to give a polynomial-time learning algorithm for
kDNFs using sample size O ((s ln(n=s)=�) ln 1=�). Corollary 6.15 shows that
this sample size exceeds the optimal by at most a factor of O(ln 1=�). Dual
results can be stated for kCNF with at most s clauses.

Corollary 6.16 For �xed k, let kDLn be the class of k-decision lists over
x1; : : : ; xn, and let A be a learning algorithm for kDLn. Then

SA(�; �) =

1

�
ln
1

�
+
nk

�

!
:

Proof of Corollary 6.16 follows from Theorem 6.10 and the calculation of the
Vapnik-Chervonenkis dimension given by Ehrenfeucht et al. [36]. Rivest [84]
shows that kDL properly includes kCNF and kDNF, and a polynomial-
time consistent algorithm for learning kDL is given that uses sample size
O(1=� ln 1=� + nk=� ln n). The analysis of this algorithm uses Theorem 3.1.
Thus, the sample size of the algorithm of Rivest [84] is at most O(ln n) above
the optimal by Corollary 6.16. Furthermore, the upper bound on vcd(kDL)
given in Ehrenfeucht et al. [36] yields an alternative analysis of this algorithm:
by applying the results of Blumer et al. [25], we see that in fact a sample of
size O(1=� ln 1=� + nk=� ln 1=�) also su�ces. If it is decided at run time which
log factor is smaller, then we have shown that the sample complexity of the
algorithm of Rivest [84] is in fact O(1=� ln 1=�+nk=�min(ln 1=�; ln n)), a factor
of min(ln 1=�; ln n) worse than the optimal.

Corollary 6.17 Let LSn denote the class of linear separators in n dimen-
sions, and let A be a learning algorithm for LSn. Then

SA(�; �) =

�
1

�
ln
1

�
+
n

�

�
:

Proof of Corollary 6.17 follows from the Vapnik-Chervonenkis dimension
(see e.g. Wencour and Dudley [100] or Haussler and Welzl [54]) and Theo-
rem 6.10. A polynomial-time algorithm for learning LS by LS can be imple-
mented using linear programming (see Karmarkar [58], Khachiyan [65], and

Lower Bounds on Sample Complexity 99

Blumer et al. [25] for details) in the uniform cost model of arithmetic compu-
tation. By the results of Blumer et al. [25] this algorithm requires sample size
O(1=� ln 1=� + n=� ln 1=�), which is within a factor of O(ln 1=�) of optimal by
Corollary 6.17.

Corollary 6.18 Let APRn denote the class of axis-parallel rectangles in n
dimensions, and let A be a learning algorithm for APRn. Then

SA(�; �) =

�
1

�
ln
1

�
+
n

�

�
:

Proof of Corollary 6.18 follows from the Vapnik-Chervonenkis dimension
(see Wencour and Dudley [100] and Blumer et al [25]) and Theorem 6.10. An
e�cient algorithm for learning APR by APR is given by Blumer et al. [25];
this algorithm uses sample size O(n=� ln n=�). By Corollary 6.18, this bound
is o� from optimal by a factor of at most O(ln n=�). Since the algorithm of
Blumer et al. [25] also outputs a consistent hypothesis in APR, we can obtain
a di�erent upper bound on its sample size, namely O(1=� ln 1=� + n=� ln 1=�).
This bound is o� from optimal by a factor of at most O(ln 1=�). As in the case
of k-decision lists, we may again choose the smaller sample size at run time.

6.4 Expected sample complexity

We conclude this chapter with a brief discussion of how the sample complexity
lower bounds provided here and elsewhere can be used to obtain lower bounds
on the expected number of examples for algorithms whose sample size may
depend on coin
ips and the actual sequence of examples received. We �rst
de�ne what we mean by the expected number of examples. Let A be a (ran-
domized) learning algorithm for a class C, let ~r be an in�nite sequence of bits
(interpreted as the random coin tosses for A), and let ~w be an in�nite sequence
of alternating positive and negative examples of some c 2 C. Then we de�ne
SA(�; �; ~r; ~w) to be the number of examples read by A (where each request for
an example results in either the next positive or next negative example being
read from ~w) on inputs �, �, ~r and ~w. The expected sample complexity of A is
then the maximum over all c 2 C and all target distributions D+ and D� for c
of the expectation E[SA(�; �; ~r; ~w)], where the in�nite bit sequence ~r is drawn

100 Lower Bounds on Sample Complexity

uniformly at random and the in�nite example sequence ~w is drawn randomly
according to the target distributions D+ and D�.

The basic format of the proofs of the lower bounds in this chapter (as
well as those of Blumer et al. [25]) is to give speci�c distributions such that
a random sample of size at most B has probability at least p of causing any
learning algorithm to fail to output an �-good hypothesis. To obtain a lower
bound on the expected sample complexity, let A be any learning algorithm,
and let q be the probability that A draws fewer than B examples when run on
the same distributions that were given to prove the deterministic lower bound.
Then the probability that algorithm A fails to output an �-good hypothesis is
bounded below by pq. Since A is a learning algorithm we must have pq � �,
so q � �=p. This gives a lower bound of (1 � �=p)B on the expected sample
complexity. For example, since the value of p proved in Theorem 6.1 is 1=16,
we immediately obtain an asymptotic lower bound of
(nk) for any constant
k on the expected sample complexity of any negative-only learning algorithm
for monomials. Similarly, since the value of p in the proof of Theorem 6.6 is
1=1000, the expected sample complexity of any algorithm learning a represen-
tation class C is
(vcd(C)=�).

7

Cryptographic Limitations on

Polynomial-time Learning

7.1 Introduction

Recall that in the discussion of hardness results for learning in Section 3.1, we
argued that for practical purposes the polynomial learnability of a represen-
tation class must be considered unresolved until a polynomial-time learning
algorithm is discovered or until a representation-independent hardness result
is proved. This is because a representation-based result stating that C is
not polynomially learnable by H (modulo some complexity-theoretic assump-
tion such as RP 6= NP) still leaves open the possibility that C is polynomi-
ally learnable by a di�erent hypothesis class H 0. Indeed, as pointed out in
Chapter 3, this possibility has been realized for natural target classes such as
k-term-DNF and Boolean threshold functions.

Our goal in this chapter is that of proving representation-independent hard-
ness results for a number of classes whose polynomial learnability has thus far
been in question. The only previous representation-independent hardness re-
sults follow from the elegant work of Goldreich, Goldwasser and Micali [45]
on constructing random functions. As mentioned in Chapter 3, their func-
tions have many properties stronger than those mentioned here, but for our
purposes we may state their result formally as follows: let CKTp(n)

n denote
the class of Boolean circuits over n inputs with at most p(n) gates, and let
CKT

p(n) = [n�1CKTp(n)
n . Then it is shown by Goldreich et al. [45] that if

102 Cryptographic Limitations on Polynomial-time Learning

there exists a one-way function, then for some polynomial p(n), CKTp(n) is
not polynomially learnable (by any polynomially evaluatable representation
class). Pitt and Warmuth [79] then used this result to construct other hard-
to-learn representation classes. For de�nitions and a discussion of one-way
functions we refer the reader to Yao [102], Blum and Micali [23], Levin [68],
and Goldreich et al. [45].

Note that the most powerful (polynomially evaluatable) hypothesis that
can be output by a polynomial-time learning algorithm is a hypothesis that is
itself a polynomial-time algorithm, or equivalently, a polynomial-size circuit.
For this reason we do not expect to �nd polynomial-time learning algorithms
for representations that do not have small circuits, since even a learning algo-
rithm that managed to infer the exact target representation would not have
time to write this representation down. More formally, Schapire [90] has shown
that any representation class that is not polynomially evaluatable cannot be
learned in polynomial time.

Thus, we may informally interpret the result of Goldreich, Goldwasser and
Micali as stating that not everything with a small representation is e�ciently
learnable (assuming there is a one-way function). However, there is a large
gap in computational power between the class of polynomial-size circuits and
the classes that have been the subject of intense scrutiny within the computa-
tional learning theory community of late (e.g., DNF, decision trees, Boolean
formulae, classes based on �nite automata, restricted classes of circuits). In
other words, at this point the boundary of what is e�ciently learnable has
some known limits but is still quite unclear. Can we prove hardness results
similar to those of Goldreich, Goldwasser and Micali but for less powerful
representation classes, thus clarifying the limits of e�cient learnability?

In this chapter we prove representation-independent hardness results for
learning several simple representation classes, including small Boolean for-
mulae, acyclic deterministic �nite automata, and constant-depth threshold
circuits (which may be regarded as a form of simpli�ed \neural networks").
These hardness results are based on assumptions regarding the intractability
of speci�c number-theoretic problems of interest in cryptography, namely fac-
toring Blum integers, inverting the RSA function, and recognizing quadratic
residues. Thus, a polynomial-time learning algorithm for any of the named
representation classes using any polynomially evaluatable hypothesis represen-

Cryptographic Limitations on Polynomial-time Learning 103

tation would immediately yield a polynomial-time algorithm for all of these
cryptographic problems, which have denied e�cient solution for decades, and
are widely believed to be intractable.

The intuition behind the approach taken to obtain these results is contained
in the following analogy. Consider a computer system with two users, Alice
and Bob. Alice and Bob wish to communicate via an insecure channel, and it
is assumed that Eve the eavesdropper is listening to this channel. We make
no assumptions about Eve's behavior other than a polynomial bound on her
computing resources. In this cryptographic setting, Alice and Bob wish to
communicate privately in spite of Eve's nosey presence.

A classic solution to Alice and Bob's problem is the one-time pad. Here
Alice and Bob would physically meet in a secure room (away from Eve) and
compile a large common table of random bits. Then after separating, Bob, to
send a bit b to Alice, chooses the next random bit c from the common list and
sends the bit b � c to Alice. It is easily veri�ed that if the bit c is uniformly
distributed then the encoded bit b� c is also uniformly distributed, regardless
of the value of the cleartext message bit b. Thus Eve, regardless of computation
time, is provably unable to gain any information about the cleartext messages
from listening to the channel between Alice and Bob. Alice, however, also
knows the random bit c, and so may decode by computing (b� c)� c = b.

There are some obvious practical problems with the one-time pad. Fore-
most among these is the need for Alice and Bob to meet in person and compile
the table of random bits; in a network of thousands of computers, having every
pair of users meet clearly defeats the point of using computers in the �rst place.
In response to complaints such as these and also more subtle security concerns,
the �eld of public-key cryptography was initiated by Di�e and Hellman [32].

Public-key cryptography solves the problem of Alice and Bob via the use
of trapdoor functions. Informally, a trapdoor function is one that can be com-
puted in polynomial time (i.e., it is easy to compute f(x) on input x) but
cannot be inverted in polynomial time (i.e., it is hard to compute x on input
f(x)) | unless one is the \creator" of the function, in which case one possesses
a piece of \trapdoor" information that makes inversion possible in polynomial
time. Now rather than meeting with Bob in person, Alice \creates" a trap-
door function f and publishes a program for computing f (which reveals no
information about f�1) in a directory that is available to everyone | Bob and

104 Cryptographic Limitations on Polynomial-time Learning

Eve included. To send the message x to Alice, Bob simply computes f(x) and
sends it to Alice. Eve, seeing only f(x) on the channel and not possessing the
trapdoor, is unable to recover the message x in polynomial time. Alice, being
the creator of f and thus having the trapdoor, can e�ciently invert Bob's
ciphertext and recover x.

Our approach is based on viewing Eve as a learning algorithm. Note that
since a program for f is available to Eve, she may create as many pairs of
the form (f(x); x) that she likes simply by choosing x and then computing
f(x). If we set y = f(x), we see that such pairs have the form (y; f�1(y)),
and can thus be regarded as \examples" of the inverse function f�1. Thus,
from the learning perspective, public-key cryptography assumes the existence
of functions that are not learnable from examples, since if Eve could learn f�1

e�ciently from examples of its input-output behavior, she could then decode
messages sent from Bob to Alice! Furthermore, note that the inverse function
f�1 is \simple" in the sense that it does have a small circuit (determined by
the trapdoor, which Alice has access to and uses for decoding); thus from an
information-theoretic standpoint the learning problem is \fair", as opposed to
the one-time pad, where there is no small circuit underlying the communication
between Alice and Bob, just a large random bit table.

Thus we see that recent developments in the theory of cryptography provide
us with simple functions that are di�cult to learn. Our approach in this
chapter is based on re�ning the functions provided by cryptography in an
attempt to �nd the simplest functions that are di�cult to learn.

An outline of the chapter is as follows: we give the necessary background
and references from cryptography in Section 7.2. We develop and motivate
our techniques for proving representation-independent hardness results in Sec-
tion 7.3 and apply these to speci�c classes of interest in Section 7.4. In Sec-
tion 7.5 we generalize our methods to give a general technique for proving
hardness results based on the weaker assumption that there exists a trapdoor
function [102]. The classes for which one can prove hardness results will be
determined by properties of the trapdoor function chosen.

In Section 7.6 we embark on a brief digression and apply our learning results
to prove hardness results for approximating combinatorial optimization prob-
lems. In particular, we de�ne a problem that generalizes the graph coloring
problem and prove that approximating the optimal solution by an algorithm

Cryptographic Limitations on Polynomial-time Learning 105

using as many as (opt)�jIj� colors (for any � � 1 and � < 1), where opt is the
value of the optimal solution for instance I and jIj is the instance size, is as
hard as the number-theoretic problems mentioned above. This illustrates that
cryptographic assumptions may su�ce to give negative results for combinato-
rial optimization in some cases where no NP -hardness results are known, and
seem di�cult to obtain.

7.2 Background from cryptography

Some basic number theory. For an introduction to number theory that is
relevant to cryptography, we refer the reader to the work of Angluin [6]
and Kranakis [66]. For N a natural number, ZN will denote the ring of
integers modulo N , and Z�

N will denote the multiplicative group modulo
N . Thus ZN = fx : 0 � x � N � 1g and Z�

N = fx : 1 � x �
N�1 and gcd (x;N) = 1g, where gcd(x;N) denotes the greatest common
divisor of x and N . The Euler totient function ' is de�ned by '(N) =
jZ�

N j. For x 2 Z�
N , we say that x is a quadratic residue modulo N if

there is an a 2 Z�
N such that x = a2 mod N . We denote by QRN the

set of all quadratic residues in Z�
N . For a prime p and x 2 Z�

p , we de�ne
the Legendre symbol of x with respect to p by L(x; p) = 1 if x is a
quadratic residue modulo p, and L(x; p) = �1 otherwise. For N = p � q,
where p and q are prime, we de�ne the Jacobi symbol of x 2 Z�

N with
respect to N by J(x;N) = L(x; p) � L(x; q). Since x is a quadratic
residue modulo N if and only if it is a quadratic residue modulo p and
modulo q, it follows that J(x;N) = �1 implies that x is not a quadratic
residue modulo N . However, J(x;N) = 1 does not necessarily imply
that x is a quadratic residue mod N . For any integer N , we de�ne the
sets Z�

N (+1) = fx 2 Z�
N : J(x;N) = 1g and QRN(+1) = fx 2 Z�

N :
J(x;N) = 1 and x 2 QRNg. A Blum integer is an integer of the form
p � q, where p and q are primes both congruent to 3 modulo 4.

We will make use of the following facts from number theory.

Fact NT1. On inputs x and N , gcd(x;N) can be computed in poly-
nomial time.

Fact NT2. For p a prime and x 2 Z�
p , L(x; p) = x(p�1)=2 mod p.

106 Cryptographic Limitations on Polynomial-time Learning

Fact NT3. On inputs x and N , J(x;N) can be computed in polyno-
mial time.

Fact NT4. For N = p � q where p and q are prime, jZ�
N (+1)j = jZ�

N j=2
and jQRN(+1)j = jZ�

N j=4.
Fact NT5. For any x 2 Z�

N , x
'(N) = 1 mod N .

The RSA encryption function. Let p and q be primes of length l, and let
N = p � q. Let e be an encrypting exponent such that gcd(e; '(N)) = 1
and d a decrypting exponent such that d � e = 1 mod '(N). The exis-
tence of such a d is guaranteed by the existence of multiplicative inverses
modulo '(N). The RSA encryption function [88] is then de�ned by

RSA(x;N; e) = xe mod N:

Note that decryption can be accomplished by exponentiation mod N :

(xe)d = xe�d mod N = x1+i�'(N) mod N = x mod N

for some natural number i by Fact NT5 because e � d = 1 mod '(N).

Thus, following the informal intuition of Section 7.1, we think of Alice
as generating the product N = p � q; since she also knows p and q, she
can generate both e (which she publishes along with N , thus yielding an
encryption program) and d (the \trapdoor", which she keeps private).

There is currently no known polynomial-time algorithm for inverting
the RSA encryption function | that is, the problem of computing x on
inputs RSA(x;N; e); N and e. Furthermore, the following result from
Alexi et al. [5] indicates that determining the least signi�cant bit of x is
as hard as inverting RSA (which amounts to determining all the bits of
x).

Theorem 7.1 (Alexi et al. [5]) Let x;N and e be as above. Then with
respect to probabilistic polynomial-time reducibility, the following prob-
lems are equivalent:

(1) On input RSA(x;N; e); N and e, output x.

(2) On input RSA(x;N; e); N and e, output LSB (x) with probability
exceeding 1=2 + 1=p(l), where p is any �xed polynomial, l = logN
is the length of N , and LSB(x) denotes the least signi�cant bit of
x. The probability is taken over x chosen uniformly from ZN and
any coin tosses of A.

Cryptographic Limitations on Polynomial-time Learning 107

The Rabin and modi�ed Rabin encryption functions. The Rabin
encryption function [82] is speci�ed by two primes p and q of length l.
For N = p � q and x 2 Z�

N , we de�ne

R(x;N) = x2 mod N:

In this scheme the trapdoor is the factorization of N , which allows Alice
to compute square roots modulo N , and thus to decrypt. Known results
regarding the security of the Rabin function include the following:

Theorem 7.2 (Rabin [82]) Let x and N be as above. Then with respect
to probabilistic polynomial-time reducibility, the following problems are
equivalent:

(1) On input N , output a nontrivial factor of N .

(2) On input N and R(x;N), output x.

Furthermore, this reduction still holds when N is restricted to be a Blum
integer in both problems. The modi�ed Rabin encryption function [5] is
speci�ed by two primes p and q of length l, both congruent to 3 modulo
4. Let N = p � q (thus N is a Blum integer). We de�ne a subset MN of
Z�
N by

MN = fx : 0 � x � N

2
and x 2 Z�

N (+1)g:
For x 2MN , the modi�ed Rabin encryption function is then

MR(x;N) = x2 mod N if x2 mod N 2MN

MR(x;N) = (N � x2) mod N otherwise:

This de�nes a 1-1 map from MN onto MN .

Theorem 7.3 (Alexi et al. [5]) Let x and N be as above. Then with re-
spect to probabilistic polynomial-time reducibility, the following problems
are equivalent:

(1) On input MR(x;N) and N , output x.

108 Cryptographic Limitations on Polynomial-time Learning

(2) On input MR(x;N) and N , output LSB(x) with probability exceed-
ing 1=2 + 1=p(l), where p is any �xed polynomial and l = logN is
the length of N . The probability is taken over x chosen uniformly
from MN and any coin tosses of A.

For Blum integers, R(x;N) is a 1-1 mapping of QRN . Hence ifMR(x;N)
is invertible then we can invert R(x;N) by attempting to invert MR for
both the values R(x;N) and N � R(x;N), and succeeding for just the
right one of these. Hence Theorems 7.2 and 7.3 together imply that
Problem (2) in Theorem 7.3 is equivalent to factoring Blum integers
(with respect to probabilistic polynomial-time reducibility), a problem
for which no polynomial-time algorithm is known.

The Quadratic Residue Assumption. Let N = p � q, where p and q
are primes of length l. For each x 2 Z�

N (+1), de�ne QR(x;N) = 1 if
x is a quadratic residue mod N and QR(x;N) = 0 otherwise. Then
the Quadratic Residue Assumption states that if A is any probabilis-
tic polynomial-time algorithm that takes N and x as input, then for
in�nitely many N we have

Pr[A(N;x) = QR(x;N)] <
1

2
+

1

p(l)

where p is any �xed polynomial. The probability is taken over x chosen
uniformly from the set Z�

N (+1) and any coin tosses of A. As in the
Rabin scheme, knowledge of the factors of N allows Alice to compute
square roots modulo N and thus to determine if an element is a quadratic
residue.

7.3 Hard learning problems based on crypto-

graphic functions

In this section we construct hard learning problems based on the number-
theoretic encryption functions described above. For each such function, we
�rst de�ne a representation class based on the function. For each possible tar-
get representation in this class, we then describe the relevant examples for this

Cryptographic Limitations on Polynomial-time Learning 109

representation. These are the only examples with non-zero probability in the
hard target distributions we de�ne. We then proceed to prove the di�culty
of even weakly learning the representation class under the chosen distribu-
tions, based on some standard cryptographic assumption on the security of
the underlying encryption function. Finally, we show the ease of evaluating
the representation class: more precisely, we show that each representation in
the class can be computed by an NC1 circuit (a polynomial-size, log-depth cir-
cuit of standard fan-in 2 Boolean gates). In Section 7.4 we apply these results
to prove that weakly learning Boolean formulae, �nite automata, constant-
depth threshold circuits and a number of other representation classes is hard
under cryptographic assumptions.

We adopt the following notation: if a1; : : : ; am are natural numbers, we de-
note by binary(a1; : : : ; am) the binary representation of the sequence a1; : : : ; am
in some �xed encoding scheme. The relevant examples we construct will be of
the form

< binary(a1; : : : ; am); b >

where b is a bit indicating whether the example is positive or negative. We
denote by powers(z;N) the sequence of natural numbers

z mod N; z2 mod N; z4 mod N; : : : ; z2
dlogNe

mod N

which are the �rst dlogNe+ 1 successive square powers of z modulo N .

In the following subsections, we will de�ne representation classes Cn based
on the number-theoretic function families described above. Representations in
Cn will be over the domain f0; 1gn; relevant examples with length less than n
will implicitly be assumed to be padded to length n. Since only the relevant
examples will have non-zero probability, we assume that on all non-relevant
examples are negative examples of the target representation.

7.3.1 A learning problem based on RSA

The representation class Cn: Let l be the largest natural number satisfy-
ing 4l2+6l � n. Each representation in Cn is de�ned by a triple (p; q; e)
and this representation will be denoted r(p;q;e). Here p and q are l-bit
primes and e 2 Z�

'(N), where N = p � q (thus, gcd(e; '(N)) = 1).

110 Cryptographic Limitations on Polynomial-time Learning

Relevant examples for r(p;q;e) 2 Cn: A relevant example of r(p;q;e) 2 Cn is
of the form

< binary(powers(RSA(x;N; e); N); N; e);LSB(x) >

where x 2 ZN . Note that since the length of N is 2l, the length of such
an example in bits is (2l + 1)2l + 2l + 2l = 4l2 + 6l � n. The target
distribution D+ for r(p;q;e) is uniform over the relevant positive examples
of r(p;q;e) (i.e., those for which LSB (x) = 1) and the target distribution
D� is uniform over the relevant negative examples (i.e., those for which
LSB(x) = 0).

Di�culty of weakly learning C = [n�1Cn: Suppose thatA is a polynomial-
time weak learning algorithm for C. We now describe how we can use
algorithm A to invert the RSA encryption function. Let N be the prod-
uct of two unknown l-bit primes p and q, and let e 2 Z�

'(N). Then given
only N and e, we run algorithm A. Each time A requests a positive ex-
ample of r(p;q;e), we uniformly choose an x 2 ZN such that LSB(x) = 1
and give the example

< binary(powers(RSA(x;N; e); N); N; e); 1 >

to A. Note that we can generate such an example in polynomial time on
input N and e. This simulation generates the target distribution D+.
Each time that A requests a negative example of r(p;q;e), we uniformly
choose an x 2 ZN such that LSB(x) = 0 and give the example

< binary(powers(RSA(x;N; e); N); N; e); 0 >

to A. Again, we can generate such an example in polynomial time,
and this simulation generates the target distribution D�. Let hA be
the hypothesis output by algorithm A following this simulation. Then
given r = RSA(x;N; e) for some unknown x chosen uniformly from ZN ,
hA(binary(powers(r;N); N; e)) = LSB (x) with probability at least 1=2+
1=p(l) for some polynomial p by the de�nition of weak learning. Thus
we have a polynomial advantage for inverting the least signi�cant bit of
RSA. This allows us to invert RSA by the results of Alexi et al. [5] given
as Theorem 7.1.

Ease of evaluating r(p;q;e) 2 Cn: For each r(p;q;e) 2 Cn, we show that r(p;q;e)
has an equivalent NC1 circuit. More precisely, we give a circuit that has

Cryptographic Limitations on Polynomial-time Learning 111

depth O(log n) and size polynomial in n, and outputs the value of r(p;q;e)
on inputs of the form

binary(powers(r;N); N; e)

where N = p � q and r = RSA(x;N; e) for some x 2 ZN . Thus, the
representation class C = [n�1Cn is contained in (nonuniform) NC1.

Since e 2 Z�
'(N), there is a d 2 Z�

'(N) such that e � d = 1 mod '(N) (d

is just the decrypting exponent for e). Thus, rd mod N = xe�d mod N =
x mod N . Hence the circuit for r(p;q;e) simply multiplies together the
appropriate powers of r (which are always explicitly provided in the
input) to compute rd mod N , and outputs the least signi�cant bit of the
resulting product. This is an NC1 step by the iterated product circuits
of Beame, Cook and Hoover [15].

7.3.2 A learning problem based on quadratic residues

The representation class Cn: Let l be the largest natural number satisfy-
ing 4l2 + 4l � n. Each representation in Cn is de�ned by a pair of l-bit
primes (p; q) and this representation will be denoted r(p;q).

Relevant examples for r(p;q) 2 Cn: For a representation r(p;q) 2 Cn, let
N = p � q. We consider only points x 2 Z�

N (+1). A relevant example of
r(p;q) is then of the following form:

< binary(powers(x;N); N);QR(x;N) > :

Note that the length of such an example in bits is (2l + 1)2l + 2l =
4l2 + 4l � n. The target distribution D+ for r(p;q) is uniform over the
relevant positive examples of r(p;q) (i.e., those for which QR(x;N) = 1)
and the target distribution D� is uniform over the relevant negative
examples (i.e., those for which QR(x;N) = 0).

Di�culty of weakly learning C = [n�1Cn: Suppose thatA is a polynomial-
time weak learning algorithm for C. We now describe how we can use
algorithm A to recognize quadratic residues. Let N be the product of

112 Cryptographic Limitations on Polynomial-time Learning

two unknown l-bit primes p and q. Given only N as input, we run algo-
rithm A. Every time A requests a positive example of r(p;q), we uniformly
choose y 2 Z�

N and give the example

< binary(powers(y2 mod N;N); N); 1 >

to A. Note that such an example can be generated in polynomial time
on input N . This simulation generates the target distribution D+.

In order to generate the negative examples for our simulation of A, we
uniformly choose u 2 Z�

N until J(u;N) = 1. By Fact NT4, this can be
done with high probability in polynomial time. The probability is 1=2
that such a u is a non-residue modulo N . Assuming we have obtained
a non-residue u, every time A requests a negative example of r(p;q), we
uniformly choose y 2 Z�

N and give to A the example

< binary(powers(uy2 mod N;N); N); 0 >

which can be generated in polynomial time. Note that if u actually is
a non-residue then this simulation generates the target distribution D�,
and this run of A will with high probability produce an hypothesis hA
with accuracy at least 1=2+1=p(l) with respect to D+ and D�, for some
polynomial p (call such a run a good run). On the other hand, if u is
actually a residue then A has been trained improperly (that is, A has
been given positive examples when it requested negative examples), and
no performance guarantees can be assumed. The probability of a good
run of A is at least 1=2(1 � �).
We thus simulate A as described above many times, testing each hypoth-
esis to determine if the run was a good run. To test if a good run has
occurred, we �rst determine if hA has accuracy at least 1=2+1=2p(l) with
respect to D+. This can be determined with high probability by generat-
ing D+ as above and estimating the accuracy of hA using Fact CB1 and
Fact CB2. Assuming hA passes this test, we now would like to test hA
against the simulated distribution D�; however, we do not have direct
access to D� since this requires a non-residue mod N . Thus we instead
estimate the probability that hA classi�es an example as positive when
this example is drawn from the uniform distribution over all relevant ex-
amples (both positive and negative). This can be done by simply choos-
ing x 2 Z�

N uniformly and computing hA(binary(powers(x;N); N)). The

Cryptographic Limitations on Polynomial-time Learning 113

probability that hA classi�es such examples as positive is near 1=2 if and
only if hA has nearly equal accuracy on D+ and D�. Thus by estimating
the accuracy of hA on D+, we can estimate the accuracy of hA on D� as
well, without direct access to a simulation of D�.

We continue to run A and test until a good run of A is obtained with
high probability. Then given x chosen randomly from Z�

N ,

hA(binary(powers(x;N); N)) = QR(x;N)

with probability at least 1=2+1=p(l), contradicting the Quadratic Residue
Assumption.

Ease of evaluating r(p;q) 2 Cn: For each r(p;q) 2 Cn, we give an NC
1 circuit

for evaluating the concept represented by r(p;q) on an input of the form

binary(powers(x;N); N)

where N = p � q and x 2 Z�
N . This circuit has four phases.

Phase I. Compute the powers

x mod p; x2 mod p; x4 mod p; : : : ; x2
2l

mod p

and the powers

x mod q; x2 mod q; x4 mod q; : : : ; x2
2l

mod q:

Note that the length of N is 2l. Since for any a 2 Z�
N we have that

a mod p = (a mod N) mod p, these powers can be computed from
the input binary(powers(x;N); N) by parallel mod p and mod q
circuits. Each such circuit involves only a division step followed by
a multiplication and a subtraction. The results of Beame et al. [15]
imply that these steps can be carried out by an NC1 circuit.

Phase II. Compute x(p�1)=2 mod p and x(q�1)=2 mod q. These can be
computed by multiplying the appropriate powers mod p and mod q
computed in Phase I. Since the iterated product of l numbers each
of length l bits can be computed in NC1 by the results of Beame
et al. [15], this is also an NC1 step.

114 Cryptographic Limitations on Polynomial-time Learning

Phase III. Determine if x(p�1)=2 = 1 mod p or x(p�1)=2 = �1 mod p,
and if x(q�1)=2 = 1 mod q or x(q�1)=2 = �1 mod q. That these are
the only cases follows from Fact NT2; furthermore, this computa-
tion determines whether x is a residue mod p and mod q. Given
the outputs of Phase II, this is clearly an NC1 step.

Phase IV. If the results of Phase III were x(p�1)=2 = 1 mod p and
x(q�1)=2 = 1 mod q, then output 1, otherwise output 0. This is
again an NC1 step.

7.3.3 A learning problem based on factoring Blum in-

tegers

The representation class Cn: Let l be the largest natural number satisfy-
ing 4l2 + 4l � n. Each representation in Cn is de�ned by a pair of l-bit
primes (p; q), both congruent to 3 modulo 4, and this representation will
be denoted r(p;q). Thus the product N = p � q is a Blum integer.

Relevant examples for r(p;q) 2 Cn: We consider points x 2MN . A relevant
example of r(p;q) 2 Cn is then of the form

< binary(powers(MR(x;N); N); N);LSB(x) > :

The length of this example in bits is (2l + 1)2l + 2l = 4l2 + 4l � n.
The target distribution D+ for r(p;q) is uniform over the relevant positive
examples (i.e., those for which LSB(x) = 1) and the target distribution
D� is uniform over the relevant negative examples (i.e., those for which
LSB(x) = 0).

Di�culty of weakly learning C = [n�1Cn: Suppose thatA is a polynomial-
time weak learning algorithm for C. We now describe how to use A to
factor Blum integers. Let N be a Blum integer. Given only N as in-
put, we run algorithm A. Every time A requests a positive example, we
choose x 2MN uniformly such that LSB (x) = 1, and give the example

< binary(powers(MR(x;N); N); N); 1 >

to A. Such an example can be generated in polynomial time on input N .
This simulation generates the distribution D+. Every time A requests a

Cryptographic Limitations on Polynomial-time Learning 115

negative example, we choose x 2 Mn uniformly such that LSB(x) = 0,
and give the example

< binary(powers(MR(x;N); N); N); 0 >

to A. Again, this example can be generated in polynomial time. This
simulation generates the distribution D�. When algorithm A has halted,
hA(binary(powers(r;N); N)) = LSB(x) with probability 1=2+1=p(l) for
r = MR(x;N) and x chosen uniformly from MN . This implies that we
can factor Blum integers by the results of Rabin [82] and Alexi et al. [5]
given in Theorems 7.2 and 7.3.

Ease of evaluating r(p;q) 2 Cn: For each r(p;q) 2 Cn, we give an NC
1 circuit

for evaluating the concept represented by r(p;q) on an input of the form

binary(powers(r;N); N)

where N = p � q and r = MR(x;N) for some x 2 MN . This is accom-
plished by giving an NC1 implementation of the �rst three steps of the
root-�nding algorithm of Adleman, Manders and Miller [2] as it is de-
scribed by Angluin [6]. Note that if we let a = x2 mod N , then either
r = a or r = (N � a) mod N according to the de�nition of the modi�ed
Rabin function. The circuit has four phases.

Phase I. Determine if the input r is a quadratic residue mod N .
This can be done using the given powers of r and r(p;q) using the
NC

1 circuit described in quadratic residue-based scheme of Sec-
tion 7.3.2. Note that since p and q are both congruent to 3 mod 4,
(N�a) mod N is never a quadratic residue mod N (see Angluin [6]).
If it is decided that r = (N � a) mod N , generate the intermediate
output a mod N . This can clearly be done in NC1. Also, notice
that for any z, z2i = (N � z)2i mod N for i � 1. Hence these pow-
ers of r are identical in the two cases. Finally, recall that the NC1

circuit for quadratic residues produced the powers of r mod p and
the powers of r mod q as intermediate outputs, so we may assume
that the powers

a; a2 mod p; a4 mod p; : : : ; a2
2l

mod p

and
a; a2 mod q; a4 mod q; : : : ; a2

2l

mod q

are also available.

116 Cryptographic Limitations on Polynomial-time Learning

Phase II. Let lp (respectively, lq) be the largest positive integer such
that 2lpj(p � 1) (respectively, 2lq j(q � 1)). Let Qp = (p� 1)=2lp

(respectively, Qq = (q � 1)=2lq). Using the appropriate powers
of x2 mod p and mod q, compute u = a(Qp+1)=2 mod p and v =
a(Qq+1)=2 mod q with NC1 iterated product circuits. Since p and q
are both congruent to 3 mod 4, u and p � u are square roots of a
mod q, and v and q � v are square roots of a mod q by the results
of Adleman et al. [2] (see also Angluin [6]).

Phase III.Using Chinese remaindering, combine u; p�u; v and q�v to
compute the four square roots of a mod N (see e.g. Kranakis [66]).
Given p and q, this requires only a constant number of multiplica-
tion and addition steps, and so is computed in NC1.

Phase IV. Find the root from Phase III that is in MN , and output its
least signi�cant bit.

7.4 Learning small Boolean formulae, �nite

automata and threshold circuits is hard

The results of Section 7.3 show that for some �xed polynomial q(n), learning
NC

1 circuits of size at most q(n) is computationally as di�cult as the problems
of inverting RSA, recognizing quadratic residues, and factoring Blum integers.
However, there is a polynomial p(n) such that any NC1 circuit of size at most
q(n) can be represented by a Boolean formulae of size at most p(n). Thus we
have proved the following:

Theorem 7.4 Let BFp(n)
n denote the class of Boolean formulae over n vari-

ables of size at most p(n), and let BFp(n) = [n�1BFp(n)
n . Then for some poly-

nomial p(n), the problems of inverting the RSA encryption function, recogniz-
ing quadratic residues and factoring Blum integers are probabilistic polynomial-
time reducible to weakly learning BFp(n).

In fact, we can apply the substitution arguments of Section 4.3 to show
that Theorem 7.4 holds even for the class of monotone Boolean formulae in
which each variable appears at most once.

Cryptographic Limitations on Polynomial-time Learning 117

Pitt and Warmuth [79] show that if the class ADFA is polynomially weakly
learnable, then the class BF is polynomially weakly learnable. Combining this
with Theorem 7.4, we have:

Theorem 7.5 LetADFAp(n)
n denote the class of deterministic �nite automata

of size at most p(n) that only accept strings of length n, and let ADFAp(n) =
[n�1ADFAp(n)

n . Then for some polynomial p(n), the problems of inverting
the RSA encryption function, recognizing quadratic residues and factoring
Blum integers are probabilistic polynomial-time reducible to weakly learning
ADFA

p(n).

Using results of Chandra, Stockmeyer and Vishkin [27], Beame et al. [15]
and Reif [83], it can be shown that the representations described in Section 7.3
can each be computed by a polynomial-size, constant-depth threshold circuit.
Thus we have:

Theorem 7.6 For some �xed constant natural number d, let dTCp(n)
n denote

the class of threshold circuits over n variables with depth at most d and size at
most p(n), and let dTCp(n) = [n�1dTCp(n)

n . Then for some polynomial p(n),
the problems of inverting the RSA encryption function, recognizing quadratic
residues and factoring Blum integers are probabilistic polynomial-time reducible
to weakly learning dTCp(n).

It is important to reiterate that these hardness results hold regardless of the
hypothesis representation class of the learning algorithm; that is, Boolean for-
mulae, DFA's and constant-depth threshold circuits are not weakly learnable
by any polynomially evaluatable representation class (under standard crypto-
graphic assumptions). We note that no NP -hardness results are known for
these classes even if we restrict the hypothesis class to be the same as the target
class and insist on strong learnability rather than weak learnability. It is also
possible to give reductions showing that many other interesting classes (e.g.,
CFG's and NFA's) are not weakly learnable, under the same cryptographic
assumptions. In general, any representation class whose computational power
subsumes that of NC1 is not weakly learnable; however, more subtle reduc-
tions are also possible. In particular, our results resolve a problem posed by
Pitt and Warmuth [79] by showing that under cryptographic assumptions,

118 Cryptographic Limitations on Polynomial-time Learning

the class of all languages accepted by logspace Turing machines is not weakly
learnable.

Pitt and Warmuth [79] introduce a general notion of reduction between
learning problems, and a number of learning problems are shown to have equiv-
alent computational di�culty (with respect to probabilistic polynomial-time
reducibility). Learning problems are then classi�ed according to the complex-
ity of their evaluation problem, the problem of evaluating a representation on
an input example. In Pitt and Warmuth [79] the evaluation problem is treated
as a uniform problem (i.e., one algorithm for evaluating all representations in
the class); by treating the evaluation problem nonuniformly (e.g., a separate
circuit for each representation) we were able to show that NC1 contains a
number of presumably hard-to-learn classes of Boolean functions. By giving
reductions from NC

1 to other classes of representations, we thus clarify the
boundary of what is e�ciently learnable.

7.5 A generalized construction based on any

trapdoor function

Let us now give a brief summary of the techniques that were used in Sec-
tions 7.3 and 7.4 to obtain hardness results for learning based on crypto-
graphic assumptions. In each construction (RSA, quadratic residue and fac-
toring Blum integers), we began with a candidate trapdoor function family,
informally a family of functions each of whose members f is easy to compute
(that is, given x, it is easy to compute f(x)), hard to invert (that is, given
only f(x), it is di�cult to compute x), but easy to invert given a secret \key"
to the function [102] (the trapdoor). We then constructed a learning prob-
lem in which the complexity of inverting the function given the trapdoor key
corresponds to the complexity of the representations being learned, and learn-
ing from random examples corresponds to inverting the function without the
trapdoor key. Thus, the learning algorithm is essentially required to learn the
inverse of a trapdoor function, and the small representation for this inverse is
simply the secret trapdoor information.

To prove hardness results for the simplest possible representation classes,
we then eased the computation of the inverse given the trapdoor key by pro-

Cryptographic Limitations on Polynomial-time Learning 119

viding the powers of the original input in each example. This additional in-
formation provably does not compromise the security of the original function.
A key property of trapdoor functions exploited by our constructions is the
ability to generate random examples of the target representation without the
trapdoor key; this corresponds to the ability to generate encrypted messages
given only the public key in a public-key cryptosystem.

By assuming that speci�c functions such as RSA are trapdoor functions, we
were able to �nd modi�ed trapdoor functions whose inverse computation given
the trapdoor could be performed by very simple circuits. This allowed us to
prove hardness results for speci�c representation classes that are of interest in
computational learning theory. Such speci�c intractability assumptions appear
necessary since the weaker and more general assumption that there exists a
trapdoor family that can be computed (in the forward direction) in polynomial
time does not allow us to say anything about the hard-to-learn representation
class other than it having polynomial-size circuits.

However, the summary above suggests a general method for proving hard-
ness results for learning: to show that a representation class C is not learn-
able, �nd a trapdoor function whose inverse can be computed by C given the
trapdoor key. In this section we formalize these ideas and prove a theorem
demonstrating that this is indeed a viable approach.

We use the following de�nition for a family of trapdoor functions, which
can be derived from Yao [102]: let P = fPng be a family of probability
distributions, where for n � 1 the distribution Pn is over pairs (k; k0) 2
f0; 1gn � f0; 1gn. We think of k as the n-bit public key and k0 as the associ-
ated n-bit private key. Let Q = fQkg be a family of probability distributions
parameterized by the public key k, where if jkj = n then Qk is a distribution
over f0; 1gn. We think of Q as a distribution family over the message space.
The function f : f0; 1gn�f0; 1gn ! f0; 1gn maps an n-bit public key k and an
n-bit cleartext message x to the ciphertext f(k; x). We call the triple (P;Q; f)
an �-strong trapdoor scheme if it has the following properties:

(i) There is probabilistic polynomial-time algorithm G (the key generator)
that on input 1n outputs a pair (k; k0) according to the distribution Pn.
Thus, pairs of public and private keys are easily generated.

(ii) There is a probabilistic polynomial-time algorithm M (the message gen-

120 Cryptographic Limitations on Polynomial-time Learning

erator) that on input k outputs x according to the distribution Qk. Thus,
messages are easily generated given the public key k.

(iii) There is a polynomial-time algorithm E that on input k and x outputs
f(k; x). Thus, encryption is easy.

(iv) Let A be any probabilistic polynomial-time algorithm. Perform the fol-
lowing experiment: draw a pair (k; k0) according to Pn, and draw x
according to Qk. Give the inputs k and f(k; x) to A. Then the proba-
bility that A(k; f(k; x)) 6= x is at least �. Thus, decryption from only
the public key and the ciphertext is hard.

(v) There is a polynomial-time algorithm D that on input k; k0 and f(k; x)
outputs x. Thus, decryption given the private key (or trapdoor) is easy.

As an example, consider the RSA cryptosystem [88]. Here the distribution
Pn is uniform over all (k; k0) where k0 = (p; q) for n-bit primes p and q and
k = (p � q; e) with e 2 Z�

'(p�q). The distribution Qk is uniform over Zp�q, and
f(k; x) = f((p � q; e); x) = xe mod p � q.

We now formalize the notion of the inverse of a trapdoor function being
computed in a representation class. Let C = [n�1Cn be a parameterized
Boolean representation class. We say that a trapdoor scheme (P;Q; f) is
invertible in C given the trapdoor if for any n � 1, for any pair of keys (k; k0) 2
f0; 1gn � f0; 1gn, and for any 1 � i � n, there is a representation ci(k;k0) 2 Cn

that on input f(k; x) (for any x 2 f0; 1gn) outputs the ith bit of x.

Theorem 7.7 Let p be any polynomial, and let �(n) � 1=p(n). Let (P;Q; f)
be an �(n)-strong trapdoor scheme, and let C be a parameterized Boolean rep-
resentation class. Then if (P;Q; f) is invertible in C given the trapdoor, C is
not polynomially learnable.

Proof: Let A be any polynomial-time learning algorithm for C. We use
algorithm A as a subroutine in a polynomial-time algorithm A0 that with high
probability outputs x on input k and f(k; x), thus contradicting condition (iv)
in the de�nition of a trapdoor scheme.

Let (k; k0) be n-bit public and private keys generated by the distribution
Pn. Let x be an n-bit message generated according to the distribution Qk.

Cryptographic Limitations on Polynomial-time Learning 121

Then on input k and f(k; x), algorithm A0 behaves as follows: for 1 � i � n,
algorithm A0 simulates algorithm A, choosing accuracy parameter � = �(n)=n.
For the ith run of A, each time A requests a positive example, A0 generates
random values x0 from the distribution Qk (this can be done in polynomial time
by condition (ii) in the de�nition of trapdoor scheme) and computes f(k; x0)
(this can be done in polynomial time by condition (iii) in the de�nition of
trapdoor scheme). If the ith bit of f(k; x0) is 1, then A0 gives x0 as a positive
example to A; similarly, A0 generates negative examples for the ith run of A
by drawing x0 such that the ith bit of f(k; x0) is 0. If after O(1=� ln n=�) draws
from Qk, A0 is unable to obtain a positive (respectively, negative) example
for A, then A0 assumes that with high probability a random x0 results in the
ith bit of f(k; x0) being 0 (respectively, 1), and terminates this run by setting
hik to the hypothesis that is always 0 (respectively, 1). The probability that
A0 terminates the run incorrectly can be shown to be smaller than �=n by
application of Fact CB1 and Fact CB2.

Note that all of the examples given to the ith run of A are consistent with
a representation in Cn, since the ith bit of f(k; �) is computed by the repre-
sentation ci(k;k0). Thus with high probability A outputs an �-good hypothesis

hik. To invert the original input f(k; x), A0 simply outputs the bit sequence
h1k(f(k; x)) � � � hnk (f(k; x)). The probability that any bit of this string di�ers
from the corresponding bit of x is at most n� < �(n), contradicting the as-
sumption that (P;Q; f) is an �(n)-strong trapdoor scheme.

7.6 Application: hardness results for approx-

imation algorithms

In this section, we digress from learning brie
y and apply the results of Sec-
tion 7.4 to prove that under cryptographic assumptions, certain combinatorial
optimization problems, including a natural generalization of graph coloring,
cannot be e�ciently approximated even in a very weak sense. These results
show that for these problems, it is di�cult to �nd a solution that approxi-
mates the optimal solution even within a factor that grows rapidly with the
input size. Such results are infrequent in complexity theory, and seem di�cult
to obtain for natural problems using presumably weaker assumptions such as

122 Cryptographic Limitations on Polynomial-time Learning

P 6= NP .

Let C and H be polynomially evaluatable parameterized Boolean repre-
sentation classes, and de�ne the Consistency Problem Con(C;H) as follows:

The Consistency Problem Con(C;H):

Input: A labeled sample S of some c 2 Cn.

Output: h 2 Hn such that h is consistent with S and jhj is minimized.

We use optCon(S) to denote the size of the smallest hypothesis in H that
is consistent with the sample S, and jSj to denote the number of bits in S.
Using the results of Section 7.4 and Theorem 3.1 of Section 3.2, we immediately
obtain proofs of the following theorems.

Theorem 7.8 Let BFn denote the class of Boolean formulae over n variables,
and let BF = [n�1BFn. Let H be any polynomially evaluatable parameterized
Boolean representation class. Then the problems of inverting the RSA en-
cryption function, recognizing quadratic residues and factoring Blum integers
are probabilistic polynomial-time reducible to the problem of approximating the
optimal solution of an instance S of Con(BF;H) by an hypothesis h satisfying

jhj � (optCon(S))
�jSj�

for any � � 1 and 0 � � < 1.

Theorem 7.9 Let ADFAn denote the class of deterministic �nite automata
accepting only strings of length n, and let ADFA = [n�1ADFAn. Let H
be any polynomially evaluatable parameterized Boolean representation class.
Then inverting the RSA encryption function, recognizing quadratic residues
and factoring Blum integers are probabilistic polynomial-time reducible to ap-
proximating the optimal solution of an instance S of Con(ADFA;H) by an
hypothesis h satisfying

jhj � (optCon(S))
�jSj�

for any � � 1 and 0 � � < 1.

Cryptographic Limitations on Polynomial-time Learning 123

Theorem 7.10 Let dTCn denote the class of threshold circuits over n vari-
ables with depth at most d, and let dTC = [n�1dTCn. Let H be any poly-
nomially evaluatable parameterized Boolean representation class. Then for
some constant d � 1, the problems of inverting the RSA encryption function,
recognizing quadratic residues and factoring Blum integers are probabilistic
polynomial-time reducible to the problem of approximating the optimal solu-
tion of an instance S of Con(dTC;H) by an hypothesis h satisfying

jhj � (optCon(S))
�jSj�

for any � � 1 and 0 � � < 1.

These theorems demonstrate that the results of Section 7.4 are in some
sense not dependent upon the particular models of learnability that we study,
since we are able to restate the hardness of learning in terms of standard
combinatorial optimization problems. Using a generalization of Theorem 3.1,
we can in fact prove Theorems 7.8, 7.9 and 7.10 for the Relaxed Consistency
Problem, where the hypothesis found must agree with only a fraction 1=2 +
1=p(optCon(S); n) for any �xed polynomial p. Using the results of Goldreich
et al. [45], it is also possible to show similar hardness results for the Boolean
circuit consistency problem Con(CKT;CKT) using the weaker assumption
that there exists a one-way function.

Note that Theorem 7.10 addresses the optimization problem Con(dTC;TC)
as a special case. This problem is essentially that of �nding a set of weights
in a neural network that yields the desired input-output behavior, sometimes
referred to as the loading problem. Theorem 7.10 states that even if we allow
a much larger net than is actually required, �nding these weights is computa-
tionally intractable, even for only a constant number of \hidden layers". This
result should be contrasted with those of Judd [57] and Blum and Rivest [22],
which rely on the weaker assumption P 6= NP but do not prove hardness for re-
laxed consistency and do not allow the hypothesis network to be substantially
larger than the smallest consistent network. We also make no assumptions on
the topology of the output circuit.

Theorems 7.8, 7.9 and 7.10 are interesting for at least two reasons. First,
they suggest that it is possible to obtain stronger hardness results for combi-
natorial optimization approximation algorithms by using stronger complexity-
theoretic assumptions. Such results seem di�cult to obtain using only the

124 Cryptographic Limitations on Polynomial-time Learning

assumption P 6= NP . Second, these results provide us with natural examples
of optimization problems for which it is hard to approximate the optimal so-
lution even within a multiplicative factor that grows as a function of the input
size. Several well-studied problems apparently have this property, but little
has been proven in this direction. Perhaps the best example is graph coloring,
where the best polynomial-time algorithms require approximately n1�1=(k�1)

colors on k-colorable n-vertex graphs (see Wigderson [101] and Blum [19])
but coloring has been proven NP -hard only for (2 � �)k colors for any � > 0
(see Garey and Johnson [39]). Thus for 3-colorable graphs we only know that
5-coloring is hard, but the best algorithm requires roughly O(n0:4) colors on n-
vertex graphs! This leads us to look for approximation-preserving reductions
from our provably hard optimization problems to other natural problems.

We now de�ne a class of optimization problems that we call formula col-
oring problems. Here we have variables y1; : : : ; ym assuming natural number
values, or colors. We regard an assignment of colors to the yi (called a col-
oring) as a partition P of the variable set into equivalence classes; thus two
variables have the same color if and only if they are in the same equivalence
class. We consider Boolean formulae that are formed using the standard basis
over atomic elements of the form (yi = yj) and (yi 6= yj), where the predicate
(yi = yj) is satis�ed if and only if yi and yj are assigned the same color.

A model for such a formula F (y1; : : : ; ym) is a coloring of the variables
y1; : : : ; ym such that F is satis�ed. A minimum model for the F is a model
using the fewest colors. For example, the formula

(y1 = y2) _ ((y1 6= y2) ^ (y3 6= y4))

has as a model the two-color partition fy1; y3g; fy2; y4g and has as a minimum
model the one-color partition fy1; y2; y3; y4g.

We will be interested in the problem of �nding minimum models for certain
restricted classes of formulae. For F (y1; : : : ; ym) a formula as described above,
and P a model of F , we let jP j denote the number of colors in P and optFC (F)
the number of colors in a minimum model of F .

We �rst show how graph coloring can be exactly represented as a formula
coloring problem. If G is a graph, then for each edge (vi; vj) in G, we conjunct
the expression (yi 6= yj) to the formula F (G). Then optFC (F (G)) is exactly
the number of colors required to color G. Similarly, by conjuncting expressions

Cryptographic Limitations on Polynomial-time Learning 125

of the form

((y1 6= y2) _ (y1 6= y3) _ (y2 6= y3))

we can also exactly represent the 3-hypergraph coloring problem (where each
hyperedge contains 3 vertices) as a formula coloring problem.

To prove our hardness results, we consider a generalization of the graph
coloring problem:

The Formula Coloring Problem FC :

Input: A formula F (y1; : : : ; ym) which is a conjunction only of expressions
of the form (yi 6= yj) (as in the graph coloring problem) or of the form
((yi 6= yj) _ (yk = yl)).

Output: A minimum model for F .

Theorem 7.11 There is a polynomial-time algorithm A that on input an in-
stance S of the problem Con(ADFA;ADFA) outputs an instance F (S) of
the formula coloring problem such that S has a k-state consistent hypothesis
M 2 ADFA if and only if F (S) has a model of k colors.

Proof: Let S contain the labeled examples

< w1; b1 >;< w2; b2 >; : : : ; < wm; bm >

where each wi 2 f0; 1gn and bi 2 f0; 1g. Let wj
i denote the jth bit of wi. We

create a variable zji for each 1 � i � n and 0 � j � m. Let M be a smallest
DFA consistent with S. Then we interpret zji as representing the state that
M is in immediately after reading the bit wj

i on input wi. The formula F (S)
will be over the zji and is constructed as follows: for each i1; i2 and j1; j2 such
that 0 � j1; j2 < n and wj1+1

i1
= wj2+1

i2
we conjunct the predicate

((zj1i1 = zj2i2)! (zj1+1i1 = zj2+1i2))

to F (S). Note that this predicate is equivalent to

((zj1i1 6= zj2i2) _ (zj1+1i1 = zj2+2i2))

126 Cryptographic Limitations on Polynomial-time Learning

and thus has the required form. These formulae are designed to encode the
constraint that if M is in the same state in two di�erent computations on
input strings from S, and the next input symbol is the same in both strings,
then the next state in each computation must be the same.

For each i1; i2 such that bi1 6= bi2 we conjunct the predicate (zni1 6= zni2).
These predicates are designed to encode the constraint that the input strings
in S that are accepted by M must result in di�erent �nal states than those
strings in S that are rejected by M .

We �rst prove that ifM has k states, then optFC (F (S)) � k. In particular,
let P be the k-color partition that assigns zj1i1 and zj2i2 the same color if and

only if M is in the same state after reading wj1
i1 on input wi1 and after reading

wj2
i2
on input wi2. We show that P is a model of F (S). A conjunct

((zj1i1 = zj2i2)! (zj1+1i1
= zj2+1i2

))

of F (S) cannot be violated by P since this conjunct appears only if wj1+1
i1 =

wj2+1
i2

; thus if state zj1i1 is equivalent to state zj2i2 then state zj1+1i1
must be

equivalent to state zj2+1i2
since M is deterministic. A conjunct

(zni1 6= zni2)

of F (S) cannot be violated by P since this conjunct appears only if bi1 6= bi2,
and if state zni1 is equivalent to state zni2 then wi1 and wi2 are either both
accepted or both rejected by M , which contradicts M being consistent with
S.

For the other direction, we show that if optFC (F (S)) � k then there is a
k-state DFA M 0 that is consistent with S. M 0 is constructed as follows: the
k states of M 0 are labeled with the k equivalence classes (colors) X1; : : :Xk

of the variables zji in a minimum model P 0 for F (S). There is a transition
from state Xp to state Xq if and only if there are i; j such that zji 2 Xp and
zj+1i 2 Xq; this transition is labeled with the symbol wj+1

i . We label Xp an
accepting (respectively, rejecting) state if for some variable zni 2 Xp we have
bi = 1 (respectively, bi = 0).

We �rst argue that no state Xp ofM 0 can be labeled both an accepting and
rejecting state. For if bi = 1 and bj = 0 then the conjunct (zni 6= znj) appears
in F (S), hence zni and znj must have di�erent colors in P 0.

Cryptographic Limitations on Polynomial-time Learning 127

Next we show that M is in fact deterministic. For suppose that some
state Xp has transitions to Xq and Xr, and that both transitions are labeled
with the same symbol. Then there exist i1; i2 and j1; j2 such that zj1i1 2 Xp

and zj1+1i1
2 Xq, and zj2i2 2 Xp and zj2+1i2

2 Xr. Furthermore we must have

wj1+1
i1

= wj2+1
i2

since both transition have the same label. But then the conjunct

((zj1i1 = zj2i2)! (zj1+1i1
= zj2+1i2

))

must appear in F (S), and this conjunct is violated P 0, a contradiction. Thus
M 0 is deterministic.

These arguments prove that M 0 is a well-de�ned DFA. To see that M 0

is consistent with S, consider the computation of M 0 on any wi in S. The
sequence of states visited on this computation is just EC P 0(z1i); : : : ;EC P 0(zni),
where EC P 0(zji) denotes the equivalence class of the variable z

j
i in the coloring

P 0. The �nal state EC P 0(zni) is by de�nition of M 0 either an accept state or a
reject state according to whether wn

i = 1 or wn
i = 0.

Note that if jSj is the number of bits in the sample S and jF (S)j denotes the
number of bits in the formula F (S), then in Theorem 7.11 we have jF (S)j =
�(jSj2 log jSj) = O(jSj2+
) for any
 > 0. Thus by Theorems 7.9 and 7.11 we
have:

Theorem 7.12 The problems of inverting the RSA encryption function, rec-
ognizing quadratic residues and factoring Blum integers are polynomial-time
reducible to approximating the optimal solution to an instance F of the formula
coloring problem by a model P of F satisfying

jP j � optFC (F)
�jF j�

for any � � 1 and 0 � � < 1=2.

Figure 7.1 summarizes hardness results for coloring a formula F using at
most f(optFC (F))g(jF j) colors for various functions f and g, where an en-
try \NP -hard" indicates that such an approximation is NP -hard, \Factoring"
indicates that such an approximation is as hard as factoring Blum integers
(or recognizing quadratic residues or inverting the RSA function), and \P"
indicates there is a polynomial-time algorithm achieving this approximation
factor. The NP -hardness results follow from Garey and Johnson [39] and Pitt
and Warmuth [80].

128 Cryptographic Limitations on Polynomial-time Learning

Di�culty of
coloring F using A = 1 A = jF j1=29 A = jF j0:499::: A = jF j
A �B colors
B = optFC (F) NP -hard NP -hard Factoring P

B = 1:99 : : : optFC (F) NP -hard Factoring Factoring P
B = (optFC (F))

� NP -hard Factoring Factoring P
any �xed � � 0

Figure 7.1: Di�culty of approximating the formula coloring problem using at
most A �B colors on input formula F .

8

Distribution-speci�c Learning in

Polynomial Time

8.1 Introduction

We have seen that for several natural representation classes, the learning prob-
lem is computationally intractable (modulo various complexity-theoretic as-
sumptions), in some cases even if we allow arbitrary polynomially evaluatable
hypothesis representations. In other cases, perhaps most notably the class of
polynomial-size DNF formulae, researchers have been unable to provide �rm
evidence for either polynomial learnability or for the intractability of learn-
ing. Given this state of a�airs, we seek to obtain partial positive results
by weakening our demands on a learning algorithm, thus making either the
computational problem easier (in cases such as Boolean formulae, where we
already have strong evidence for the intractability of learning) or the math-
ematical problem easier (in cases such as DNF, where essentially nothing is
currently known). This approach has been pursued in at least two directions:
by providing learning algorithms with additional information about the target
concept in the form of queries, and by relaxing the demand for performance
against arbitrary target distributions to that of performance against speci�c
natural distributions. In this section we describe results in the latter direction.
Other recent distribution-speci�c learning algorithms include those of Linial,
Mansour and Nisan [71] and Kearns and Pitt [62].

We describe polynomial-time algorithms for learning under uniform distri-
butions representation classes for which the learning problem under arbitrary

130 Distribution-speci�c Learning in Polynomial Time

distributions is either intractable or unresolved. We begin with an algorithm
for weakly learning the class of all monotone Boolean functions under uniform
target distributions in polynomial time; note that here we make no restric-
tions on the \size" of the function in any particular representation or encoding
scheme. We will argue below that in some sense this result is the best possible
positive result for learning the class of all monotone functions.

8.2 A polynomial-time weak learning algo-

rithm for all monotone Boolean functions

under uniform distributions

We begin with some preliminary de�nitions and a needed lemma.

For T � f0; 1gn and ~u;~v 2 f0; 1gn de�ne

~u� ~v = (u1 � v1; : : : ; un � vn)
and T � ~v = f~u � ~v : ~u 2 Tg. For 1 � i � n let ~ei be the vector with the ith
bit set to 1 and all other bits set to 0.

The following lemma is due to Aldous [4].

Lemma 8.1 (Aldous [4]) Let T � f0; 1gn be such that jT j � 2n=2. Then for
some 1 � i � n,

jT � ~ei � T j � jT j
2n
:

Armed with this lemma, we can prove the following theorem:

Theorem 8.2 The class of all monotone Boolean functions is polynomially
weakly learnable under uniform D+ and uniform D�.

Proof: Let f be any monotone Boolean function on f0; 1gn. First assume
that jpos(f)j � 2n=2. For ~v 2 f0; 1gn and 1 � i � n, let ~v[i = b] denote ~v with
the ith bit set to b 2 f0; 1g.

Distribution-speci�c Learning in Polynomial Time 131

Now suppose that ~v 2 f0; 1gn is such that ~v 2 neg(f) and vj = 1 for some
1 � j � n. Then ~v[j = 0] 2 neg(f) by monotonicity of f . Thus for any
1 � j � n we must have

Pr~v2D�[vj = 1] � 1

2
(8:1)

since D� is uniform over neg (f).

Let ~ei be the vector satisfying jpos(f) � ~ei � pos(f)j � jpos(f)j=2n in
Lemma 8.1 above. Let ~v 2 f0; 1gn be such that ~v 2 pos(f) and vi = 0. Then
~v[i = 1] 2 pos(f) by monotonicity of f . However, by Lemma 8.1, the number
of ~v 2 pos(f) such that vi = 1 and ~v[i = 0] 2 neg(f) is at least jpos(f)j=2n.
Thus, we have

Pr~v2D+[vi = 1] � 1

2
+

1

4n
: (8:2)

Similarly, if jneg(f)j � 2n=2, then for any 1 � j � n we must have

Pr~v2D+[vj = 0] � 1

2
(8:3)

and for some 1 � i � n,

Pr~v2D�[vi = 0] � 1

2
+

1

4n
: (8:4)

Note that either jpos(f)j � 2n=2 or jneg(f)j � 2n=2.

We use these di�erences in probabilities to construct a polynomial-time
weak learning algorithm A. A �rst assumes jpos(f)j � 2n=2; if this is the
case, then Equations 8.1 and 8.2 must hold. A then �nds an index 1 � k � n
satisfying

Pr~v2D+[vk = 1] � 1

2
+

1

8n
(8:5)

The existence of such a k is guaranteed by Equation 8.2. A �nds such a k with
high probability by sampling POS enough times according to Fact CB1 and
Fact CB2 to obtain an estimate p̂ of Pr~v2D+[vk = 1] satisfying

Pr~v2D+[vk = 1] � 1

8n
< p̂ < Pr~v2D+[vk = 1] +

1

8n
:

If A successfully identi�es an index k satisfying Equation 8.5, then the hy-
pothesis hA is de�ned as follows: given an unlabeled input vector ~v, hA
ips

132 Distribution-speci�c Learning in Polynomial Time

a biased coin and with probability 1=16n classi�es ~v as negative; this is to
\spread" some of the advantage obtained to the distribution D�. With proba-
bility 1�1=16n, hA classi�es ~v as positive if vi = 1 and as negative if vi = 0. It
is easy to verify by Equations 8.1 and 8.5 that this is a randomized hypothesis
meeting the conditions of weak learnability.

IfA is unable to identify an index k satisfying Equation 8.5, thenA assumes
that jneg(f)j � 2n=2, and in a similar fashion proceeds to form a hypothesis
hA based on the di�erences in probability of Equations 8.3 and 8.4.

It can be shown using Theorem 6.10 that the class of monotone Boolean
functions is not polynomially weakly learnable under arbitrary target distri-
butions, since the Vapnik-Chervonenkis dimension of this class is exponential
in n. It can also be shown that the class of monotone Boolean functions is not
polynomially (strongly) learnable under uniform target distributions. Theo-
rem 6.10 can also be used to show that the class of all Boolean functions is
not polynomially weakly learnable under uniform target distributions. Thus,
Theorem 8.2 is optimal in the sense that generalization in any direction | uni-
form distributions to arbitrary distributions, weak learning to strong learning,
or monotone functions to arbitrary functions | results in intractability.

Another interesting interpretation of Theorem 8.2 is that functions that
are cryptographically secure with respect to the uniform distribution (e.g.,
trapdoor functions used in secure message exchange such as RSA and quadratic
residues) must be non-monotone. It would be interesting to �nd other such
general properties that are prerequisites for cryptographic security.

8.3 A polynomial-time learning algorithm for

�DNF under uniform distributions

We next give a polynomial-time algorithm for learning DNF in which each
variable occurs at most once (�DNF, sometimes also called read-once DNF)
under uniform target distributions. Recall that in the distribution-free setting,
this learning problem is as hard as the general DNF learning problem by Corol-
lary 4.11. Recently Linial, Mansour and Nisan have given a sub-exponential
time algorithm for learning general DNF under the uniform distribution [71];

Distribution-speci�c Learning in Polynomial Time 133

see also the paper of Verbeurgt [98].

Theorem 8.3 �DNF is polynomially learnable by �DNF under uniform D+

and uniform D�.

Proof: Let f = T1 + � � � Ts be the target �DNF formula over n variables,
where each Ti is a monomial. Note that s � n since no variable appears twice
in f . Let d be such that nd = 1=�. We say that a monomial T appearing in f
is signi�cant if Pr~v2D+[~v 2 pos(m)] � �=4n = 1=4nd+1. Thus the error on D+

incurred by ignoring all monomials that are not signi�cant is at most �=4. We
now give an outline of the learning algorithm and then show how each step
can be implemented and prove its correctness. For simplicity, our algorithm
assumes that the target formula is monotone; this restriction is easily removed,
because since each variable appears at most once we may simply regard any
occurrence of xi as an unnegated occurrence of a new variable yi.

Algorithm A:

Step 1. Assume that every signi�cant monomial in f has at least r log n
literals for r = 2d. This step will learn an approximation for f using
only positive examples if this assumption is correct. If this assumption
is not correct, then we will discover this in Step 2, and learn correctly
in Step 3 (using only negative examples). The substeps of Step 1 are
outlined as follows:

Substep 1.1. For each i, use positive examples to determine whether
the variable xi appears in one of the signi�cant monomials of f .

Substep 1.2. For each i; j such that variables xi and xj were deter-
mined in Substep 1.1 to appear in some signi�cant monomial of f ,
use positive examples to decide whether they appear in the same
signi�cant monomial.

Substep 1.3. Form a �DNF hypothesis hA in the obvious way.

Step 2. Decide whether hA is an �-good hypothesis by testing it on a poly-
nomial number of positive and negative examples. If it is decided that
hA is �-good, stop and output hA. Otherwise, guess that the assumption
of Step 1 is not correct and go to Step 3.

134 Distribution-speci�c Learning in Polynomial Time

Step 3. Assuming that some signi�cant monomial in f is shorter than r log n,
we can also assume that all the monomials are shorter than 2r log n, since
the longer ones are not signi�cant. We use only negative examples in
this step. The substeps are:

Substep 3.1. For each i, use negative examples to determine whether
variable xi appears in some signi�cant monomial of f .

Substep 3.2. For each i; j such that variables xi and xj were deter-
mined in Substep 3.1 to appear in some signi�cant monomial, use
negative examples to decide if they appear in the same signi�cant
monomial.

Substep 3.3. Form a �DNF hypothesis hA in the obvious way and
stop.

Throughout the following analysis, we will make use of the following fact:
let E1 and E2 be events over a probability space, and let Pr[E1[E2] = 1 with
respect to this probability space. Then for any event E, we have

Pr[E] = Pr[EjE1]Pr[E1] + Pr[EjE2]Pr[E2]

�Pr[EjE1 \ E2]Pr[E1 \ E2]

= Pr[EjE1]Pr[E1] +Pr[EjE2](1�Pr[E1] +Pr[E1 \ E2])

�Pr[EjE1 \ E2]Pr[E1 \ E2]

= Pr[EjE1]Pr[E1] +Pr[EjE2](1�Pr[E1])�O(Pr[E1 \ E2]) (8.6)

where here we are assuming that Pr[E1 \ E2] will depend on the number of
variables n.

In Step 1, we draw only positive examples. Since there are at most n
(disjoint) monomials in f , and we assume that the size of each monomial is
at least r log n, the probability that a positive example of f drawn at random
from the uniform D+ satis�es 2 or more monomials of f is at most n=2r logn =
1=nr�1 << �. Therefore, in the following analysis, we restrict our attention to
positive examples of f which satisfy precisely one monomial of f .

Analysis of Substep 1.1. For each i, if the variable xi is not in any monomial
of f ,

Pr~v2D+[vi = 0] = Pr~v2D+[vi = 1] =
1

2

Distribution-speci�c Learning in Polynomial Time 135

since D+ is uniform. Now suppose that variable xi appears in a signi�cant
monomial m of f . Then we have

Pr~v2D+[vi = 1] = Pr~v2D+[vi = 1j~v 2 pos(m)]Pr~v2D+[~v 2 pos(m)]

+Pr~v2D+[vi = 1j~v 2 neg(m)]Pr~v2D+[~v 2 neg(m)]

= Pr~v2D+[~v 2 pos(m)] + (
1

2
� 1

nr
)(1�Pr~v2D+[~v 2 pos(m)])

� 1

2
+

1

2nd+1
: (8.7)

Thus there is a di�erence of
(1=nd+1) between the probability that a variable
appearing in a signi�cant monomial is set to 1 and the probability that a
variable not appearing in f is set to 1. Notice that if xi appears in a monomial
that is not signi�cant then we simply think that xi appears in no monomial
of f . Using Facts CB1 and CB2, we can determine with high probability if
xi appears in a signi�cant monomial of f by drawing a polynomial number of
examples from POS .

Analysis of Substep 1.2. For each pair of variables xi and xj that appear
in some monomial of f (as decided in Substep 1.1), we now decide whether
they appear in the same monomial of f .

Lemma 8.4 If variables xi and xj appear in the same monomial of f , then

Pr~v2D+[vi = 1 or vj = 1] =
3

4
+
1

2
(Pr~v2D+[vi = 1]� 1

2
)�O(1

nr�1
):

Proof: Since xi and xj appear in the same monomial of f and appear only
once in f , we have Pr~v2D+[vi = 1] = Pr~v2D+[vj = 1] since D+ is uniform. Let
m be the monomial of f in which xi and xj appear, and let E1 be the event
that m is satis�ed. Let E2 be the event that at least one monomial of f besides
(but possibly in addition to) m is satis�ed. Note that Pr~v2D+[E1 [E2] = 1.
Using the facts that since D+ is uniform, Pr~v2D+[E1 \E2] � 1=nr�1 (because
given that a positive example already satis�es a monomial of f , the remaining
variables are independent and uniformly distributed) and Pr~v2D+[vi = 1] =
Pr~v2D+[E1] + 1=2(1 �Pr~v2D+[E1]) and by Equation 8.6, we have

Pr~v2D+[vi = 1 or vj = 1] = Pr~v2D+[vi = 1 or vj = 1jE1]Pr~v2D+[E1]

136 Distribution-speci�c Learning in Polynomial Time

+Pr~v2D+[vi = 1 or vj = 1jE2]Pr~v2D+[E2]�O(1

nr�1
)

= Pr~v2D+[E1] +
3

4
(1�Pr~v2D+[E1])�O(1

nr�1
)

=
3

4
+
1

4
Pr~v2D+[E1]�O(1

nr�1
)

=
3

4
+
1

2
(Pr~v2D+[vi = 1]� 1

2
)�O(1

nr�1
):

(Lemma 8.4)

Lemma 8.5 If variables xi and xj appear in di�erent monomials of f , then

Pr~v2D+[vi = 1 or vj = 1] =
3

4
+
1

2
(Pr~v2D+[vi = 1]� 1

2
)

+
1

2
(Pr~v2D+[vj = 1]� 1

2
)�O(1

nr�1
):

Proof: Let E1 be the event that the monomial T1 of f containing xi is
satis�ed, and E2 the event that the monomial T2 containing xj is satis�ed.
Let E3 be the event that some monomial other than (but possibly in addition
to) T1 and T2 is satis�ed. Note that Pr~v2D+[E1 [E2 [E3] = 1. Then similar
to the proof of Lemma 8.4, we have

Pr~v2D+[vi = 1 or vj = 1]

= Pr~v2D+[vi = 1 or vj = 1jE1]Pr~v2D+[E1]

+Pr~v2D+[vi = 1 or vj = 1jE2]Pr~v2D+[E2]

+Pr~v2D+[vi = 1 or vj = 1jE3]Pr~v2D+[E3]�O(1

nr�1
)

= Pr~v2D+[E1] +Pr~v2D+[E2] +
3

4
Pr~v2D+[E3]�O(1

nr�1
)

= Pr~v2D+[E1] +Pr~v2D+[E2]

+
3

4
(1 �Pr~v2D+[E1]�Pr~v2D+[E2])�O(1

nr�1
)

=
3

4
+
1

4
(Pr~v2D+[E1] +Pr~v2D+[E2])�O(1

nr�1
)

=
3

4
+
1

2
(Pr~v2D+[vi = 1]� 1

2
)

+
1

2
(Pr~v2D+[vj = 1]� 1

2
)�O(1

nr�1
):

Distribution-speci�c Learning in Polynomial Time 137

(Lemma 8.5)

From Equation 8.7, Lemma 8.4, Lemma 8.5 and the fact that if xi and xj
appear in the same monomial of f , then Pr~v2D+[vi = 1] = Pr~v2D+[vj = 1],
we have that there is a di�erence
(1=nd+1 � 1=nr�1) between the value of
Pr~v2D+[vi = 1 or vj = 1] in the two cases addressed by Lemmas 8.4 and 8.5.
Thus we can determine whether xi and xj appear in the same signi�cant
monomial by drawing a polynomial number of examples from POS using Facts
CB1 and CB2.

In Step 2, we draw a polynomial number of examples from both POS and
NEG to test if the hypothesis hA produced in Step 1 is �-good, again using
Facts CB1 and CB2. If it is determined that hA is not �-good, then A guesses
the assumption made in Step 1 is not correct, and therefore that there is a
monomial in f which is of length at most r log n. This implies that all the
monomials of length larger than 2r log n are not signi�cant. Therefore in Step
3 we assume that all the monomials in f are shorter than 2r log n. We use
only the negative examples.

Analysis of Substep 3.1. If variable xi does not appear in any monomial of
f , then

Pr~v2D�[vi = 0] =
1

2
(8:8)

since D+ is uniform.

Lemma 8.6 If variable xi appears in a signi�cant monomial of f , then

Pr~v2D�[vi = 0] � 1

2
+

1

2(n2r � 1)
:

Proof: Let l be the number of literals in the monomial m of f that variable
xi appears in. Then in a vector ~v drawn at random from D�, if some bit of ~v
is set such that m is already not satis�ed, the remaining bits are independent
and uniformly distributed. Thus

Pr~v2D�[vi = 0] =
2l�1

2l � 1
=

1

2
+

1

2(2l � 1)
:

Since l � 2r log n, the claim follows. (Lemma 8.6)

138 Distribution-speci�c Learning in Polynomial Time

By Equation 8.8 and Lemma 8.6, there is a di�erence of
(1=n2r) between
the probability that a variable in a signi�cant monomial of f is set to 0 and
the probability that a variable not appearing in f is set to 0. Thus we can
draw a polynomial number of examples from NEG , and decide if variable xi
appears in some signi�cant monomial of f , using Facts CB1 and CB2.

Analysis of Substep 3.2. We have to decide whether variables xi and xj
appear in the same monomial of f , given that each appear in some monomial
of f .

Lemma 8.7 If variables xi and xj are not in the same monomial of f , then

Pr~v2D�[vi = 0 and vj = 0] = Pr~v2D�[vi = 0]Pr~v2D�[vj = 0]:

Proof: If xi and xj do not appear in the same monomial, then they are
independent of each other with respect to D� since each variable appears only
once in f . (Lemma 8.7)

Lemma 8.8 If variables xi and xj appear in the same monomial of f , then

Pr~v2D�[vi = 0 and vj = 0] =
1

2
Pr~v2D�[vi = 0]:

Proof:

Pr~v2D�[vi = 0 and vj = 0] = Pr~v2D�[vi = 0]Pr~v2D�[vj = 0jvi = 0]

But Pr~v2D�[vj = 0jvi = 0] = 1=2. (Lemma 8.8)

By Lemmas 8.6, 8.7 and 8.8 we have that there is a di�erence of
(1=n2r)
in the value of Pr~v2D�[vi = 0 and vj = 0] in the two cases addressed by
Lemmas 8.7 and 8.8. Thus we can test if xi and xj appear in the same
monomial of f by drawing a polynomial number of examples from NEG using
Facts CB1 and CB2. This completes the proof of Theorem 8.3.

The results of Pitt and Valiant [78] show that k-term �DNF is not learnable
by k-term �DNF unless NP = RP . However, the algorithm of Theorem 8.3
outputs an hypothesis with the same number of terms as the target formula;

Distribution-speci�c Learning in Polynomial Time 139

thus k-term �DNF is learnable by k-term �DNF under uniform target dis-
tributions. This is an example of a class for which learning under arbitrary
target distributions is NP -hard, but learning under uniform target distribu-
tions is tractable, and is analogous to results from complexity theory giving
polynomial-time algorithms for NP -complete problems when the inputs are
generated from speci�c probability distributions.

9

Equivalence of Weak Learning and

Group Learning

9.1 Introduction

In this chapter we prove the equivalence of the model of weak learning with
another model which we call group learning. Informally, in group learning we
ask that the learning algorithm output an hypothesis that is 1� � accurate in
classifying a polynomial-size group of examples that are either all positive or
all negative. Thus, the basic model of (strong) learnability is a special case of
group learning where the group size is 1. The question we wish to address here
is whether learning becomes easier in some cases if the group size is allowed
to be larger.

Recently it has been shown by Schapire [90] that in the distribution-free
setting, polynomial-time weak learning is in fact equivalent to polynomial-time
strong learning. His proof gives a recursive technique for taking an algorithm
outputting hypotheses with accuracy slightly above 1=2 and constructing hy-
potheses of accuracy 1� �. This result combined with ours shows that group
learning is in fact equivalent to strong learning. Thus, allowing the hypoth-
esis to accurately classify only larger groups of (all positive or all negative)
examples does not increase what is polynomially learnable. These results also
demonstrate the robustness of our underlying model of learnability, since it
is invariant under these apparently signi�cant but reasonable modi�cations.
Related equivalences are given by Haussler et al. [51].

Equivalence of Weak Learning and Group Learning 141

Our equivalence proof also holds in both directions under �xed target dis-
tributions: thus, C is polynomially group learnable under a restricted class
of distributions if and only if C is polynomially weakly learnable under these
same distributions. As an immediate corollary, we have by the results of Sec-
tion 8.2 that the class of all monotone Boolean functions is group learnable
in polynomial time under uniform distributions. Furthermore, since it was
argued in Section 8.2 that the class of all monotone Boolean functions can-
not be strongly learned in polynomial time under uniform distributions, there
cannot be an e�cient distribution-preserving reduction of the strong learning
model to the weak learning model. Thus, the problem of learning monotone
functions under uniform distributions exhibits a trade-o�: we may either have
accuracy slightly better than guessing on single examples, or high accuracy on
polynomial-size groups of examples, but not high accuracy on single examples.

Our formal de�nitions are as follows: for p any �xed polynomial in 1=�; 1=�
(and n), the hypothesis hA of learning algorithm A is now de�ned over the
space Xp(1=�;1=�;n). We ask that if p(1=�; 1=�; n) examples all drawn from D+

(respectively, D�) are given to hA, then hA classi�es this group as positive
(respectively, negative) with probability at least 1��. If A runs in polynomial
time, we say that C is polynomially group learnable.

9.2 The equivalence

Theorem 9.1 Let C be a polynomially evaluatable parameterized Boolean rep-
resentation class. Then C is polynomially group learnable if and only if C is
polynomially weakly learnable.

Proof: (If) Let A be a polynomial-time weak learning algorithm for C. We
construct a polynomial-time group learning algorithm A0 for C as follows: A0

�rst simulates algorithm A and obtains an hypothesis hA that with probability
1 � � has accuracy 1=2 + 1=p(jcj; n) for some polynomial p. Now given m
examples that are either all drawn fromD+ or all drawn fromD�, A0 evaluates
hA on each example. Suppose all m points are drawn fromD+. Assuming that
hA in fact has accuracy 1=2 + 1=p(jcj; n), the probability that hA evaluates as
positive on fewer than (1=2 + 1=(2p(jcj; n)))m of the examples can be made
smaller than �=2 by choosing m to be a large enough polynomial in 1=� and

142 Equivalence of Weak Learning and Group Learning

1=p(jcj; n) using Fact CB1. On the other hand, if all m examples are drawn
from D� then the probability that hA evaluates as positive on more than
(1=2+1=(2p(jcj; n)))m can be made smaller than �=2 form large enough by Fact
CB2. Thus, if hA evaluates as positive on more than (1=2+1=(2p(jcj; n)))m of
the m examples, A0 guesses that the sample is positive; otherwise, A0 guesses
that the sample is negative. The probability of misclassifying the sample is
then at most �, so A0 is a group learning algorithm.

(Only if) Let A be a polynomial-time group learning algorithm for C. We
use A as a subroutine in a polynomial-time weak learning algorithm A0. Sup-
pose algorithm A is run to obtain with high probability an �=2-good hypothesis
hA for groups of size l = p(2=�; 1=�; jcj; n) all drawn from D+ or all drawn from
D� for some polynomial p. Note that although hA is guaranteed to produce
an output only when given l positive examples or l negative examples, the
probability that hA produces an output when given a mixture of positive and
negative examples is well-de�ned. Thus for 0 � i � l let qi denote the proba-
bility that hA evaluates as positive when given as input a group whose �rst i
examples are drawn from D+ and whose last l�i examples are drawn fromD�.
Then since hA is an �=2-good hypothesis we have q0 � �=2 and ql � 1 � �=2.
Thus,

(ql � q0) � (1 � �

2
)� �

2
= 1� �:

Then

1� � � (ql � q0) = (ql � ql�1) + (ql�1 � ql�2) + � � �+ (q1 � q0):

This implies that for some 1 � j � l, (qj � qj�1) � (1� �)=l.
Algorithm A0 �rst runs algorithm A with accuracy parameter �=2. A0 next

obtains an estimate q̂i of qi for each 0 � i � l that is accurate within an
additive factor of (1� �)=16l, that is

qi � 1 � �
16l

� q̂i � qi +
1� �
16l

: (9:1)

This is done by repeatedly evaluating hA on groups of l examples in which
the �rst i examples are drawn from D+ and the rest are drawn from D�,
and computing the fraction of runs for which hA evaluates as positive. These
estimates can be obtained in time polynomial in l, 1=� and 1=� with high
probability using Facts CB1 and CB2. Now for the j such that (qj � qj�1) �

Equivalence of Weak Learning and Group Learning 143

(1� �)=l, the estimates q̂j and q̂j�1 will have a di�erence of at least (1� �)=2l
with high probability. Furthermore, for any i if (qi � qi�1) � (1� �)=4l then
with high probability the estimates satisfy (q̂i � q̂i�1) � (1 � �)=2l. Thus, if k
is the index such that (qk � qk�1) is largest, assume without loss of generality
that 1=2 � qk > qk�1.

The intermediate hypothesis of hA0 of A0 is now de�ned as follows: given
an example whose classi�cation is unknown, hA0 constructs l input examples
for hA consisting of k � 1 examples drawn from D+, the unknown example,
and l � k examples drawn from D�. The prediction of hA0 is then the same
as the prediction of hA on this constructed group. The probability that hA0

predicts positive when the unknown example is drawn from D+ is then qk and
the probability that hA0 predicts positive when the unknown example is drawn
from D� is qk�1.

One problem with the hA0 de�ned at this point is that new examples need
to be drawn from D+ and D� each time an unknown point is classi�ed. This
sampling is eliminated as follows: for U a �xed sequence of k � 1 positive
examples of the target representation and V a �xed sequence of l � k nega-
tive examples, de�ne hA0(U; V) to be the one-input intermediate hypothesis
described above using the �xed constructed sample consisting of U and V .
Let p+(U; V) be the probability that hA0(U; V) classi�es a random example
drawn from D+ as positive, and let p�(U; V) be the probability that hA0(U; V)
classi�es a random example drawn from D� as positive. Then for U drawn
randomly according to D+ and V drawn randomly according to D�, de�ne
the random variable

R(U; V) = p+(U; V)� p�(U; V):

Then the expectation of R obeys

E[R(U; V)] � 2�

where � = (1� �)=4l. However, it is always true that

R(U; V) � 1:

Thus, let r be the probability that

R(U; V) � �: (9:2)

144 Equivalence of Weak Learning and Group Learning

Then we have
r + (1� r)(�) � 2�:

Solving, we obtain r � � = (1� �)=4l.
Thus, A0 repeatedly draws U from D+ and V from D� until Equation 9.2

is satis�ed; by the above argument, this takes only 8l=(1 � �) tries with high
probability. Note that A0 can test whether Equation 9.2 is satis�ed in polyno-
mial time. The (almost) �nal hypothesis hA0(U0; V0) simply \hard-wires" the
successful U0 and V0 as the constructed sample, leaving one input free for the
example whose classi�cation is to be predicted by hA0 .

Lastly, we need to \center" the bias of the hypothesis hA0(U0; V0). Let b be
a value such that

b+ (1� b)qk � 1

2
+
qk � qk�1

4

and

b+ (1� b)qk�1 � 1

2
� qk � qk�1

4
:

Note that A0 can compute an accurate estimate b̂ of b from accurate estimates
of qk and qk�1. The �nal hypothesis hA0 of A0 is now de�ned as follows: given
an example whose classi�cation is unknown, hA0
ips a coin of bias b̂. If
the outcome is heads, hA0 predicts that the input example is positive. If the
outcome is tails, hA0 predicts with the classi�cation given by hA0(U0; V0). Then
we have

1� e+(hA0) � b̂+ (1� b̂)qk � 1

2
+
1� �
c0l

for an appropriate constant c0 > 1, and

1� e�(hA0) � 1 � b̂+ (1 � b̂)qk�1 � 1

2
+
1� �
c0l

:

10

Conclusions and Open Problems

In the introduction we stated the hypothesis that many natural learning prob-
lems can be well-formalized, and that the tools of the theory of e�cient compu-
tation can be applied and adapted to these problems. We feel that the results
presented here and elsewhere in computational learning theory bear out this
hypothesis to a partial but promising extent.

We wish to emphasize that the recent progress in this area represents only
the beginning of a theory of e�cient machine learning. This is both a cau-
tionary and an optimistic statement. It is a cautionary statement because the
unsolved problems far outnumber the solved ones, and the models often fall
short of our notions of \reality". It is an optimistic statement because we do
have the beginnings of a theory, with general techniques being developed and
natural structure being uncovered, not simply isolated and unrelated problems
being solved by ad-hoc methods.

As humans we have the �rst-hand experience of being rapid and expert
learners. This experience is undoubtedly part of what makes the subject
of machine learning fascinating to many researchers. It also tends to make
us critical of the models for learning that we propose: as good learners, we
have strong opinions, however imprecise, on what demands a good learning
algorithm should meet; as poor graph-colorers, for instance, we may be less
vehement in our criticism of the best known heuristics. Hopefully researchers
will build on the progress made so far and formulate mathematical models of
learning that more closely match our �rst-hand experience.

146 Conclusions

We hope that the coming years will see signi�cant progress on the issues
raised here and elsewhere in computational learning theory, and on issues yet
to be raised. To entice the interested reader in this direction, we conclude with
a short list of selected open problems and areas for further research.

E�cient learning of DNF. Several of the results in this book focus at-
tention on what is perhaps the most important open problem in the
distribution-free model, the polynomial learnability of DNF formulae.
More precisely: is the class of polynomial-size DNF learnable in polyno-
mial time by some polynomially evaluatable representation class? Chap-
ter 8 gave positive results only for the case of uniform distributions, and
only when the DNF are \read-once". Recently, Linial, Mansour and
Nisan [71] gave a sub-exponential but super-polynomial time algorithm
for learning DNF against uniform target distributions. Neither of these
results seems likely to generalize to the distribution-free setting. On
the other hand, the DNF question also seems beyond the cryptographic
techniques for proving hardness results of Chapter 7, since those meth-
ods require that the hard class of circuits at least be able to perform
multiplication. Several apparently computationally easier subproblems
also remain unsolved, such as: Is monotone DNF polynomially learnable
under uniform distributions? Is DNF polynomially learnable with the
basic natural queries (e.g., membership queries) allowed? Are decision
trees polynomially learnable by some polynomially evaluatable represen-
tation class? Some progress has recently been made by Angluin, Frazier
and Pitt [10], who show that the class of DNF in which each term has at
most one negated literal can be e�ciently learned from random examples
and membership queries.

Improved time and sample complexity for learning k-term-DNF.
Short of solving the polynomial learnability of general DNF, can one
improve on the O(nk) time and sample complexity for learning the class
k-term-DNF provided by the algorithm of Valiant [93]? Note that we
still may have exponential dependence on k (otherwise we have solved
the general DNF problem); however, it is entirely plausible that there is,
say, an O(nk=2) solution using a di�erent hypothesis space than kCNF.

Shift DNF. (Suggested by Petros Maragos and Les Valiant) A potentially
manageable subproblem of the general DNF problem is motivated by

Conclusions 147

machine vision. In the \shift" DNF problem, the target representation
over f0; 1gn is of the form T1 + � � � + Tn, where the literal li is in the
term Tj if and only if literal li�j+1 mod n is in term T1. We think of the
variables x1; : : : ; xn as representing pixels in a visual �eld, and T1 is
a template for some simple object (such as the letter \a"). Then the
shift DNF represents the presence of the object somewhere in the visual
�eld. More generally, notice that shift DNF is a class of DNF that is
invariant under a certain set of cyclic permutations of the inputs; at the
extreme we have that symmetric functions, which are invariant under
all permutations of the inputs, are e�ciently learnable by Theorem 5.11.
It would be interesting to investigate the smallest class of permutation
invariants that su�ce for polynomial learnability.

Improved error rates. Can the polynomial-time malicious error rates given
in Chapter 5 be improved? Of particular interest is the class of mono-
mials, the simplest class where the tolerable error rate apparently di-
minishes as the number of variables increases. Is it possible to prove
\representation-independent" bounds on the polynomial-time malicious
error rate? Recall that the result relating the error rate for monomi-
als and set cover approximations requires that the learning algorithm
outputs a monomial as its hypothesis. It would be nice to remove this
restriction, or give an algorithm that tolerates a larger error rate by using
a more powerful hypothesis representation.

Cryptography from non-learnability. Results in Chapter 7 demonstrate
that the existence of various cryptographically secure functions implies
that some simple representation classes are not learnable in polynomial
time. It would be quite interesting to prove some sort of partial con-
verse to this. Namely, if a parameterized Boolean representation class C
cannot be learned in polynomial time, is it possible to develop protocols
for some cryptographic primitives based on C? Note that such results
could actually have practical importance for cryptography | one might
be able to construct very e�cient protocols based on, for instance, the
di�culty of learning DNF formulae. Intuitively, the \simpler" the hard
class C, the more e�cient the protocol, since in Chapter 7 the complexity
of the hard class was directly related to the complexity of decryption.

Weakened assumptions for non-learnability results. In the opposite
direction of the preceding problem, all known representation-independent

148 Conclusions

hardness results for learning rely on the existence of one-way or trapdoor
functions. It would be interesting to �nd a polynomially evaluatable rep-
resentation class that is not polynomially learnable based on ostensibly
weaker assumptions such as RP 6= NP . Recently Board and Pitt [26]
suggested an approach to this problem, but it remains open.

A theory of learning with background information. One frequent
complaint about the distribution-free model is its tabula rasa approach
to learning, in the sense that the learning algorithm has no prior infor-
mation or experience on which to draw. This is in contrast to human
learning, where people often learn hierarchically by building on previ-
ously learned concepts, by utilizing provided \background information"
about the particular domain of interest, or by relying on a possibly \hard-
wired" biological predisposition towards certain abilities. It would be
interesting to formulate good models of e�cient learning in the presence
of these valuable and natural sources of information, and to compare
the di�culty of learning with and without such sources. Note that the
demand for e�ciency forces any good model to carefully consider how
such background information is represented and processed by a learning
algorithm, and one might expect to see trade-o�s between the computa-
tional expense of processing provided background information and the
computational expense of learning using this information. For example,
extensive knowledge of abstract algebra almost certainly eases the task
of learning basic integer arithmetic, but the e�ort required to gain this
knowledge is not worthwhile if basic arithmetic is the ultimate goal.

Learning with few mistakes. Many of the e�cient learning algorithms in
the distribution-free model actually have the stronger property of having
a small absolute mistake bound; that is, they misclassify only a polyno-
mial number of examples, even if an adversary chooses the presentation
sequence (see Littlestone [73] for details). On the other hand, Blum [21]
has recently demonstrated a representation class that can be e�ciently
learned in the distribution-free model, but which cannot be learned with
a polynomial absolute mistake bound (assuming the existence of a one-
way function). Are there still reasonably general conditions under which
distribution-free learning implies learning with a small absolute mistake
bound? Note that if we relax our demands to that of only having a small
expected mistake bound, then we obtain equivalence to the distribution-

Conclusions 149

free model within polynomial factors (see Haussler, Littlestone and War-
muth [52].

Learning more expressive representations. In this book we concen-
trated exclusively on concept learning | that is, learning representa-
tions of sets. It is also important to consider e�cient learning of more
complicated representations than simple f0; 1g-valued functions. Here
we would like to avoid simply reducing learning multi-valued functions
to learning concepts (for example, by learning each bit of the output
separately as a concept). Rather, we would like to explicitly use the
more expressive representations to allow simple modeling of more real-
world learning scenarios than is possible in the basic concept learning
framework. The sample complexity of such generalized learning was re-
cently investigated in great detail by Haussler [50], and e�cient learning
of real-valued functions whose output is interpreted as the conditional
probability that the input is a positive example has been studied by
Kearns and Schapire [63]. It would be interesting to examine other set-
tings in which more expressive functions provide more realistic modeling
and still permit e�cient learning.

Cooperating learning algorithms. (Suggested by Nick Littlestone) Hu-
mans often seem able to greatly reduce the time required to learn by
communicating and working together in groups. It would be interest-
ing to de�ne a formal model of learning algorithms that are allowed to
communicate their hypotheses and/or other information in an attempt
to converge on the target more rapidly.

Agnostic learning. A typical feature of pattern recognition and empirical
machine learning research is to make very few or no assumptions on how
the sample data is generated; thus there is no \target concept", and the
goal of a learning algorithm might be to choose the \best" hypothesis
from a given hypothesis class (even if this hypothesis is a relatively poor
description of the data). We might call this type of learning agnostic
learning, to emphasize the fact that the learning algorithm has no a priori
beliefs regarding the structure of the sample data. Agnostic learning has
been studied in a general but non-computational setting by Haussler [50];
it would be interesting to study the possibilities for e�cient agnostic
learning in the distribution-free model.

Bibliography

[1] N. Abe.
Polynomial learnability of semilinear sets.
Proceedings of the 1989 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1989, pp. 25-40.

[2] L. Adleman, K. Manders, G. Miller.
On taking roots in �nite �elds.
Proceedings of the 18th I.E.E.E. Symposium on Foundations of Com-
puter Science, 1977, pp. 175-178.

[3] A. Aho, J. Hopcroft, J. Ullman.
The design and analysis of computer algorithms.
Addison-Wesley, 1974.

[4] D. Aldous.
On the Markov chain simulation method for uniform combinatorial dis-
tributions and simulated annealing.
University of California at Berkeley Statistics Department, technical re-
port number 60, 1986.

[5] W. Alexi, B. Chor, O. Goldreich, C.P. Schnorr.
RSA and Rabin functions: certain parts are as hard as the whole.
S.I.A.M. Journal on Computing, 17(2), 1988, pp. 194-209.

[6] D. Angluin.
Lecture notes on the complexity of some problems in number theory.
Yale University Computer Science Department, technical report number
TR-243, 1982.

Bibliography 151

[7] D. Angluin.
Learning regular sets from queries and counterexamples.
Information and Computation, 75, 1987, pp. 87-106.

[8] D. Angluin.
Queries and concept learning.
Machine Learning, 2(4), 1988, pp. 319-342.

[9] D. Angluin.
Learning with hints.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 167-181.

[10] D. Angluin, M. Frazier, L. Pitt.
Learning conjunctions of horn clauses.
To appear, Proceedings of the 31st I.E.E.E. Symposium on the Founda-
tions of Computer Science, 1990.

[11] D. Angluin, L. Hellerstein, M. Karpinski.
Learning read-once formulas with queries.
University of California at Berkeley Computer Science Department, tech-
nical report number 89/528, 1989. Also International Computer Science
Institute, technical report number TR-89-05099.

[12] D. Angluin, P. Laird.
Learning from noisy examples.
Machine Learning, 2(4), 1988, pp. 343-370.

[13] D. Angluin, C. Smith.
Inductive inference: theory and methods.
A.C.M. Computing Surveys, 15, 1983, pp. 237-269.

[14] D. Angluin, L.G. Valiant.
Fast probabilistic algorithms for Hamiltonian circuits and matchings.
Journal of Computer and Systems Sciences, 18, 1979, pp. 155-193.

[15] P.W. Beame, S.A. Cook, H.J. Hoover.
Log depth circuits for division and related problems.
S.I.A.M. Journal on Computing, 15(4), 1986, pp. 994-1003.

152 Bibliography

[16] G.M. Benedek, A. Itai.
Learnability by �xed distributions.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 80-90.

[17] B. Berger, P. Shor, J. Rompel.
E�cient NC algorithms for set cover with applications to learning and
geometry.
Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1989, pp. 54-59.

[18] P. Berman, R. Roos.
Learning one-counter languages in polynomial time.
Proceedings of the 28th I.E.E.E. Symposium on Foundations of Com-
puter Science, 1987, pp. 61-77.

[19] A. Blum.
An ~O(n0:4)-approximation algorithm for 3-coloring.
Proceedings of the 21st A.C.M. Symposium on the Theory of Computing,
1989, pp. 535-542.

[20] A. Blum.
Learning in an in�nite attribute space.
Proceedings of the 22nd A.C.M. Symposium on the Theory of Computing,
1990, pp. 64-72.

[21] A. Blum.
Separating PAC and mistake-bound learning models over the Boolean
domain.
To appear, Proceedings of the 31st I.E.E.E. Symposium on the Founda-
tions of Computer Science, 1990.

[22] A. Blum, R.L. Rivest.
Training a 3-node neural network is NP-complete.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 9-18.

[23] M. Blum, S. Micali.
How to generate cryptographically strong sequences of pseudo-random
bits.
S.I.A.M. Journal on Computing, 13(4), 1984, pp. 850-864.

Bibliography 153

[24] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth.
Occam's razor.
Information Processing Letters, 24, 1987, pp. 377-380.

[25] A. Blumer, A. Ehrenfeucht, D. Haussler, M. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension.
Journal of the A.C.M., 36(4), 1989, pp. 929-965.

[26] R. Board, L. Pitt.
On the necessity of Occam algorithms.
Proceedings of the 22nd A.C.M. Symposium on the Theory of Computing,
1990, pp. 54-63.

[27] A.K. Chandra, L.J. Stockmeyer, U. Vishkin.
Constant depth reducibility.
S.I.A.M. Journal on Computing, 13(2), 1984, pp. 423-432.

[28] H. Cherno�.
A measure of asymptotic e�ciency for tests of a hypothesis based on the
sum of observations.
Annals of Mathematical Statistics, 23, 1952, pp. 493-509.

[29] V. Chvatal.
A greedy heuristic for the set covering problem.
Mathematics of Operations Research, 4(3), 1979, pp. 233-235.

[30] T.H. Cormen, C.E. Leiserson, R.L. Rivest.
Introduction to algorithms.
The MIT Press, 1990.

[31] L. Devroye.
Automatic pattern recognition: a study of the probability of error.
I.E.E.E. Transactions on Pattern Analysis and Machine Intelligence,
10(4), 1988, pp. 530-543.

[32] W. Di�e, M. Hellman.
New directions in cryptography.
I.E.E.E. Transactions on Information Theory, 22, 1976, pp. 644-654.

[33] R. Duda, P. Hart.
Pattern classi�cation and scene analysis.
John Wiley and Sons, 1973.

154 Bibliography

[34] R.M. Dudley.
A course on empirical processes.
Lecture Notes in Mathematics, 1097:2-142, 1984.

[35] A. Ehrenfeucht, D. Haussler.
Learning decision trees from random examples.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 182-194.

[36] A. Ehrenfeucht, D. Haussler, M. Kearns. L.G. Valiant.
A general lower bound on the number of examples needed for learning.
Information and Computation, 82(3), 1989, pp. 247-261.

[37] S. Floyd.
On space-bounded learning and the Vapnik-Chervonenkis Dimension.
International Computer Science Institute, technical report number TR-
89-061, 1989. See also Proceedings of the 1988 Workshop on Computa-
tional Learning Theory, Morgan Kaufmann Publishers, 1988, pp. 413-
414.

[38] M. Fulk, J. Case, editors.
Proceedings of the 1990 Workshop on Computational Learning Theory.
Morgan Kaufmann Publishers, 1990.

[39] M. Garey, D. Johnson.
Computers and intractability: a guide to the theory of NP-completeness.
Freeman, 1979.

[40] M. Gereb-Graus.
Complexity of learning from one-sided examples.
Harvard University, unpublished manuscript, 1989.

[41] E.M. Gold.
Complexity of automaton identi�cation from given data.
Information and Control, 37, 1978, pp. 302-320.

[42] S. Goldman, M. Kearns, R. Schapire.
Exact identi�cation of circuits using �xed points of ampli�cation func-
tions.
To appear, Proceedings of the 31st I.E.E.E. Symposium on the Founda-
tions of Computer Science, 1990.

Bibliography 155

[43] S. Goldman, M. Kearns, R. Schapire.
On the sample complexity of weak learning.
To appear, Proceedings of the 1990 Workshop on Computational Learn-
ing Theory, Morgan Kaufmann Publishers, 1990.

[44] S. Goldman, R. Rivest, R. Schapire.
Learning binary relations and total orders.
Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1989, pp. 46-51.

[45] O. Goldreich, S. Goldwasser, S. Micali.
How to construct random functions.
Journal of the A.C.M., 33(4), 1986, pp. 792-807.

[46] T. Hancock.
On the di�culty of �nding small consistent decision trees.
Harvard University, unpublished manuscript, 1989.

[47] T. Hancock.
Learning �-formula decision trees with queries.
To appear, Proceedings of the 1990 Workshop on Computational Learn-
ing Theory, Morgan Kaufmann Publishers, 1990.

[48] D. Haussler.
Quantifying inductive bias: AI learning algorithms and Valiant's model.
Arti�cial Intelligence, 36(2), 1988, pp. 177-221.

[49] D. Haussler.
Space-bounded learning.
University of California at Santa Cruz Information Sciences Department,
technical report number UCSC-CRL-88-2, 1988.

[50] D. Haussler.
Generalizing the PACmodel: sample size bounds from metric dimension-
based uniform convergence results.
Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1989, pp. 40-45.

[51] D. Haussler, M. Kearns, N. Littlestone, M. Warmuth.
Equivalence of models for polynomial learnability.

156 Bibliography

Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 42-55, and University of Cali-
fornia at Santa Cruz Information Sciences Department, technical report
number UCSC-CRL-88-06, 1988.

[52] D. Haussler, N. Littlestone, M. Warmuth.
Predicting 0,1-functions on randomly drawn points.
Proceedings of the 29th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1988, pp. 100-109.

[53] D. Haussler, L. Pitt, editors.
Proceedings of the 1988 Workshop on Computational Learning Theory.
Morgan Kaufmann Publishers, 1988.

[54] D. Haussler, E. Welzl.
Epsilon-nets and simplex range queries.
Discrete Computational Geometry, 2, 1987, pp. 127-151.

[55] D. Helmbold, R. Sloan, M. Warmuth.
Learning nested di�erences of intersection-closed concept classes.
Proceedings of the 1989 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1989, pp. 41-56.

[56] D. Johnson.
Approximation algorithms for combinatorial problems.
Journal of Computer and Systems Sciences, 9, 1974, pp. 256-276.

[57] S. Judd.
Learning in neural networks.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 2-8.

[58] N. Karmarkar.
A new polynomial-time algorithm for linear programming.
Combinatorica, 4, 1984, pp. 373-395.

[59] M. Kearns, M. Li.
Learning in the presence of malicious errors.
Proceedings of the 20th A.C.M. Symposium on the Theory of Computing,
1988, pp. 267-280.

Bibliography 157

[60] M. Kearns, M. Li, L. Pitt, L.G. Valiant.
On the learnability of Boolean formulae.
Proceedings of the 19th A.C.M. Symposium on the Theory of Computing,
1987, pp. 285-295.

[61] M. Kearns, M. Li, L. Pitt, L.G. Valiant.
Recent results on Boolean concept learning.
Proceedings of the 4th International Workshop on Machine Learning,
Morgan Kaufmann Publishers, 1987, pp. 337-352.

[62] M. Kearns, L. Pitt.
A polynomial-time algorithm for learning k-variable pattern languages
from examples.
Proceedings of the 1989 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1989, pp. 57-71.

[63] M. Kearns, R. Schapire.
E�cient distribution-free learning of probabilistic concepts.
To appear, Proceedings of the 31st I.E.E.E. Symposium on the Founda-
tions of Computer Science, 1990.

[64] M. Kearns, L.G. Valiant.
Cryptographic limitations on learning Boolean formulae and �nite au-
tomata.
Proceedings of the 21st A.C.M. Symposium on the Theory of Computing,
1989, pp. 433-444.

[65] L.G. Khachiyan.
A polynomial algorithm for linear programming.
Doklady Akademiia Nauk SSSR, 244:S, 1979, pp. 191-194.

[66] E. Kranakis.
Primality and cryptography.
John Wiley and Sons, 1986.

[67] P. Laird.
Learning from good and bad data.
Kluwer Academic Publishers, 1988.

[68] L. Levin.
One-way functions and psuedorandom generators.

158 Bibliography

Proceedings of the 17th A.C.M. Symposium on the Theory of Computing,
1985, pp. 363-365.

[69] M. Li, U. Vazirani.
On the learnability of �nite automata.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 359-370.

[70] M. Li, P. Vitanyi.
A theory of learning simple concepts under simple distributions and av-
erage case complexity for the universal distribution.
Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1989, pp. 34-39.

[71] N. Linial, Y. Mansour, N. Nisan.
Constant depth circuits, Fourier transform and learnability.
Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1989, pp. 574-579.

[72] N. Linial, Y. Mansour, R.L. Rivest.
Results on learnability and the Vapnik-Chervonenkis dimension.
Proceedings of the 1988 Workshop on Computational Learning The-
ory, Morgan Kaufmann Publishers, 1988, pp. 56-68, and Proceedings of
the 29th I.E.E.E. Symposium on the Foundations of Computer Science,
1988, pp. 120-129.

[73] N. Littlestone.
Learning quickly when irrelevant attributes abound: a new linear thresh-
old algorithm.
Machine Learning, 2(4), 1988, pp. 245-318, and Proceedings of the 28th
I.E.E.E. Symposium on the Foundations of Computer Science, 1987, pp.
68-77.

[74] N. Littlestone, M.K. Warmuth.
The weighted majority algorithm.
Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1989, pp. 256-261.

[75] L. Lovasz.
On the ratio of optimal integral and fractional covers.
Discrete Math, 13, 1975, pp. 383-390.

Bibliography 159

[76] B.K. Natarajan.
On learning Boolean functions.
Proceedings of the 19th A.C.M. Symposium on the Theory of Computing,
1987, pp. 296-304.

[77] R. Nigmatullin.
The fastest descent method for covering problems.
Proceedings of a Symposium on Questions of Precision and E�ciency of
Computer Algorithms, Kiev, 1969 (in Russian).

[78] L. Pitt, L.G. Valiant.
Computational limitations on learning from examples.
Journal of the A.C.M., 35(4), 1988, pp. 965-984.

[79] L. Pitt, M.K. Warmuth.
Reductions among prediction problems: on the di�culty of predicting
automata.
Proceedings of the 3rd I.E.E.E. Conference on Structure in Complexity
Theory, 1988, pp. 60-69.

[80] L. Pitt, M.K. Warmuth.
The minimum consistent DFA problem cannot be approximated within
any polynomial.
Proceedings of the 21st A.C.M. Symposium on the Theory of Computing,
1989, pp. 421-432.

[81] D. Pollard.
Convergence of stochastic processes.
Springer Verlag, 1984.

[82] M.O. Rabin.
Digital signatures and public key functions as intractable as factoring.
M.I.T. Laboratory for Computer Science, technical report number TM-
212, 1979.

[83] J. Reif.
On threshold circuits and polynomial computations.
Proceedings of the 2nd Structure in Complexity Theory Conference, 1987,
pp. 118-125.

160 Bibliography

[84] R. Rivest.
Learning decision lists.
Machine Learning, 2(3), 1987, pp. 229-246.

[85] R. Rivest, D. Haussler, M. K. Warmuth, editors.
Proceedings of the 1989 Workshop on Computational Learning Theory.
Morgan Kaufmann Publishers, 1989.

[86] R.L. Rivest, R. Schapire.
Diversity-based inference of �nite automata.
Proceedings of the 28th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1987, pp. 78-88.

[87] R.L. Rivest, R. Schapire.
Inference of �nite automata using homing sequences.
Proceedings of the 21st A.C.M. Symposium on the Theory of Computing,
1989, pp. 411-420.

[88] R. Rivest, A. Shamir, L. Adleman.
A method for obtaining digital signatures and public key cryptosystems.
Communications of the A.C.M., 21(2), 1978, pp. 120-126.

[89] R.L. Rivest, R. Sloan.
Learning complicated concepts reliably and usefully.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 69-79.

[90] R. Schapire.
On the strength of weak learnability.
Proceedings of the 30th I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1989, pp. 28-33.

[91] G. Shackelford, D. Volper.
Learning k-DNF with noise in the attributes.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 97-105.

[92] R. Sloan.
Types of noise in data for concept learning.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 91-96.

Bibliography 161

[93] L.G. Valiant.
A theory of the learnable.
Communications of the A.C.M., 27(11), 1984, pp. 1134-1142.

[94] L.G. Valiant.
Learning disjunctions of conjunctions.
Proceedings of the 9th International Joint Conference on Arti�cial In-
telligence, 1985, pp. 560-566.

[95] L.G. Valiant.
Functionality in neural nets.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 28-39.

[96] V.N. Vapnik.
Estimation of dependences based on empirical data.
Springer Verlag, 1982.

[97] V.N. Vapnik, A.Ya. Chervonenkis.
On the uniform convergence of relative frequencies of events to their
probabilities.
Theory of Probability and its Applications, 16(2), 1971, pp. 264-280.

[98] K. Verbeurgt.
Learning DNF under the uniform distribution in quasi-polynomial time.
To appear, Proceedings of the 1990 Workshop on Computational Learn-
ing Theory, Morgan Kaufmann Publishers, 1990.

[99] J.S. Vitter, J. Lin.
Learning in parallel.
Proceedings of the 1988 Workshop on Computational Learning Theory,
Morgan Kaufmann Publishers, 1988, pp. 106-124.

[100] R.S. Wencour, R.M. Dudley.
Some special Vapnik-Chervonenkis classes.
Discrete Mathematics, 33, 1981, pp. 313-318.

[101] A. Wigderson.
A new approximate graph coloring algorithm.
Proceedings of the 14th A.C.M. Symposium on the Theory of Computing,
1982, pp. 325-329.

162 Bibliography

[102] A.C. Yao.
Theory and application of trapdoor functions.
Proceedings of the 23rd I.E.E.E. Symposium on the Foundations of Com-
puter Science, 1982, pp. 80-91.

Index

�C 18
ADFA 21,117,122,125
APR 21,99
accuracy 10,12
approximation algorithms 121
axis-parallel rectangles 21,99

�-tolerant learning algorithm 49
BF 20,116,122
BTF 20,26
Blum integer 105,114
Boolean circuits 21,27,101
Boolean formulae 20,116,122
Boolean threshold functions 20,26

CKT 21,27,101
CNF 20
Cherno� bounds 18
classi�cation noise 50
combinatorial optimization 121
composing learning algorithms 34
concept 6
concept class 6
con�dence 12
consistent 9
consistency problem 122

D+ 9
D� 9
DL 20

DNF 20,44,132,146
DT 21,24,26
dTC 21,117,123
data compression 27
decision lists 20
decision trees 21,24,26
distinct representation class 52
distribution-free 12
distribution-speci�c 14,129
domain 6

EMAL 50
ECN 52
e+ 10
e� 10
�-good 10
equivalence queries 30
errors 45
expected sample complexity 99

factoring 107,114
�nite automata 21,25,117,122,125
focusing 23
formula coloring problem 125

graph coloring problem 124
greedy algorithm 68
group learning 140

hypothesis 11

163

164 Bibliography

hypothesis class 11

incomparable representation
class 58

induced distributions 52,55,59,82
inductive inference 2
instance space 6
irrelevant attributes 23,67

kCNF 19,37,58,89
kDNF 19,37,57,89,96
k-clause-CNF 20,23,97
k-term-DNF 20,23,97,138,146
kDL 20,67,89,98

LS 21,98
labeled sample 8
learnable 11
linear separators 21,98
loading problem 123

�CNF 44
�DNF 44,133
MR 107,114
malicious errors 48
membership queries 30
minimize disagreements problem 81
mistake bounds 31
modi�ed Rabin encryption

function 107,114
monomials 19,57,67,87
monotone Boolean functions 130

NC
1 109

NEG 9
NEG�

MAL 48
NEG�

CN 51
naming invariant 41
neg(c) 7

negative example 7
negative-only

algorithm 13,35,47,55,62,86
neural networks 123

Occam algorithm 60
Occam's Razor 27,60
one-time pad 103
one-way function 27,102

POS 9
POS�

MAL 48
POS�

CN 50
parameterized representation

class 7
partial cover problem 68
pattern recognition 2
polynomially evaluatable 8
polynomially learnable 11
polynomially weakly learnable 13
pos(c) 7
positive example 7
positive-only

algorithm 13,37,47,55,62,86
prior knowledge 6
probably approximately correct 12
public-key cryptography 103

quadratic residue 105
quadratic residue

assumption 108,111

RSA encryption function 106,109
Rabin encryption function 107
random functions 101
read-once 30,43,132
reducibility 27,39
relevant example 108
representation class 7

Bibliography 165

representation-based 24,101
representation-independent 24,101

SA 17
SF 20,58,62,97
sample complexity 17,85
set cover problem 68,78
shattered set 18
symmetric functions 20,58,62,97

TC 21
t-splittable representation class 55
target distribution 9
target representation 9
threshold circuits 21
trapdoor function 103,118

uniform distributions 129
upward closed 41

vcd(C) 18
Vapnik-Chervonenkis dimension 18

weakly learnable 12

